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Abstract

Deep ensembles are a powerful tool in machine learning, improving both model performance
and uncertainty calibration. While ensembles are typically formed by training and tuning
models individually, evidence suggests that jointly tuning the ensemble can lead to better
performance. This paper investigates the impact of jointly tuning weight decay, temperature
scaling, and early stopping on both predictive performance and uncertainty quantification.
Additionally, we propose a partially overlapping holdout strategy that relaxes the need for
a common holdout set, thereby increasing ensemble diversity. Our results demonstrate that
jointly tuning the ensemble matches or improves performance across all conditions, with
significant variation in effect size. We highlight the trade-offs between individual and joint
optimization in deep ensemble training, with the overlapping holdout strategy offering an
attractive practical solution. We believe our findings provide valuable insights and guidance
for practitioners looking to optimize deep ensemble models.

1 Introduction

Deep ensembles are a simple and practical method that combines multiple independently trained models
to enhance predictive accuracy, improve robustness, and provide uncertainty estimates (Lakshminarayanan
et al.). Their effectiveness relies on having diverse members that have uncorrelated errors, which reduces
variance and minimizes the impact of individual model mistakes (Hansen & Salamon; Krogh & Sollich).

While individual models in an ensemble may differ in architecture, training set, and other factors, a com-
mon practice is to train ensembles using the same model architecture, with the only differences being the
initializations and the order in which the training examples are presented. This also offers a simple and
effective method for selecting regularization hyperparameters such as weight decay and dropout: These set-
tings can be optimized for a single model, typically through grid search, and then used to train the ensemble
members independently. Similarly, if post-hoc calibration or early stopping is used, it is often applied to
each ensemble member independently. This approach simplifies the tuning process, but while an ensemble of
well-regularized and well-calibrated models will generally perform well, it may not be the optimal strategy.
We refer to the possible mismatch between an ensemble of optimally tuned models and the optimally tuned
ensemble as the ensemble optimality gap.

Previous work has shown that allowing individual models within an ensemble to overfit to a certain extent
can lead to improvements in both prediction accuracy (Sollich & Krogh) and calibration (Wu & Gales).
In practice, however, this is often disregarded because tuning the complete ensemble by holdout or cross-
validation can be a considerable computational expense or does not seamlessly fit into existing workflows.
Hyperparameter tuning (such as grid search) requires training an entire ensemble for each parameter com-
bination, scaling the computational cost with the ensemble size. However, methods like early stopping can
be validated during parallel training with minimal added cost, whereas post hoc techniques like temperature
scaling can be evaluated on the ensemble without additional expense.

In this paper, we systematically explore the ensemble optimality gap across three key aspects of deep ensemble
training and calibration: weight decay tuning, temperature scaling, and early stopping. Our objective is
to assess the magnitude of this effect in common settings and demonstrate how it can be mitigated by
optimizing for ensemble performance. In particular, we examine how the optimality gap influences model
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accuracy, uncertainty calibration, and predictive likelihood, as well as investigate its impact on ensemble
diversity.

To enhance ensemble diversity, a well-known approach is to train the ensemble using a k-fold cross-validation
strategy, where each ensemble member is validated on separate holdout data. While this approach can
improve the estimation of generalization error for a single model, it prevents direct validation of the full
ensemble performance, as a common validation data must be held out for all ensemble members. This leads
to a choice between increasing ensemble diversity and having the ability to tune the ensemble as a whole,
both of which strategies have been demonstrated to lead to improved performance. We explore a strategy
that balances these factors by using partially overlapping holdout sets across ensemble members.

Finally, when training standard deep ensembles is impractical, techniques like batch ensembles or multiple-
input multiple-output (MIMO) ensembles offer viable alternatives. In these approaches, the ensemble is
formed by sub-models with partially shared parameters within a single, larger model that is trained in one
run. We demonstrate how our overlapping holdout strategy can be applied in the batch ensemble setting
and compare its performance across different initialization strategies.

In summary, our work addresses the following aspects:

• We demonstrate several settings in which the ensemble optimality gap is significant, and show to
which extent it can be mitigated by jointly tuning the ensemble.

• We propose a novel overlapping holdout validation strategy that sits between using a common shared
holdout set and using independent holdouts as in k-fold cross-validation.

• We present a case study based on batch ensembling that demonstrates how an ensemble can be
jointly trained and tuned in a single run with the overlapping holdout validation strategy.

We validate our study empirically using two well-established benchmark tasks: one in image classification and
the other in graph classification. Our results demonstrate clear benefits from validating the ensemble jointly,
especially for early stopping and temperature scaling, compared to validating individual models, while joint
weight decay tuning shows more nuanced effects predominantly related to calibration. We assess the utility
of the overlapping holdout strategy in different settings and also provide key insights regarding initialization
choices for efficient batch ensembles. Collectively, these findings offer concrete guidance for practitioners
on navigating the trade-offs between individual and joint optimization when training and calibrating deep
ensembles.

2 Background

2.1 Ensemble Methods: Foundations and Diversity

Ensemble methods improve prediction and robustness by combining multiple models (Dietterich). The
core principle relies on combining outputs from diverse members with uncorrelated errors, thus reducing
variance and improving generalization (Hansen & Salamon; Krogh & Sollich). In this paper, we focus on
deep ensembles (Lakshminarayanan et al.), a simple and effective technique for deep neural networks. For
classification tasks, we consider the common approach where the ensemble prediction is the arithmetic mean
of the softmax probabilities from individual members,

p̄(y|x) = 1
M

M∑
m=1

p(y|x, θm),

corresponding to a uniform mixture over the ensemble members (see e.g. Tassi et al. for a discussion of the
pros and cons of this strategy).

While effective, standard deep ensembles incur substantial costs, as training, storing, and running M inde-
pendent models leads roughly to an M -fold increase in computation time at training and inference. This
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scalability challenge has spurred the development of more efficient ensemble methods. These approaches often
reduce the computational or parameter costs through techniques like parameter sharing (e.g., BatchEnsem-
ble (Wen et al., b)), creating implicit ensembles (e.g., MIMO (Havasi et al.), Early Exits (Qendro et al.)),
leveraging stochastic inference (e.g., MC Dropout (Gal & Ghahramani)), or developing efficient Bayesian
approximations (e.g., Rank-1 BNNs (Dusenberry et al.)).

