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ABSTRACT
We propose and analyze an algorithmic framework for “bias boun-

ties” — events in which external participants are invited to propose

improvements to a trained model, akin to bug bounty events in

software and security. Our framework allows participants to submit

arbitrary subgroup improvements, which are then algorithmically

incorporated into an updatedmodel. Our algorithm has the property

that there is no tension between overall and subgroup accuracies,

nor between different subgroup accuracies, and it enjoys provable

convergence to either the Bayes optimal model or a state in which

no further improvements can be found by the participants. We pro-

vide formal analyses of our framework, experimental evaluation,

and findings from a preliminary bias bounty event.
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1 INTRODUCTION
Modern machine learning (ML) is well known for its powerful appli-

cations, and more recently, for its potential to train discriminatory

models. As organizations become more aware of these negative

consequences, many are instituting partial remedies such as respon-

sible AI teams, auditing practices, and model cards [28] and data

sheets [16] that document ML workflows.

Such practices are likely to remain insufficient for at least two

reasons. First, even an organization that diligently audits its models

on carefully curated datasets cannot anticipate all possible down-

stream use cases. A face recognition system designed and tested
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for use in well-lit, front-facing conditions may be applied by a

customer in less ideal conditions, leading to degradation in per-

formance overall and on particular subgroups. Second, we live in

an era of AI activism, in which teams of researchers, journalists,

and other external parties can independently audit models with

commercial or open source APIs, and publish their findings in both

the research community and mainstream media. In the absence of

more stringent regulation of AI and ML, this activism is one of the

strongest forces pushing for change on organizations developing

ML models and tools. It has the ability to leverage distributed teams

of researchers searching for a wide variety of kinds of problems in

deployed models and systems.

Unfortunately, the dynamic between ML developers and their

critics currently has a somewhat adversarial tone. An external audit

will often be conducted privately, and its results aired publicly, with-

out prior consultation with the organization that built the model

and system. That organization may endure criticism, and attempt

internally to fix the identified biases or problems, but typically there

is little or no direct interaction with external auditors.

Over time, the software and security communities have devel-

oped “bug bounties” in an attempt to turn similar dynamics between

system developers and their critics (or hackers) towards more inter-

active and productive ends. The hope is that by deliberately inviting

external parties to find software or hardware bugs in their systems,

and often providing monetary incentives for doing so, a healthier

and more rapidly responding ecosystem will evolve.

It is natural for the ML community to consider a similar “bias

bounty” approach to the timely discovery and repair of models

and systems with bias or other undesirable behaviors. Rather than

finding bugs in software, external parties are invited to find biases —

for instance, (demographic or other) subgroups of inputs on which

a trained model underperforms — and are rewarded for doing so.

Indeed, we are already starting to see early field experiments in

such events [6].

In this work, we propose and analyze a principled algorithmic

framework for conducting bias bounties against an existing trained

model f (x). Our framework has the following properties and fea-

tures:

• “Bias hunters” audit f by submitting pairs of models (д,h)—
a model д identifying a subset of inputs to f that f performs

poorly on, and a proposed model h which improves on this

subset. Requiring participants to identify not just a group but

an improved model ensures that improvement on the group

is in fact possible (as opposed to identifying a fundamentally

hard subgroup, such as images of occluded faces in a face

recognition task).

• The proposed groups do not need to be identified in ad-

vance, and the improving models do not need to be chosen
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from predetermined parametric classes; indeed, both groups

and improving models can be arbitrarily complex. This is

in contrast to most fair ML frameworks, in which training

is formulated as a constrained optimization problem over a

fixed parametric family of models, with fairness constraints

over fixed demographic subgroups.

• Given a proposed group and model pair, our algorithm val-

idates the proposed improvement on a holdout set, using

techniques from adaptive data analysis to circumvent the

potential for overfitting due to the potentially unlimited

complexity of the submitted pair.

• If the improvement is validated, our algorithm has a simple

mechanism for automatically incorporating the improve-

ment into an update of f in a way that reduces both the
overall error and the error on the proposed subgroup. Indeed,
our algorithm has the further property that once a subgroup

improvement has been accepted, the error on that subgroup

will never increase (much) due to subsequent subgroup in-

troductions. Thus there is no tradeoff between overall and
subgroup errors, or between different subgroups. This is again
in contrast to constrained optimization approaches, where

there is necessarily tension between fairness and accuracy.

