
Published in Transactions on Machine Learning Research (10/2025)

On Joint Regularization and Calibration in Deep Ensembles

Laurits Fredsgaard laula@dtu.dk
Department of Applied Mathematics and Computer Science
Technical University of Denmark

Mikkel N. Schmidt mnsc@dtu.dk
Department of Applied Mathematics and Computer Science
Technical University of Denmark

Reviewed on OpenReview: https: // openreview. net/ forum? id= 6xqV7DP3Ep

Abstract

Deep ensembles are a powerful tool in machine learning, improving both model performance
and uncertainty calibration. While ensembles are typically formed by training and tuning
models individually, evidence suggests that jointly tuning the ensemble can lead to better
performance. This paper investigates the impact of jointly tuning weight decay, temperature
scaling, and early stopping on both predictive performance and uncertainty quantification.
Additionally, we propose a partially overlapping holdout strategy as a practical compromise
between enabling joint evaluation and maximizing the use of data for training. Our results
demonstrate that jointly tuning the ensemble generally matches or improves performance,
with significant variation in effect size across different tasks and metrics. We highlight
the trade-offs between individual and joint optimization in deep ensemble training, with the
overlapping holdout strategy offering an attractive practical solution. We believe our findings
provide valuable insights and guidance for practitioners looking to optimize deep ensemble
models. Code is available at: https://github.com/lauritsf/ensemble-optimality-gap

1 Introduction

Deep ensembles are a simple and practical method that combines multiple independently trained models
to enhance predictive accuracy, improve robustness, and provide uncertainty estimates (Lakshminarayanan
et al., 2017). Their effectiveness relies on having diverse members that have uncorrelated errors, which
reduces variance and minimizes the impact of individual model mistakes (Hansen & Salamon, 1990; Krogh
& Sollich, 1997).

While individual models in an ensemble may differ in architecture, training set, and other factors, a common
practice is to train ensembles using the same model architecture, where the only differences are the initial-
izations and the order in which the training examples are presented. This also offers a simple and effective
method for selecting regularization hyperparameters such as weight decay and dropout: These settings can
be optimized for a single model, typically through grid search, and then used to train the ensemble members
independently. Similarly, if post-hoc calibration or early stopping is used, it is often applied to each ensemble
member independently.

This approach simplifies the tuning process, but while an ensemble of well-regularized and well-calibrated
models will generally perform well, it may not be the optimal strategy. This potential mismatch, which we
term the ensemble optimality gap, arises because what is optimal for a single model is not necessarily optimal
for the final ensemble. The theoretical basis for this is that the expected loss of an ensemble is fundamentally
different from the average loss of its members, often involving a beneficial diversity term (Wood et al., 2023;
Krogh & Sollich, 1997). Consequently, using a single model’s validation performance as a proxy for the final
ensemble’s test performance creates a generalization mismatch. This flawed validation process prevents the
discovery of hyperparameters that might make beneficial trade-offs, such as sacrificing marginal individual

1

https://openreview.net/forum?id=6xqV7DP3Ep
https://github.com/lauritsf/ensemble-optimality-gap

Published in Transactions on Machine Learning Research (10/2025)

model performance for a larger gain in diversity. While other research focuses on explicitly inducing diversity,
our work investigates a simpler premise: closing the optimality gap by ensuring the validation objective
correctly mirrors the final deployment objective—the ensemble itself.

Previous work has shown that allowing individual models within an ensemble to overfit to a certain extent
can lead to improvements in both prediction accuracy (Sollich & Krogh, 1995) and calibration (Wu &
Gales, 2021). In practice, however, this is often disregarded because tuning the complete ensemble by
holdout or cross-validation can be a considerable computational expense or does not seamlessly fit into
existing workflows. Hyperparameter tuning (such as grid search) requires training an entire ensemble for
each parameter combination, scaling the computational cost with the ensemble size. However, methods
like early stopping can be validated during parallel training with minimal added cost, whereas post hoc
techniques like temperature scaling can be evaluated on the ensemble without additional expense.

In this paper, we systematically explore the ensemble optimality gap across three key aspects of deep ensemble
training and calibration: weight decay tuning, temperature scaling, and early stopping. Our objective is
to assess the magnitude of this effect in common settings and demonstrate how it can be mitigated by
optimizing for ensemble performance. In particular, we examine how the optimality gap influences model
accuracy, uncertainty calibration, and predictive likelihood, as well as investigate its impact on ensemble
diversity.

To enhance ensemble diversity, a well-known approach is to train the ensemble using a k-fold cross-validation
strategy, where each ensemble member is validated on separate holdout data. While this approach can
improve the estimation of generalization error for a single model, it prevents direct validation of the full
ensemble performance, as a common validation data must be held out for all ensemble members. This
leads to a choice between increasing ensemble diversity and having the ability to tune the ensemble as a
whole. Both strategies have been demonstrated to lead to improved performance. We explore a strategy
that balances these factors by using partially overlapping holdout sets across ensemble members.

Finally, when training standard deep ensembles is impractical, techniques like batch ensembles or multiple-
input multiple-output (MIMO) ensembles offer viable alternatives. In these approaches, the ensemble is
formed by sub-models with partially shared parameters within a single, larger model that is trained in one
run. We demonstrate how our overlapping holdout strategy can be applied in the batch ensemble setting
and compare its performance across different initialization strategies.

In summary, our work addresses the following aspects:

• We demonstrate several settings in which the ensemble optimality gap is significant, and show to
which extent it can be mitigated by jointly tuning the ensemble.

• We propose a novel overlapping holdout validation strategy that sits between using a common shared
holdout set and using independent holdouts as in k-fold cross-validation.

• We present a case study based on batch ensembling that demonstrates how an ensemble can be
jointly trained and tuned in a single run with the overlapping holdout validation strategy.

We validate our study empirically using four diverse benchmark tasks spanning image, graph, tabular, and
text classification. Our results demonstrate clear benefits from validating the ensemble jointly, especially
for early stopping and temperature scaling, compared to validating individual models, while joint weight
decay tuning shows more nuanced effects predominantly related to calibration. We assess the utility of
the overlapping holdout strategy in different settings and also provide key insights regarding initialization
choices for efficient batch ensembles. Collectively, these findings offer concrete guidance for practitioners
on navigating the trade-offs between individual and joint optimization when training and calibrating deep
ensembles.

2

Published in Transactions on Machine Learning Research (10/2025)

2 Background

2.1 Ensemble Methods: Foundations and Diversity

Ensemble methods improve prediction and robustness by combining multiple models (Dietterich, 2000). The
core principle relies on combining outputs from diverse members with uncorrelated errors, thus reducing
variance and improving generalization (Hansen & Salamon, 1990; Krogh & Sollich, 1997). In this paper, we
focus on deep ensembles (Lakshminarayanan et al., 2017), a simple and effective technique for deep neural
networks. For classification tasks, we consider the common approach where the ensemble prediction is the
arithmetic mean of the softmax probabilities from individual members,

p̄(y|x) = 1
M

M∑
m=1

p(y|x, θm), (1)

corresponding to a uniform mixture over the ensemble members (see e.g. Tassi et al. (2022) for a discussion
of the pros and cons of this strategy).

While effective, standard deep ensembles incur substantial costs, as training, storing, and running M inde-
pendent models leads roughly to an M -fold increase in computation time at training and inference. This
scalability challenge has spurred the development of more efficient ensemble methods. These approaches often
reduce the computational or parameter costs through techniques like parameter sharing (e.g., BatchEnsem-
ble (Wen et al., 2020b)), creating implicit ensembles (e.g., MIMO (Havasi et al., 2021), Early Exits (Qendro
et al., 2021)), leveraging stochastic inference (e.g., MC Dropout (Gal & Ghahramani, 2016)), or developing
efficient Bayesian approximations (e.g., Rank-1 BNNs (Dusenberry et al., 2020)).

Implicit and Explicit Diversity. Standard Deep Ensembles typically use identical architectures trained
independently. Diversity is achieved implicitly, primarily through different random weight initializations,
which serve as the main source of functional diversity, although using distinct stochastic batches during
training also contributes to a lesser extent (Fort et al., 2020). Data resampling techniques such as Bag-
ging (Breiman, 1996) can promote beneficial diversity for traditional models but are often detrimental for
deep networks (Lee et al., 2015; Lakshminarayanan et al., 2017). This is largely because deep models are
sensitive to training data size, and the reduction in data per bagged member significantly weakens the in-
dividual predictors. Furthermore, regularization techniques applied during training (such as weight decay
or early stopping), while improving individual model generalization, may also implicitly constrain the di-
versity among ensemble members. Although this implicit diversity (influenced by initialization, data splits,
stochastic batches, and regularization) is often sufficient, explicit diversity-enhancing techniques can also
lead to improvements, e.g., by modifying training losses or adding regularization (see e.g., Liu & Yao, 1999;
Pagliardini et al., 2023; Jain et al., 2020), but their necessity and benefit, especially for large models, is de-
bated (Abe et al., 2022; 2024). In some cases, joint training methods can lead to learner collusion (Jeffares
et al., 2023), a phenomenon where the ensemble members increase their diversity in a way that does not
improve generalization.

Quantifying Diversity. Quantifying the diversity among ensemble members provides key insights into
their collective behavior and prediction characteristics. For probabilistic predictive models, a useful
information-theoretic metric for ensemble diversity is the difference between the entropy of the average
predictive distribution, p̄i, and the average entropy of individual member predictions, pm

i . This is equivalent
to the average KL divergence DKL(pm

i ||p̄i) (see Appendix B for details):

Di = H(p̄i) − 1
M

M∑
m=1

H(pm
i). (2)

where H denotes the Shannon entropy. In the classification setting with p̄i defined as the geometric mean,
this expression has a natural interpretation in the form of a bias, variance, diversity decomposition of the

3

Published in Transactions on Machine Learning Research (10/2025)

expected loss (Wood et al., 2023); however, in this work, we use the arithmetic mean, as it is more commonly
applied. For an overview of alternative diversity metrics, see, e.g., Kuncheva & Whitaker (2003); Heidemann
et al. (2021).

2.2 Calibration of Deep Learning Models and Ensembles

Beyond predictive accuracy, the reliability of a model’s confidence estimates is crucial for dependable decision-
making, particularly in risk-sensitive applications (Niculescu-Mizil & Caruana, 2005). A model is considered
well-calibrated if its predicted probabilities accurately reflect the true likelihood of correctness (e.g., predic-
tions made with 80% confidence are correct 80% of the time). While modern deep neural networks achieve
high accuracy, they are often found to be poorly calibrated, typically exhibiting overconfidence in their
predictions (Guo et al., 2017).

Calibration is commonly evaluated using metrics such as the expected calibration error (ECE), which mea-
sures the discrepancy between confidence and accuracy across prediction bins (Naeini et al., 2015), and the
negative log-likelihood (NLL) of the true classes. NLL is a proper scoring rule, meaning it is uniquely min-
imized when predicted probabilities match the true underlying probabilities, thus rewarding both accuracy
and calibration (Gneiting & Raftery, 2007).

Temperature Scaling. A simple yet effective post-hoc technique for improving calibration is temperature
scaling (Guo et al., 2017). It involves rescaling the model’s output logits z(x) by a single positive scalar
parameter, the temperature T , before applying the softmax function according to the formula

p(x; T) = softmax
(

z(x)
T

)
. (3)

A temperature T > 1 softens the probability distribution (increasing entropy, reducing confidence), while
T < 1 sharpens it. The optimal T is typically found as the value that minimizes some calibration metric on
a held-out validation dataset Dval. Using the NLL as the metric, the optimal temperature is given by

arg min
T >0

∑
(xj ,yj)∈Dval

− log p(xj ; T)yj (4)

where p(xj ; T)yj
denotes the predicted probability for the true class yj . Since T only rescales logits before

the softmax, it does not change individual models’ accuracies.

Individual vs. Joint calibration When applying temperature scaling to an ensemble of M models, two
main strategies arise, differing primarily in how the temperature parameter(s) are optimized and applied. It
is important to note that any strategy involving temperature scaling applied before averaging the outputs
of the non-linear softmax function can potentially alter the final classification outcome (i.e., the arg max
of the averaged probabilities) compared to averaging unscaled probabilities. The two main implementation
strategies are:

• Individual Temperature Scaling: A separate temperature Tm is optimized for each ensemble
member m, typically using its own validation set D(m)

val . The final ensemble prediction is the average
of these individually calibrated probability vectors, given by

p̄individual(x) = 1
M

M∑
m=1

softmax
(

zm(x)
Tm

)
. (5)

Here, the potential impact on the classification outcome is influenced by the use of different scaling
factors Tm across members.

4

Published in Transactions on Machine Learning Research (10/2025)

• Joint Temperature Scaling: A single, shared temperature Tjoint is optimized for the entire en-
semble using a suitable joint validation set Djoint

val . This shared temperature Tjoint is applied to the
logits zm(x) of each member before the softmax activation, and the resulting calibrated probabilities
are then averaged according to the formula

p̄joint(x) = 1
M

M∑
m=1

softmax
(

zm(x)
Tjoint

)
. (6)

Although the scaling Tjoint is uniformly applied (preserving the arg max of individual members), the
ensemble class prediction can change as averaging happens after the probability distributions are
tempered. The optimal Tjoint is found by minimizing a calibration metric (such as NLL) of this final
averaged prediction p̄joint(x) on a joint validation set Djoint

val .

A relevant alternative is the Pool-Then-Calibrate strategy, where temperature is applied after averaging
probabilities, which preserves the final prediction (Rahaman & Thiéry, 2021). This contrasts with our
method of scaling logits before averaging, which allows for diagnostic checks on individual members. Despite
these conceptual differences, our results confirm the findings of Rahaman & Thiéry (2021) that both joint
scaling methods perform comparably in practice (see Appendix D for a comparison).

The relationship between individual member calibration and overall ensemble calibration is non-trivial.
Importantly, Wu & Gales (2021) showed that ensembling individually calibrated models does not guarantee
a well-calibrated ensemble and can lead to under-confidence, advocating instead for calibration strategies that
consider the ensemble effect. Their work focused specifically on optimizing temperature scaling parameters
by minimizing ECE, whereas optimization based on proper scoring rules like NLL represents an alternative
calibration objective commonly used for model training and evaluation.

2.3 Hyperparameter Tuning for Ensembles

Selecting appropriate hyperparameters, such as regularization strengths (e.g., weight decay) or learning pa-
rameters, is critical for training performant deep learning models. For ensembles, this presents a fundamental
choice regarding the optimization objective: Should hyperparameters be tuned to optimize the performance
of individual members, or the performance of the ensemble as a whole?

A common practice, largely due to simplicity and significantly lower computational cost, involves tuning
hyperparameters for a single model (e.g., via grid search or random search (Bergstra & Bengio, 2012))
and then applying the selected configuration uniformly to all ensemble members during their independent
training (Lakshminarayanan et al., 2017). Directly tuning for the ensemble objective, by contrast, would
necessitate training and evaluating the entire ensemble for each candidate hyperparameter setting, incurring
a computational cost that typically scales with the ensemble size and is often prohibitively expensive.

