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ABSTRACT

Large language models (LLMs) have achieved great success in various tasks.
While LLMs can learn powerful capabilities from large datasets, they also inherit
the gender bias present in that data. Existing studies usually propose methods
to reduce bias by data cleaning and model retraining/fine-tuning. Although these
methods have shown some success, the cost of designing data and retraining/fine-
tuning an LLM increases significantly as the model size grows larger. Further-
more, a lack of understanding of the mechanisms behind gender bias prevents
researchers from effectively tailoring solutions to address it. In this paper, we
utilize mechanistic interpretability methods to construct the neuron circuits for
gender bias cases and locate the important neurons storing gender bias. Then we
propose the Interpretable Model Editing (Interpret-ME) method to reduce gen-
der bias without designing huge datasets or fine-tuning. Compared to fine-tuning
methods, our approach shows competitive results in reducing gender bias across
experiments with 8 LLMs. At the same time, our method does not affect the
performance in other tasks. Overall, our analysis is useful for understanding the
mechanism of gender bias and our method paves a potential way for reducing bias.

1 INTRODUCTION

Transformer-based (Vaswani et al., 2017) large language models (LLMs) (Brown et al., 2020;
Ouyang et al., 2022; Chowdhery et al., 2023) have been successful in various downstream tasks.
They can acquire diverse abilities from large amounts of training data. However, they also learn,
perpetuate, and amplify the biases present in the data, including those related to race (Blodgett,
2021), gender (Bender et al., 2021), and religion (Li et al., 2020). If not addressed, these biases may
pose unknown risks to society. Among these biases, gender bias is found to be the most ingrained
and hardest to eliminate (Ranaldi et al., 2023), as it is often hidden in most sentences. Therefore,
mitigating gender bias in LLMs has become an increasingly important question recently.

Although many studies have explored reducing gender bias, three main questions remain unresolved.
First, many previous studies use data augmentation (Webster et al., 2020; Pant & Dadu, 2022) and
data filtering (Garimella et al., 2022; Borchers et al., 2022) methods to create balanced datasets.
However, this process requires substantial human resources, as the size and quality of the dataset
significantly affect the LLMs’ performance. Also, these methods can introduce factuality errors and
bring potential risks (Kumar et al., 2022). Second, most studies update the model parameters by
fine-tuning on specially designed datasets (Gira et al., 2022; Zhou et al., 2023; Ranaldi et al., 2023).
However, the computational expense of fine-tuning LLMs has become a significant concern, par-
ticularly as the size of LLMs continues to increase. At the same time, Gallegos et al. (2024) point
out that in-training methods risk corrupting the pre-trained language understanding due to catas-
trophic forgetting (Kirkpatrick et al., 2017), as fine-tuning datasets are relatively small compared
to the original training data. This can impair the model’s overall performance. Third, the overall
localization and mechanisms by which LLMs store and produce gender bias are still unclear, pre-
venting researchers from designing targeted mitigation solutions. Numerous studies (Zhao et al.,
2023; Li et al., 2023; Gallegos et al., 2024) have pointed out that it is essential to increase LLMs’
interpretability and understand which components of LLMs encode these biases.

In this paper, we propose the Interpretable Model Editing (Interpret-ME) method for reducing gen-
der bias that addresses the aforementioned questions. Our method eliminates the need for designing
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large datasets or extensive fine-tuning by focusing on editing just a few neurons (around 30 neu-
rons) through the analysis of only ten gender bias sentences. Additionally, our Interpret-ME method
is grounded in mechanistic interpretability analysis, which is helpful for understanding the mecha-
nisms and parameter storage associated with gender bias.

(a)
(b)

The

nurse

is

a
woman

FFN query neurons
attention heads

FFN value neurons

guard
0.5

-0.1

-1.1

0.2

[herself, woman, lady, …]

[himself, gentleman, male, …]

man
-0.5 [woman, …]

0.6 [man, …]

(a) (a)

(b) (b)

Figure 1: (a) Constructing the neuron circuits of sentence “The nurse is a => woman” and “The
guard is a => man”. (b) Editing the important neurons by reducing their coefficient scores.
Our method is based on the interpretability analysis of gender bias sentences. We use neuron-
level interpretability methods (Yu & Ananiadou, 2023) to build the neuron circuit including shallow
FFN neurons, attention heads and deep FFN neurons, as shown in Figure 1. Take “The nurse is
a => woman” as an example. “nurse” activates several shallow FFN neurons useful for “increas-
ing woman’s probability and reducing man’s probability”. These shallow FFN neurons become
interpretable after transformation of an attention head, because the FFN neurons can activate the
attention neurons related to “woman”. When projecting into unembedding space, these transformed
FFN neurons’ top tokens are related to “woman” and the last tokens are related to “man”. Then
the transformed FFN neurons are transferred into last position and activating the deep FFN neurons
related to “woman”. Furthermore, we conduct analysis on “The guard is a => man” and find that
some neurons are important in both cases. The only difference is that the coefficient scores of these
neurons have opposite signs. Therefore, these neurons are “gender neurons” storing gender bias.