Implicit and Explicit Diversity. Standard Deep Ensembles typically use identical architectures trained
independently. Diversity is achieved implicitly, primarily through different random weight initializations,
which serve as the main source of functional diversity, although using distinct stochastic batches during train-
ing also contribute to a lesser extent (Fort et al.). Data resampling techniques such as Bagging (Breiman)
can promote beneficial diversity for traditional models but are often detrimental for deep networks (Lee
et al.; Lakshminarayanan et al.). This is largely because deep models are sensitive to training data size,
and the reduction in data per bagged member significantly weakens the individual predictors. Furthermore,
regularization techniques applied during training (such as weight decay or early stopping), while improving
individual model generalization, may also implicitly constrain the diversity among ensemble members. Al-
though this implicit diversity (influenced by initialization, data splits, stochastic batches, and regularization)
is often sufficient, explicit diversity-enhancing techniques can also lead to improvements, e.g., by modifying
training losses or adding regularization (see e.g., Liu & Yao; Pagliardini et al.; Jain et al.), but their necessity
and benefit, especially for large models, is debated (Abe et al., b;a). In some cases, joint training methods
can lead to learner collusion (Jeffares et al.), a phenomenon where the ensemble members increase their
diversity in a way that does not improve generalization.

Quantifying Diversity. Quantifying the diversity among ensemble members provides key insights into
their collective behavior and prediction characteristics. For probabilistic predictive models, a useful
information-theoretic metric for ensemble diversity is the difference between the entropy of the average
predictive distribution, p̄i, and the average entropy of individual member predictions, pm

i . This is equivalent
to the average KL divergence DKL(pm

i ||p̄i) (see Appendix B for details):

Di = H(p̄i) − 1
M

M∑
m=1

H(pm
i ). (1)

In the classification setting with p̄i defined as the geometric mean, this expression has a natural interpretation
in the form of a bias, variance, diversity decomposition of the expected loss (Wood et al.); however, in this
work, we use the arithmetic mean, as it is more commonly applied. For an overview of alternative diversity
metrics, see, e.g., Kuncheva & Whitaker; Heidemann et al..

2.2 Calibration of Deep Learning Models and Ensembles

Beyond predictive accuracy, the reliability of a model’s confidence estimates is crucial for dependable decision-
making, particularly in risk-sensitive applications (Niculescu-Mizil & Caruana). A model is considered well-
calibrated if its predicted probabilities accurately reflect the true likelihood of correctness (e.g., predictions
made with 80% confidence are correct 80% of the time). While modern deep neural networks achieve
high accuracy, they are often found to be poorly calibrated, typically exhibiting overconfidence in their
predictions (Guo et al.).

Calibration is commonly evaluated using metrics such as the expected calibration error (ECE), which mea-
sures the discrepancy between confidence and accuracy across prediction bins (Naeini et al.), and the negative
log-likelihood (NLL) of the true classes. NLL is a proper scoring rule, meaning it is uniquely minimized when
predicted probabilities match the true underlying probabilities, thus rewarding both accuracy and calibra-
tion (Gneiting & Raftery).

Temperature Scaling. A simple yet effective post-hoc technique for improving calibration is temperature
scaling (Guo et al.). It involves rescaling the model’s output logits z(x) by a single positive scalar parameter,
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the temperature T , before applying the softmax function according to the formula

p(x; T ) = softmax
(

z(x)
T

)
.

A temperature T > 1 softens the probability distribution (increasing entropy, reducing confidence), while
T < 1 sharpens it. The optimal T is typically found as the value that minimizes some calibration metric on
a held-out validation dataset Dval. Using the NLL as the metric, the optimal temperature is given by

arg min
T >0

∑
(xj ,yj)∈Dval

− log p(xj ; T )yj

where p(xj ; T )yj
denotes the predicted probability for the true class yj . Since T only rescales logits before

the softmax, it does not change individual models’ accuracies.

Individual vs. Joint calibration When applying temperature scaling to an ensemble of M models, two
main strategies arise, differing primarily in how the temperature parameter(s) are optimized and applied. It
is important to note that any strategy involving temperature scaling applied before averaging the outputs
of the non-linear softmax function can potentially alter the final classification outcome (i.e., the arg max
of the averaged probabilities) compared to averaging unscaled probabilities. The two main implementation
strategies are:

• Individual Temperature Scaling: A separate temperature Tm is optimized for each ensemble
member m, typically using its own validation set D(m)

val . The final ensemble prediction is the average
of these individually calibrated probability vectors, given by

p̄individual(x) = 1
M

M∑
m=1

softmax
(

zm(x)
Tm

)
.

Here, the potential impact on the classification outcome is influenced by the use of different scaling
factors Tm across members.

• Joint Temperature Scaling: A single, shared temperature Tjoint is optimized for the entire en-
semble using a suitable joint validation set Djoint

val . This shared temperature Tjoint is applied to the
logits zm(x) of each member before the softmax activation, and the resulting calibrated probabilities
are then averaged according to the formula

p̄joint(x) = 1
M

M∑
m=1

softmax
(

zm(x)
Tjoint

)
.

Although the scaling Tjoint is uniformly applied (preserving the arg max of individual members), the
ensemble class prediction can change as averaging happens after the probability distributions are
tempered. The optimal Tjoint is found by minimizing a calibration metric (such as NLL) of this final
averaged prediction p̄joint(x) on a joint validation set Djoint

val .

The relationship between individual member calibration and overall ensemble calibration is non-trivial.
Importantly, Wu & Gales showed that ensembling individually calibrated models does not guarantee a
well-calibrated ensemble and can lead to under-confidence, advocating instead for calibration strategies that
consider the ensemble effect. Their work focused specifically on optimizing temperature scaling parameters
by minimizing ECE, whereas optimization based on proper scoring rules like NLL represents an alternative
calibration objective commonly used for model training and evaluation.

