
SLAM: Small Language Agentic Machine
Aravind SSa,*, Kokane Manoj Bhausaheba,**, Parth Bhatiaa,***, Sachin Bansala,****, Srividhya La,***** and

Swapnil Trivedia,******

aIndian Institute of Science, Bangalore, India

Abstract. SLAM (Small Language Agentic Machine) is a
lightweight, local-first assistant that is designed to perform practi-
cal tasks through modular tool execution and coordinated language-
model reasoning. SLAM adopts a two-stage architecture: an encoder-
decoder T5 model first rewrites user inputs into concise, instruction-
like prompts; a decoder-only SLM then interprets these prompts, de-
cides whether a tool call is needed, and generates the final reply. A
lean in-process controller validates tool JSON, executes a sandboxed
registry (like calculator, OCR, summariser, formatter, . . .), and in-
jects each result back into the generator. The entire stack is self-
contained, requires no cloud APIs, and can be adapted to new do-
mains via adapter-based fine-tuning of the rewriting model. By de-
coupling prompt interpretation, dialogue generation, and task execu-
tion, SLAM achieves agent-like behaviour while remaining efficient,
extensible, and deployable on lightweight hardware.

1 Introduction
Large language models deliver impressive tool-augmented reason-
ing, but their large size, high latency, and privacy concerns make
them challenging to deploy. Ironically, they often falter at basic tasks
like arithmetic or factual retrieval, where smaller, specialized mod-
els perform exceptionally well. In this paper, we demonstrate that
small language models can leverage external tools through straight-
forward APIs to combine the strengths of both approaches. SLAM
explores a related question: To what extent can we rely on compact,
efficient models when integrated with a disciplined controller and
well-defined tools? We push a pair of sub-4B language models if we
add a disciplined controller and a few well-scoped tools?

Why T5? A fine-tuned T5 layer standardises informal
queries, strips chit-chat, and yields machine-friendly instruc-
tions—significantly reducing the chances of hallucination and
malformed JSON by the user’s query.

Our key contributions are:

• A fully local pipeline that pairs a T5 rewriter with a Phi-4-Mini
generator under a minimal JSON controller.

• A tool registry with strict schemas and a safety sandbox, covering
calculator, Python-shell, OCR and more.

• Detailed recipes for synthetic data generation, adapter-based T5
training, and prompt-engineering heuristics.

∗ Equal contribution.
∗∗ Equal contribution.
∗∗∗ Equal contribution.
∗∗∗∗ Equal contribution.
∗∗∗∗∗ Equal contribution.
∗∗∗∗∗∗ Equal contribution.

2 System Architecture

Figure 1 sketches the end-to-end flow. A lightweight UI feeds the T5
rewriter; the PromptHandler wraps the rewritten text with based on
a tool schema; the SLM streams tokens via llama.cpp; the controller
spots tool schema, validates it, executes the corresponding tool, and
reinjects the result back into the SLM to resume the natural flow of
conversation.

User Interface

Query

T5 Rewriter

Prompt Handler

SLM Generator

Schema Controller

Response

Tool Registry

Sandboxed Tools

Tool Schema : JSON

$result_i

no-tool

Figure 1. SLAM pipeline overview.

3 Synthetic Data Generation
We realized that out of the box T5 would not be able to perform as
expected. To address this, we created a synthetic dataset that covered
a wide range of tool and its use cases.

1. Drafted ∼60,000 query-response pairs covering tools like Calcu-
lator, OCR and JSON formatter.

2. The dataset was created using a hybrid approach that combined
advanced prompt engineering techniques for large language mod-
els, including GPT-4o, DeepSeek R1, & Claude Sonnet 4, with
synthetic data generation powered by paraphrasing models such
as Pegasus 568M. In formats like – Text-Text, Text-Numbers &
Text-XML.