Based on the interpretability analysis, we propose the Interpret-ME method with three stages, named
locate-analyze-edit. Firstly, we only choose five gender bias cases for each gender, and then locate
the important neurons in these cases. Secondly, we analyze and filter the neurons distinguishing
“man” and “woman” in top/last tokens when projecting into unembedding space. Lastly, we edit
these neurons by shrinking the neurons’ coefficient scores. After editing these neurons, the stor-
age of gender bias is reduced. We compare our method with state-of-the-art fine-tuning methods
on 8 LLMs with parameters from 1.1B to 13B, and the experimental results demonstrate that our
Interpret-ME method perform better than theirs on all the models. At the same time, we evaluate
the edited models in four other common tasks and the performance does not drop compared with the
original models.

Overall, our contributions are as follows:

a) We utilize interpretability methods to construct the neuron circuits of gender bias sentences and
analyze the roles of different neurons. Our analysis is important for understanding the parameter
storage and mechanism for LLMs to produce gender bias.

b) We propose the Interpretable Model Editing (Interpret-ME) method, which can reduce the gender
bias without designing new datasets or fine-tuning stages. By only editing a few neurons, the gender
bias is reduced and the performance of other tasks remains unchanged.

c) Our experiments are conducted in 8 LLMs and 3 gender bias datasets. Our ablation study explores
the importance of different neurons, the number of edited neurons, and the difference of editing
methods. Our work provides an important guide for neuron-level model editing. The code and data
will be published on github.
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2 RELATED WORK

2.1 REDUCING GENDER BIAS IN LLMS

Many studies have explored methods to reduce the gender bias in LLMs based on data selec-
tion/argumentation. Liu et al. (2021) design matched pairs to argument the training data. Ghan-
barzadeh et al. (2023) generate new data by masking the gender words and predicting a new word
by another language model. Zayed et al. (2023) produce a method to extract and argument the most
important gender sentences. Garimella et al. (2022) and Borchers et al. (2022) design methods to
filter the low-gender sentences. Han et al. (2021) and Orgad & Belinkov (2022) propose methods to
compute the importance of sentences and re-weight all the sentences.

Another type of studies focus on modifying model architectures. Lauscher et al. (2021) utilize
adapter modules (Houlsby et al., 2019) to mitigate gender bias. Han et al. (2021) propose a gate
module to help the model take protected attributes into consideration. Also, many studies (Gaci
et al., 2022; Yang et al., 2023; Woo et al., 2023) propose methods by modifying the loss functions,
which can encourage the model to generate de-biasing outputs.

2.2 MECHANISTIC INTERPRETABILITY FOR LANGUAGE MODELS

The goal of mechanistic interpretability is to reverse engineer the internal circuit from inputs to
outputs, thereby helping to understand the mechanisms of language models. Elhage et al. (2021)
find that the induction heads are the main roles for predictions like [A][B]...[A] => [B]. Olsson
et al. (2022) investigate the induction heads and find that these heads may be important for in-context
learning. Meng et al. (2022) utilize causal mediation analysis method (Vig et al., 2020) to identify
the important hidden states in GPT and find that the medium feed-forward network (FFN) layers are
significant for storing factual knowledge. Geva et al. (2023) find a three-step internal mechanism
for attribute extraction in factual knowledge. A common interpretability method for analyzing the
internal vectors is to project them into the unembedding space Geva et al. (2022); Dar et al. (2022).

Recently, several studies try to locate the important neurons in LLMs, as numerous studies (Nanda
et al.; Lieberum et al., 2023; Stolfo et al., 2023) point out finding the important neurons is of great
significance for understanding the mechanism and knowledge storage in LLMs. Geva et al. (2022)
find that the FFN neurons are interpretable when analyzing in unembedding space. Yu & Ananiadou
(2023) propose a method to identify the deep layers’ “value neurons” directly contributing to the
predictions, and the shallow layers’ “query neurons” contributing by activating the “value neurons”.

3 METHODOLOGY

In this section, we first introduce the background regarding the definition of “neurons” and how to
locate and analyze the important neurons in LLMs in Section 3.1. Then we conduct interpretability
analysis for gender bias sentences in Section 3.2, in order to understand the parameter storage and
overall mechanism of gender bias. In Section 3.3, we introduce our proposed Interpretable Model
Editing (Interpret-ME) method for mitigating gender bias in LLMs.