Our algorithm achieves this through the use of a new model

class called pointer decision lists.
• Our algorithm provably andmonotonically converges quickly

to one of two possible outcomes: either we reach the Bayes

optimal model, or we reach a model that cannot be distin-

guished from the Bayes optimal, in the sense that the bias

hunters can find no further improvements. If payments are

made to the bias hunters in proportion to the scale of the

improvement, we guarantee that the total payments made

to the bias hunters can be bounded in advance.

• We can alternatively view our framework as an entirely al-

gorithmic approach to training (minimax) fair and accurate

models, by replacing the bias hunters with automated mech-

anisms for finding improving pairs. We propose and analyze

two such mechanisms.

Our contributions include the introduction of the bias bounty frame-

work; proofs of the convergence, generalization and monotonicity

properties of our algorithm; experimental results on census-derived

Folktables datasets [9]; and preliminary findings from an initial

bias bounty event held in an undergraduate class at the University

of Pennsylvania.

1.1 Limitations and Open Questions
The primary limitation of our proposed framework is that it can

only identify and correct sub-optimal performance on groups as
measured on the data distribution for which we have training data. It
does not solve either of the following related problems:

(1) Our model appears to perform well on every group only
because in gathering data, we have failed to sample represen-
tative members of that group.

(2) The model that we have cannot be improved on some group

only because we have failed to gather the features that are
most predictive on that group, and the performance would be

improvable if only we had gathered better features.

That is, our framework can be used to find and correct biases as

measured on the data distribution from which we have data, but

cannot be used to find and correct biases that come from having

gathered the wrong dataset. In both cases, one primary obstacle to

extending our framework is the need to be able to efficiently vali-

date proposed fixes. For example, because we restrict attention to a

single data distribution, given a proposed pair (д,h), we can check

on a holdout set whether h in fact has improved performance com-

pared to our model, on examples from group д. This is important

to disambiguate distributional improvements compared to subsets

of examples that amount to cherrypicking. How can we approach

this problem when proposed improvements include evaluations

on new datasets, for which we by definition do not have held out

data? Compelling solutions to this problem seem to us to be of high

interest. We remark that a bias bounty program held under our

proposed framework would at least serve to highlight where new
data collection efforts are needed, by disambiguating failures of

training from failures for the data to properly represent a popula-

tion: if a group continues to have persistently high error even in the

presence of a large population of auditors in our framework, this is

evidence that in order to obtain improved error on that group, we

need to focus on better representing them within our data.

1.2 Related Work
There are several strands of the algorithmic fairness literature that

are closely related to our work. Most popular notions of algorithmic

fairness (e.g. those that propose to equalize notions of error across

protected groups as in e.g. [1, 18, 24, 34], or those that aim to “treat

similar individuals similarly” as in e.g. [14, 20, 21, 33]) involve

tradeoffs, in that asking for “fairness” involves settling for reduced

accuracy. Several papers [5, 10] show that fairness constraints of

these types need not involve tradeoffs (or can even be accuracy

improving) on test data if the training data has been corrupted

by some bias model and is not representative of the test data. In

cases like this, fairness constraints can act as corrections to undo

the errors that have been introduced in the data. These kinds of

results leverage differences between the training and evaluation

data, and unlike our work, do not avoid tradeoffs between fairness

and accuracy in settings in which the training data is representative

of the true distribution.

A notable exception to the rule that fairness and accuracy must

involve tradeoffs is the literature on multicalibration initiated by

Hébert-Johnson et al. [15, 17, 19, 22, 26] that asks that a model’s

predictions be calibrated not just overall, but also when restricted

to a large number of protected subgroups д. Hébert-Johnson et al.

[19] and Kim, Ghorbani, and Zou [26] show that an arbitrary model

f can be postprocessed to satisfy multicalibration (and the related

notion of “multi-accuracy”) without sacrificing (much) in terms

of model accuracy. Our aim is to achieve something similar, but

for predictive error, rather than model calibration. There are two

things driving the “no tradeoff” result for multicalibration, from

which we take inspiration: 1) the fairness notion that they ask for is

satisfied by the Bayes-optimal model, and 2) they do not optimize

over a fixed model class, but rather a model class defined in terms

of the groups G that define their fairness notion. These two things

will be true for us as well.
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The notion of fairness that we ask for in this paper was studied

in an online setting (in which the data, rather than the protected

groups arrive online) by Blum and Lykouris [4] and generalized

by Rothblum and Yona [31] as “multigroup agnostic learnability.”