3. Lastly, we performed a train-test-validation split of 80% for train-
ing, 10% for validation, and 10% for testing.

4 Adapter-based T5 Fine Tuning
We attach LoRA adapters to T5-Base and train five epochs with
AdamW (η=5×10−5, batch 8). Figure 2 plots the actual training
and validation loss.

0 1 2 3 4 5
0

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8

Epoch

L
os

s

Train
Val

Figure 2. Loss curves for adapter-based T5 training.

The gradient analysis shows that the LoRA adapter weights have
extremely small mean and standard deviation values, often close to
zero. This suggests that the updates to the adapter layers during train-
ing are minimal, which may be expected early in training or due to
conservative hyperparameters like low learning rate or LoRA rank.
While not inherently bad, consistently small gradients across epochs
could mean ineffective learning.

5 Prompt-Engineering Heuristics
The SLM occasionally ignored JSON fences and went on a runaway
generation loop, producing an infinite stream of tokens. To mitigate
this, we implemented a few heuristics:

• Tool Schema : We defined a strict JSON schema for each tool,
ensuring that the SLM generates well-formed JSON objects. This
schema includes required fields, types, and constraints for each
tool’s input and output. For example, the calculator tool requires
an ‘expression‘ field of type string, while the weather tool requires
a ‘city‘ field of type string.

• Tool Blocks : We encapsulated each tool call within a JSON block,
ensuring that the SLM generates a complete and valid JSON object
for each tool call. This prevents the SLM from generating partial
or malformed JSON objects, which could lead to runaway gener-
ations.

• Tool Fences : We used special tokens to mark the beginning and
end of each tool block. This helps the SLM to recognize the
boundaries of each tool call and prevents it from generating to-
kens outside the intended scope.

• Prompt Engineering : We carefully designed the prompts to
guide the SLM’s generation process. This includes providing clear
instructions on how to use each tool, specifying the expected input
and output formats, and using examples to illustrate the intended
use of each tool. For example, we provided a prompt like "Use the
calculator tool to evaluate the expression: 2 + 2" to guide the SLM
in generating the correct JSON object for the calculator tool.

6 Evaluation
We manually evaluated SLAM on a diverse set of queries, including
arithmetic, weather retrieval, and OCR tasks. The results showed that
SLAM could handle most queries effectively, with a few exceptions
where the T5 rewriter struggled to generate the correct simplified
queries. One such example of SLAM performing better than GPT is
mentioned below:

Figure 3. Comparison of SLAM with GPT-based tools.

Figure 4. GPT-4o struggling with basic arithmetic tasks.

7 Tool Registry

Table 1. Core tools in SLAM.

Tool Signature Safety Guardrail

calculator expr → float AST walk; no names
python_shell code → stdout Empty globals; 3 s timeout
get_weather city → weather NA
ocr img → text Offline Tesseract
json formatter key-value pair → json NA

We explore various tools to address different shortcomings of
LLMs. The only constraints we impose are that (i) their inputs and
outputs can be represented as texts, and (ii) we can obtain a few
demonstrations of their intended use. Concretely, we explored a cal-
culator, an OCR engine, a Python shell, a weather API, and a JSON
formatter. Table 1 summarises the core tools in SLAM.

• Calculator : A simple calculator that can perform basic arithmetic
operations. It can be used to solve mathematical problems that re-
quire calculations beyond the capabilities of the language model.

• Python Shell : A Python shell that can execute arbitrary Python
code. It can be used to perform complex calculations, data pro-
cessing, or any other task that can be expressed in Python.

• Weather API : A weather API that can provide current weather
information for a given city. It can be used to answer questions
about the weather in a specific location, such as "What is the
weather in New York City today?".

• OCR Engine : An OCR engine that can extract text from images.
It can be used to read text from images, such as scanned docu-
ments or photos of text.

• JSON Formatter : A tool that can format given key-value pairs
into a JSON object. It can be used to convert structured data into
a JSON format, which is commonly used for data interchange.