Beyond searching for a single optimal setting to apply uniformly, alternative strategies exist that leverage
the models generated during hyperparameter exploration or explicitly use hyperparameter diversity. For
instance, Wenzel et al. (2020) proposed hyper-deep ensembles, a method that explicitly combines models
resulting from different hyperparameter settings (found via random search and greedy selection) and different
random weight initializations. This combination of diversity sources was shown to improve robustness and
uncertainty quantification compared to ensembles relying solely on random initialization. Similarly, Jin &
Wu (2024) construct ensembles from models saved during learning rate schedule tuning runs, arguing this
efficiently reuses computational effort and enhances diversity, reporting strong performance. A limitation
of directly using models from tuning runs, however, is that the validation data used for hyperparameter
selection is not incorporated into the training data for the final models, differing from standard workflows
where models are typically retrained on combined data after tuning.

While these alternative construction methods exist, the common practice remains to tune a single configura-
tion for standard deep ensembles. This standard practice implicitly assumes that hyperparameters optimal
for a single model are also (close to) optimal for the ensemble, which might not hold true in practice, an

5

Published in Transactions on Machine Learning Research (10/2025)

issue also noted by Gorishniy et al. (2025). However, there appears to be limited research directly comparing
individual versus ensemble-based hyperparameter tuning for standard deep ensembles.

2.4 Early Stopping Ensembles

Early stopping is another widely used regularization technique that prevents overfitting by monitoring perfor-
mance on a validation set and terminating training when performance on this set ceases to improve (Prechelt,
1998). Alternatively, the stopping point can be guided by estimators of generalization error that do not re-
quire held-out data, such as those derived from bootstrap ensembles (Hansen et al., 1997). When applied to
ensembles, the main approaches are:

• Individual Early Stopping: Each ensemble member m is trained and stopped independently
based on its own performance, monitored on a validation set D(m)

val . Training for member m halts
when its validation metric fails to improve for a predefined patience period.

• Joint Early Stopping: The performance of the entire ensemble (e.g., NLL of the average predic-
tion) is monitored on a joint validation set Djoint

val . Training for all members stops simultaneously
when the ensemble’s performance has not improved for the specified patience.

While individual early stopping optimizes each member in isolation, early ensemble theory suggests that
allowing individual members to overfit slightly may be beneficial for the final ensemble performance (Sollich
& Krogh, 1995). Joint early stopping might naturally facilitate this by potentially allowing longer training
compared to the point where individual models start overfitting on their respective validation sets. Despite
its conceptual appeal, the comparative benefits of individual versus joint stopping strategies for modern deep
ensembles appear less explored. The feasibility and specific mechanism for evaluating ensemble performance
for joint early stopping depend critically on the chosen validation data strategy (Section 3.3). Importantly,
unlike potentially costly joint hyperparameter grid searches, joint early stopping can often be implemented
with minimal computational overhead compared to individual early stopping, especially when members are
trained in parallel.

3 Methodology

This section details the methodology used to empirically evaluate the ensemble optimality gap. We begin by
formally defining the problem and then describe the specific experimental settings used across our study.

3.1 Formalizing the Ensemble Optimality Gap

Our investigation centers on comparing individual and joint optimization strategies. This comparison can
be framed as a general problem of model selection, where the goal is to select the best hypothesis, h, from a
set of candidate hypotheses, Hcand, by evaluating a loss function, L, on a validation set, Dval. A hypothesis
h can represent a specific hyperparameter configuration, such as a weight decay value, a temperature for
calibration, or a training epoch for early stopping.

The core of this issue lies in the validation objective. Using a single model’s validation performance as a
proxy for the final ensemble’s performance creates a mismatch: The quantity being optimized (single-model
loss) does not align with the ultimate deployment goal (ensemble loss). This discrepancy—which we term
the ensemble optimality gap—arises because the loss of an ensemble’s prediction is not merely the average
of its members’ individual losses.

This relationship is formally captured by the following decomposition.

Ambiguity Decomposition Assuming a convex loss, such as squared error or cross-entropy, the ensemble
loss can be decomposed into two parts—the average individual model loss and an ambiguity term:

6

Published in Transactions on Machine Learning Research (10/2025)

L

(
1

M

M∑
m=1

fm

)
︸ ︷︷ ︸

Ensemble Loss

= 1
M

M∑
m=1

L(fm)︸ ︷︷ ︸
Average Loss

−Ambiguity (7)

The Ambiguity term quantifies the beneficial diversity within the ensemble, and its exact form depends on the
loss. For instance, with the squared error loss, the Ambiguity term is the average squared difference of each
model’s prediction from the ensemble’s mean prediction, directly measuring their disagreement. For cross-
entropy loss with an arithmetic mean combiner, the term is more complex and becomes dependent on the
true label, capturing the divergence between the arithmetic and geometric means of the model probabilities
(Wood et al., 2023). The Ambiguity is always non-negative, which follows from Jensen’s inequality.

We have a model fθ,h with trainable parameters θ and hyperparameters h which define conditions such as
weight decay, temperature scaling, and stopping epoch.

Given the hyperparameters, h, optimal model parameters are found by minimizing the loss on training data,
e.g. using stochastic gradient descent.

θ∗(h) = arg min
θ

Ltrain(fθ,h) (8)

and the optimal hyperparameters are chosen by minimizing a validation loss,

h∗ = arg min
h∈H

Lval(fθ∗(h),h) (9)

In practice, weight decay is typically tuned using grid search; temperature scaling may use either grid search
or convex optimization; and early stopping is usually implemented as a greedy procedure that halts training
when the validation error no longer improves, possibly after a patience period.

To make the following specific ensemble validation strategies easier to parse, we will use a convenient short-
hand. We denote the fully trained m-th model with hyperparameters h as fm(h) ≡ fθ∗

m(h),h.

The Optimality Gap The optimality gap emerges from how we choose to define the validation loss when
searching for the optimal hyperparameter h∗. There are two distinct strategies based on the decomposition:

1. Joint validation directly evaluates the final objective of interest: the performance of the entire
ensemble. It finds h∗

ens by using the complete ensemble loss for validation, thereby accounting for
both the average performance of the models and the ambiguity between them:

h∗
ens = arg min

h∈H
Lval

(
1

M

M∑
m=1

fm(h)
)

(10)

2. Individual validation uses a practical but incomplete proxy. It finds h∗
ind by using the aver-

age individual loss (or a single model’s loss) for validation. This common approach simplifies the
optimization but is structurally blind to the ambiguity term:

h∗
ind = arg min

h∈H

1
M

M∑
m=1

Lval(fm(h)) (11)

Since these two strategies optimize different objectives–one the complete objective and the other a simpli-
fied proxy–they generally yield different hyperparameters (h∗

ind ̸= h∗
ens). This may lead to a measurable

performance difference on the final test set.

We formally define the ensemble optimality gap as the difference in the test loss between the ensemble tuned
with the individual-loss proxy and the one tuned with the joint objective:

Optimality Gap = Ltest

(
1

M

M∑
m=1

fm(h∗
ind)
)

− Ltest

(
1

M

M∑
m=1

fm(h∗
ens)
)

. (12)

7

Published in Transactions on Machine Learning Research (10/2025)

A positive gap demonstrates a tangible benefit to the joint strategies. Our experiments are designed to
empirically measure the magnitude of this gap under various conditions.

3.2 Datasets and Base Models

To assess the generality of our findings on ensemble optimization, we conducted experiments across four
distinct and commonly used benchmark domains, differing significantly in data modality, task complexity,
data scale, and model size:

• Image Classification (CIFAR-10 / WRN-16-4): Our first domain uses the CIFAR-10
dataset (Krizhevsky, 2009), a widely-used 10-class image classification benchmark with 50,000 train-
ing images. We pair this with a Wide ResNet-16-4 (WRN-16-4) model (Zagoruyko & Komodakis,
2016), a common CNN architecture for this task containing approximately 2.7 million parameters.
This combination represents a setting where a high-capacity model operates on a moderately sized
dataset, suggesting a significantly overparameterized regime. This characteristic makes it particu-
larly suitable for studying the interplay between ensemble methods and factors like regularization
(e.g., weight decay, early stopping) and multi-class calibration.

• Graph Classification (NCI1 / GCN): As a contrasting setting with structured data, we used the
NCI1 graph classification benchmark (Shervashidze et al., 2011; Wale et al., 2008), a binary classi-
fication task with significantly fewer data points (4,110 graphs total, 3,288 used for training), with
a four-layer Graph Convolutional Network (GCN). This pairing allows us to test our hypotheses
on a different data modality and an architecture with substantially fewer parameters (24,204). De-
spite the vastly different scale, regularization remains important for the GCN’s generalization on
this dataset, allowing us to examine ensemble optimization effects in a different modeling context.
Furthermore, the limited data availability may emphasize the impact of data allocation in different
validation holdout strategies.

• Tabular Classification (Covertype / MLP): To cover a third modality and explore larger ensemble
sizes, we include the Covertype dataset (Blackard & Dean, 1999) from the UCI repository. This
is a large-scale tabular benchmark with approximately 581,012 samples, 54 features, and 7 classes.
We use a three-hidden-layer Multilayer Perceptron (MLP) and an ensemble size of M = 8 for this
task. This setting allows us to test our conclusions in a high-data, non-convolutional regime and
investigate trends with a larger number of ensemble members.

• Text Classification (AG News / BiLSTM): Our final domain involves text classification using the
AG News dataset (Zhang et al., 2015), which consists of 120,000 training samples and 7,600 test
samples across 4 balanced classes. We employ a Bidirectional Long Short-Term Memory (BiLSTM)
network (Hochreiter & Schmidhuber, 1997; Schuster & Paliwal, 1997) which processes inputs pre-
pared by the GPT-2 tokenizer (Radford et al., 2019). This task introduces a sequential data modality
and allows us to evaluate our findings on a common natural language processing architecture with
an ensemble size of M=8.

3.3 Validation Data Strategies for Ensemble Evaluation

How validation data is assigned to ensemble members impacts training and evaluation, particularly when
considering joint ensemble objectives versus individual member training needs. We define D′ as the available
data excluding the final test set, D(m)

val as the validation set for member m, and D(m)
train as its training set. We

consider three primary strategies for an ensemble of size M :

• Shared Holdout: All members use the same split: D(m)
train = Dtrain and D(m)

val = Dval for all m.
Dval is not used by any member during training. This allows direct evaluation of the full ensemble
on Dval.

8

Published in Transactions on Machine Learning Research (10/2025)

• Disjoint Holdout: Each ensemble member m uses its own unique validation set, D(m)
val ⊂ D′, of a

predefined size. These validation sets are mutually disjoint, and their combined size cannot exceed
the total available data |D′|. Since member m trains on all data except its own validation set (i.e.,
D(m)

train = D′ \ D(m)
val), the data points used to validate it are necessarily included in the training

data for all other members, maximizing training data utilization across the ensemble. However, this
structure prevents direct evaluation of the full ensemble.

• Overlapping Holdout: Each model m gets a unique validation set D(m)
val composed of two distinct

parts (halves). Each half is shared with one neighboring model in a cyclical manner. For instance,
half of Model 2’s validation data is shared with Model 1, the other half with Model 3. This allows
pairwise joint evaluation on the shared halves. (Formally, using M data portions Sk that partition
D′, then D(m)

val = Sm ∪ Sm+1 (mod M) and D(m)
train = D′ \ D(m)

val). While this strategy does not per-
mit estimating the validation performance of the entire ensemble on held-out data, it allows joint
estimation of model pairs as an approximation.

Choosing among these strategies involves balancing the trade-off between maximizing data utilization for
training and enabling joint evaluation of the ensemble. The disjoint holdout strategy maximizes data usage
but precludes any joint evaluation. Conversely, the shared holdout strategy enables direct, full-ensemble
evaluation but at the cost of reserving a portion of data that is never used for training by any model.
The overlapping holdout strategy offers a practical compromise. While it does not permit evaluating the
entire ensemble, it allows for pairwise joint evaluation. Given that the most substantial gains in ensemble
performance are often observed when moving from a single model to an ensemble of two, this pairwise
evaluation can serve as a proxy for full ensemble performance, making it a potentially useful option in
data-scarce settings.

4 Experiments

We conduct a series of experiments to empirically measure the ensemble optimality gap across three key
areas: hyperparameter tuning, temperature scaling, and early stopping.

4.1 Hyperparameter Tuning (Weight Decay)

Purpose This experiment aims to investigate how model performance is affected by different strategies for
tuning the weight decay hyperparameter. Specifically, we compare two approaches: optimizing weight decay
for a single model, and optimizing it to maximize the full ensemble’s performance. This comparison aims
to quantify the ensemble optimality gap and shed light on whether tuning for the ensemble yields better
results.

Method Optimal weight decay was determined via grid search, minimizing validation NLL using a shared
holdout set. We compared selecting the best value based on the average individual model NLL versus the
NLL of the ensemble’s average prediction. Models were trained using stochastic gradient descent (SGD)
with momentum and cosine annealing (experimental parameters are detailed in Appendix A.3).

9

Published in Transactions on Machine Learning Research (10/2025)

0.0 0.3 1.0 3.2 10.0

Weight Decay (×10−4)

4%

5%

6%

7%

W
R

N
-1

6
-4

(C
IF

A
R

1
0
)

Classification Error

0.0 0.3 1.0 3.2 10.0

Weight Decay (×10−4)

0.15

0.20

0.25

0.30
NLL

0.0 0.3 1.0 3.2 10.0

Weight Decay (×10−4)

0.01

0.02

0.03
ECE

0.0 1.0 3.2 10.0

Weight Decay (×10−3)

20%

25%

30%

G
C

N
(N

C
I1

)

0.0 1.0 3.2 10.0

Weight Decay (×10−3)

0.5

0.6

0.7

0.0 1.0 3.2 10.0

Weight Decay (×10−3)

0.04

0.06

0.08

0.10

0.0 0.1 1.0 10.0

Weight Decay (×10−5)

3.2%

3.4%

3.6%

M
L

P
(C

O
V

E
R

T
Y

P
E

)

0.0 0.1 1.0 10.0

Weight Decay (×10−5)

0.085

0.090

0.095

0.100

0.0 0.1 1.0 10.0

Weight Decay (×10−5)

0.0025

0.0050

0.0075

0.0100

0.0 0.1 0.3 1.0 3.2

Weight Decay (×10−4)

8%

10%

12%

B
IL

S
T

M
(A

G
N

E
W

S
)

0.0 0.1 0.3 1.0 3.2

Weight Decay (×10−4)

0.25

0.50

0.75

1.00

0.0 0.1 0.3 1.0 3.2

Weight Decay (×10−4)

0.025

0.050

0.075

0.100

Ensemble size: 1

Ensemble size: 2

Ensemble size: 4

Ensemble size: 8

Performance for the
NLL-optimal weight decay

Figure 1: Validation performance across varying weight decay values for a WRN-16-4 on CIFAR-10, a GCN
on NCI1, an MLP on Covertype, and a BiLSTM on AG News. The plots show results for ensemble sizes 1 to 4
(WRN and GCN) and 1 to 8 (MLP and BiLSTM). The optimal weight decay for each ensemble size is selected
based on the lowest average NLL. (WRN: Wide ResNet; GCN: Graph Convolutional Network; MLP: Multi-
Layer Perceptron; BiLSTM: Bidirectional Long Short-Term Memory; NLL: negative log-likelihood; ECE:
expected calibration error).

10

Published in Transactions on Machine Learning Research (10/2025)

Table 1: Test performance of the full ensemble, where optimal weight decay (WD*) was tuned by minimizing
validation NLL. Values in bold are not statistically different from the best result (within 1.96 SEM). The
ensemble size is 4 for WRN-16-4 and GCN, and 8 for MLP and BiLSTM.