2.3 Hyperparameter Tuning for Ensembles

Selecting appropriate hyperparameters, such as regularization strengths (e.g., weight decay) or learning pa-
rameters, is critical for training performant deep learning models. For ensembles, this presents a fundamental
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choice regarding the optimization objective: should hyperparameters be tuned to optimize the performance
of individual members, or the performance of the ensemble as a whole?

A common practice, largely due to simplicity and significantly lower computational cost, involves tuning
hyperparameters for a single model (e.g., via grid search or random search (Bergstra & Bengio)) and then ap-
plying the selected configuration uniformly to all ensemble members during their independent training (Lak-
shminarayanan et al.). Directly tuning for the ensemble objective, by contrast, would necessitate training
and evaluating the entire ensemble for each candidate hyperparameter setting, incurring a computational
cost that typically scales with the ensemble size and is often prohibitively expensive.

Beyond searching for a single optimal setting to apply uniformly, alternative strategies exist that leverage
the models generated during hyperparameter exploration or explicitly use hyperparameter diversity. For
instance, Wenzel et al. proposed hyper-deep ensembles, a method that explicitly combines models resulting
from different hyperparameter settings (found via random search and greedy selection) and different random
weight initializations. This combination of diversity sources was shown to improve robustness and uncer-
tainty quantification compared to ensembles relying solely on random initialization. Similarly, Jin & Wu
construct ensembles from models saved during learning rate schedule tuning runs, arguing this efficiently
reuses computational effort and enhances diversity, reporting strong performance. A limitation of directly
using models from tuning runs, however, is that the validation data used for hyperparameter selection is not
incorporated into the training data for the final models, differing from standard workflows where models are
typically retrained on combined data after tuning.

While these alternative construction methods exist, the common practice remains to tune a single configura-
tion for standard deep ensembles. This standard practice implicitly assumes that hyperparameters optimal
for a single model are also (close to) optimal for the ensemble, which might not hold true in practice, an issue
also noted by Gorishniy et al.. However, there appears to be limited research directly comparing individual
versus ensemble-based hyperparameter tuning for standard deep ensembles.

2.4 Early Stopping Ensembles

Early stopping is another widely used regularization technique that prevents overfitting by monitoring perfor-
mance on a validation set and terminating training when performance on this set ceases to improve (Prechelt).
Alternatively, the stopping point can be guided by estimators of generalization error that do not require held-
out data, such as those derived from bootstrap ensembles (Hansen et al.). When applied to ensembles, the
main approaches are:

• Individual Early Stopping: Each ensemble member m is trained and stopped independently
based on its own performance, monitored on a validation set D(m)

val . Training for member m halts
when its validation metric fails to improve for a predefined patience period.

• Joint Early Stopping: The performance of the entire ensemble (e.g., NLL of the average predic-
tion) is monitored on a joint validation set Djoint

val . Training for all members stops simultaneously
when the ensemble’s performance has not improved for the specified patience.

While individual early stopping optimizes each member in isolation, early ensemble theory suggests that
allowing individual members to overfit slightly may be beneficial for the final ensemble performance (Sollich
& Krogh). Joint early stopping might naturally facilitate this by potentially allowing longer training com-
pared to the point where individual models start overfitting on their respective validation sets. Despite its
conceptual appeal, the comparative benefits of individual versus joint stopping strategies for modern deep
ensembles appear less explored. The feasibility and specific mechanism for evaluating ensemble performance
for joint early stopping depend critically on the chosen validation data strategy (Section 3.2). Importantly,
unlike potentially costly joint hyperparameter grid searches, joint early stopping can often be implemented
with minimal computational overhead compared to individual early stopping, especially when members are
trained in parallel.
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3 Methodology

This section provides an overview of the experimental setup used to evaluate the impact of individual versus
joint optimization strategies for deep ensembles. Full details regarding hyperparameters, specific training
configurations, and architectures are provided in Appendix A. Error bars and shaded regions presented in
figures correspond to 1.96× standard error of the mean calculated across multiple random seeds.

3.1 Datasets and Base Models

To assess the generality of our findings on ensemble optimization, we conducted experiments across two
distinct and commonly used benchmark domains, differing significantly in data modality, task complexity,
data scale, and model size:

• Image Classification (CIFAR-10 / WRN-16-4): Our first domain uses the CIFAR-10
dataset (Krizhevsky), a widely-used 10-class image classification benchmark with 50,000 training
images. We pair this with a Wide ResNet-16-4 (WRN-16-4) model (Zagoruyko & Komodakis), a
common CNN architecture for this task containing approximately 2.7 million parameters. This com-
bination represents a setting where a high-capacity model operates on a moderately sized dataset,
suggesting a significantly overparameterized regime. This characteristic makes it particularly suit-
able for studying the interplay between ensemble methods and factors like regularization (e.g., weight
decay, early stopping) and multi-class calibration.

• Graph Classification (NCI1 / GCN): As a contrasting setting with structured data, we used
the NCI1 graph classification benchmark (Shervashidze et al.; Wale et al.), a binary classification
task with significantly fewer data points (4,110 graphs total, 3,288 used for training), with a four-
layer Graph Convolutional Network (GCN). This pairing allows us to test our hypotheses on a
different data modality and an architecture with substantially fewer parameters (24,204). Despite the
vastly different scale, regularization remains important for the GCN’s generalization on this dataset,
allowing us to examine ensemble optimization effects in a different modeling context. Furthermore,
the limited data availability may emphasize the impact of data allocation in different validation
holdout strategies.

3.2 Validation Data Strategies for Ensemble Evaluation

How validation data is assigned to ensemble members impacts training and evaluation, particularly when
considering joint ensemble objectives versus individual member training needs. We define D′ as the available
data excluding the final test set, D(m)

val as the validation set for member m, and D(m)
train as its training set. We

consider three primary strategies for an ensemble of size M :

• Shared Holdout: All members use the same split: D(m)
train = Dtrain and D(m)

val = Dval for all m.
Dval is not used by any member during training. This allows direct evaluation of the full ensemble
on Dval.