3.1 BACKGROUND

Inference pass of LLMs. We first introduce the inference pass in decoder-only LLMs. The input
sequence is X = [x1, x2, ..., xT ] with T tokens. The model generates an output distribution Y (a
B-dimension vector) over B tokens in vocabulary V . Each token xi at position i is transformed into
a word embedding hi

0 ∈ Rd by the embedding matrix E ∈ RB×d. Then the word embeddings are
fed into L+1 transformer layers (0th−Lth). Each layer output hl

i (layer l, position i) is computed
by the sum of the previous layer output hl−1

i , the multi-head self-attention (MHSA) layer output Al
i,

and the feed-forward network layer (FFN) output F l
i :

hl
i = hl−1

i +Al
i + F l

i (1)
The last layer output at the last position hL

T is utilized to calculate the final probability distribution
Y by multiplying the unembedding matrix Eu ∈ RB×d:

Y = softmax(Euh
L
T ) (2)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

The MHSA output is computed by the sum of all H head outputs, and each head output is an
weighted sum on all positions:

Al =

H∑
j=1

T∑
p=1

αl
j,p ·Ol

jV
l
j h

l−1
p (3)

where αl
j,p is the attention score at position p, head j, layer l, computed by the softmax function over

all positions’ attention scores. V l
j and Ol

j are the value matrix and output matrix in head j, layer l.
The FFN output is calculated by a nonlinear σ on two MLPs W l

fc1 ∈ RN×d and W l
fc2 ∈ Rd×N .

F l
i = W l

fc2σ(W
l
fc1(h

l−1
i +Al

i)) (4)

Definition of neurons. According to Geva et al. (2020), the FFN layer output can be represented
as the weighted sum of many FFN subvalues:

F l
i =

N∑
k=1

ml
i,kfc2

l
k (5)

ml
i,k = σ(fc1lk · (hl−1

i +Al
i)) (6)

where the subvalue fc2lk is the kth column of W l
fc2, and its coefficient score ml

i,k is based on the
inner product between the residual output (hl−1

i +Al
i) and the subkey fc1lk (the kth row of W l

fc1). In
this paper, we definite one neuron as the combination of the FFN subvalue and its subkey. Similar to
FFN layers, the value matrix V l

j and output matrix Ol
j in each attention head are also two MLPs, and

the kth attention neuron in head j, layer l is definited as the combination of the attention subvalue
(the kth column of Ol

j) and the attention subkey (the kth row of V l
j ).

Locating and analyzing important neurons in LLMs. Geva et al. (2022) find that the FFN
subvalues are interpretable when projecting into the unembedding space. Specifically, they multiply
each subvalue vl with the unembedding matrix to compute the distribution Dvl and analyze which
tokens have the largest probabilities (top tokens) and the smallest probabilities (last tokens):

Dvl = softmax(Euv
l) (7)

Based on Eq.7, Yu & Ananiadou (2023) utilize the increase of log probability of each subvalue as
the importance score of FFN neurons vlF and attention neurons vlA:

Imp(vlF ) = log(p(w|vlF +Al + hl−1))− log(p(w|Al + hl−1)) (8)

Imp(vlA) = log(p(w|vlA + hl−1))− log(p(w|hl−1)) (9)
They name the neurons with largest scores “value neurons” as these neurons directly contribute to
the final predictions and are distributed in deep FFN and attention layers. At the same time, there are
“query neurons” in shallow layers, which contribute by activating the “value neurons”. For every
FFN neuron, they calculate the FFN neuron’s query score by summing the inner products between
the FFN neuron’s subvalue and the subkeys of “value attention neurons”. Then they sort all the FFN
neurons’ query scores to find the most important FFN neurons working as “query neuron”.

3.2 NEURON CIRCUITS OF GENDER BIAS SENTENCES

Gender bias arises from the probability differences assigned to male and female terms based on the
same word. Using the method introduced in the previous section, we construct the neuron circuits
of gender bias sentences “The nurse is a => woman” and “The guard is a => man”, in order to
explore why “nurse” is more associated with “woman” and “guard” is more associated with “man”.
The analysis is conducted in Llama-7B (Touvron et al., 2023) with 32 layers. Each attention layer
has 32 heads and each head has 4,096 neurons. Each FFN layer has 11,008 neurons.