Noarov, Pai, and Roth [29] show how to obtain it in an online setting

as part of the same unified framework of algorithms that can obtain

multicalibrated predictions. The algorithmic results in these papers

lead to complex models — in contrast, our algorithm produces

“simple” predictors in the form of a decision list. In contrast to these

prior works, we do not view the set of groups G that we wish to

offer guarantees to as fixed up front, but instead as something that

can be discovered online, after models are deployed. Our focus is

on fast algorithms to update existing models when new groups д
on which our model is performing poorly are discovered.

Concurrently and independently of our paper, Tosh and Hsu [32]

study algorithms and sample complexity for multi-group agnostic

learnability and give an algorithm (“Prepend”) that is equivalent to

our Algorithm 1 (“ListUpdate”). Their focus is on sample complex-

ity of batch optimization, however — in contrast to our focus on

the discovery of groups on which our model is performing poorly

online (e.g. as part of a “bias bounty program”). They also are not

concerned with the details of the optimization that needs to be

solved to produce an update — we give practical algorithms based

on reductions to cost sensitive classification and empirical evalua-

tion. Tosh and Hsu [32] also contains additional results, including

algorithms producing more complex hypotheses but with improved

sample complexity (again in the setting in which the groups are

fixed up front).

The multigroup notion of fairness we employ [4, 31] aims to

perform optimally on each subgroup д, rather than equalizing the

performance across subgroups. This is similar in motivation to

minimax fairness, studied in [7, 8, 27], which aim to minimize

the error on the maximum error sub-group. Our approach avoids

tradeoffs by optimizing over a class that is dynamically expanded

as the set of groups to be protected expands.

The idea of a “bias bug bounty” program dates back at least to

a 2018 editorial of Amit Elazari Bar On [30], and Twitter ran a

version of a bounty program in 2021 to find bias issues in its image

cropping algorithm [6]. These programs are generally envisioned

to be quite different than what we propose here. On the one hand,

we are proposing to automatically audit models and award bounties

for the discovery of a narrow form of technical bias — sub-optimal

error on well defined subgroups — whereas the bounty program

run by Twitter was open ended, with human judges and written

submissions. On the other hand, the method we propose could

underly a long-running program that could automatically correct

the bias issues discovered in production systems at scale, whereas

Twitter’s bounty program was a labor intensive event that ran over

the course of a week.

2 PRELIMINARIES
We consider a supervised learning problem defined over labelled
examples (x ,y) ∈ X × Y. This can represent (for example) a binary

classification problem if Y = {0, 1}, a discrete multiclass classifica-

tion problem if Y = {1, . . . ,k}, or a regression problem if Y = R.
We write D to denote a joint probability distribution over labelled

examples: D ∈ ∆(X × Y). We will write D ∼ Dn
to denote a

dataset consisting of n labelled examples sampled i.i.d. fromD. Our

goal is to learn some model represented as a function f : X → Y

which aims to predict the label of an example from its features,

and we will evaluate the performance of our model with a loss

function ℓ : Y × Y → [0, 1], where ℓ(ŷ,y) represents the “cost”
of mistakenly labelling an example that has true label y with the

prediction f (x) = ŷ. We will be interested in the performance of

models f not just overall on the underlying distribution, but also

on particular subgroups of interest. A subgroup corresponds to an

arbitrary subset of the feature space X, which we will model using

an indicator function:

Definition 2.1 (Subgroups). A subgroup of the feature space X

will be represented as an indicator function д : X → {0, 1}. We

say that x ∈ X is in group д if д(x) = 1 and x is not in group д
otherwise. Given a group д, we write µд(D) to denote its measure

under the probability distribution D: µд(D) = PrD [д(x) = 1].We

write µд(D) to denote the corresponding empirical measure under

D, which results from viewing D as the uniform distribution over

its elements.