• Disjoint Holdout: Each ensemble member m uses its own unique validation set, D(m)
val ⊂ D′, of a

predefined size. These validation sets are mutually disjoint, and their combined size cannot exceed
the total available data |D′|. Since member m trains on all data except its on validation set (i.e.,
D(m)

train = D′ \ D(m)
val ), the data points used to validate it are necessarily included in the training

data for all other members, maximizing training data utilization across the ensemble. However, this
structure prevents direct evaluation of the full ensemble.

• Overlapping Holdout: Each model m gets a unique validation set D(m)
val composed of two distinct

parts (halves). Each half is shared with one neighboring model in a cyclical manner. For instance,
half of Model 2’s validation data is shared with Model 1, the other half with Model 3. This allows
pairwise joint evaluation on the shared halves. (Formally, using M data portions Sk that partition
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D′, then D(m)
val = Sm ∪ Sm+1 (mod M) and D(m)

train = D′ \ D(m)
val ). While this strategy does not per-

mit estimating the validation performance of the entire ensemble on held-out data, it allows joint
estimation of model pairs as an approximation.

Choosing among these strategies involves balancing trade-offs between data utilization (highest for disjoint
holdout) and ability to perform joint ensemble evaluation (easiest with shared, possible pairwise with over-
lapping).

4 Experiments

4.1 Hyperparameter Tuning (Weight Decay)

Purpose This experiment aims to investigate how model performance is affected by different strategies
for tuning the weight decay hyperparameter. Specifically, we compare two approaches: optimizing weight
decay individually for a single model versus optimizing it to maximize the ensemble performance. This
comparison aims to shed light on whether tuning for ensemble-level performance yields better generalization
or uncertainty quantification.

Method Optimal weight decay was determined via grid search, minimizing validation NLL using a shared
holdout set. We compared selecting the best value based on the average individual model NLL versus the
NLL of the ensemble’s average prediction. Models were trained using stochastic gradient descent (SGD)
with momentum and cosine annealing (experimental parameters are detailed in Appendix Table 1).

Results Figure 1 shows the performance of ensembles of size 1–4 optimized for the joint NLL. Across both
datasets we observe that there is a clear optimum for the NLL metric, and that the optimal weight decay
parameter shifts marginally downward as the ensemble size increases. This is consistent with the idea that a
small degree of overfitting of the individual models is beneficial for the ensemble. However, the effect size is
small compared to the benefit of the ensemble itself. For CIFAR-10, the classification error follows a similar
trend to the NLL; however, the optimal weight decay for calibration (measured by ECE) shifts significantly
with ensemble size. This suggests that, if optimizing for ECE, it is crucial to tune weight decay based
on ensemble performance in this case. For NCI1, the classification error and ECE reveal a clear trade-off
between accuracy and calibration. Again, the largest effect of joint ensemble tuning is seen in ECE.

In Figure 2 we directly compare optimizing the weight decay for a single model versus for ensemble perfor-
mance. For CIFAR-10 there is no benefit on classification error and NLL, but a strong benefit on ECE. For
NCI1 there is a strong benefit on classification error but only little benefit on NLL and no benefit on ECE.

Conclusions The comparison suggests that tuning the weight decay specifically for the ensemble consis-
tently leads to test performance that is either improved or on par with using the weight decay optimized
for a single model across all metrics, though the improvements are generally modest. Whether the improve-
ment shows as better classification error or improved calibration depends on the model and dataset, and the
specific trade-off observed here is shaped by our decision to use NLL as the optimization criterion.
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Figure 1: Validation performance across varying weight decay values for WRN-16-4 on CIFAR-10 and GCN
on NCI1 for ensemble sizes 1 to 4. The optimal weight decay for each ensemble size is selected based on
the lowest average NLL. (WRN: Wide ResNet; GCN: Graph Convolutional Network; NLL: negative log-
likelihood; ECE: expected calibration error).
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Figure 2: Test performance of single models and ensembles, trained using the optimal weight decay value
tuned for single models (Single-Model WD) and the optimal weight decay value tuned for ensembles (En-
semble WD), as determined in Figure 1. (WRN: Wide ResNet; GCN: Graph Convolutional Network; NLL:
negative log-likelihood; ECE: expected calibration error; WD: weight decay).
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4.2 Temperature Scaling for Calibration

Purpose This experiment investigates how different temperature scaling strategies impact the calibration
and overall performance of deep ensembles. We specifically compare optimizing temperature(s) for individual
models versus optimizing a single temperature for joint ensemble prediction, evaluating these approaches
under different validation holdout strategies and varying validation set sizes.

Method Base models were first trained using parameters from single-model weight decay tuning. Sub-
sequently, to compare individual and joint temperature scaling strategies across shared and overlapping
validation holdouts, we optimized the temperature(s) using L-BGFS to minimuze validation NLL (experi-
mental parameters are detailed in Appendix Table 2).

Results Figure 3 presents the temperature scaling results. Across both model and dataset combinations,
a trade-off emerges regarding the validation set size: increasing the percentage tends to decrease overall
performance (due to reduced training data), while using very small percentages seems insufficient for robust
temperature estimation. For WRN-16-4 on CIFAR-10, individual temperature scaling improves individual
model calibration but degrades the ensemble’s calibration (ECE). In contrast, joint temperature scaling
generally improves ensemble ECE. This observation, obtained through NLL optimization, aligns with prior
findings by Wu & Gales who optimized for ECE, suggesting the benefit of joint scaling is apparent regardless
of which of these two metrics is optimized. This holds for both shared and overlapping holdouts. For GCN
on NCI1, temperature scaling via NLL optimization showed limited ECE improvement, except at the 50%
validation level. Notably, under this high percentage, the overlapping holdout strategy helped maintain
ensemble performance compared to the shared holdout strategy, indicating its potential utility when data is
scarce.