We first analyze “The nurse is a => woman”. We identify and analyze the top10 FFN value neurons,
top10 attention value neurons, and top10 FFN query neurons. Both FFN value neurons and attention
value neurons are interpretable. When projecting into unembedding space, many neurons’ top tokens
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Table 1: Top tokens and last tokens when projecting the identified value neurons into unembedding
space, identified by “The nurse is a => woman”.

neuron coeff top tokens in unembedding space last tokens in unembedding space
F 25
1891 -1.0 [boys, boy, Boys, Boy, men, male,

guys, males, Men]
[women, ladies, Women, girls,
woman, girl, Woman]

F 20
3114 1.1 [herself, mother, woman, Woman,

daughter, sister, mom, lady]
[himself, son, male, father, Male,
brother, boy]

A18,7
83 1.7 [herself, lady, woman, actress,

women, female, Woman, girl]
[himself, his, homme, mascul,
mens, his, father, him]

A18,7
54 1.2 [girl, daughter, actress, woman, fe-

male, lady, Girl, females, girls]
[Men, sede, Mens, flug, gentlemen,
men, Virtual, abase]

Table 2: Top tokens and last tokens when projecting the transformation (head 7, layer 18) of identi-
fied query neurons into unembedding space, identified by “The nurse is a => woman”.

neuron coeff top tokens in unembedding space last tokens in unembedding space
F 4
2026 0.7 [herself, woman, Woman, lady, ac-

tress, women, Women, girl, she]
[himself, male, mascul, Male, gen-
tleman, males, gentlemen, boy]

F 16
6772 -3.5 [himself, boys, male, ’boy’, Boys,

Male, mascul, males, gentleman]
[herself, woman, Woman, lady, ac-
tress, Frau, women]

are related to “woman” and last tokens are related to “man”, as shown in Table 1. F 25
1891 means the

1891th neuron in 25th FFN layer, and A18,7
83 is the 83th neuron in 7th head, 18th layer. These

value neurons can distinguish “woman” and “man” by increasing the top tokens’ probabilities and
decreasing the last tokens’ probabilities when the coefficient scores are larger than 0.

Since the query FFN neurons can activate the value attention neurons, we calculate the query neu-
rons’ transformation by the important attention heads and find that the transformed vectors become
interpretable like the value neurons, as shown in Table 2. Based on the results of Table 1 and 2,
the neuron circuit for sentence “The nurse is a => woman” is established. In shallow layers, the
query FFN neurons (such as F 4

2026 and F 16
6772) are activated by word “nurse”. Then the query neu-

rons activate several attention value neurons (such as A18,7
54 and A18,7

83 ) related to “woman”, thus the
transformed vectors of these query neurons can enhance “woman” probabilities and reduce “man”
probabilities (Table 2). Finally, the transformed vectors are transferred into the last position and
activate the FFN value neurons (such as F 20

3114 and F 25
1891).

Table 3: Important query neurons and their coefficients in “The nurse is a => woman” and “The
guard is a => man”. The top/last tokens are the vectors transformed by head 7, layer 18.

neuron coeff top tokens in unembedding space last tokens in unembedding space
F 11
17 0.5/-0.1 [herself, woman, actress, Woman,

lady, women, girl, femme, female]
[himself, gentleman, male, mascul,
Male, males, gentlemen, boy]

F 14
6938 -1.1/0.2 [himself, male, gentleman, Male,

mascul, males, his, boy]
[herself, woman, Woman, lady, ac-
tress, women, girl, female, femme]

Additionally, we analyze the neuron circuit of sentence “The guard is a => man”. We find two query
neurons important in both sentences, as shown in Table 3. The sign of these neurons’ coefficient
score are different in the two cases. For instance, the coefficient score of F 11

17 is 0.5 activated by
word “nurse”, while it is -0.1 activated by “guard”. This observation enhances our understanding
about the mechanism of gender bias: F 11

17 and F 14
6938 stores important parameters for distinguishing

“man” and “woman”. When the sign of the coefficient scores changes, the neurons switch from
increasing the probability of “woman” to increasing the probability of “man”. We observe similar
results in OPT (Zhang et al., 2022) and BLOOM (Le Scao et al., 2023), detailed in Appendix A.

3.3 INTERPRETABLE MODEL EDITING

Based on the interpretability analysis in Section 3.2, we hypothesize that: a) Gender bias parameters
are stored in both query neurons and value neurons. b) The coefficient scores of these neurons can
affect the probabilities of different genders. c) The query neurons are more important for gender
bias if their transformed vectors’ top/last tokens are “woman”/“man” or “man”/“woman”.
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According to the hypothesis, we propose the Interpretable Model Editing (Interpret-ME) method to
mitigate the gender bias in LLMs. In order to identify the important neurons, we choose only 5
gender bias sentences for each gender like “The XX is a” (XX is a profession), shown in Appendix
B. Our method has three steps, named locate-analyze-edit. First, we locate the topM FFN value
neurons, topN attention value neurons and topP FFN query neurons for each sentence, and calculate
each neuron’s important score averaged on all 5 sentences for each gender. In this step, we get
M+N+P neurons for “man” and M+N+P neurons for “woman”. Due to superposition (Elhage et al.,
2022), several query neurons not only affect gender bias performance but are also important for other
tasks. Therefore, we then analyze and filter the query neurons whose transformed vectors’ top/last
tokens are opposite about “man”/“woman”. Last, we edit these filtered neurons by shrinking their
coefficient scores. Specifically, we design two editing methods, which we called zero-editing and
division-editing. In zero-editing, we replace the neuron’s subvalue (fc2lk in Eq.5) with a zero vector
having the same dimension. In division-editing, we divide the subvalue’s each dimension by a
constant score D. This method has the same result with dividing the neuron’s coefficient score by D.