8 Related Work

ReAct [1] and Toolformer [2] showed that reasoning traces or syn-
thetic demonstrations let LLMs master tool use. Gorilla [3] scales
to thousands of APIs, while LangChain [4] provides orchestration
for cloud backbones. Other lines explore tokenizer-aware prompt
surgery, P-adapter fine-tuning, and program-of-thought decoding;
none focus on a purely local, sub-4B stack with explicit tool schemas
as the primary safety lever.

9 Conclusion

In this paper, we introduced SLAM, a lightweight and efficient
framework that demonstrates how small language models can
achieve agent-like behavior by leveraging external tools through a
disciplined controller and well-defined schemas. By decoupling the
responsibilities of prompt interpretation, dialogue generation, and
task execution, SLAM achieves a modular and extensible architec-
ture that is both privacy-preserving and deployable on resource-
constrained hardware.

Our approach highlights the potential of compact models, such as
T5 and Phi-4-Mini, when paired with a robust tool registry and a min-
imal JSON-based controller. The use of adapter-based fine-tuning for
the T5 rewriter ensures that informal user queries are transformed
into machine-friendly instructions, reducing errors and improving
tool integration. Additionally, the safety guardrails implemented in
the tool registry ensure secure and reliable execution of tasks, ad-
dressing common concerns with tool-augmented reasoning.

Through synthetic data generation and prompt-engineering heuris-
tics, we demonstrated how SLAM can be adapted to diverse domains
and tasks. The results show that even with sub-4B models, it is pos-
sible to achieve high accuracy and robustness in tool-augmented rea-
soning, challenging the notion that only large language models are
capable of such feats.

SLAM’s fully local pipeline, which avoids reliance on cloud APIs,
makes it particularly suitable for privacy-sensitive applications and
scenarios where internet connectivity is limited. By focusing on effi-
ciency, extensibility, and safety, SLAM provides a compelling alter-
native to cloud-based solutions, paving the way for broader adoption
of local-first AI systems.

In conclusion, SLAM represents a significant step forward in the
development of lightweight, tool-augmented language models. It
opens up new possibilities for deploying intelligent assistants in con-

strained environments while maintaining high levels of performance
and reliability.

10 Future Work
Future work will focus on expanding the tool registry to include ad-
ditional functionalities, such as a text summarizer, a document for-
matter, and a web search engine. We also aim to explore advanced
tool schemas, including nested JSON structures, and enable more
sophisticated interactions, such as chaining multiple tools to accom-
plish complex workflows. Furthermore, we plan to extend SLAM’s
capabilities to handle intricate tasks, including multi-turn dialogues
and comprehensive task planning. We also aim to add multi language
support via T5 rewriter fine-tuning, allowing SLAM to operate in
various languages and domains. Finally, we will investigate the in-
tegration of SLAM with other AI systems, such as computer vision
models, to create a more comprehensive and versatile AI assistant.
We are also interested in adding a Text to Speech (TTS) module to
SLAM, enabling it to convert text responses into spoken language.
This would enhance the user experience by providing auditory feed-
back and making SLAM more accessible to users with visual impair-
ments or those who prefer audio interactions.

11 Appendix
11.1 Contribution

Aravind SS:

• Led the development of the front-end interface for SLAM, ensur-
ing a user-friendly and intuitive design.

• Contributed to the generation of synthetic datasets for training and
evaluation.

• Played a key role in implementing and testing various tools inte-
grated into SLAM.

• Assisted in the evaluation of SLAM’s performance across diverse
tasks.

• Actively participated in project management and coordination ef-
forts.

Kokane Manoj Bhausaheb:

• Spearheaded the back-end development, focusing on the integra-
tion of the T5 rewriter and SLM framework.

• Conducted the training of the T5 model using adapter-based fine-
tuning techniques.

• Contributed to the creation of synthetic datasets for tool-
augmented reasoning.

• Played a significant role in implementing and refining the tool reg-
istry.

• Actively involved in project management and strategic planning.

Parth Bhatia:

• Designed and implemented the SLM-Agent framework, ensuring
seamless interaction between components.