We can now define the loss of a model both overall and on

different subgroups:

Definition 2.2 (Model Loss). Given a model f : X → Y We

write L(D, f ) to denote the average loss of f on distribution D:

L(D, f ) = E(x,y)∼D [ℓ(f (x),y)]. We write L(D, f ,д) to denote the

loss on f conditional on membership in д:

L(D, f ,д) = E
(x,y)∼D

[ℓ(f (x),y)|д(x) = 1].

Given a dataset D, we write L(D, f ) and L(D, f ,д) to denote the

corresponding empirical losses on D, which result from viewing D
as the uniform distribution over its elements.

The best we can ever hope to do in any prediction problem (fixing

the loss function and the distribution) is to make predictions that

are as accurate as those of a Bayes optimal model:

Definition 2.3. A Bayes Optimal model f ∗ : X → Y with re-

spect to a loss function ℓ and a distribution D satisfies: f ∗(x) ∈
argminy∈Y E(x ′,y′)∼D [ℓ(y,y

′)|x ′ = x], where f ∗(x) can be defined
arbitrarily for any x that is not in the support of D.

The Bayes optimal model is pointwise optimal, and hence has

the lowest loss of any possible model, not just overall, but simul-

taneously on every subgroup. In fact, its easy to see that this is a

characterization of Bayes optimality.

Observation 2.4. Fixing a loss function ℓ and a distribution D,
f ∗ is a Bayes optimal model if and only if for every group д and every
alternative model h: L(D, f ∗,д) ≤ L(D,h,д).

The above characterization states that a model is Bayes optimal

if and only if it induces loss that is as exactly as low as that of any
possible model h, when restricted to any possible group д. It will
also be useful to refer to approximate notions of Bayes optimality,

in which the exactness is relaxed, as well as possibly the class of

comparison models H , and the class of groups G. We call this

(ϵ,G,H)-Bayes optimality to highlight the connection to (exact)

Bayes Optimality, but it is identical to what Rothblum and Yona
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[31] call a “multigroup agnostic PAC solution” with respect to G

andH . Related notions were also studied in [4, 29].

Definition 2.5. A model f : X → Y is (ϵ,C)-Bayes optimal with

respect to a collection of (group, model) pairs C if for each (д,h) ∈ C,
the performance of f onд is within ϵ of the performance ofh onд. In
other words, for every (д,h) ∈ C: L(D, f ,д) ≤ L(D,h,д) + ϵ

µд (D)
.

When C is a product set C = G × H , then we call f “(ϵ,G,H)-
Bayes Optimal" and the condition is equivalent to requiring that

for every д ∈ G , f has performance on д that is within ϵ of the best
model h ∈ H on д. When G andH represent the set of all groups

and models respectively, we call f ϵ-Bayes optimal.

Remark 2.6. We have chosen to define approximate Bayes op-
timality by letting the approximation term ϵ scale proportionately
to the inverse probability of the group д, similar to how notions of
multigroup fairness are defined in [17, 22, 24]. An alternative (slightly
weaker) option would be to require error that is uniformly bounded
by ϵ for all groups, but to only make promises for groups д that have
probability µд larger than some threshold, as is done in [19]. Some
relaxation of this sort is necessary to provide guarantees on an un-
known distribution based only on a finite sample from it, since we
will necessarily have less statistical certainty about smaller subsets of
our data.

Note that (ϵ,G,H)-Bayes optimality is identical to Bayes opti-

mality when ϵ = 0 and when G andH represent the classes of all

possible groups and models respectively, and that it becomes an

increasingly stronger condition as G andH grow in expressivity.

3 CERTIFICATES OF SUB-OPTIMALITY AND
UPDATE ALGORITHMS

Recall that “bias hunters" submit a group that our existing model

performs poorly on and an improvement on that group. We need

to formulate what our requirements for accepting their proposed

improvement would be, and develop a method to incorporate these

fixes into our model without retraining it. Formally, suppose we

have an existing model f , and we find that it is performing sub-

optimally on some group д. By Observation 2.4, it must be that f is

not Bayes optimal, and this will be witnessed by some model h such

that: L(D, f ,д) > L(D,h,д). We call such a pair (д,h) a certificate
of sub-optimality. We can define a quantitative version of these

certificates:

Definition 3.1. A group indicator function д : X → {0, 1} to-

gether with a model h : X → Y form a (µ,∆)-certificate of sub-
optimality for a model f under distribution D if:

(1) Group д has probability mass at least µ underD: µд(D) ≥ µ,
and

(2) h improves on the performance of f on group д by at least

∆: L(D, f ,д) ≥ L(D,h,д) + ∆

The core of our algorithmic updating framework will rely on a

close quantitative connection between certificates of sub-optimality

and approximate Bayes optimality. The following theorem can be

viewed as a quantitative version of Observation 2.4. Its proof can

be found in the appendix.