Advantages. As introduced in Section 3.3, our method only requires 10 sentences and do not require
fine-tuning. The computational cost for identifying the important neurons can be done within 3
minutes in Llama-7B. Furthermore, the neuron analyzing and filtering stage helps us understand the
mechanism more deeply. Hence, our method can solve the three questions mentioned in Section 1.

4 EXPERIMENTS AND ANALYSIS

We introduce the datasets, evaluation metrics and models in Section 4.1, and show the experimental
results in Section 4.2. The ablation study and analysis are conducted in Section 4.3 and 4.4.

4.1 DATASETS, METRICS AND MODELS

Datasets. The experiments are done on StereoSet (Nadeem et al., 2020), WinoGender (Zhao et al.,
2018), and Crows-Pairs (Nangia et al., 2020), which are widely used to evaluate the gender bias in
LLMs (Brown et al., 2020; Ouyang et al., 2022; Touvron et al., 2023). StereoSet has 1,026 sentence
pairs, each containing three sentences: a stereotype sentence, an anti-stereotype sentence, and a
nonsensical sentence. WinoGender and Crows-Pairs contain 1,165 and 262 gender-bias sentence
pairs, respectively, where each pair consists of two sentences with different genders.

Metrics. For each sentence in StereoSet, we calculate the likelihood normalized by the number
of characters (Gao et al., 2021). If a sentence’s normalized likelihood is the largest among the
three sentences in the sentence pair, this sentence is “chosen” by the model. We follow the orig-
inal StereoSet paper’s metrics, including language modeling score (LMS), stereotype score (SS),
normalized SS (NSS), and Idealized CAT score (ICAT). LMS is the percentage when the model
chooses a logical answer (either the stereotyped or anti-stereotyped answer) over the nonsensical
answer. SS represents the percentage when the model chooses the stereotyped answer over the anti-
stereotyped answer. For the ideal language model, its LMS would be 100 and its SS would be 50. In
this situation, the model chooses 50% stereotyped answers, 50% anti-stereotyped answers, and 0%
nonsensical answers. The ICAT score is the product of LMS and Normalized SS (NSS):

ICAT = LMS · min(SS, 100− SS)

50
(10)

For each sentence pair in WinoGender and Crows-Pairs, we compute the difference of the entropy
(Brown et al., 2020) between the two sentences in each pair, named “entropy difference”. If the
entropy difference becomes smaller after using our method, it means that the gender bias is reduced.

Models. We conduct experiments in decoder-only LLMs with parameters from 1.1B to 13B in-
cluding Llama (Touvron et al., 2023), OPT (Zhang et al., 2022) and BLOOM (Le Scao et al., 2023).

Evaluation on common datasets. We also conduct experiments to verify whether the perfor-
mance on other tasks are affected after the models are edited. Similar to the evaluation datasets
in modern LLMs (Brown et al., 2020; Touvron et al., 2023), we evaluate the accuracy on common
datasets including PIQA (Bisk et al., 2020), ARC easy (Clark et al., 2018), RACE (Lai et al., 2017)
and arithmetic (Brown et al., 2020).
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4.2 OVERALL RESULTS

We compare our Interpret-ME method with the state-of-the-art fine-tuning method (Ranaldi et al.,
2023) on StereoSet dataset. The metrics (LMS, SS, NSS, ICAT) are introduced in Section 4.1. The
results are shown in Table 4. On all the models, our Interpret-ME method show a competitive result.