Conclusions The comparison indicates that joint temperature scaling based on the ensemble prediction is
preferable, as individual scaling can worsen ensemble calibration. Joint scaling generally improved calibration
(especially on CIFAR-10/WRN), consistent with findings from previous work using ECE optimization (Wu
& Gales). The validation set size involves a critical trade-off, where reserving too much data harms overall
performance. The overlapping holdout strategy shows promise, particularly in data-limited settings like
NCI1.
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Figure 3: Temperature scaling results for ensembles (M = 4), comparing different temperature scaling
approaches across varying validation percentages and holdout strategies. For each model/dataset we show
both the metrics for the ensembles and average metrics for the individual models. (WRN: Wide ResNet;
GCN: Graph Convolutional Network; NLL: negative log-likelihood; ECE: expected calibration error).
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4.3 Early Stopping

Purpose This experiment aims to compare the effectiveness of individual versus joint early stopping strate-
gies for deep ensembles. We assess their impact on key metrics including NLL, classification error, ECE,
training duration, and ensemble diversity, utilizing different validation holdout methods and validation set
sizes.

Method We compared individual and joint early stopping based on validation NLL using the Adam
optimizer without weight decay and a patience of 10 epochs. Shared, disjoint, and overlapping holdout
strategies were compared across various validation set percentages. To allow fair comparison of training
duration across experiments with different validation set sizes, we report stopping times in step-normalized
epochs (experimental parameters are detailed in Appendix Table 3).

Results Figure 4 presents the main performance metrics for early stopping, while Figure 5 provides ad-
ditional details on stopping time and diversity. Across both WRN and GCN, joint stopping yields lower
ensemble NLL compared to individual stopping, whereas individual stopping results in lower NLL for the
individual models. Similarly, both classification error and ECE are improved by joint stopping. Figure 5
shows joint stopping leads to longer training durations (higher normalized stopping epochs). This extended
training lowers classification error for both individual models and ensembles compared to individual stop-
ping. However, the impact on ECE differs: individual models tend to become less calibrated (higher ECE)
with longer training, while the ensembles under joint stopping either improve calibration (lower ECE on
WRN-16-4) or maintain similar calibration levels (GCN on NCI1) compared to using the individual stopping
strategy. Furthermore, additional results in Appendix Figure 8 show that shared holdout with joint stopping
generally outperforms disjoint holdouts with individual stopping. For GCN on NCI1 at the 50% validation
split (Figure 4), ensembles using overlapping holdouts perform comparably to shared holdouts, seemingly
mitigating the impact of reduced training data seen in individual models, possibly linked to increased diver-
sity (Figure 5).

Conclusions The findings indicate a clear advantage for employing joint early stopping based on the overall
ensemble’s validation performance. This strategy allows individual members to potentially train beyond their
individual optimum, benefiting collective ensemble generalization and demonstrating the ensemble optimality
gap for early stopping. While longer training can introduce an accuracy-calibration trade-off, joint stopping
led to better overall ensemble performance in our experiments. Overlapping holdouts appear valuable when
data limitations make a shared holdout costly. Monitoring ensemble performance for early stopping decisions
is recommended.
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Figure 4: Early stopping performance for ensembles (M = 4), comparing different early stopping strategies
across different validation percentages and holdout strategies. For each model/dataset we show both the
metrics for the ensembles and average metrics for the individual models. (WRN: Wide ResNet; GCN: Graph
Convolutional Network; NLL: negative log-likelihood; ECE: expected calibration error).
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and holdout strategies. (WRN: Wide ResNet; GCN: Graph Convolutional Network).

14



Under review as submission to TMLR

4.4 BatchEnsemble Results

Purpose Parameter-efficient methods like BatchEnsemble (Wen et al., b), utilize extensive parameter
sharing between ensemble members (see Appendix A.1.3). This raises a potential concern regarding infor-
mation leakage when combined with non-shared validation sets (disjoint or overlapping), as data used to
validate one member might influence others through the shared parameters. Motivated by this potential
issue and its possible interaction with initialization, this case study investigates BatchEnsemble performance
on WRN-16-4/CIFAR-10. We specifically explore how initializing the member-specific parameters with dif-
ferent strategies impacts overall performance, diversity, calibration, and potential signs of leakage when using
shared, disjoint, and overlapping holdout structures.

Method We implemented BatchEnsemble (M = 4) on CIFAR-10 using a WRN-16-4 architecture. This
method employs shared slow weights modulated by member-specific, rank-1 fast weights (details in Appendix
A.1.3). We investigated three fast weight initialization strategies (Gaussian σ = 0.1, σ = 0.5, and random sign
±1) across shared, disjoint, and overlapping holdout structures (2% validation split). A key difference from
standard ensembles is that BatchEnsemble’s shared parameters necessitate simultaneous training termination
for all members. Here we examine the early stopping procedure based on the holdout strategy: for shared
and overlapping holdouts, which permit joint evaluation, we used joint early stopping based on ensemble
NLL; for the disjoint strategy, where only individual validation sets exist, we stopped based on the average
NLL across these individual sets. Following best practices for BatchEnsemble (Wen et al., a), separate batch
normalization layers were used for each member (experimental parameters are detailed in Appendix Table
4).

Results Figure 6 shows a pronounced effect of the fast weight initialization strategy on BatchEnsemble
performance. Random sign initialization consistently achieved lower NLL and better calibration (lower ECE)
across all holdout strategies compared to both Gaussian initializations, alongside a higher ensemble diversity.
While Gaussian initializations sometimes led to low classification error (particularly with overlapping/disjoint
holdouts), their NLL and ECE were considerably worse. Figure 7, showing average individual model per-
formance, reveals a potential issue with Gaussian initialization under non-shared holdouts: validation and
training metrics closely align but diverge substantially from test metrics. This suggests poor generalization
and possible data leakage, where validation data used by one member influences others through shared
parameters or statistics. In contrast, random sign initialization exhibits a more typical generalization gap
between training, and validation, test performance.

Conclusions The initialization strategy for fast weights is critical for BatchEnsemble performance and be-
havior. Random sign initialization is strongly preferable to Gaussian initialization for achieving high ensemble
diversity, good calibration, and robust generalization. Furthermore, random sign initialization appears to
mitigate potential validation data leakage when using non-shared holdouts, aligning BatchEnsemble’s be-
havior more closely with standard deep ensembles. Gaussian initialization, despite potentially low errors in
some settings, can lead to poor calibration and questionable generalization.