Single-Model Opt. Ensemble Opt.
Model / Dataset WD* Metric Ensemble Ensemble

WRN-16-4
CIFAR10

S: 7.50e-04
E: 5.62e-04

Err. (%) ↓ 4.09 ±0.07 4.12 ±0.04

NLL ↓ 0.129 ±0.000 0.127 ±0.001

ECE ↓ 0.009 ±0.000 0.006 ±0.000

GCN
NCI1

S: 3.16e-03
E: 2.74e-03

Err. (%) ↓ 19.22 ±0.16 18.47 ±0.13

NLL ↓ 0.443 ±0.002 0.435 ±0.002

ECE ↓ 0.034 ±0.002 0.034 ±0.001

MLP
COVERTYPE

S: 5.62e-05
E: 1.78e-05

Err. (%) ↓ 3.31 ±0.01 3.16 ±0.02

NLL ↓ 0.084 ±0.000 0.083 ±0.000

ECE ↓ 0.001 ±0.000 0.004 ±0.000

BILSTM
AG_NEWS

S: 5.62e-05
E: 5.62e-05

Err. (%) ↓ 7.55 ±0.06 7.55 ±0.06

NLL ↓ 0.232 ±0.002 0.232 ±0.002

ECE ↓ 0.020 ±0.001 0.020 ±0.001

Results The validation sweeps in Figure 1 show that for the WRN, GCN, and MLP models, the optimal
weight decay (in terms of NLL) tends to shift towards less regularization as the ensemble size increases.
This trend is consistent with the theory that allowing individual members more flexibility can benefit the
collective. For the BiLSTM, however, the optimal value remains consistent regardless of ensemble size.

The final test performance, summarized in Table 1, reveals a nuanced picture of the trade-offs between
the tuning strategies. Optimizing for the ensemble’s NLL is a principled approach that can yield targeted
improvements. For instance, it results in the best calibration (ECE) for WRN and improves the classification
error for the GCN and MLP compared to the single-model optimum. However, this strategy does not
uniformly outperform the others. The final ensemble consistently surpasses the performance of its constituent
parts in all settings. This robustness is highlighted by the trend towards less regularization (Figure 1) and
is most stark when no weight decay is used at all (Appendix Table 4). We include the average individual
model performance in Appendix Table 3 as a diagnostic metric; this provides context on how changes to the
ensemble’s behavior relate to the performance of its underlying members.

Conclusions Our findings suggest that while tuning weight decay on a single model provides a strong
baseline, it can be a suboptimal proxy for the final ensemble’s performance. Optimizing on the full ensemble’s
validation objective offers a path to improved results, but these benefits are modest and not guaranteed across
all metrics.

The gains from ensemble-level tuning, when present, are often specific, improving either classification error
(GCN) or calibration (WRN) depending on the context. Practitioners must therefore weigh the potential
for a targeted performance boost against the increased computational cost of tuning the entire ensemble.
Crucially, the choice of tuning metric shapes the outcome; optimizing for NLL, as we do here, directly
improves that metric but does not guarantee the best ECE, exposing a clear trade-off between a model’s
predictive accuracy and its calibration.

11

Published in Transactions on Machine Learning Research (10/2025)

4.2 Temperature Scaling for Calibration

Purpose This experiment investigates how different temperature scaling strategies impact the calibration
and overall performance of deep ensembles. We specifically compare optimizing temperature(s) for individual
models versus optimizing a single temperature for joint ensemble prediction, evaluating these approaches
under different validation holdout strategies and varying validation set sizes.

Method Base models were first trained using parameters from single-model weight decay tuning. Sub-
sequently, to compare individual and joint temperature scaling strategies across shared and overlapping
validation holdouts, we optimized the temperature(s) using L-BFGS to minimize validation NLL (experi-
mental parameters are detailed in Appendix A.3).

Results The results, presented in Figure 2, reveal a clear trade-off related to the validation set size across all
four experimental settings: using too little data can lead to unstable temperature estimates, while using too
much reduces the available training data and degrades overall performance. This trade-off is modulated by
the holdout strategy. The overlapping holdout strategy demonstrates greater robustness to large validation
percentages compared to the shared holdout, particularly for the GCN and MLP models. This is likely due
to its more efficient use of data for training. However, for most configurations, using a smaller validation set
(e.g., 1–5%) with the shared holdout strategy yields the most competitive results.

Regarding the scaling methods, our results confirm that strategies optimal for individual models are not
necessarily optimal for the ensemble. For WRN-16-4 on CIFAR-10, applying temperature scaling to each
member individually degrades the final ensemble’s calibration (ECE), even though it improves the calibration
of the single models (detailed in Appendix E). Conversely, the effect of joint scaling on ensemble ECE
was inconsistent in our experiments. While it improved calibration for the WRN, MLP, and BiLSTM
configurations, we found it could be detrimental for the GCN model, with the magnitude of this effect also
varying significantly. The complete numerical data for these findings are available in Appendix E (Tables 5
through 10).

Conclusions Our findings confirm that joint temperature scaling is preferable to individual scaling. This
result is consistent with previous work (Wu & Gales, 2021). While joint scaling offers a path to better
calibration, particularly on multi-class tasks like WRN/CIFAR-10, the improvements are often modest.

The most critical factor for practitioners is the trade-off in validation set size, as reserving too much data
demonstrably harms overall model performance by shrinking the training set. While the overlapping holdout
strategy provides robustness against this performance degradation, especially in data-scarce scenarios, the
most effective approach in our experiments was typically to use a smaller validation set (1–5%) with a
standard shared holdout.

12

Published in Transactions on Machine Learning Research (10/2025)

.1 .2 .5 1 2 5 10 20
4.0%

4.2%

4.4%

Classification Error

.1 .2 .5 1 2 5 10 20

0.13

0.14

0.15
NLL

.1 .2 .5 1 2 5 10 20

0.005

0.010

0.015
ECE

1 2 5 10 20 50

19%

20%

21%

1 2 5 10 20 50

0.44

0.46

0.48

0.50

1 2 5 10 20 50

0.04

0.06

0.08

.1 .2 .5 1 2 5 10 20

3.3%

3.4%

3.5%

3.6%

.1 .2 .5 1 2 5 10 20

0.085

0.090

.1 .2 .5 1 2 5 10 20

0.002

0.004

0.006

.1 .2 .5 1 2 5 10 20

Validation Percentage (%)

7.4%

7.6%

7.8%

8.0%

.1 .2 .5 1 2 5 10 20

Validation Percentage (%)

0.23

0.24

0.25

0.26

.1 .2 .5 1 2 5 10 20

Validation Percentage (%)

0.02

0.04

0.06

W
R

N
-1

6
-4

(C
IF

A
R

1
0)

G
C

N
(N

C
I1

)
M

L
P

(C
O

V
E

R
T

Y
P

E
)

B
IL

S
T

M
(A

G
N

E
W

S
)

No scaling

Individual scaling

Joint scaling

Shared

Overlapping

Figure 2: Temperature scaling test results for the full ensemble (M = 4 for WRN and GCN; M = 8 for
MLP and BiLSTM). This plot compares different scaling approaches across varying validation percentages
and holdout strategies. (WRN: Wide ResNet; GCN: Graph Convolutional Network; MLP: Multi-Layer
Perceptron; BiLSTM: Bidirectional Long Short-Term Memory; NLL: negative log-likelihood; ECE: expected
calibration error).

13

Published in Transactions on Machine Learning Research (10/2025)

4.3 Early Stopping

Purpose This experiment aims to compare the effectiveness of individual versus joint early stopping strate-
gies for deep ensembles. We assess their impact on key metrics including NLL, classification error, ECE,
training duration, and ensemble diversity, utilizing different validation holdout methods and varying valida-
tion set sizes.

Method We compared individual and joint early stopping based on validation NLL using the Adam
optimizer without weight decay and a patience of 10 epochs. Shared, disjoint, and overlapping holdout
strategies were compared across various validation set percentages. To allow fair comparison of training
duration across experiments with different validation set sizes, we report stopping times in step-normalized
epochs (experimental parameters are detailed in Appendix A.3).

Results The results in Figure 3 show that joint early stopping consistently outperforms individual stopping,
leading to lower classification error and NLL for the final ensemble across all holdout strategies. As shown
in Figure 4, this performance gain is attributed to a longer training duration. The impact on ensemble
calibration (ECE) is also largely positive, with improvements for the WRN, MLP, and BiLSTM models,
while the GCN model’s ECE is maintained.

This extended training highlights the ensemble optimality gap: while the longer training under joint stopping
also improves the classification error of the average individual model, it generally comes at the cost of worse
calibration and higher NLL at the individual level (see Appendix F). The effect of longer training on ensemble
diversity is inconsistent across our experiments; it is lower for the MLP, higher for the BiLSTM, and largely
unchanged for the WRN and GCN.

Our experiments also underscore the trade-off in validation set size, where using too much data harms
performance by reducing the training set, and using too little can lead to premature stopping. Here, the
choice of holdout strategy is important. The disjoint holdout strategy, which prevents joint evaluation,
consistently performs the worst. In contrast, for the GCN and MLP models at high validation percentages,
the overlapping holdout strategy with joint stopping outperforms the shared holdout. This suggests its
superior data utilization and a potential increase in ensemble diversity can mitigate the performance loss
from a large validation set.

Conclusions Monitoring the entire ensemble’s performance on a validation set to guide early stopping
provides a clear advantage over stopping members individually. This strategy allows individual members
to train beyond their individual optima, benefiting collective ensemble generalization and demonstrating a
clear ensemble optimality gap. While this can introduce an accuracy-calibration trade-off for the individual
members, the final ensemble’s performance is consistently improved.

From a practical standpoint, we recommend joint early stopping with a shared holdout set, as it is not
significantly more complex to implement than individual stopping when models are trained on the same
device. However, in data-scarce settings that necessitate a large validation percentage, the overlapping
holdout strategy presents a valuable alternative that is worth exploring. We also find that applying post-hoc
temperature scaling provides no significant additive benefit to ensembles already regularized with joint early
stopping, as detailed in Appendix G.

14

Published in Transactions on Machine Learning Research (10/2025)

.1 .2 .5 1 2 5 10 20

7%

8%

Classification Error

.1 .2 .5 1 2 5 10 20

0.22

0.24

0.26

NLL

.1 .2 .5 1 2 5 10 20
0.01

0.02

0.03

ECE

1 2 5 10 20 50

22%

24%

26%

1 2 5 10 20 50

0.48

0.50

0.52

1 2 5 10 20 50

0.035

0.040

0.045

.1 .2 .5 1 2 5 10 20

3.2%

3.4%

3.6%

.1 .2 .5 1 2 5 10 20

0.085

0.090

0.095

0.100

.1 .2 .5 1 2 5 10 20

0.005

0.010

0.015

.1 .2 .5 1 2 5 10 20

Validation Pct (%)

7.5%

8.0%

8.5%

.1 .2 .5 1 2 5 10 20

Validation Pct (%)

0.24

0.25

0.26

.1 .2 .5 1 2 5 10 20

Validation Pct (%)

0.025

0.030

0.035

0.040

W
R

N
-1

6
-4

(C
IF

A
R

1
0)

G
C

N
(N

C
I1

)
M

L
P

(C
O

V
E

R
T

Y
P

E
)

B
IL

S
T

M
(A

G
N

E
W

S
)

Individual stopping

Joint stopping

Shared holdout

Overlapping holdout

Disjoint holdout

Figure 3: Early stopping test performance for the full ensemble (M = 4 for WRN and GCN; M = 8 for
MLP and BiLSTM), comparing different early stopping strategies across all holdout types. (WRN: Wide
ResNet; GCN: Graph Convolutional Network; MLP: Multi-Layer Perceptron; BiLSTM: Bidirectional Long
Short-Term Memory; NLL: negative log-likelihood; ECE: expected calibration error).

15

Published in Transactions on Machine Learning Research (10/2025)

.1 .2 .5 1 2 5 10 20

20

40

Step-Normalized Epochs

.1 .2 .5 1 2 5 10 20

0.09

0.10

0.11

Ensemble Diversity

.1 .2 .5 1 2 5 10 20

0.20

0.25

0.30

Entropy

1 2 5 10 20 50

10

20

1 2 5 10 20 50

0.02

0.03

0.04

1 2 5 10 20 50

0.45

0.50

.1 .2 .5 1 2 5 10 20

50

75

100

.1 .2 .5 1 2 5 10 20

0.0175

0.0200

0.0225

.1 .2 .5 1 2 5 10 20

0.10

0.12

.1 .2 .5 1 2 5 10 20

Validation Pct (%)

10

15

20

25

.1 .2 .5 1 2 5 10 20

Validation Pct (%)

0.08

0.10

.1 .2 .5 1 2 5 10 20

Validation Pct (%)

0.25

0.30

W
R

N
-1

6
-4

(C
IF

A
R

1
0)

G
C

N
(N

C
I1

)
M

L
P

(C
O

V
E

R
T

Y
P

E
)

B
IL

S
T

M
(A

G
N

E
W

S
)

Individual stopping

Joint stopping

Shared holdout

Overlapping holdout

Disjoint holdout

Figure 4: Additional insights into the early stopping strategies for the full ensemble. We show the stopping
epoch (normalized by training steps), alongside the resulting test set ensemble diversity and predictive
entropy.(WRN: Wide ResNet; GCN: Graph Convolutional Network; MLP: Multi-Layer Perceptron; BiLSTM:
Bidirectional Long Short-Term Memory).

16

Published in Transactions on Machine Learning Research (10/2025)

4.4 Validation Strategies and Data Leakage in BatchEnsembles

Purpose While standard deep ensembles consist of independent models, parameter-efficient methods like
BatchEnsemble (Wen et al., 2020b) utilize extensive parameter sharing (see Appendix A.1.5). This structural
difference raises a critical question: Can non-shared holdouts (disjoint or overlapping) be safely used, or
does parameter sharing lead to data leakage, where information from one member’s validation set influences
another? We investigate this potential failure mode and hypothesize that the risk is linked to the initialization
of the member-specific parameters, which governs the functional diversity of the ensemble.

Method We implemented BatchEnsemble (M = 4) on CIFAR-10 using a WRN-16-4 architecture. This
method employs shared slow weights modulated by member-specific, rank-1 fast weights (details in Ap-
pendix A.1.5). We investigated three fast weight initialization strategies (Gaussian σ = 0.1, σ = 0.5, and
random sign ±1) across shared, disjoint, and overlapping holdout structures (2% validation split). A key
difference from standard ensembles is that BatchEnsemble’s shared parameters necessitate simultaneous
training termination for all members. For the shared and overlapping holdouts, which permit joint evalua-
tion, we used an early stopping criterion based on the joint ensemble’s NLL. However, as the disjoint strategy
lacks a common validation set, we instead stopped training based on the average of individual NLLs across
their respective validation sets. Following best practices (Wen et al., 2020a), separate batch normalization
layers were used for each member (experimental parameters are detailed in Appendix A.3).

Results Our findings, presented in Table 2, reveal that the fast weight initialization strategy is the critical
factor determining both performance and the validity of using non-shared holdouts. Among the BatchEnsem-
ble configurations, random sign initialization consistently performs the best, achieving substantially better
NLL, ECE, and much higher ensemble diversity than the Gaussian initializations. While it does not fully
match the performance of the standard Deep Ensemble baseline, it represents a significant improvement over
a single model.