Table 4: LMS (larger better), SS (smaller better), NSS (larger better), ICAT (larger better) scores of
StereoSet dataset on fine-tune method and our Interpret-ME method.

fine-tune Interpret-ME
model LMS ↑ SS ↓ NSS ↑ ICAT ↑ LMS ↑ SS ↓ NSS ↑ ICAT ↑
Llama-7B 91.91 68.62 62.76 57.69 94.54 67.73 64.52 61.00
Llama-13B 92.74 69.59 60.82 56.40 95.41 68.51 62.96 60.08
OPT-1.3B 92.98 69.3 61.4 57.09 93.90 64.62 70.76 66.44
OPT-2.7B 92.54 68.13 63.74 58.99 93.90 65.98 68.03 63.88
OPT-6.7B 93.03 68.62 62.76 58.39 94.49 64.13 71.73 67.78
BLOOM-1.1B 91.76 65.5 69.00 63.32 92.64 65.69 68.61 63.56
BLOOM-1.7B 92.01 65.98 68.04 62.59 93.61 65.59 68.81 64.41
BLOOM-3B 92.25 68.32 63.36 58.44 93.32 65.98 68.03 63.48

Then we evaluate the change of entropy difference when using our Interpret-ME method on Wino-
Gender (WinoG) and Crows-Pairs (CPairs). We also compute the accuracy change on common
datasets including PIQA, ARC easy, RACE and arithmetic (arithm). The results are shown in Table
5. Except on OPT-6.7B WinoGender, the gender bias is mitigated in all the models and datasets,
and the performance on the 4 common datasets are not affected much. Overall, the results shown in
Table 4 and Table 5 can prove that our Interpret-ME method can successfully reduce the gender bias
without hurting other abilities of the model much. Therefore, our Interpret-ME method provides an
effective way to mitigate gender bias without designing large datasets and fine-tuning methods.

Table 5: Change of entropy difference (smaller better) on WinoG/CPairs and accuracy (larger better)
on 4 common datasets (PIQA, ARC, RACE, arithm) when using Interpret-ME method.

model WinoG ↓ CPairs ↓ PIQA ↑ ARC ↑ RACE ↑ arithm ↑ avg ↑
Llama-7B -0.0002 -0.0011 +0.06% -0.35% +0.0% -0.11% -0.1%
Llama-13B -0.0002 -0.0002 +0.1% -0.18% +0.0% -0.12% -0.05%
OPT-1.3B -0.0002 -0.0005 -0.3% +0.5% -1.5% +0.9% -0.1%
OPT-2.7B -0.0001 -0.0012 -0.7% -1.2% +0.0% +0.53% -0.34%
OPT-6.7B +0.0001 -0.0006 +0.4% +0.2% +0.0% +0.0% +0.15%
BLOOM-1.1B -0.0001 -0.0004 +0.1% +0.4% +0.5% / +0.33%
BLOOM-1.7B -0.0001 -0.0002 -0.16% -0.8% +0.5% / -0.15%
BLOOM-3B -0.0002 -0.0011 +0.1% -0.7% +0.5% / -0.03%

4.3 ABLATION STUDY

In this section, we aim to investigate the following questions: a) Which neurons are the most impor-
tant for gender bias? FFN value neurons, attention value neurons, or FFN query neurons? b) Does
the hyper-parameter M/N/P (number of edited neurons) affect the performance? c) What is the role
of neuron filtering? d) Does editing method affect model performance? We conduct experiments on
Llama-7B on the validation sets.

The results are shown in Table 6. The first line shows the results of the original model. Look at
the results within the second, third and fourth blocks. When editing the FFN value neurons and the
attention value neurons, the gender bias is reduced without hurting the common task performance.
The reduction of gender bias achieves the best when directly editing the ffn query neurons without
neuron filtering. However, the accuracy of other common tasks is also affected. For instance, when
P=10, the RACE accuracy drops from 63.5 to 32.0 and the arithmetic score decreases from 51.86
to 7.43. Therefore, there are several “general neurons” not only important for gender bias but also
for other tasks. When removing the general neurons in the identified query neurons, the common
tasks are not affected. This proves the effectiveness of the neuron filtering stage of our Interpret-ME
method, as our goal is mitigating the gender bias without affecting the model’s abilities.
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Comparing the overall results among the 2-4 blocks, the number of edited top neurons (M/N/P) can
affect the performance. The results when M/N/P=5 are better than those when M/N/P=2. However,
the improvement becomes less when increasing M/N/P to 10. When editing the top10 FFN value
neurons, the StereoSet ICAT score drops from 61.40 to 60.32. This result indicates that the value
neurons are more concentrated than query neurons. Hence, our final method is choosing M=5 and
N=10 for FFN/attention value neurons and P=10 for FFN query neurons (the first line in the last
block), performing the best score among all the results.

Lastly, we compare the zero-editing method with division-editing method in the last block. The
performance of division-editing method changes when the division score is different. The ICAT
score on SteroSet when D=10 decreases slightly compared with D=30. When increasing D to 30
and 100, all the results are similar compared with zero-editing. Therefore, we utilize the zero-editing
method in all the other settings, as it does not require choosing the division score D.