Theorem 3.2. Fix any ϵ > 0, and any collection of (group,model)
pairs C. There exists a (µ,∆)-certificate of sub-optimality (д,h) ∈ C
for f if and only if f is not (ϵ,C)-Bayes optimal for ϵ < µ∆.

Theorem 3.2 tells us that if we are looking for evidence that

a model f fails to be Bayes Optimal (or more generally, fails to

be (ϵ,C)-Bayes optimal), then without loss of generality, we can

restrict our attention to certificates of sub-optimality with large

parameters — these exist if and only if f is significantly far from

Bayes optimal. But it does not tell us what to do if we find such a

certificate. Can we use a certificate of sub-optimality (д,h) for f to

easily update f to a new model that both corrects the suboptimality

witnessed by (д,h) and makes measurable progress towards Bayes

Optimality? It turns out that the answer is yes, and we can do this

with an exceedingly simple update algorithm, which we analyze

next. The update algorithm (Algorithm 1) takes as input a model

f together with a certificate of sub-optimality for f , (д,h), and
outputs an improved model based on the following intuitive update

rule: If an example x is in group д (i.e. if д(x) = 1), then we will

classify x using h; otherwise we will classify x using f .

Input: A model ft , and a certificate of suboptimality (дt+1, ht+1)
Define ft+1 as follows:

ft+1(x ) =

{
ft (x ) if дt+1(x ) = 0

ht+1(x ) if дt+1(x ) = 1

Output: ft+1
Algorithm 1: ListUpdate(ft , (дt+1,ht+1)): An Update Algo-

rithm Constructing a Decision List

Theorem 3.3. Algorithm 1 (ListUpdate) has the following proper-
ties. If (дt+1,ht+1) form a (µ,∆)-certificate of sub-optimality for ft ,
and ft+1 = ListUpdate(ft , (дt+1,ht+1)) then:

(1) The new model matches the performance of ht+1 on group
дt+1: L(D, ft+1,дt+1) = L(D,ht+1,дt+1), and

(2) The overall performance of the model is improved by at least
µ · ∆: L(D, ft+1) ≤ L(D, ft ) − µ · ∆.

The proof can be found in the Appendix. We can use Algorithm

1 as an iterative update algorithm: If we have a model f0, and then

discover a certificate of sub-optimality (д1,h1) for f0, we can update
our model to a newmodel f1. If we then find a new certificate of sub-

optimality (д2,h2), we can once again use Algorithm 1 to update

our model to a new model, f2, and so on. The result is that at time

t , we have a model ft in the form of a decision list in which the

internal nodes branch on the group indicator functions дi and the

leaves invoke the models hi or the initial model f0. The fact that
each update makes progress towards Bayes Optimality (in fact,

optimal progress, given Theorem 3.2) means that this updating

process cannot go on for too long:

Theorem 3.4. Fix any ϵ > 0. For any initial model f0 with loss
L(D, f0) = ℓ0 and any sequence of models f1, . . . , fT , such that
fi = ListUpdate(fi−1, (дi ,hi )) and each pair (дi ,hi ) forms a (µ,∆)-
certificate of suboptimality for fi−1 for some µ,∆ such that µ · ∆ ≥ ϵ ,
the length of the update sequence must be at most T ≤ ℓ0

ϵ ≤
1

ϵ .
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What can we do with such an update algorithm? Given a model

ft , we can search for certificates of sub-optimality, and if we find

them, we can make quantitative progress towards improving our

model. We can then repeat the process. The guarantee of Theorem

3.4 is that this process of searching and updating cannot go on

for very many rounds T before we arrive at a model fT that our
search process is unable to demonstrate is not Bayes Optimal. How
interesting this is depends on what our search process is.

Suppose, for example, that we have an optimization algorithm

that for some class of (group,model) pairs C can find a certificate

of sub-optimality (д,h) ∈ C whenever one exists. Paired with our

update algorithm, we obtain an algorithm which quickly converges

to an (ϵ,C)-Bayes Optimal model. We give such an algorithm in

Appendix C.1.