Figure 5 explains why the Gaussian initializations are particularly unreliable with non-shared holdouts. For
these configurations, the validation and training metrics for individual models closely align, while the test
metrics diverge significantly. This lack of a typical generalization gap is strong evidence of data leakage, where
information from one member’s validation set influences others through the shared parameters, leading to
poor generalization. In contrast, random sign initialization exhibits a more typical and desirable gap between
training, validation, and test performance, indicating that it successfully mitigates this leakage risk.

Conclusions Our investigation confirms that non-shared holdout strategies can be used with BatchEnsem-
ble, but this is critically dependent on the initialization promoting sufficient functional diversity. Random
sign initialization is strongly preferable, as it mitigates data leakage and allows the model to behave more
like a standard deep ensemble. Conversely, Gaussian initializations lead to unreliable performance and poor
calibration when used with non-shared validation sets.

This highlights a crucial consideration for practitioners: parameter-efficient ensembles like BatchEnsemble
can have hidden complexities and may not behave identically to their standard counterparts. The choice of
a seemingly minor detail, like the initialization of member-specific parameters, can determine the validity of
a validation strategy. These findings underscore that more work is needed to understand the dynamics of
efficient ensembles and to establish robust best practices that ensure they provide reliable improvements.

17

Published in Transactions on Machine Learning Research (10/2025)

Table 2: Test set performance of BatchEnsemble (M = 4, WRN-16-4 on CIFAR-10) compared to a standard
Deep Ensemble (DE) baseline. The table compares holdout structures and fast weight initializations for
BatchEnsemble. Bold values are the best among the BatchEnsemble configurations (within 1.96 SEM). The
DE baseline is not included in the comparison.

Deep Ensemble N (1, 0.1) N (1, 0.5) Random sign (±1)
Metric (Shared Holdout) Shared Overlapping Disjoint Shared Overlapping Disjoint Shared Overlapping Disjoint
Err. (%) ↓ 6.7 ±0.1 11.0 ±0.6 8.2 ±0.2 8.0 ±0.1 10.2 ±0.3 7.8 ±0.1 7.8 ±0.1 7.9 ±0.1 8.1 ±0.2 8.6 ±0.2

NLL ↓ 0.221 ±0.003 0.440 ±0.008 0.456 ±0.007 0.446 ±0.004 0.363 ±0.004 0.430 ±0.011 0.432 ±0.010 0.258 ±0.003 0.259 ±0.004 0.269 ±0.005

ECE ↓ 0.014 ±0.001 0.058 ±0.002 0.055 ±0.001 0.054 ±0.001 0.041 ±0.002 0.050 ±0.001 0.050 ±0.001 0.020 ±0.001 0.022 ±0.001 0.023 ±0.001

Diversity ↑ 0.086 ±0.001 0.007 ±0.001 0.012 ±0.001 0.011 ±0.001 0.026 ±0.002 0.017 ±0.001 0.017 ±0.001 0.106 ±0.002 0.106 ±0.001 0.104 ±0.001

Entropy 0.182 ±0.008 0.137 ±0.021 0.064 ±0.004 0.062 ±0.001 0.160 ±0.015 0.067 ±0.003 0.067 ±0.003 0.240 ±0.008 0.249 ±0.010 0.282 ±0.010

Norm. Epochs 44.69 ±3.82 12.45 ±1.85 53.12 ±6.34 52.43 ±4.56 14.21 ±1.12 58.02 ±5.28 59.19 ±6.84 39.69 ±2.66 37.04 ±3.18 27.34 ±1.86

0%

10%

C
la

ss
ifi

ca
ti

on
E

rr
or

Test Validation Train

0.0

0.5

N
L

L

Shared

Overla
pping

Disjo
int

0.00

0.05

E
C

E

Shared

Overla
pping

Disjo
int

Shared

Overla
pping

Disjo
int

Initialization method for fast weights

N (1, σ = 0.1) N (1, σ = 0.5) Random sign (±1)

Figure 5: Average individual model performance within BatchEnsemble (M = 4, WRN-16-4 on CIFAR-
10), comparing different initialization strategies for fast weights across shared, overlapping, and disjoint
holdout strategies. The results for classification error, NLL, and ECE are shown for the test, validation,
and training sets. Notably, for Gaussian initialization with overlapping and disjoint holdouts, the close
alignment of validation and training performance (as opposed to test performance) suggests potential data
leakage between ensemble members. (WRN: Wide ResNet; NLL: negative log-likelihood; ECE: expected
calibration error).

18

Published in Transactions on Machine Learning Research (10/2025)

5 Discussion and Conclusion

This study investigated the practical impact of adopting an ensemble-aware perspective when tuning hy-
perparameters and applying calibration or regularization techniques, specifically focusing on the potential
mismatch between individually optimal settings—the ensemble optimality gap. Our experiments across
weight decay tuning, temperature scaling, early stopping, different validation strategies, and BatchEnsemble
provide several insights into optimizing deep ensemble performance.

Our findings regarding weight decay tuning confirm that the optimal value for a single model provides a
strong baseline. However, for most of the benchmarks, joint tuning revealed that a slightly lower level of
regularization was beneficial for the ensemble, though the specific balance between improving classification
error and calibration (ECE) was dependent on the model and dataset. While jointly tuning the entire
ensemble for weight decay is computationally expensive, our results suggest that practitioners can consider
the single-model optimum as a good starting point and explore slightly lower values.

For post-hoc calibration via temperature scaling, our findings show that a joint optimization strategy is
preferable to calibrating members individually. This is consistent with prior work (Rahaman & Thiéry, 2021;
Wu & Gales, 2021). While applying a single temperature to the joint ensemble generally improved calibration
over an uncalibrated baseline, the magnitude of this improvement was often modest and task-dependent.
Critically, these experiments highlight the need for a sufficiently large validation set for robust temperature
estimation; however, using significantly more data than necessary yielded little further improvement in
calibration while negatively impacting overall model performance due to the reduced training set size.

Perhaps the clearest advantage for joint optimization was observed with early stopping. Monitoring the
performance of the entire ensemble and stopping only when its collective performance ceased to improve
consistently led to better ensemble NLL and classification error compared to stopping members individually
based on their own optima. This aligns with early ensemble theory (Sollich & Krogh, 1995), suggesting
that allowing individual members to train longer (potentially slightly past their individual optimal stopping
points) benefits the ensemble’s generalization capacity. Although such extended training can negatively
impact the calibration of individual members considered in isolation, the final ensemble calibration was
often improved (e.g., WRN-16-4, MLP, BiLSTM) or maintained (e.g., GCN) compared to using individual
stopping.

Conversely, tuning on individual models offers significant practical benefits that explain its widespread
use. The approach is simple, requires no changes to standard single-model training pipelines, and allows
for modular development where members can be trained and debugged independently. Adopting a joint
optimization strategy, in contrast, introduces complexities. It can increase implementation overhead, require
more sophisticated resource management to handle multiple models simultaneously during validation, and
necessitates a carefully chosen validation strategy. Despite these added hurdles, our findings show that the
performance gains from joint optimization can be compelling. For computationally inexpensive procedures
like early stopping, in particular, the trade-off is often favorable, as the modest increase in implementation
complexity can unlock clear improvements in generalization.

The choice of validation data strategy critically determines the feasibility of joint optimization techniques
and involves fundamental trade-offs. A shared holdout enables straightforward joint evaluation of the full
ensembles but requires reserving a common validation set that is never used for training by any member.
Conversely, the disjoint holdout strategy maximizes the utilization of the available non-test data pool for
training across the ensemble-ensuring every data point contributes to training all but one member-but
completely precludes joint evaluation on validation data unseen by all members being evaluated. Our results
for early stopping and temperature scaling suggest that the benefits derived from enabling robust joint
evaluation outweigh the potential advantages of maximizing this training data utilization. The proposed
overlapping holdout strategy offers a middle ground: similar to disjoint, it ensures all non-test data is used for
training somewhere within the ensemble, but by creating specific overlaps within the validation sets assigned
to each member, it permits pairwise joint evaluation. This makes it a practical compromise, particularly in
low-data regimes where reserving a fully shared holdout might be too costly because it prevents the entire
portion of data from being used in training by any model.

19

Published in Transactions on Machine Learning Research (10/2025)

The importance of considering ensemble interactions also extends to parameter-efficient methods like
BatchEnsemble. Our investigation underscores the paramount importance of the initialization strategy for
the member-specific fast weights (the trainable rank-1 vectors), a detail potentially overlooked. We found
that random sign initialization (assigning ±1 values) proved crucial for achieving high ensemble diversity
and good calibration, behaving much like a standard ensemble. This aligns with some earlier observations
regarding its effectiveness (Wenzel et al., 2020). In stark contrast, Gaussian initialization (i.e., sampling from
N (1, σ2)), although used in some large-scale applications (Tran et al., 2022; Dehghani et al., 2023), performed
poorly in our experiments, showing lower diversity and signs of data leakage with non-shared holdouts. The
potential confusion regarding initialization practices is highlighted by reports using ambiguous descriptions
like “random sign initialization... of -0.5” (meaning Gaussian initialization) at large scale (Dehghani et al.,
2023). Given the stark difference we observed, and the lack of direct comparisons at scale in cited works,
further investigation into the impact of initialization on BatchEnsemble’s effectiveness seems warranted. Our
findings strongly suggest that proper (random sign) initialization leads to robust BatchEnsemble behavior,
crucially mitigating data leakage issues with non-shared holdouts and thereby enabling the effective and
reliable use of different validation strategies, including meaningful joint evaluation when the structure allows
(like overlapping holdouts).

Across these diverse experiments, a unifying principle emerges: the significance of the ensemble optimality
gap and the practical value of adopting an ensemble-aware perspective. Evaluating and optimizing based
on the joint ensemble’s behavior during validation-dependent procedures consistently led to ensembles that
were more accurate, better calibrated, or both. Our results suggest practitioners should prioritize robust
joint evaluation strategies-especially for computationally inexpensive procedures like early stopping and
temperature scaling-rather than solely relying on individually tuned components or potentially complex
methods aimed at explicitly maximizing diversity during training, which may not always be necessary or
beneficial, particularly for large models (Abe et al., 2022; 2024). Ultimately, the ensemble is the final
predictor, and evaluating it directly during optimization yields better results.

Based on these findings, we offer the following practical recommendations for practitioners training deep
ensembles:

• Weight Decay: Start by finding the optimal weight decay for a single model, as this provides a
strong baseline. To account for the ensemble optimality gap, consider also evaluating the ensemble
performance with nearby weight decay values (particularly slightly lower ones), as the optimal setting
for the ensemble may differ depending on the model, dataset, and target metric.

• Temperature Scaling: Always optimize and apply temperature scaling jointly based on the en-
semble’s performance (e.g., minimizing NLL) on a validation set. Avoid calibrating members in-
dividually. Crucially, use only a reasonably small validation set; dedicating too much data can
unnecessarily harm overall model performance.

• Early Stopping: Monitor the validation performance of the entire ensemble to determine the
stopping point. This allows the ensemble to train longer and achieve better performance compared
to stopping based on individual member optima. Ensure the validation set size is appropriate.

• Validation Strategy: Use a shared holdout set whenever possible to allow for direct joint evalu-
ation. If data is extremely limited, making a shared holdout prohibitively costly, the overlapping
holdout strategy offers a viable alternative that retains some joint evaluation capability while max-
imizing data use.

• BatchEnsemble: Strongly prefer random sign initialization for the fast weights over Gaussian
initialization to maximize ensemble diversity, calibration, and robustness, particularly when using
disjoint or overlapping holdout strategies.

While our findings show consistent trends across four diverse benchmarks (image, graph, tabular, and text)
and multiple ensemble sizes (M = 4 and M = 8), this study has limitations that open avenues for future work.
We did not investigate our hypotheses on very large-scale models and datasets, where the computational

20

Published in Transactions on Machine Learning Research (10/2025)

cost of joint tuning might be prohibitive and ensembling dynamics could differ. Similarly, whether Gaussian
initialization for BatchEnsemble could yield sufficient diversity in such large models remains an open question,
given the lack of direct comparisons in the literature we surveyed. The implications of our findings for
other types of ensembles (e.g., BNNs, MC-dropout) also warrant investigation. Future work could explore
these joint optimization dynamics in other domains, develop more cost-effective heuristics for joint tuning,
investigate variations of the overlapping holdout strategy—such as structures enabling higher-order joint
evaluation (e.g., among member triplets)—and further study the interplay between model scale and the
optimal validation strategy.

In conclusion, this work highlights the practical importance of considering ensemble effects during the tuning
and calibration process. By adopting an ensemble-aware perspective and leveraging joint evaluation, partic-
ularly for computationally efficient techniques like early stopping and temperature scaling, practitioners can
build more accurate and reliable deep ensemble models.

Acknowledgments

The authors acknowledge support from the Novo Nordisk Foundation under grant no NNF22OC0076658
(Bayesian neural networks for molecular discovery).

We acknowledge the Danish e-infrastructure Consortium (DeiC) for awarding this project access to the
LUMI supercomputer, owned by the EuroHPC Joint Undertaking, hosted by CSC (Finland) and the LUMI
consortium.

References
Taiga Abe, E. Kelly Buchanan, Geoff Pleiss, Richard Zemel, and John Patrick Cunningham. Deep Ensembles

Work, But Are They Necessary? In Advances in Neural Information Processing Systems (NeurIPS 2022),
volume 35, October 2022.

Taiga Abe, Estefany Kelly Buchanan, Geoff Pleiss, and John P. Cunningham. Pathologies of Predictive
Diversity in Deep Ensembles. Transactions on Machine Learning Research, 2024.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of Machine
Learning Research, 13(10):281–305, 2012.

Jock A. Blackard and Denis J. Dean. Comparative accuracies of artificial neural networks and discrimi-
nant analysis in predicting forest cover types from cartographic variables. Computers and Electronics in
Agriculture, 24(3):131–151, December 1999.

Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, August 1996.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer, An-
dreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, Rodolphe Jenatton, Lucas
Beyer, Michael Tschannen, Anurag Arnab, Xiao Wang, Carlos Riquelme Ruiz, Matthias Minderer, Joan
Puigcerver, Utku Evci, Manoj Kumar, Sjoerd Van Steenkiste, Gamaleldin Fathy Elsayed, Aravindh Ma-
hendran, Fisher Yu, Avital Oliver, Fantine Huot, Jasmijn Bastings, Mark Collier, Alexey A. Gritsenko,
Vighnesh Birodkar, Cristina Nader Vasconcelos, Yi Tay, Thomas Mensink, Alexander Kolesnikov, Filip
Pavetic, Dustin Tran, Thomas Kipf, Mario Lucic, Xiaohua Zhai, Daniel Keysers, Jeremiah J. Harmsen, and
Neil Houlsby. Scaling vision transformers to 22 billion parameters. In Proceedings of the 40th International
Conference on Machine Learning, volume 202, pp. 7480–7512. PMLR, July 2023.

Thomas G. Dietterich. Ensemble Methods in Machine Learning. In Multiple Classifier Systems, volume
1857, pp. 1–15. Springer, Berlin, Heidelberg, 2000.

Michael Dusenberry, Ghassen Jerfel, Yeming Wen, Yian Ma, Jasper Snoek, Katherine Heller, Balaji Lak-
shminarayanan, and Dustin Tran. Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors.
In Proceedings of the 37th International Conference on Machine Learning, volume 119, pp. 2782–2792.
PMLR, November 2020.

21

Published in Transactions on Machine Learning Research (10/2025)

Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. Deep Ensembles: A Loss Landscape Perspective.
arXiv preprint arXiv:1912.02757, June 2020.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian Approximation: Representing Model Uncertainty
in Deep Learning. In Proceedings of The 33rd International Conference on Machine Learning, volume 48,
pp. 1050–1059. PMLR, June 2016.