Overall, from the results in Table 6 we can answer the questions in the begining of this section.
a) FFN query neurons affect the gender bias most, but they also affect other common tasks. FFN
value neurons and attention value neurons store gender bias parameters without hurting other tasks’
performance. b) The hyper-parameter M/N/P can affect the performance and should be different for
value neurons and query neurons. c) Neuron filtering is essential for selecting the gender neurons
in query neurons, as there are also “general neurons” affecting other tasks’ performance. d) Editing
methods does not affect model performance much, and zero-editing is a good choice for starting.

Table 6: Ablation study of different settings. Neu: edited neurons (ori: the origin model; ffnv:
editing FFN value neurons; attnv: editing attn value neurons; ffnq: editing FFN query neurons; all:
ffnv & attnv & ffnq). edit: editing method (zero editing/division editing; D: division score). MNP:
number of edited top neurons. F: whether the edited neurons are filtered. Metric: StereoSet: ICAT
(larger better); WinoG/CPairs: entropy difference (smaller better); Others: accuracy (larger better).

Neu edit MNP F Stero WinoG CPairs PIQA ARC RACE arithm
ori - - - 59.54 0.0095 0.0226 78.83 70.70 63.5 51.86
ffnv 0-edit M=2 60.47 0.0095 0.0228 78.78 70.70 63.5 51.85
attnv 0-edit N=2 59.54 0.0094 0.0224 78.67 70.70 63.5 51.91
ffnq 0-edit P=2 62.33 0.0068 0.0207 77.31 71.05 60.5 49.33
ffnq 0-edit P=2 ✓ 59.54 0.0091 0.0225 78.78 70.70 63.5 51.86
ffnv 0-edit M=5 61.40 0.0095 0.0229 78.89 70.17 63.5 51.9
attnv 0-edit N=5 59.54 0.0094 0.0224 78.78 70.88 63.5 51.9
ffnq 0-edit P=5 63.26 0.0064 0.0204 77.31 71.22 60.5 49.36
ffnq 0-edit P=5 ✓ 62.49 0.0087 0.0222 78.72 70.70 63.5 51.86
ffnv 0-edit M=10 60.32 0.0093 0.0228 78.94 70.52 64.0 51.9
attnv 0-edit N=10 61.24 0.0092 0.0226 78.78 70.87 63.5 51.61
ffnq 0-edit P=10 65.72 0.0102 0.0217 68.28 50.17 32.0 7.43
ffnq 0-edit P=10 ✓ 61.56 0.0086 0.0220 78.73 70.70 63.5 51.9
all 0-edit 5+10 ✓ 65.46 0.0084 0.0224 78.89 70.35 63.5 51.75
all D=10 5+10 ✓ 65.29 0.0084 0.0224 78.99 70.35 63.5 51.76
all D=30 5+10 ✓ 65.46 0.0084 0.0224 78.94 70.35 63.5 51.76
all D=100 5+10 ✓ 65.46 0.0084 0.0224 78.89 70.35 63.5 51.75

4.4 WHY DOES EDITING JUST A FEW NEURONS SIGNIFICANTLY REDUCE ACCURACY?

From the results in Section 4.3, it is surprising that editing only a few query neurons (when P=10) can
result in a significant decrease in all the common tasks. In this section, we aim to explore the reason
of this phenomenon. We find that the decreases in Llama-7B are mainly caused by two neurons in
the 2nd FFN layer: F 2

4090 and F 2
7003. When editing these two neurons, the scores on PIQA, ARC,

RACE and arithmetic are 68.17, 50.70, 31.5 and 7.51, respectively. The accuracy drops the most on
arithmetic dataset, from 51.86 to 7.51.

To find the reason of this decrease, we use the comparable neuron analysis (CNA) method (Yu &
Ananiadou, 2024) to analyze the change of the important neurons before and after the neurons F 2

4090
and F 2

7003 are edited. We analyze the case “3+5=” between the original model and the edited model.
The prediction with the largest probability changes from “8” to “1”. We compare the coefficient
scores of the important neurons for the case “3+5=” identified by Yu & Ananiadou (2024), as shown
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in Table 7. We find that the important neurons’ coefficient scores are affected very much. For
example, the coefficient score of F 19

5769 decreases from 3.79 to 0.48. Moreover, the sign of three
neurons’ coefficient scores are reversed, causing the probability from “increasing” to “decreasing”.
In comparison, when editing a gender neuron F 4

2026 (in Table 2), the important neurons’ coefficient
scores only changes 0.8% on average, thus the final prediction of “3+5=” is still “8”.

Based on these observations, we conclude that the reason why the arithmetic accuracy drops much
is that the important neurons’ coefficient scores are changed (e.g. F 11

2258, F 12
4072, F 19

5769) by the
edited general neurons (F 2

4090 and F 2
7003), because shallow neurons can affect deeper neurons. This

analysis can also prove that the neuron filtering stage of our Interpret-ME method is essential.