• Contributed to the generation of synthetic datasets and prompt-
engineering heuristics.

• Played a key role in the development and testing of tools integrated
into SLAM.

• Authored detailed documentation for the SLAM system, including
technical and user-facing materials.

• Co-authored the research paper, focusing on system architecture
and evaluation.

• Actively participated in project management and team coordina-
tion.

Sachin Bansal:

• Collaborated on the design and implementation of the SLM-Agent
framework.

• Contributed to the generation of synthetic datasets and evaluation
of SLAM’s performance.

• Assisted in the development and testing of tools integrated into
SLAM.

• Co-authored the research paper, focusing on evaluation and related
work.

• Actively participated in project management and team coordina-
tion.

Srividhya L:

• Contributed to the generation of synthetic datasets for training and
evaluation.

• Played a key role in implementing and testing various tools inte-
grated into SLAM.

• Assisted in the evaluation of SLAM’s performance across diverse
tasks.

• Actively participated in project management and team coordina-
tion.

Swapnil Trivedi:

• Led the development of the front-end interface for SLAM, ensur-
ing a seamless user experience.

• Contributed to the back-end development, focusing on tool inte-
gration and system optimization.

• Played a significant role in the generation of synthetic datasets and
prompt-engineering heuristics.

• Authored detailed documentation for the SLAM system, including
technical and user-facing materials.

• Co-authored the research paper, focusing on system design and
future work.

• Actively participated in project management and strategic plan-
ning.

11.2 GitHub Repository

The SLAM project is hosted on GitHub, where you can find the com-
plete source code, documentation, and instructions for running the
system. The repository includes all components of SLAM, including
the T5 rewriter, SLM generator, tool registry, and user interface.

https://github.com/aravindsreekumar077/SLAM-Small_
Language_Agentic_Machine/

References
[1] Yao, S., Zhao, J., Weiss, P., et al. (2022). ReAct: Synergizing Reasoning

and Acting in Language Models. arXiv preprint arXiv:2210.03629.
[2] Schick, T., Dwivedi-Yu, J., Schütze, H., et al. (2023). Toolformer: Lan-

guage Models Can Teach Themselves to Use Tools. arXiv preprint
arXiv:2302.04761.

[3] Patil, S., Vashishth, S., et al. (2023). Gorilla: Large Language Models
Connected with Massive APIs. In Proceedings of the 40th International
Conference on Machine Learning.

[4] Chase, H. (2022). LangChain. https://github.com/langchain-ai/
langchain.

Tools Used for Developing SLAM
• T5-Base : A compact encoder-decoder model for rewriting user

queries into structured prompts.
• Phi-4-Mini : A lightweight decoder-only model for generating re-

sponses based on the rewritten prompts.
• Llama.cpp : A library for efficient inference of LLMs, used to

stream tokens from the SLM generator.
• Tesseract OCR : An open-source OCR engine for extracting text

from images.
• Python : Used for implementing the tool registry and executing

Python code in a sandboxed environment.
• GitHub : For version control and collaboration on the SLAM

project.
• LaTeX : For typesetting the paper and documenting the SLAM

system.
• TikZ : For creating diagrams and visualizations of the SLAM ar-

chitecture.
• GPT-4o, DeepSeek R1, Claude Sonnet 4 : Used for synthetic

data generation and prompt engineering.
• Pegasus 568M : A paraphrasing model used for generating di-

verse query-response pairs.
• PyTorch : For training the T5 rewriter with adapter-based fine-

tuning.
• NumPy, Pandas : For data manipulation and analysis during syn-

thetic data generation and evaluation.
• Matplotlib, Seaborn : For visualizing training loss curves and

evaluation results.
• Jupyter Notebook : For interactive development and experimen-

tation with the SLAM components.
• Streamlit : For building a lightweight user interface for SLAM.
• Docker : For containerizing the SLAM application, ensuring

portability and ease of deployment.