Tilmann Gneiting and Adrian E Raftery. Strictly Proper Scoring Rules, Prediction, and Estimation. Journal
of the American Statistical Association, 102(477):359–378, March 2007.

Yury Gorishniy, Akim Kotelnikov, and Artem Babenko. TabM: Advancing tabular deep learning with
parameter-efficient ensembling. In The Thirteenth International Conference on Learning Representations
(ICLR 2025), 2025.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On Calibration of Modern Neural Networks.
In Proceedings of the 34th International Conference on Machine Learning (ICML 2017), volume 70, pp.
1321–1330. PMLR, 2017.

Lars Kai Hansen and Peter Salamon. Neural Network Ensembles. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 12(10):993–1001, October 1990.

Lars Kai Hansen, Jan Larsen, and Torben Fog. Early stop criterion from the bootstrap ensemble. In 1997
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP ’97), volume 4, pp.
3205–3208, Munich, Germany, April 1997. IEEE Computer Society.

Marton Havasi, Rodolphe Jenatton, Stanislav Fort, Jeremiah Zhe Liu, Jasper Snoek, Balaji Lakshmi-
narayanan, Andrew Mingbo Dai, and Dustin Tran. Training independent subnetworks for robust pre-
diction. In 9th International Conference on Learning Representations (ICLR 2021), 2021.

Lena Heidemann, Adrian Schwaiger, and Karsten Roscher. Measuring Ensemble Diversity and Its Effects
on Model Robustness. In Proceedings of the Workshop on Artificial Intelligence Safety 2021 Co-Located
with the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI 2021), volume 2916 of
CEUR Workshop Proceedings, Virtual, 2021. CEUR-WS.org.

Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Computation, 9(8):1735–1780,
November 1997.

Siddhartha Jain, Ge Liu, Jonas Mueller, and David Gifford. Maximizing Overall Diversity for Improved Un-
certainty Estimates in Deep Ensembles. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pp. 4264–4271. AAAI Press, 2020.

Alan Jeffares, Tennison Liu, Jonathan Crabbé, and Mihaela van der Schaar. Joint Training of Deep Ensembles
Fails Due to Learner Collusion. In Advances in Neural Information Processing Systems (NeurIPS 2023),
volume 36, New Orleans, LA, USA, November 2023.

Hongpeng Jin and Yanzhao Wu. Boosting Deep Ensembles with Learning Rate Tuning. arXiv preprint
arXiv:2410.07564, October 2024.

Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. Technical report, University of
Toronto, 2009.

Anders Krogh and Peter Sollich. Statistical mechanics of ensemble learning. Physical Review E, 55(1):
811–825, January 1997.

Ludmila I. Kuncheva and Christopher J. Whitaker. Measures of Diversity in Classifier Ensembles and Their
Relationship with the Ensemble Accuracy. Machine Learning, 51(2):181–207, 2003.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and Scalable Predictive Uncer-
tainty Estimation using Deep Ensembles. In Advances in Neural Information Processing Systems (NeurIPS
2017), volume 30, pp. 6402–6413, Long Beach, CA, USA, December 2017.

22

Published in Transactions on Machine Learning Research (10/2025)

Stefan Lee, Senthil Purushwalkam, Michael Cogswell, David Crandall, and Dhruv Batra. Why M Heads
are Better than One: Training a Diverse Ensemble of Deep Networks. arXiv preprint arXiv:1511.06314,
November 2015.

Yong Liu and Xin Yao. Ensemble learning via negative correlation. Neural Networks, 12(10):1399–1404,
December 1999.

Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. Obtaining Well Calibrated Probabilities
Using Bayesian Binning. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,
pp. 2901–2907. AAAI Press, February 2015.

Alexandru Niculescu-Mizil and Rich Caruana. Predicting good probabilities with supervised learning. In
Proceedings of the 22nd International Conference on Machine Learning (ICML 2005), pp. 625–632, New
York, NY, USA, August 2005. Association for Computing Machinery.

Matteo Pagliardini, Martin Jaggi, François Fleuret, and Sai Praneeth Karimireddy. Agree to Disagree:
Diversity through Disagreement for Better Transferability. In The Eleventh International Conference on
Learning Representations (ICLR 2023), 2023.

Lutz Prechelt. Automatic early stopping using cross validation: Quantifying the criteria. Neural Networks,
11(4):761–767, June 1998.

Lorena Qendro, Alexander Campbell, Pietro Liò, and Cecilia Mascolo. Early Exit Ensembles for Uncertainty
Quantification. In Machine Learning for Health (ML4H@NeurIPS 2021), volume 158 of Proceedings of
Machine Learning Research, pp. 181–195. PMLR, December 2021.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are
unsupervised multitask learners. OpenAI Blog, 2019.

Rahul Rahaman and Alexandre H. Thiéry. Uncertainty Quantification and Deep Ensembles. In Advances in
Neural Information Processing Systems (NeurIPS 2021), volume 34, pp. 20063–20075, December 2021.

Mike Schuster and Kuldip K. Paliwal. Bidirectional recurrent neural networks. IEEE Transactions on Signal
Processing, 45(11):2673–2681, November 1997.

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M. Borgwardt.
Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(77):2539–2561, 2011.

Peter Sollich and Anders Krogh. Learning with ensembles: How overfitting can be useful. In Advances in
Neural Information Processing Systems (NeurIPS 1995), volume 8. MIT Press, 1995.

Yongduo Sui, Xiang Wang, Jiancan Wu, Min Lin, Xiangnan He, and Tat-Seng Chua. Causal Attention for
Interpretable and Generalizable Graph Classification. In Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pp. 1696–1705, Washington DC USA, August 2022. ACM.

Cedrique Rovile Njieutcheu Tassi, Jakob Gawlikowski, Auliya Unnisa Fitri, and Rudolph Triebel. The impact
of averaging logits over probabilities on ensembles of neural networks. In CEUR Workshop Proceedings,
volume 3215. CEUR-WS, 2022.

Dustin Tran, Jeremiah Liu, Michael W. Dusenberry, Du Phan, Mark Collier, Jie Ren, Kehang Han, Zi Wang,
Zelda Mariet, Huiyi Hu, Neil Band, Tim G. J. Rudner, Karan Singhal, Zachary Nado, Joost van Amers-
foort, Andreas Kirsch, Rodolphe Jenatton, Nithum Thain, Honglin Yuan, Kelly Buchanan, Kevin Murphy,
D. Sculley, Yarin Gal, Zoubin Ghahramani, Jasper Snoek, and Balaji Lakshminarayanan. Plex: Towards
Reliability using Pretrained Large Model Extensions. arXiv preprint arXiv:2207.07411, July 2022.

Nikil Wale, Ian A. Watson, and George Karypis. Comparison of descriptor spaces for chemical compound
retrieval and classification. Knowledge and Information Systems, 14(3):347–375, March 2008.

23

Published in Transactions on Machine Learning Research (10/2025)

Yeming Wen, Ghassen Jerfel, Rafael Muller, Michael W. Dusenberry, Jasper Snoek, Balaji Lakshmi-
narayanan, and Dustin Tran. Combining Ensembles and Data Augmentation Can Harm Your Calibration.
In Eighth International Conference on Learning Representations (ICLR 2020), October 2020a.

Yeming Wen, Dustin Tran, and Jimmy Ba. BatchEnsemble: An Alternative Approach to Efficient Ensemble
and Lifelong Learning. In Eighth International Conference on Learning Representations (ICLR 2020),
April 2020b.

Florian Wenzel, Jasper Snoek, Dustin Tran, and Rodolphe Jenatton. Hyperparameter ensembles for robust-
ness and uncertainty quantification. In Advances in Neural Information Processing Systems (NeurIPS
2020), volume 33, pp. 6514–6527, December 2020.

Danny Wood, Tingting Mu, Andrew M. Webb, Henry W. J. Reeve, Mikel Luján, and Gavin Brown. A unified
theory of diversity in ensemble learning. Journal of Machine Learning Research, 24(1):359, January 2023.

Xixin Wu and Mark Gales. Should Ensemble Members Be Calibrated? arXiv preprint arXiv:2101.05397,
January 2021.

Sergey Zagoruyko and Nikos Komodakis. Wide Residual Networks. In Proceedings of the British Machine
Vision Conference 2016 (BMVC 2016). BMVA Press, 2016.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level Convolutional Networks for Text Classifica-
tion. In Advances in Neural Information Processing Systems (NeurIPS 2015), volume 28, Montreal, QC,
Canada, 2015.

24

Published in Transactions on Machine Learning Research (10/2025)

A Experimental Setup Details

The code to reproduce the experiments presented in this paper is publicly available at https://github.
com/lauritsf/ensemble-optimality-gap. All experiments were conducted on the LUMI supercomputer,
where each ensemble was trained on a single Graphics Compute Die (GCD) on a LUMI-G node, which is
equipped with AMD MI250x GPUs.

A.1 Model Details

A.1.1 Wide ResNet-16-4 (WRN-16-4)

For our experiments on the CIFAR-10 dataset, we utilize the WRN-16-4 architecture (Zagoruyko & Ko-
modakis, 2016) as one of our base models for deep ensembles. WRN architectures are characterized by their
wider convolutional layers and reduced depth compared to traditional ResNet architectures. Specifically,
WRN-16-4 denotes a WRN with 16 convolutional layers and a widening factor of 4. In our implementation,
we use the WRN variant where the placement of batch normalization, ReLU activation, and convolution
layers follows the order: batch normalization - ReLU - convolution. We do not employ dropout regularization
in our models.

A.1.2 Graph Convolutional Network (GCN)

For our experiments on the NCI1 dataset, we utilize a four-layer GCN, based on the architecture presented
in Sui et al. (2022), but extended to four GCN layers. The network consists of an initial feature transformation
layer, followed by four GCN layers, and finally two fully connected layers.

We use ReLU activations after the initial feature transformation and each of the four GCN layers. Batch
normalization is applied to the input features before the initial transformation, after each of the four GCN
layers, and before each of the two fully-connected layers.

Global sum pooling is applied after the final GCN layer to obtain a graph-level representation. This represen-
tation is then passed through a sequence of two fully-connected layers. The first fully connected layer applies
batch normalization, followed by a ReLU activation and a linear transformation. The second fully-connected
layer is the classification layer and produces the final output logits.

A.1.3 Multilayer Perceptron (MLP)

For the Covertype dataset, we use an MLP with three hidden layers, each with 1024 units. The architecture
for each hidden block consists of a linear layer without bias, followed by batch normalization and a ReLU
activation. The output layer is a linear transformation to the 7 classes of the dataset.

A.1.4 Bidirectional LSTM (BiLSTM)

For the AG News classification task, we use a BiLSTM network. The model’s architecture consists of three
main components: an initial embedding layer that converts tokens into 128-dimensional vectors, a single
BiLSTM layer with a hidden size of 256 units for each direction (resulting in a 512-dimensional output
vector for each token), and a self-attention mechanism that computes a weighted average over the BiLSTM’s
output sequence to create a single context vector.

This context vector is then passed to a final linear layer that maps it to the 4 output classes. The input text
is processed using the pretrained GPT-2 tokenizer.

A.1.5 BatchEnsemble Implementation

BatchEnsemble (Wen et al., 2020b) modifies a base network to efficiently train an ensemble using shared
weights W (slow weights). For each shared weight W , member-specific weights Wi (i = 1...M) are generated
using trainable rank-1 vectors ri and si (fast weights) as Wi = W ◦ (risT

i), where ◦ denotes the Hadamard

25

https://github.com/lauritsf/ensemble-optimality-gap
https://github.com/lauritsf/ensemble-optimality-gap

Published in Transactions on Machine Learning Research (10/2025)

(element-wise) product. Crucially, this rank-1 structure allows the forward pass computations for all M en-
semble members to be efficiently vectorized into a single operation, enabling parallel execution on hardware
accelerators (Wen et al., 2020b). The initialization of these fast weights is known to be important for perfor-
mance. As investigated in Section 4.4, our experiments specifically compare three initialization strategies for
ri and si: initializing elements from a Gaussian distribution with mean 1 and standard deviation σ (either
σ = 0.1 or σ = 0.5), versus initializing elements randomly as ±1 (random sign / Rademacher distribution).
Consistent with recommendations for achieving good performance with BatchEnsemble (Wen et al., 2020a),
we use separate batch normalization layers for each ensemble member throughout our experiments.

A.2 Dataset Details

A.2.1 CIFAR-10

We conduct experiments on the CIFAR-10 dataset (Krizhevsky, 2009), a widely used benchmark for image
classification. CIFAR-10 consists of 60,000 32x32 color images in 10 classes, with 6,000 images per class.
There are 50,000 training images and 10,000 test images, and we use the original test set for final performance
evaluation in all experiments.

Following common practice for CIFAR-10, we apply the following preprocessing steps: random cropping to
size 32 with a padding of 4 pixels, random horizontal flipping with a probability of 0.5, and normalization.
The normalization constants (mean and standard deviation for each color channel) are calculated based on
the actual training split to prevent contamination from the test and validation data.

A.2.2 NCI1

We conduct experiments on the NCI1 dataset (Shervashidze et al., 2011; Wale et al., 2008), a graph clas-
sification dataset with two classes. There are 4110 graphs. We randomly split the dataset into a training
set (80%) and a test set (20%) using stratified sampling to ensure class balance, resulting in 3288 training
graphs and 822 test graphs. The test set is kept fixed across all experiments. We do not apply any specific
preprocessing to the node features or graph structure beyond what is inherent in the dataset.

A.2.3 Covertype

We use the Covertype dataset (Blackard & Dean, 1999) from the UCI repository, a large-scale tabular bench-
mark for predicting forest cover type from cartographic variables. The dataset contains 581,012 samples,
which we split into 464,809 for training and 116,203 for testing. It includes 54 features and 7 classes. We
perform input normalization on the features, using the mean and standard deviation calculated from each
model’s respective training data.

A.2.4 AG News

Our text classification experiments use the AG News dataset (Zhang et al., 2015), which consists of 120,000
training samples and 7,600 test samples for classifying news articles into 4 balanced classes. The input text
is processed using the pretrained GPT-2 tokenizer (Radford et al., 2019) with a max length corresponding
to the longest sequence in the dataset.

A.3 Experimental Setup Details

Across all experiments, the batch size was set to 128. The ensemble size was M = 4 for the WRN-16-4 and
GCN models, and M = 8 for the MLP and BiLSTM models.

Hyperparameter Tuning (Weight Decay) For the weight decay tuning experiments, models were
trained using SGD with a momentum of 0.9 and a cosine annealing learning rate schedule. We performed a
grid search over a range of log-spaced weight decay values, always including 0. We used 100 epochs (200 for
GCN), an initial learning rate of 0.1 (0.3 for MLP), and 5 random seeds (20 for GCN).

26

Published in Transactions on Machine Learning Research (10/2025)

Temperature Scaling For post-hoc temperature scaling, we used base models trained with the optimal
single-model weight decay. The temperature parameter was optimized using the L-BFGS algorithm with a
maximum of 100 iterations. We used 10 seeds (5 for MLP and BiLSTM) and a validation percentage range
of 0.1–20% (1–50% for GCN).