5 Discussion and Conclusion

This study systematically investigated the practical impact of adopting an ensemble-aware perspective
when tuning hyperparameters and applying calibration or regularization techniques, specifically focusing
on the potential mismatch between individually optimal settings—the ensemble optimality gap. Our exper-
iments across weight decay tuning, temperature scaling, early stopping, different validation strategies, and
BatchEnsemble provide several insights into optimizing deep ensemble performance.

Our findings regarding weight decay tuning revealed a nuanced picture of the ensemble optimality gap.
While selecting weight decay based on the joint ensemble’s NLL on a validation set produced performance
comparable to or marginally better than using the single-model optimum in terms of NLL and classification
error, the primary benefit manifested as improved calibration (ECE). The optimal weight decay value for
ensemble calibration differed significantly from that for individual models, favoring less regularization. This
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Figure 6: Performance of BatchEnsemble (M=4, WRN-16-4 on CIFAR-10) across different holdout strategies
and different strategies for initializing the ensemble member specific fast weights. Random sign initialization
tends to yield lower NLL and improved calibration (lower ECE) due to greater ensemble diversity. (WRN:
Wide ResNet; NLL: negative log-likelihood; ECE: expected calibration error).

suggests that the common practice of tuning weight decay for a single model might lead to over-regularized
ensembles from a calibration standpoint.

Turning to post-hoc calibration via temperature scaling, the results strongly advocate for joint optimization.
Ensembling individually calibrated models was shown to degrade overall ensemble calibration compared to
an uncalibrated baseline, consistent with prior findings (Wu & Gales), regardless of whether optimization is
based on NLL (our work) or ECE (prior work). Conversely, optimizing a single temperature based on the joint
ensemble’s NLL consistently improved ensemble calibration, particularly on the multi-class WRN/CIFAR-10
task, though the benefit was less pronounced on the binary GCN/NCI1 task. Critically, these experiments
highlight the need for a sufficiently large validation set for robust temperature estimation; however, using
significantly more data than necessary yielded little further improvement in calibration while negatively
impacting overall model performance due to the reduced training set size.

Perhaps the clearest advantage for joint optimization was observed with early stopping. Monitoring the
performance of the entire ensemble and stopping only when its collective performance ceased to improve
consistently led to better ensemble NLL and classification error compared to stopping members individually
based on their own optima. This aligns with early ensemble theory (Sollich & Krogh), suggesting that
allowing individual members to train longer-potentially slightly past their individual optimal stopping points-
benefits the ensemble’s generalization capacity. Although such extended training can negatively impact the
calibration of individual members considered in isolation, the final ensemble calibration was often improved
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Figure 7: Average individual model performance within BatchEnsemble (M = 4, WRN-16-4 on CIFAR-
10), comparing different initialization strategies for fast weights across shared, overlapping, and disjoint
holdout strategies. The results for classification error, NLL, and ECE are shown for the test, validation, and
training sets. Notably, for Gaussian initialization with overlapping and disjoint holdouts, the close alignment
of validation and training performance (as opposed to test performance) suggests potential data leakage
between ensemble members. This observation further highlights the superior generalization achieved with
random sign initialization. (WRN: Wide ResNet; NLL: negative log-likelihood; ECE: expected calibration
Error).

(WRN-16-4) or maintained (GCN) compared to using individual stopping. Notably, implementing joint
early stopping adds minimal computational overhead relative to individual stopping; the primary difference
being potentially longer training runs. This makes it a practical and inexpensive way to leverage ensemble
effects, unlike potentially costly joint hyperparameter grid searches. Joint early stopping thus provides a
compelling and practical avenue to close the ensemble optimality gap, capitalizing on significant performance
improvements at little extra computational cost.

The choice of validation data strategy critically determines the feasibility of joint optimization techniques
and involves fundamental trade-offs. A shared holdout enables straightforward joint evaluation of the full
ensembles but requires reserving a common validation set that is never used for training by any member.
Conversely, the disjoint holdout strategy maximizes the utilization of the available non-test data pool for
training across the ensemble-ensuring every data point contributes to training all but one member-but
completely precludes joint evaluation on validation data unseen by all members being evaluated. Our results
for early stopping and temperature scaling suggest that the benefits derived from enabling robust joint
evaluation outweigh the potential advantages of maximizing this training data utilization. The proposed
overlapping holdout strategy offers a middle ground: similar to disjoint, it ensures all non-test data is used for
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training somewhere within the ensemble, but by creating specific overlaps within the validation sets assigned
to each member, it permits pairwise joint evaluation. This makes it a practical compromise, particularly in
low-data regimes where reserving a fully shared holdout might be too costly because it prevents the entire
portion of data from being used in training by any model.

The importance of considering ensemble interactions also extends to parameter-efficient methods like
BatchEnsemble. Our investigation underscores the paramount importance of the initialization strategy for
the member-specific fast weights (the trainable rank-1 vectors), a detail potentially overlooked. We found
that random sign initialization (assigning ±1 values) proved crucial for achieving high ensemble diversity
and good calibration, behaving much like a standard ensemble. This aligns with some earlier observations
regarding its effectiveness (Wenzel et al.). In stark contrast, Gaussian initialization (i.e., sampling from
N (1, σ2), although used in some large-scale applications (Tran et al.; Dehghani et al.), performed poorly in
our experiments, showing lower diversity and signs of data leakage with non-shared holdouts. The potential
confusion regarding initialization practices is highlighted by reports using ambiguous descriptions like “ran-
dom sign initialization... of -0.5” (meaning Gaussian initialization) at large scale (Dehghani et al.). Given
the stark difference we observed, and the lack of direct comparisons at scale in cited works, further inves-
tigation into the impact of initialization on BatchEnsemble’s effectiveness seems warranted. Our findings
strongly suggest that proper (random sign) initialization leads to robust BatchEnsemble behavior, crucially
mitigating data leakage issues with non-shared holdouts and thereby enabling the effective and reliable
use of different validation strategies, including meaningful joint evaluation when the structure allows (like
overlapping holdouts).