Table 7: Change of important neurons’ coefficient scores (coeff) in case “3+5=” before/after the
general neurons (F 2

4090 and F 2
7003) are edited.

neuron coeff before/after top tokens in unembedding space
F 11
2258 0.09/-0.01 [XV, fifth, Fif, avas, Five, five, abase, fif]

F 12
4072 0.04/-0.02 [III, three, Three, 3, triple]

F 19
5769 3.79/0.48 [eight, VIII, 8, III, huit, acht]

F 25
7164 8.43/3.97 [six, eight, acht, Four, twelve, six, four, vier]

F 28
3696 6.20/-0.01 [8, eight, VIII, huit, acht, otto]

5 DISCUSSION: WHY ARE NEURON CIRCUITS IMPORTANT?

In this section, we aim to discuss the importance of constructing the neuron circuits.

a) More precise parameter localization can help preserve a model’s existing capabilities dur-
ing model editing. Each layer in a LLM contains thousands of neurons, with different neurons
potentially contributing to various tasks or word representations. As we discuss in Section 4.4,
even editing just two neurons can significantly impact the model’s abilities, as changes in shallow
neurons can propagate and influence deeper ones. Therefore, model editing should be approached
with caution. Our Interpret-ME method offers a neuron-level editing approach. When we observe a
performance decline in the edited model, we can analyze the neurons individually to identify which
ones are critical for other tasks and restore those neurons to mitigate the impact.

b) Neuron circuits provide deeper insights into underlying mechanisms. Due to the phenomenon
of superposition (Elhage et al., 2022), directly analyzing individual neurons makes it challenging to
determine their specific roles. Most interpretability methods involve projecting neurons into un-
embedding space, where each neuron is associated with certain “top tokens”. However, this can be
misleading, as not all neurons directly contribute to the final predictions. If we project query neurons
into unembedding space without the transformation by attention heads, the resulting top tokens may
not accurately reflect the neurons’ actual function. Additionally, when encountering a neuron, it is
unclear whether it functions as a query neuron or a value neuron, nor is it evident which attention
head is performing the transformation. Therefore, a more effective approach is to identify neuron
circuits across diverse contexts and assess the significance of neurons in specific tasks or multiple
scenarios. In this situation, the functions of the identified neurons are clear. By examining these
circuits across various sentences, we can more precisely determine the function of each neuron.

6 CONCLUSION

Although LLMs gain powerful abilities from large amounts of data, they can also learn, perpetu-
ate, and amplify biases. In this paper, we propose the Interpretable Model Editing (Interpret-ME)
method to mitigate gender bias in LLMs without designing new datasets or fine-tuning. Based on
interpretability analysis of gender-biased sentences, we find that several neurons contain much gen-
der bias. Our Interpret-ME method has three stages: neuron locating, neuron analyzing and filtering,
and neuron editing. We conduct experiments on 8 LLMs using three gender bias datasets, and our
method shows competitive performance compared to fine-tuning methods. Additionally, we perform
experiments on four general tasks and find that our method does not compromise their performance.
Overall, our method and analysis are crucial for understanding the mechanism of gender bias and
offer a potential solution for mitigating the gender bias.

9
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A APPENDIX A: GENDER NEURONS IN OPT AND BLOOM

We also use the sentence “The nurse is a => woman” to locate the gender neurons in OPT and
BLOOM. The gender neurons in OPT and BLOOM are shown in Table 8.

Table 8: Identified gender neurons in OPT (first block) and BLOOM (second block).

neuron model top tokens last tokens
F 27
6674 OPT [wife, Wife, spokeswoman, she,

wives]
[gentlemen, brothers, father, guy,
boys, brother]

A27,1
45 OPT [she, her, herself, she, hers,

woman, She, daughter, Women]
[Mr, himself, his, Adam, Michael,
Jason, frontman, Mike]

F 7
5484 OPT [girl, Girl, girls, Girls, she, her,

girl, feminist, woman, herself]
[son, Mr, fathers, his, grandson,
dads, sons, Mr, dad, father]

F 23
8640 BLOOM [woman, women, lady, girl] [masculina, mascul, masculino,

himself, male, masculine]
F 27
1407 BLOOM [lady, woman, femme, women,

mujer, girl, femmes, women’s]
[Hombre, Policia, father, man]

B APPENDIX B: GENDER BIAS SENTENCES FOR IDENTIFYING GENDER
NEURONS

To identify the important neurons containing gender bias, we only use five sentences for each gender.
ALL the sentences follow the pattern “The XX is a”, where “XX” is a profession, shown in Table 9.

Table 9: Gender bias sentences for identifying important neurons.

Male Female
police, guard, delivery, driver, ma-
chinist

nurse, domestic helper, seller, li-
brarian, beautician
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