Early Stopping The early stopping experiments were conducted using the Adam optimizer with a patience
of 10 epochs and no weight decay, using the validation NLL as the stopping criterion. The learning rate
was 1 × 10−3 (1 × 10−4 for BiLSTM) and experiments were run on 10 seeds (50 for GCN). The range of
validation percentages was 0.1–20% (1–50% for GCN).

BatchEnsemble The BatchEnsemble experiment was performed with a WRN-16-4 on CIFAR-10 with an
ensemble size of M = 4. We used the Adam optimizer with a learning rate of 1 × 10−3, no weight decay,
and an early stopping patience of 10 epochs on a 2% validation split. The experiment was run across 10
seeds. We tested three fast weight initializations: Gaussian (N (µ = 1, σ = 0.1) and N (µ = 1, σ = 0.5)) and
random sign (±1). Consistent with best practices, a separate batch normalization layer was used for each
ensemble member.

B Diversity Metric

The ensemble diversity metric used in this paper (Sections 2.1, 4.3, 4.4) quantifies the disagreement among
ensemble members for a given input data point i. It is defined as the difference between the entropy of the
average predicted probability vector p̄i = 1

M

∑M
m=1 pm

i and the average entropy of the individual member
predictions pm

i :

Di = H(p̄i) − 1
M

M∑
m=1

H(pm
i)

where H(p) = −
∑

c p[c] log p[c] is the Shannon entropy.

This measure is directly related to the Kullback-Leibler (KL) divergence. It can be shown that the diversity
defined above is equal to the average KL divergence from the individual member predictions pm

i to the mean
ensemble prediction p̄i:

Di = 1
M

M∑
m=1

DKL(pm
i ||p̄i)

where DKL(p||p̄) =
∑

c p[c] log(p[c]/p̄[c]). Therefore, this diversity metric intuitively quantifies how much,
on average, the probability distribution predicted by an individual member diverges from the consensus
prediction of the ensemble. Higher values indicate greater disagreement among ensemble members.

C Supplementary Results for Weight Decay Tuning

This section supplements the weight decay tuning experiments (Section 4.1) with a detailed breakdown of
the average test performance for the individual models that constitute the ensembles. Table 3 presents the
classification error, NLL, and ECE for these individual models, comparing the two optimized weight decay
strategies: using the value optimized for a single model’s performance (Single-Model Opt.) versus the value
optimized for the final ensemble’s performance (Ensemble Opt.).

For completeness, Table 4 details the performance when no weight decay is applied. The results directly
compare an average single model against the full ensemble, highlighting that the ensemble is significantly more
robust to the complete lack of regularization, where it consistently outperforms its individual components.

27

Published in Transactions on Machine Learning Research (10/2025)

Table 3: Average test performance of the individual models that constitute the ensembles. Optimal weight
decay (WD*) values were determined by minimizing validation NLL for either a single model or the full
ensemble. For each metric, values in bold are not statistically different from the best result (within 1.96
standard errors of the mean).

Single-Model Opt. Ensemble Opt.
Model / Dataset WD* Metric Single Model Single Model

WRN-16-4
CIFAR10

S: 7.50e-04
E: 5.62e-04

Err. (%) ↓ 4.91 ±0.06 4.88 ±0.07

NLL ↓ 0.160 ±0.002 0.157 ±0.002

ECE ↓ 0.012 ±0.001 0.013 ±0.001

GCN
NCI1

S: 3.16e-03
E: 2.74e-03

Err. (%) ↓ 20.10 ±0.17 19.28 ±0.20

NLL ↓ 0.480 ±0.004 0.485 ±0.006

ECE ↓ 0.042 ±0.002 0.051 ±0.002

MLP
COVERTYPE

S: 5.62e-05
E: 1.78e-05

Err. (%) ↓ 3.39 ±0.02 3.27 ±0.01

NLL ↓ 0.088 ±0.000 0.088 ±0.000

ECE ↓ 0.003 ±0.000 0.006 ±0.000

BILSTM
AG_NEWS

S: 5.62e-05
E: 5.62e-05

Err. (%) ↓ 9.96 ±0.09 9.96 ±0.09

NLL ↓ 0.341 ±0.004 0.341 ±0.004

ECE ↓ 0.045 ±0.002 0.045 ±0.002

Table 4: Test performance comparison between an average single model and the full ensemble when no
weight decay (WD = 0) is used.

No Weight Decay
Model / Dataset Metric Avg. Single Model Full Ensemble

WRN-16-4
CIFAR10

Err. (%) ↓ 8.08 ±0.06 6.64 ±0.04

NLL ↓ 0.447 ±0.009 0.247 ±0.004

ECE ↓ 0.058 ±0.001 0.018 ±0.000

GCN
NCI1

Err. (%) ↓ 19.02 ±0.18 18.12 ±0.15

NLL ↓ 1.072 ±0.017 0.741 ±0.008

ECE ↓ 0.143 ±0.002 0.105 ±0.001

MLP
COVERTYPE

Err. (%) ↓ 3.25 ±0.02 3.11 ±0.01

NLL ↓ 0.092 ±0.000 0.082 ±0.000

ECE ↓ 0.007 ±0.000 0.004 ±0.000

BILSTM
AG_NEWS

Err. (%) ↓ 12.09 ±0.09 7.77 ±0.06

NLL ↓ 1.085 ±0.009 0.328 ±0.003

ECE ↓ 0.103 ±0.001 0.029 ±0.001

28

Published in Transactions on Machine Learning Research (10/2025)

D Comparison of Joint Temperature Scaling Methods

To address the alternative joint calibration method proposed by Rahaman & Thiéry (2021), this section
provides a detailed comparison of the two primary joint temperature scaling strategies. The experiment was
run using a 5% shared holdout set for validation based on a single seed (0), but otherwise follows the setting
of the main temperature scaling experiments.

In the terminology of Rahaman & Thiéry (2021), our main approach, “Joint (on model logits),” corresponds
to their method (C), where models are simultaneously aggregated and calibrated. The alternative, “Pool-
Then-Calibrate” (method D), involves first aggregating the model outputs and then calibrating the pooled
estimate. Using our notation, the Pool-Then-Calibrate prediction is given by:

p̄pool−then−calibrate(x) = softmax
(

log p̄(x)
Tpool

)
, where p̄(x) = 1

M

M∑
m=1

softmax(zm(x)) (13)

The results of our comparison are presented in Figure 6.

E Supplementary Results for Temperature Scaling

To supplement the main results in Section 4.2, this section provides a view of the temperature scaling
performance. While individual scaling can improve the calibration of the individual models (e.g., for WRN-
16-4), as shown in Figure 7, this benefit does not transfer to the final ensemble, whose performance is shown
in the main paper in Figure 2.

Tables 5 through 10 provide the numerical results for both the ensemble and the average of individual models
across all metrics.

29

Published in Transactions on Machine Learning Research (10/2025)

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Temperature (T)

4.10

4.12

4.14

4.16
C

la
ss

ifi
ca

ti
on

E
rr

o
r

0.2

0.4

N
L

L

0.00

0.05

0.10

0.15

E
C

E

WRN-16-4

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Temperature (T)

19.0

19.1

19.2

C
la

ss
ifi

ca
ti

on
E

rr
o
r

0.5

1.0

1.5

N
L

L

0.05

0.10

0.15

E
C

E

GCN

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Temperature (T)

3.375

3.380

C
la

ss
ifi

ca
ti

o
n

E
rr

o
r

0.1

0.2

0.3

N
L

L
0.000

0.025

0.050

0.075

E
C

E

MLP

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Temperature (T)

7.6

7.7

7.8

C
la

ss
ifi

ca
ti

on
E

rr
or

0.2

0.4

0.6

0.8

N
L

L

0.05

0.10
E

C
E

BILSTM

Temperature Scaling Strategy

Joint (on model logits) Joint (on ensemble log-probs)

Figure 6: A comparison of two joint temperature scaling strategies. The solid line represents scaling model
logits before averaging (method C in Rahaman & Thiéry (2021)), while the dashed line represents scaling
the ensemble log-probabilities after averaging (method D). The vertical lines indicate the temperature that
minimizes NLL for each strategy, which are nearly identical. Scaling the model logits can slightly alter the
classification error, whereas scaling the log-probabilities preserves it. Despite this, the overall performance
on NLL and ECE is nearly identical for both methods.

30

Published in Transactions on Machine Learning Research (10/2025)

0.10.2 0.5 1 2 5 10 20
4.5%

4.8%

5.0%

5.2%

5.5%
Classification Error

0.10.2 0.5 1 2 5 10 20
0.15

0.16

0.17

0.18
NLL

0.10.2 0.5 1 2 5 10 20

0.010

0.015

0.020
ECE

1 2 5 10 20 50
19%

20%

21%

22%

1 2 5 10 20 50
0.45

0.50

0.55

1 2 5 10 20 50

0.05

0.10

0.10.2 0.5 1 2 5 10 20
3.4%

3.5%

3.6%

3.7%

0.10.2 0.5 1 2 5 10 20

0.090

0.095

0.10.2 0.5 1 2 5 10 20

0.002

0.004

0.006

0.10.2 0.5 1 2 5 10 20

Validation Percentage (%)

9.5%

10.0%

10.5%

11.0%

0.10.2 0.5 1 2 5 10 20

Validation Percentage (%)

0.30

0.35

0.10.2 0.5 1 2 5 10 20

Validation Percentage (%)

0.02

0.03

0.04

W
R

N
-1

6
-4

(C
IF

A
R

1
0)

G
C

N
(N

C
I1

)
M

L
P

(C
O

V
E

R
T

Y
P

E
)

B
IL

S
T

M
(A

G
N

E
W

S
)

No scaling

Individual scaling

Joint Scaling

Shared holdout

Overlapping holdout

Figure 7: Test performance for the average of individual models within the ensemble, comparing differ-
ent temperature scaling approaches. This figure shows results corresponding to the ensemble performance
presented in Figure 2. (WRN: Wide ResNet; GCN: Graph Convolutional Network; MLP: Multi-Layer Per-
ceptron; BiLSTM: Bidirectional Long Short-Term Memory; NLL: negative log-likelihood; ECE: expected
calibration error).

31

Published in Transactions on Machine Learning Research (10/2025)

Table 5: Ensemble temperature scaling results for Classification Error (%). Bold values are not statistically
different from the best in each row (within 1.96 SEM).

Ensemble: Classification Error (%) ↓
No scaling Individual scaling Joint scaling

Model / Dataset Val. % Shared Overlapping Shared Overlapping Shared Overlapping

WRN-16-4
(CIFAR10)

0.1% 4.09 ±0.03 4.13 ±0.02 4.11 ±0.03 13.74 ±9.58 4.11 ±0.03 4.15 ±0.02

0.2% 4.07 ±0.02 4.06 ±0.04 4.06 ±0.03 4.09 ±0.03 4.12 ±0.04 4.08 ±0.04

0.5% 4.08 ±0.03 4.11 ±0.03 4.08 ±0.03 4.12 ±0.03 4.08 ±0.03 4.11 ±0.03

1% 4.08 ±0.02 4.10 ±0.04 4.09 ±0.02 4.11 ±0.04 4.09 ±0.02 4.10 ±0.04

2% 4.13 ±0.03 4.12 ±0.02 4.14 ±0.03 4.13 ±0.02 4.13 ±0.04 4.12 ±0.02

5% 4.26 ±0.02 4.17 ±0.04 4.26 ±0.02 4.17 ±0.04 4.26 ±0.02 4.16 ±0.04

10% 4.35 ±0.03 4.28 ±0.03 4.34 ±0.03 4.27 ±0.02 4.35 ±0.03 4.27 ±0.03

20% 4.65 ±0.03 4.51 ±0.02 4.65 ±0.03 4.51 ±0.02 4.66 ±0.03 4.51 ±0.02

GCN
(NCI1)

1% 19.18 ±0.18 19.10 ±0.24 31.27 ±8.11 25.36 ±6.19 25.22 ±6.11 19.14 ±0.23

2% 18.94 ±0.27 18.93 ±0.13 19.05 ±0.24 19.03 ±0.16 18.99 ±0.27 18.91 ±0.13

5% 19.22 ±0.15 19.00 ±0.19 19.21 ±0.15 19.01 ±0.22 19.18 ±0.14 18.97 ±0.17

10% 19.18 ±0.18 19.03 ±0.18 19.26 ±0.17 19.25 ±0.14 19.23 ±0.17 19.03 ±0.19

20% 18.63 ±0.23 18.89 ±0.21 18.59 ±0.24 18.86 ±0.22 18.61 ±0.24 18.88 ±0.21

50% 20.77 ±0.32 18.86 ±0.16 20.83 ±0.34 18.89 ±0.22 20.82 ±0.32 18.83 ±0.16

MLP
(COVERTYPE)

0.1% 3.30 ±0.01 3.30 ±0.01 3.31 ±0.01 3.31 ±0.01 3.30 ±0.01 3.30 ±0.01

0.2% 3.31 ±0.01 3.30 ±0.01 3.31 ±0.01 3.31 ±0.01 3.31 ±0.01 3.30 ±0.01

0.5% 3.30 ±0.01 3.29 ±0.01 3.30 ±0.01 3.29 ±0.01 3.30 ±0.01 3.29 ±0.01

1% 3.31 ±0.01 3.31 ±0.01 3.31 ±0.01 3.31 ±0.01 3.31 ±0.01 3.31 ±0.01

2% 3.33 ±0.01 3.31 ±0.00 3.33 ±0.01 3.31 ±0.00 3.33 ±0.01 3.31 ±0.00

5% 3.35 ±0.01 3.33 ±0.01 3.35 ±0.01 3.33 ±0.01 3.36 ±0.01 3.33 ±0.01

10% 3.42 ±0.01 3.38 ±0.01 3.42 ±0.01 3.38 ±0.01 3.42 ±0.01 3.38 ±0.01

20% 3.55 ±0.02 3.41 ±0.01 3.55 ±0.02 3.41 ±0.01 3.55 ±0.02 3.41 ±0.01

BILSTM
(AG_NEWS)

0.1% 7.55 ±0.03 7.58 ±0.05 7.56 ±0.03 7.58 ±0.05 7.57 ±0.03 7.58 ±0.04

0.2% 7.60 ±0.03 7.60 ±0.04 7.61 ±0.04 7.59 ±0.04 7.60 ±0.03 7.58 ±0.05

0.5% 7.52 ±0.05 7.58 ±0.04 7.52 ±0.05 7.58 ±0.04 7.52 ±0.05 7.57 ±0.03

1% 7.55 ±0.04 7.55 ±0.06 7.56 ±0.04 7.52 ±0.06 7.55 ±0.04 7.53 ±0.06

2% 7.49 ±0.04 7.53 ±0.05 7.49 ±0.04 7.52 ±0.05 7.48 ±0.04 7.52 ±0.06

5% 7.53 ±0.06 7.47 ±0.05 7.53 ±0.06 7.46 ±0.03 7.54 ±0.06 7.47 ±0.04

10% 7.62 ±0.04 7.54 ±0.06 7.57 ±0.05 7.53 ±0.04 7.62 ±0.04 7.52 ±0.04

20% 7.89 ±0.07 7.66 ±0.06 7.88 ±0.08 7.62 ±0.09 7.89 ±0.06 7.64 ±0.09

32

Published in Transactions on Machine Learning Research (10/2025)

Table 6: Ensemble temperature scaling results for NLL. Bold values are not statistically different from the
best in each row (within 1.96 SEM).