Across these diverse experiments, a unifying principle emerges: the significance of the ensemble optimality
gap and the practical value of adopting an ensemble-aware perspective. Evaluating and optimizing based
on the joint ensemble’s behavior during validation-dependent procedures consistently led to ensembles that
were more accurate, better calibrated, or both. Our results suggest practitioners should prioritize robust
joint evaluation strategies-especially for computationally inexpensive procedures like early stopping and
temperature scaling-rather than solely relying on individually tuned components or potentially complex
methods aimed at explicitly maximizing diversity during training, which may not always be necessary or
beneficial, particularly for large models (Abe et al., b;a). Ultimately, the ensemble is the final predictor, and
evaluating it directly during optimization yields better results.

Based on these findings, we offer the following practical recommendations for practitioners training deep
ensembles:

• Weight Decay: Start by finding the optimal weight decay for a single model. This value provides
a reasonable baseline. Then, consider validating the ensemble performance with this weight decay
and potentially slightly lower values, especially if ensemble calibration is the primary goal and NLL
is the tuning metric. Approximating joint performance by ensembling models trained with nearby
weight decay values during a sweep might also be explored.

• Temperature Scaling: Always optimize and apply temperature scaling jointly based on the en-
semble’s performance (e.g., minimizing NLL) on a validation set. Avoid calibrating members in-
dividually. Crucially, use only a reasonably small validation set; dedicating too much data can
unnecessarily harm overall model performance.

• Early Stopping: Monitor the validation performance of the entire ensemble to determine the
stopping point. This allows the ensemble to train longer and achieve better performance compared
to stopping based on individual member optima. Ensure the validation set size is appropriate.

• Validation Strategy: Use a shared holdout set whenever possible to allow for direct joint evalu-
ation. If data is extremely limited, making a shared holdout prohibitively costly, the overlapping
holdout strategy offers a viable alternative that retains some joint evaluation capability while max-
imizing data use.

• BatchEnsemble: Strongly prefer random sign initialization for the fast weights over Gaussian
initialization to maximize ensemble diversity, calibration, and robustness, particularly when using
disjoint or overlapping holdout strategies.
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While our findings across image and graph classification tasks show consistent trends, this study has lim-
itations. We explored only two model/dataset combinations, and did not investigate extremely large-scale
models where ensembling dynamics might differ, and joint tuning costs escalate. Whether Gaussian ini-
tialization for BatchEnsemble could yield sufficient diversity and stability in such large models remains an
open question, given lack of direct comparisons in the literature we surveyed. Furthermore, the implications
for other types of ensembles (BNNs, MC-dropout) warrant investigation. Future work could explore these
joint optimization dynamics in other domains, develop cost-effective heuristics for joint tuning, investigate
variations of the overlapping holdout strategy, such as structures enabling higher-order joint evaluation
(e.g., among member triplets), and further study the interplay between model/dataset characteristics and
validation strategies.

In conclusion, this work highlights the practical importance of considering ensemble effects during the tuning
and calibration process. By adopting an ensemble-aware perspective and leveraging joint evaluation, partic-
ularly for computationally efficient techniques like early stopping and temperature scaling, practitioners can
build more accurate and reliable deep ensemble models.
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A Model, Dataset, and Experimental Details

A.1 Model Details

A.1.1 Wide ResNet-16-4 (WRN-16-4)

For our experiments on the CIFAR-10 dataset, we utilize the WRN-16-4 architecture (Zagoruyko & Ko-
modakis) as one of our base models for deep ensembles. WRN architectures are characterized by their wider
convolutional layers and reduced depth compared to traditional ResNet architectures. Specifically, WRN-
16-4 denotes a WRN with 16 convolutional layers and a widening factor of 4. In our implementation, we
use the WRN variant where the placement of batch normalization, ReLU activation, and convolution layers
follows the order: batch normalization - ReLU - convolution. We do not employ dropout regularization in
our models.

A.1.2 Graph Convolutional Network (GCN)

For our experiments on the NCI1 dataset, we utilize a four-layer GCN, based on the architecture presented
in Sui et al., but extended to four GCN layers. The network consists of an initial feature transformation
layer, followed by four GCN layers, and finally two fully connected layers.

We use ReLU activations after the initial feature transformation and each of the four GCN layers. Batch
normalization is applied to the input features before the initial transformation, after each of the four GCN
layers, and before each of the two fully-connected layers.

Global sum pooling is applied after the final GCN layer to obtain a graph-level representation. This represen-
tation is then passed through a sequence of two fully-connected layers. The first fully connected layer applies
batch normalization, followed by a ReLU activation and a linear transformation. The second fully-connected
layer is the classification layer and produces the final output logits.

A.1.3 BatchEnsemble Implementation

BatchEnsemble (Wen et al., b) modifies a base network to efficiently train an ensemble using shared weights
W (slow weights). For each shared weight W , member-specific weights Wi (i = 1...M) are generated using
trainable rank-1 vectors ri and si (fast weights) as Wi = W ◦ (risT

i ), where ◦ denotes the Hadamard
(element-wise) product. Crucially, this rank-1 structure allows the forward pass computations for all M
ensemble members to be efficiently vectorized into a single operation, enabling parallel execution on hardware
accelerators (Wen et al., b). The initialization of these fast weights is known to be important for performance.
As investigated in Section 4.4, our experiments specifically compare three initialization strategies for ri and
si: initializing elements from a Gaussian distribution with mean 1 and standard deviation σ (either σ = 0.1 or
σ = 0.5), versus initializing elements randomly as ±1 (random sign / Rademacher distribution). Consistent
with recommendations for achieving good performance with BatchEnsemble (Wen et al., a), we use separate
batch normalization layers for each ensemble member throughout our experiments.

A.2 Dataset Details

A.2.1 CIFAR-10

We conduct experiments on the CIFAR-10 dataset (Krizhevsky), a widely used benchmark for image classi-
fication. CIFAR-10 consists of 60,000 32x32 color images in 10 classes, with 6,000 images per class. There
are 50,000 training images and 10,000 test images, and we use the original test set for final performance
evaluation in all experiments.