Ensemble: NLL ↓
No scaling Individual scaling Joint scaling

Model / Dataset Val. % Shared Overlapping Shared Overlapping Shared Overlapping

WRN-16-4
(CIFAR10)

0.1% 0.129 ±0.000 0.129 ±0.001 0.133 ±0.002 0.351 ±0.218 0.544 ±0.396 0.136 ±0.003

0.2% 0.130 ±0.001 0.127 ±0.001 0.131 ±0.002 0.130 ±0.001 1.052 ±0.911 0.129 ±0.001

0.5% 0.129 ±0.001 0.129 ±0.001 0.130 ±0.001 0.131 ±0.001 0.129 ±0.001 0.129 ±0.001

1% 0.129 ±0.000 0.129 ±0.000 0.131 ±0.001 0.131 ±0.001 0.129 ±0.001 0.129 ±0.001

2% 0.130 ±0.000 0.129 ±0.001 0.132 ±0.001 0.131 ±0.001 0.129 ±0.000 0.128 ±0.001

5% 0.134 ±0.000 0.132 ±0.001 0.136 ±0.001 0.134 ±0.001 0.133 ±0.000 0.131 ±0.001

10% 0.136 ±0.001 0.134 ±0.000 0.138 ±0.001 0.136 ±0.000 0.135 ±0.001 0.133 ±0.000

20% 0.145 ±0.001 0.142 ±0.001 0.147 ±0.001 0.145 ±0.001 0.144 ±0.001 0.141 ±0.001

GCN
(NCI1)

1% 0.443 ±0.003 0.440 ±0.001 0.505 ±0.034 0.473 ±0.025 0.480 ±0.025 0.452 ±0.004

2% 0.440 ±0.001 0.440 ±0.001 0.449 ±0.003 0.448 ±0.003 0.456 ±0.010 0.444 ±0.003

5% 0.440 ±0.002 0.439 ±0.003 0.443 ±0.002 0.451 ±0.004 0.443 ±0.003 0.443 ±0.002

10% 0.440 ±0.003 0.441 ±0.003 0.448 ±0.004 0.449 ±0.003 0.442 ±0.003 0.443 ±0.002

20% 0.449 ±0.004 0.434 ±0.003 0.449 ±0.002 0.444 ±0.002 0.443 ±0.002 0.434 ±0.002

50% 0.559 ±0.009 0.441 ±0.003 0.482 ±0.003 0.454 ±0.002 0.478 ±0.004 0.432 ±0.001

MLP
(COVERTYPE)

0.1% 0.085 ±0.000 0.085 ±0.000 0.085 ±0.000 0.084 ±0.000 0.085 ±0.000 0.084 ±0.000

0.2% 0.086 ±0.001 0.085 ±0.000 0.085 ±0.001 0.084 ±0.000 0.085 ±0.001 0.084 ±0.000

0.5% 0.085 ±0.000 0.085 ±0.000 0.085 ±0.000 0.084 ±0.000 0.085 ±0.000 0.084 ±0.000

1% 0.085 ±0.000 0.085 ±0.000 0.085 ±0.000 0.085 ±0.000 0.085 ±0.000 0.085 ±0.000

2% 0.085 ±0.000 0.085 ±0.000 0.085 ±0.000 0.085 ±0.000 0.085 ±0.000 0.084 ±0.000

5% 0.086 ±0.000 0.085 ±0.000 0.086 ±0.000 0.085 ±0.000 0.086 ±0.000 0.085 ±0.000

10% 0.088 ±0.000 0.087 ±0.000 0.088 ±0.000 0.086 ±0.000 0.087 ±0.000 0.086 ±0.000

20% 0.092 ±0.000 0.087 ±0.000 0.092 ±0.000 0.087 ±0.000 0.092 ±0.000 0.087 ±0.000

BILSTM
(AG_NEWS)

0.1% 0.235 ±0.001 0.235 ±0.001 0.250 ±0.004 0.246 ±0.002 0.235 ±0.001 0.238 ±0.001

0.2% 0.234 ±0.001 0.235 ±0.001 0.243 ±0.004 0.243 ±0.003 0.236 ±0.001 0.237 ±0.002

0.5% 0.234 ±0.001 0.233 ±0.001 0.241 ±0.002 0.241 ±0.003 0.233 ±0.001 0.233 ±0.001

1% 0.235 ±0.001 0.235 ±0.000 0.239 ±0.002 0.240 ±0.001 0.235 ±0.001 0.234 ±0.000

2% 0.234 ±0.001 0.234 ±0.000 0.239 ±0.002 0.242 ±0.001 0.234 ±0.001 0.235 ±0.000

5% 0.235 ±0.001 0.235 ±0.001 0.242 ±0.001 0.243 ±0.001 0.234 ±0.001 0.235 ±0.001

10% 0.236 ±0.001 0.236 ±0.001 0.244 ±0.001 0.246 ±0.001 0.236 ±0.001 0.238 ±0.001

20% 0.248 ±0.003 0.242 ±0.001 0.258 ±0.004 0.256 ±0.001 0.247 ±0.002 0.246 ±0.001

33

Published in Transactions on Machine Learning Research (10/2025)

Table 7: Ensemble temperature scaling results for ECE. Bold values are not statistically different from the
best in each row (within 1.96 SEM).

Ensemble: ECE ↓
No scaling Individual scaling Joint scaling

Model / Dataset Val. % Shared Overlapping Shared Overlapping Shared Overlapping

WRN-16-4
(CIFAR10)

0.1% 0.009 ±0.000 0.009 ±0.000 0.012 ±0.003 0.019 ±0.009 0.012 ±0.002 0.010 ±0.002

0.2% 0.009 ±0.000 0.009 ±0.000 0.009 ±0.002 0.011 ±0.002 0.009 ±0.002 0.008 ±0.001

0.5% 0.009 ±0.000 0.009 ±0.000 0.011 ±0.001 0.011 ±0.001 0.006 ±0.000 0.007 ±0.001

1% 0.009 ±0.000 0.009 ±0.000 0.012 ±0.001 0.012 ±0.001 0.006 ±0.000 0.007 ±0.001

2% 0.009 ±0.000 0.009 ±0.000 0.012 ±0.001 0.012 ±0.001 0.006 ±0.000 0.007 ±0.001

5% 0.009 ±0.000 0.010 ±0.000 0.013 ±0.001 0.013 ±0.001 0.005 ±0.000 0.007 ±0.001

10% 0.008 ±0.000 0.010 ±0.000 0.012 ±0.000 0.013 ±0.000 0.005 ±0.000 0.007 ±0.000

20% 0.008 ±0.000 0.011 ±0.000 0.013 ±0.000 0.016 ±0.000 0.006 ±0.000 0.009 ±0.000

GCN
(NCI1)

1% 0.034 ±0.002 0.027 ±0.001 0.113 ±0.034 0.083 ±0.027 0.084 ±0.026 0.055 ±0.008

2% 0.033 ±0.002 0.033 ±0.002 0.053 ±0.004 0.063 ±0.006 0.049 ±0.007 0.052 ±0.006

5% 0.028 ±0.001 0.028 ±0.002 0.048 ±0.005 0.070 ±0.008 0.039 ±0.003 0.052 ±0.005

10% 0.034 ±0.003 0.034 ±0.001 0.065 ±0.007 0.068 ±0.005 0.047 ±0.006 0.054 ±0.004

20% 0.039 ±0.003 0.033 ±0.002 0.064 ±0.006 0.072 ±0.003 0.048 ±0.004 0.053 ±0.003

50% 0.086 ±0.003 0.043 ±0.002 0.057 ±0.003 0.092 ±0.002 0.041 ±0.003 0.052 ±0.003

MLP
(COVERTYPE)

0.1% 0.003 ±0.000 0.003 ±0.000 0.004 ±0.001 0.002 ±0.000 0.003 ±0.001 0.002 ±0.001

0.2% 0.004 ±0.001 0.003 ±0.000 0.003 ±0.001 0.002 ±0.000 0.003 ±0.000 0.001 ±0.000

0.5% 0.004 ±0.000 0.003 ±0.000 0.002 ±0.001 0.002 ±0.000 0.003 ±0.000 0.002 ±0.000

1% 0.003 ±0.000 0.003 ±0.000 0.002 ±0.000 0.002 ±0.000 0.002 ±0.000 0.002 ±0.000

2% 0.003 ±0.000 0.003 ±0.000 0.002 ±0.000 0.002 ±0.000 0.002 ±0.000 0.001 ±0.000

5% 0.003 ±0.000 0.003 ±0.000 0.002 ±0.000 0.002 ±0.000 0.002 ±0.000 0.001 ±0.000

10% 0.002 ±0.000 0.004 ±0.000 0.002 ±0.000 0.004 ±0.000 0.002 ±0.000 0.002 ±0.000

20% 0.002 ±0.000 0.004 ±0.000 0.002 ±0.000 0.005 ±0.000 0.001 ±0.000 0.003 ±0.000

BILSTM
(AG_NEWS)

0.1% 0.019 ±0.001 0.019 ±0.001 0.052 ±0.007 0.047 ±0.004 0.028 ±0.003 0.034 ±0.004

0.2% 0.018 ±0.001 0.019 ±0.001 0.041 ±0.008 0.040 ±0.007 0.021 ±0.004 0.029 ±0.004

0.5% 0.020 ±0.000 0.020 ±0.001 0.041 ±0.004 0.040 ±0.004 0.022 ±0.001 0.026 ±0.002

1% 0.020 ±0.001 0.020 ±0.001 0.036 ±0.002 0.039 ±0.001 0.020 ±0.001 0.026 ±0.001

2% 0.020 ±0.000 0.021 ±0.001 0.038 ±0.002 0.042 ±0.002 0.021 ±0.001 0.027 ±0.001

5% 0.021 ±0.001 0.023 ±0.001 0.042 ±0.002 0.043 ±0.001 0.021 ±0.001 0.028 ±0.001

10% 0.022 ±0.001 0.023 ±0.001 0.042 ±0.001 0.046 ±0.001 0.022 ±0.001 0.030 ±0.001

20% 0.028 ±0.004 0.027 ±0.001 0.051 ±0.005 0.056 ±0.001 0.026 ±0.001 0.037 ±0.001

34

Published in Transactions on Machine Learning Research (10/2025)

Table 8: Average individual model temperature scaling results for Classification Error (%). Bold values are
not statistically different from the best in each row (within 1.96 SEM).

Average Individual: Classification Error (%) ↓
No scaling Individual scaling Joint scaling

Model / Dataset Val. % Shared Overlapping Shared Overlapping Shared Overlapping

WRN-16-4
(CIFAR10)

0.1% 4.77 ±0.01 4.81 ±0.02 4.77 ±0.01 14.34 ±9.52 4.78 ±0.01 4.81 ±0.02

0.2% 4.77 ±0.02 4.72 ±0.02 4.77 ±0.02 4.72 ±0.02 4.78 ±0.02 4.72 ±0.02

0.5% 4.79 ±0.02 4.78 ±0.03 4.79 ±0.02 4.78 ±0.03 4.79 ±0.02 4.78 ±0.03

1% 4.77 ±0.01 4.76 ±0.02 4.78 ±0.01 4.76 ±0.02 4.78 ±0.01 4.76 ±0.02

2% 4.80 ±0.01 4.81 ±0.02 4.80 ±0.01 4.81 ±0.02 4.80 ±0.01 4.81 ±0.02

5% 4.98 ±0.02 4.93 ±0.03 4.98 ±0.02 4.93 ±0.03 4.98 ±0.02 4.92 ±0.03

10% 5.04 ±0.02 5.01 ±0.02 5.04 ±0.02 5.01 ±0.02 5.04 ±0.02 5.01 ±0.02

20% 5.37 ±0.02 5.34 ±0.02 5.37 ±0.02 5.34 ±0.02 5.37 ±0.02 5.34 ±0.02

GCN
(NCI1)

1% 20.26 ±0.15 20.04 ±0.17 31.86 ±7.85 27.21 ±5.95 26.05 ±5.88 20.05 ±0.17

2% 20.04 ±0.15 20.05 ±0.15 20.06 ±0.15 20.07 ±0.15 20.05 ±0.15 20.05 ±0.15

5% 19.80 ±0.14 19.87 ±0.16 19.79 ±0.14 19.87 ±0.16 19.79 ±0.14 19.86 ±0.15

10% 19.96 ±0.09 20.03 ±0.14 19.98 ±0.09 20.08 ±0.13 19.97 ±0.09 20.03 ±0.14

20% 19.56 ±0.13 19.70 ±0.15 19.55 ±0.13 19.70 ±0.15 19.56 ±0.13 19.70 ±0.15

50% 21.66 ±0.28 21.19 ±0.14 21.67 ±0.29 21.20 ±0.14 21.67 ±0.28 21.19 ±0.13

MLP
(COVERTYPE)

0.1% 3.43 ±0.01 3.42 ±0.00 3.43 ±0.01 3.42 ±0.00 3.43 ±0.01 3.42 ±0.00

0.2% 3.51 ±0.08 3.42 ±0.00 3.51 ±0.08 3.42 ±0.00 3.51 ±0.08 3.42 ±0.00

0.5% 3.46 ±0.03 3.42 ±0.00 3.46 ±0.03 3.42 ±0.00 3.46 ±0.03 3.42 ±0.00

1% 3.44 ±0.00 3.46 ±0.03 3.44 ±0.00 3.46 ±0.03 3.44 ±0.00 3.46 ±0.03

2% 3.47 ±0.04 3.45 ±0.00 3.47 ±0.04 3.45 ±0.00 3.47 ±0.04 3.45 ±0.00

5% 3.49 ±0.01 3.48 ±0.01 3.49 ±0.01 3.48 ±0.01 3.49 ±0.01 3.48 ±0.01

10% 3.55 ±0.01 3.59 ±0.03 3.55 ±0.01 3.59 ±0.03 3.55 ±0.01 3.59 ±0.03

20% 3.68 ±0.02 3.67 ±0.01 3.69 ±0.02 3.67 ±0.01 3.69 ±0.02 3.67 ±0.01

BILSTM
(AG_NEWS)

0.1% 9.52 ±0.05 9.54 ±0.03 9.52 ±0.05 9.54 ±0.03 9.52 ±0.05 9.54 ±0.03

0.2% 9.53 ±0.04 9.60 ±0.06 9.53 ±0.04 9.60 ±0.07 9.53 ±0.04 9.60 ±0.06

0.5% 9.56 ±0.03 9.66 ±0.09 9.56 ±0.03 9.66 ±0.08 9.56 ±0.03 9.66 ±0.08

1% 9.57 ±0.03 9.52 ±0.03 9.58 ±0.03 9.52 ±0.03 9.57 ±0.03 9.52 ±0.03

2% 9.58 ±0.04 9.62 ±0.04 9.58 ±0.04 9.62 ±0.04 9.58 ±0.04 9.62 ±0.04

5% 9.67 ±0.02 9.64 ±0.06 9.67 ±0.02 9.64 ±0.06 9.67 ±0.02 9.64 ±0.06

10% 9.73 ±0.04 9.73 ±0.03 9.72 ±0.04 9.73 ±0.03 9.73 ±0.04 9.73 ±0.03

20% 10.48 ±0.24 10.24 ±0.03 10.47 ±0.24 10.24 ±0.03 10.48 ±0.25 10.24 ±0.03

35

Published in Transactions on Machine Learning Research (10/2025)

Table 9: Average individual model temperature scaling results for NLL. Bold values are not statistically
different from the best in each row (within 1.96 SEM).