Following common practice for CIFAR-10, we apply the following preprocessing steps: random cropping to
size 32 with a padding of 4 pixels, random horizontal flipping with a probability of 0.5, and normalization.
The normalization constants (mean and standard deviation for each color channel) are calculated based on
the actual training split to prevent contamination from the test and validation data.
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A.2.2 NCI1

We conduct experiments on the NCI1 dataset (Shervashidze et al.; Wale et al.), a graph classification dataset
with two classes. There are 4110 graphs. We randomly split the dataset into a training set (80%) and a test
set (20%) using stratified sampling to ensure class balance, resulting in 3288 training graphs and 822 test
graphs. The test set is kept fixed across all experiments. We do not apply any specific preprocessing to the
node features or graph structure beyond what is inherent in the dataset.

A.3 Experimental Setup Details

The following tables provide detailed hyperparameters and setup configurations for the experiments presented
in Section 4. Each table corresponds to a specific experimental procedure, as referenced in the respective
Method paragraphs within Section 4.

Table 1: Hyperparameter tuning (weight decay) parameters.
Parameter WRN-16-4 on CIFAR-10 GCN on NCI1

Weight Decay Values 25 log-spaced (3.16e-5 to 1.00e-2)∗ 17 log-spaced (1e-3 to 1e-2)
Optimizer SGD SGD
Momentum 0.9 0.9
Learning Rate Schedule Cosine annealing (initial 0.1, to 0) Cosine annealing (initial 0.1, to 0)
Epochs 100 200
Batch Size 128 128
Validation Strategy Shared holdout (10% stratified) Shared holdout (10% stratified)
Number of Seeds 5 20
Selection Metric Average validation NLL Average validation NLL

∗ For WRN-16-4, results in Figure 1 are plotted only up to 3.16e-3 as higher values led to severely degraded performance.

Table 2: Temperature scaling parameters

Parameter WRN-16-4 on CIFAR-10 GCN on NCI1

Base Model Weight Decay 7.5e-4 3.162e-3
Optimization Algorithm L-BFGS (lr=0.1, max_iter=100) L-BFGS (lr=0.1, max_iter=100)
Initial Temperature 1.0 1.0
Validation Strategies Shared, overlapping Shared, overlapping
Validation Percentages 0.1%, 0.2%, 0.5%, 1%, 2%, 5%, 10%, 20% 1%, 2%, 5%, 10%, 20%, 50%
Number of Seeds 10 10
Ensemble Size 4 4
Scaling Types Individual, joint Individual, joint
Optimization Metric Validation NLL Validation NLL

B Diversity Metric

The ensemble diversity metric used in this paper (Sections 2.1, 4.3, 4.4) quantifies the disagreement among
ensemble members for a given input data point i. It is defined as the difference between the entropy of the
average predicted probability vector p̄i = 1

M

∑M
m=1 pm

i and the average entropy of the individual member
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Table 3: Early stopping parameters
Parameter WRN-16-4 on CIFAR-10 GCN on NCI1

Optimizer Adam Adam
Learning Rate 0.001 0.001
Weight Decay 0 0
Validation Strategies Shared, overlapping, disjoint Shared, overlapping, disjoint
Stopping Criterion Validation NLL Validation NLL
Patience 10 epochs 10 epochs
Validation Percentages 0.1%, 0.2%, 0.5%, 1%, 2%, 5%, 10%, 20% 1%, 2%, 5%, 10%, 20%, 50%
Number of Seeds 10 50
Ensemble Size 4 4
Stopping Types Individual, joint Individual, joint

Table 4: BatchEnsemble Parameters for WRN-16-4 on CIFAR-10
Parameter WRN-16-4 BatchEnsemble on CIFAR10

Ensemble Size 4
Optimizer Adam
Learning Rate 0.001
Weight Decay 0
Validation Strategies Shared, disjoint, overlapping
Stopping Criterion Validation NLL
Patience 10 epochs
Validation Percentage 2%
Number of Seeds 10
Fast Weight Initialization N (µ = 1, σ = 0.1), N (µ = 1, σ = 0.5), random sign (±1)
Batch Normalization Separate for each ensemble member

predictions pm
i :

Di = H(p̄i) − 1
M

M∑
m=1

H(pm
i )

where H(p) = −
∑

c p[c] log p[c] is the Shannon entropy.

This measure is directly related to the Kullback-Leibler (KL) divergence. It can be shown that the diversity
defined above is equal to the average KL divergence from the individual member predictions pm

i to the mean
ensemble prediction p̄i:

Di = 1
M

M∑
m=1

DKL(pm
i ||p̄i)

where DKL(p||p̄) =
∑

c p[c] log(p[c]/p̄[c]). Therefore, this diversity metric intuitively quantifies how much,
on average, the probability distribution predicted by an individual member diverges from the consensus
prediction of the ensemble. Higher values indicate greater disagreement among ensemble members.

C Early Stopping Performance Under Shared vs. Disjoint Holdout Strategies

While the main text (Figure 4) compared shared and overlapping holdout sets for early stopping, this
appendix section specifically addresses the performance of the disjoint holdout strategy. Figure 8 directly
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contrasts ensembles using disjoint holdouts (evaluated with individual stopping) against those using shared
holdouts (evaluated with both individual and joint early stopping). The disjoint strategy is characterized
by ensuring that the holdout data for any one model is part of the training data for all other models in
the ensemble, thus maximizing data usage across the group but precluding joint evaluation. The results,
presented for WRN-16-4/CIFAR-10 and GCN/NCI1 across various validation percentages, illustrate the
performance impact of this approach. The comparison suggests that the performance improvement obtained
by applying joint early stopping (using shared holdout sets) is generally greater than any advantage gained
from the improved non-test coverage of the disjoint holdout sets.
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Figure 8: Early stopping test performance comparing disjoint holdout (individual stopping only) and
shared holdout (individual and joint stopping) strategies for ensembles (M = 4) across varying validation
percentages. (WRN: Wide ResNet; GCN: Graph Convolutional Network; NLL: negative log-likelihood; ECE:
expected calibration error).
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