Average Individual: NLL ↓
No scaling Individual scaling Joint scaling

Model / Dataset Val. % Shared Overlapping Shared Overlapping Shared Overlapping

WRN-16-4
(CIFAR10)

0.1% 0.153 ±0.001 0.155 ±0.001 0.185 ±0.023 0.438 ±0.213 1.170 ±0.966 0.178 ±0.009

0.2% 0.155 ±0.001 0.152 ±0.001 0.162 ±0.003 0.171 ±0.013 2.528 ±2.338 0.161 ±0.004

0.5% 0.154 ±0.001 0.154 ±0.001 0.154 ±0.001 0.156 ±0.001 0.161 ±0.002 0.158 ±0.002

1% 0.154 ±0.000 0.154 ±0.000 0.154 ±0.000 0.154 ±0.000 0.161 ±0.002 0.155 ±0.001

2% 0.155 ±0.001 0.154 ±0.000 0.155 ±0.000 0.154 ±0.000 0.161 ±0.002 0.156 ±0.001

5% 0.161 ±0.001 0.159 ±0.001 0.161 ±0.001 0.159 ±0.001 0.167 ±0.001 0.161 ±0.001

10% 0.162 ±0.001 0.161 ±0.000 0.162 ±0.001 0.161 ±0.000 0.167 ±0.001 0.162 ±0.001

20% 0.173 ±0.001 0.172 ±0.001 0.172 ±0.001 0.172 ±0.001 0.178 ±0.001 0.173 ±0.001

GCN
(NCI1)

1% 0.474 ±0.003 0.472 ±0.003 0.523 ±0.031 0.523 ±0.021 0.513 ±0.025 0.482 ±0.007

2% 0.472 ±0.002 0.477 ±0.002 0.480 ±0.010 0.474 ±0.002 0.500 ±0.022 0.469 ±0.003

5% 0.472 ±0.002 0.478 ±0.004 0.465 ±0.003 0.474 ±0.005 0.473 ±0.006 0.468 ±0.003

10% 0.476 ±0.004 0.493 ±0.013 0.467 ±0.003 0.479 ±0.008 0.466 ±0.002 0.476 ±0.009

20% 0.493 ±0.004 0.495 ±0.004 0.468 ±0.002 0.470 ±0.003 0.470 ±0.003 0.467 ±0.003

50% 0.665 ±0.012 0.634 ±0.005 0.500 ±0.004 0.491 ±0.002 0.505 ±0.004 0.496 ±0.003

MLP
(COVERTYPE)

0.1% 0.088 ±0.000 0.088 ±0.000 0.088 ±0.000 0.089 ±0.000 0.089 ±0.001 0.088 ±0.000

0.2% 0.090 ±0.002 0.088 ±0.000 0.090 ±0.002 0.088 ±0.000 0.091 ±0.002 0.088 ±0.000

0.5% 0.089 ±0.001 0.088 ±0.000 0.089 ±0.001 0.088 ±0.000 0.090 ±0.001 0.088 ±0.000

1% 0.088 ±0.000 0.089 ±0.001 0.088 ±0.000 0.089 ±0.001 0.089 ±0.000 0.089 ±0.001

2% 0.089 ±0.001 0.088 ±0.000 0.089 ±0.001 0.088 ±0.000 0.090 ±0.001 0.088 ±0.000

5% 0.090 ±0.000 0.089 ±0.000 0.090 ±0.000 0.089 ±0.000 0.090 ±0.000 0.089 ±0.000

10% 0.091 ±0.000 0.092 ±0.001 0.091 ±0.000 0.092 ±0.001 0.091 ±0.000 0.093 ±0.001

20% 0.096 ±0.000 0.095 ±0.000 0.096 ±0.000 0.095 ±0.000 0.096 ±0.000 0.095 ±0.000

BILSTM
(AG_NEWS)

0.1% 0.323 ±0.002 0.325 ±0.001 0.289 ±0.002 0.292 ±0.001 0.295 ±0.005 0.290 ±0.002

0.2% 0.324 ±0.002 0.323 ±0.002 0.292 ±0.002 0.295 ±0.004 0.321 ±0.015 0.302 ±0.009

0.5% 0.324 ±0.001 0.325 ±0.003 0.288 ±0.001 0.290 ±0.002 0.309 ±0.005 0.299 ±0.003

1% 0.324 ±0.001 0.322 ±0.001 0.288 ±0.001 0.286 ±0.001 0.324 ±0.008 0.292 ±0.002

2% 0.321 ±0.001 0.322 ±0.001 0.288 ±0.001 0.289 ±0.001 0.319 ±0.010 0.294 ±0.001

5% 0.322 ±0.001 0.321 ±0.001 0.289 ±0.001 0.289 ±0.001 0.314 ±0.003 0.296 ±0.002

10% 0.321 ±0.001 0.322 ±0.001 0.292 ±0.001 0.292 ±0.001 0.319 ±0.002 0.297 ±0.001

20% 0.347 ±0.006 0.339 ±0.001 0.314 ±0.008 0.307 ±0.001 0.352 ±0.015 0.313 ±0.001

36

Published in Transactions on Machine Learning Research (10/2025)

Table 10: Average individual model temperature scaling results for ECE. Bold values are not statistically
different from the best in each row (within 1.96 SEM).

Average Individual: ECE ↓
No scaling Individual scaling Joint scaling

Model / Dataset Val. % Shared Overlapping Shared Overlapping Shared Overlapping

WRN-16-4
(CIFAR10)

0.1% 0.011 ±0.000 0.011 ±0.000 0.015 ±0.002 0.026 ±0.008 0.023 ±0.004 0.020 ±0.003

0.2% 0.011 ±0.000 0.010 ±0.000 0.014 ±0.001 0.014 ±0.001 0.023 ±0.003 0.015 ±0.002

0.5% 0.011 ±0.000 0.011 ±0.000 0.010 ±0.001 0.011 ±0.001 0.016 ±0.001 0.014 ±0.001

1% 0.011 ±0.000 0.010 ±0.000 0.010 ±0.001 0.009 ±0.000 0.017 ±0.001 0.012 ±0.001

2% 0.011 ±0.000 0.011 ±0.000 0.009 ±0.000 0.009 ±0.001 0.016 ±0.001 0.013 ±0.001

5% 0.012 ±0.000 0.012 ±0.000 0.009 ±0.000 0.010 ±0.000 0.017 ±0.000 0.014 ±0.000

10% 0.011 ±0.000 0.011 ±0.000 0.009 ±0.000 0.009 ±0.000 0.016 ±0.000 0.013 ±0.000

20% 0.012 ±0.000 0.013 ±0.000 0.010 ±0.000 0.010 ±0.000 0.017 ±0.000 0.014 ±0.000

GCN
(NCI1)

1% 0.040 ±0.001 0.039 ±0.001 0.111 ±0.032 0.101 ±0.023 0.085 ±0.025 0.061 ±0.006

2% 0.039 ±0.001 0.041 ±0.001 0.054 ±0.005 0.063 ±0.004 0.054 ±0.008 0.050 ±0.004

5% 0.039 ±0.001 0.041 ±0.001 0.050 ±0.003 0.065 ±0.007 0.046 ±0.003 0.049 ±0.003

10% 0.043 ±0.002 0.044 ±0.001 0.058 ±0.006 0.063 ±0.004 0.046 ±0.004 0.048 ±0.002

20% 0.052 ±0.002 0.052 ±0.001 0.056 ±0.005 0.061 ±0.002 0.045 ±0.002 0.045 ±0.002

50% 0.112 ±0.004 0.102 ±0.001 0.054 ±0.003 0.060 ±0.002 0.045 ±0.002 0.046 ±0.001

MLP
(COVERTYPE)

0.1% 0.001 ±0.000 0.001 ±0.000 0.004 ±0.001 0.004 ±0.000 0.004 ±0.001 0.004 ±0.001

0.2% 0.002 ±0.000 0.001 ±0.000 0.003 ±0.000 0.003 ±0.000 0.006 ±0.000 0.002 ±0.000

0.5% 0.001 ±0.000 0.001 ±0.000 0.003 ±0.000 0.002 ±0.000 0.005 ±0.001 0.003 ±0.001

1% 0.001 ±0.000 0.001 ±0.000 0.002 ±0.000 0.002 ±0.000 0.005 ±0.001 0.003 ±0.000

2% 0.001 ±0.000 0.001 ±0.000 0.002 ±0.000 0.002 ±0.000 0.005 ±0.001 0.003 ±0.000

5% 0.001 ±0.000 0.001 ±0.000 0.002 ±0.000 0.002 ±0.000 0.004 ±0.001 0.003 ±0.000

10% 0.001 ±0.000 0.002 ±0.000 0.002 ±0.000 0.002 ±0.000 0.004 ±0.000 0.003 ±0.000

20% 0.002 ±0.000 0.002 ±0.000 0.002 ±0.000 0.002 ±0.000 0.004 ±0.000 0.004 ±0.000

BILSTM
(AG_NEWS)

0.1% 0.040 ±0.000 0.040 ±0.000 0.025 ±0.003 0.024 ±0.002 0.024 ±0.004 0.019 ±0.002

0.2% 0.040 ±0.000 0.040 ±0.001 0.024 ±0.003 0.024 ±0.002 0.036 ±0.006 0.026 ±0.005

0.5% 0.040 ±0.000 0.040 ±0.001 0.018 ±0.001 0.018 ±0.001 0.033 ±0.003 0.026 ±0.002

1% 0.040 ±0.000 0.039 ±0.000 0.018 ±0.001 0.017 ±0.000 0.039 ±0.003 0.023 ±0.001

2% 0.039 ±0.001 0.039 ±0.001 0.018 ±0.001 0.016 ±0.000 0.037 ±0.003 0.023 ±0.001

5% 0.038 ±0.000 0.038 ±0.001 0.016 ±0.000 0.016 ±0.000 0.035 ±0.001 0.023 ±0.001

10% 0.037 ±0.001 0.038 ±0.001 0.017 ±0.000 0.017 ±0.000 0.036 ±0.001 0.022 ±0.000

20% 0.040 ±0.000 0.039 ±0.000 0.019 ±0.001 0.019 ±0.001 0.041 ±0.002 0.024 ±0.000

37

Published in Transactions on Machine Learning Research (10/2025)

F Supplementary Results for Early Stopping

This section shows the early stopping performance for the average of the individual models within the ensem-
ble. As shown in Figure 8, the extended training duration under joint stopping can lead to a degradation in
the performance and calibration of the individual models, even as the final ensemble’s performance (shown
in Figure 3) improves. This highlights the ensemble optimality gap, where the best strategy for the ensemble
is not necessarily the best for its individual components.

G Interaction Between Early Stopping and Temperature Scaling

To assess whether temperature scaling offers an additive benefit after joint early stopping, we performed a
follow-up experiment using a 5% validation split across 5 random seeds. A single shared holdout set was used
first to determine the stopping point for the ensemble via joint early stopping, and then the same set was used
to optimize the temperature for post-hoc calibration. We compare the performance of full ensembles (M = 4
for WRN and GCN; M = 8 for MLP and BiLSTM) before and after applying temperature scaling. The
results in Table 11 show no significant or consistent improvement, suggesting that for these well-regularized
models, further post-hoc calibration has a negligible effect.

Table 11: Test performance of ensembles regularized with Joint Early Stopping on a shared holdout, com-
paring results with and without subsequent Joint Temperature Scaling. The experiment was run with a 5%
validation set. The results show no significant additive benefit. Bold values indicate the best performance
for each metric and model (within 1.96 SEM).

Model Metric No Scaling Joint Scaling

GCN
(NCI1)

Classification Error (%) ↓ 20.71 ±0.38 20.68 ±0.39

NLL ↓ 0.4729 ±0.0046 0.4755 ±0.0027

ECE ↓ 0.0402 ±0.0047 0.0395 ±0.0029

BILSTM
(AG_NEWS)

Classification Error (%) ↓ 7.60 ±0.08 7.59 ±0.07

NLL ↓ 0.2406 ±0.0009 0.2392 ±0.0010

ECE ↓ 0.0257 ±0.0004 0.0273 ±0.0006

MLP
(COVERTYPE)

Classification Error (%) ↓ 3.23 ±0.01 3.23 ±0.01

NLL ↓ 0.0849 ±0.0001 0.0849 ±0.0002

ECE ↓ 0.0046 ±0.0005 0.0031 ±0.0002

WRN-16-4
(CIFAR10)

Classification Error (%) ↓ 6.83 ±0.18 6.79 ±0.19

NLL ↓ 0.2233 ±0.0026 0.2133 ±0.0048

ECE ↓ 0.0149 ±0.0008 0.0188 ±0.0017

38

Published in Transactions on Machine Learning Research (10/2025)

.1 .2 .5 1 2 5 10 20

9%

10%

11%

Classification Error

.1 .2 .5 1 2 5 10 20

0.350

0.375

0.400

NLL

.1 .2 .5 1 2 5 10 20

0.040

0.045

0.050

0.055
ECE

1 2 5 10 20 50
22%

24%

26%

1 2 5 10 20 50

0.54

0.56

1 2 5 10 20 50

0.04

0.05

.1 .2 .5 1 2 5 10 20

4.0%

4.5%

.1 .2 .5 1 2 5 10 20

0.105

0.110

0.115

.1 .2 .5 1 2 5 10 20

0.004

0.006

0.008

0.010

.1 .2 .5 1 2 5 10 20

Validation Pct (%)

10.5%

11.0%

.1 .2 .5 1 2 5 10 20

Validation Pct (%)

0.35

0.40

0.45

.1 .2 .5 1 2 5 10 20

Validation Pct (%)

0.03

0.04

0.05

0.06

W
R

N
-1

6
-4

(C
IF

A
R

1
0
)

G
C

N
(N

C
I1

)
M

L
P

(C
O

V
E

R
T

Y
P

E
)

B
IL

S
T

M
(A

G
N

E
W

S
)

Individual stopping

Joint stopping

Shared holdout

Overlapping holdout

Disjoint holdout

Figure 8: Test performance for the average of individual models within the ensemble, comparing different
early stopping strategies. This figure shows results corresponding to the ensemble performance presented
in Figure 3. (WRN: Wide ResNet; GCN: Graph Convolutional Network; MLP: Multi-Layer Perceptron;
BILSTM: Bidirectional Long Short-Term Memory; NLL: negative log-likelihood; ECE: expected calibration
error).

39

	Introduction
	Background
	Ensemble Methods: Foundations and Diversity
	Calibration of Deep Learning Models and Ensembles
	Hyperparameter Tuning for Ensembles
	Early Stopping Ensembles

	Methodology
	Formalizing the Ensemble Optimality Gap
	Datasets and Base Models
	Validation Data Strategies for Ensemble Evaluation

	Experiments
	Hyperparameter Tuning (Weight Decay)
	Temperature Scaling for Calibration
	Early Stopping
	Validation Strategies and Data Leakage in BatchEnsembles

	Discussion and Conclusion
	Experimental Setup Details
	Model Details
	Wide ResNet-16-4 (WRN-16-4)
	Graph Convolutional Network (GCN)
	Multilayer Perceptron (MLP)
	Bidirectional LSTM (BiLSTM)
	BatchEnsemble Implementation

	Dataset Details
	CIFAR-10
	NCI1
	Covertype
	AG News

	Experimental Setup Details

	Diversity Metric
	Supplementary Results for Weight Decay Tuning
	Comparison of Joint Temperature Scaling Methods
	Supplementary Results for Temperature Scaling
	Supplementary Results for Early Stopping
	Interaction Between Early Stopping and Temperature Scaling