Suppose alternately that we open the search for certificates of

sub-optimality to a large and motivated population: for example,

to machine learning engineers, regulators and the general public,

incentivized by possibly large monetary rewards. In this case, the

guarantee of Theorem 3.4 is that the process of iteratively opening

our models up to scrutiny and updating whenever certificates of

suboptimality are found cannot go on for too many rounds: at

convergence, it must be either that our deployed model is ϵ-Bayes
optimal, or that if not, at least nobody can find any evidence to

contradict this hypothesis. Since in general it is not possible to

falsify Bayes optimality given only a polynomial amount of data

and computation, this is in a strong sense the best we can hope

for. We give a procedure for checking large numbers of arbitrarily

complex submitted proposals for certificates of sub-optimality (e.g.

that arrive as part of a bias bounty program) in Section 4.1. There

are two remaining obstacles, which we address in the next sections:

(1) Our analysis so far is predicated on our update algorithm

being given (∆, µ) certificates of sub-optimality (д,h). But µ and ∆
are defined with respect to the distributionD, and we will not have

direct access to D — we will only have samples drawn from D.

So how can we find certificates of sub-optimality and check their

parameters?

(2) Theorem 3.3 gives us a guarantee that whenever we are given

a certificate of sub-optimality (дt+1,ht+1), our new model ft+1
makes improvements both with respect to its error on дt+1, and
with respect to overall error. But it does not promise that the update

does not increase error for some other previously identified group

дi for i ≤ t . This would be particularly undesirable in a “bias bounty”
application, and would represent the kind of tradeoff that our frame-

work aims to circumvent. However, we show in Section 4.1.1 that

(up to small additive terms that come from statistical estimation

error), our updates can be made to be groupwise monotonically

error improving.

4 OBTAINING CERTIFICATES OF
SUBOPTIMALITY

In this section we show how to find and verify proposed certificates

of sub-optimality (д,h) given only a finite sample of data D ∼ Dn
.

We consider two important cases: In Section 4.1, we consider the

“bias bounty” application in which the discovery of certificates of

sub-optimality is crowd-sourced (aided perhaps with API access to

the model ft and a training dataset). In this case, we face two main

difficulties: (1) The submitted certificates (д,h) might be arbitrary

(and in particular, not guaranteed to come from a class of bounded

complexity or expressivity and (2) We expect to receive a very

large number of submitted certificates, all of which need to be

checked. The first of these difficulties means that we cannot appeal

to uniform convergence arguments to obtain rigorous bounds on the

sub-optimality parameters µ and ∆. The second of these difficulties

means that we cannot naively rely on estimates from a (single, re-

used) holdout set to obtain rigorous bounds on µ and ∆. In Section

4.2 we consider the algorithmic application in which the discovery

of certificates is treated as an optimization problem over C, for

particular classes C. In this case we give two algorithms for finding

(ϵ,C)-Bayes optimal models via efficient reductions to cost sensitive

classification problems over an appropriately defined class, solved

over a polynomially sized dataset sampled from the underlying

distribution, which we discuss in detail in Appendix C.1.

4.1 Unrestricted Certificates and Bias Bounties
In this section we develop a procedure to re-use a holdout set to

check the validity of a very large number of proposed certificates of

sub-optimality (дi ,hi ) with rigorous guarantees. Here we make no

assumptions at all about the structure or complexity of either the

groups дi or models hi , or the process by which they are generated.

This allows us the flexibility to model e.g. a public bias bounty, in

which a large collection of human competitors use arbitrary meth-

ods to find and propose certificates of sub-optimality, potentially

adaptively as a function of all of the information that they have

available. We use simple description length techniques developed

in the adaptive data analysis literature [3, 11]. Somewhat more so-

phisticated techniques which employ noise addition [2, 12, 13, 23]

could also be directly used here to improve the sample complexity

bound in Theorems 4.1 and 4.2 by a

√
1/ϵ factor, but we elide this

for clarity of exposition. First we give a simple algorithm (Algo-

rithm 2) that takes as input a stream of arbitrary adaptively chosen

triples (fi ,дi ,hi ), and checks if each (дi ,hi ) form a certificate of

sub-optimality for fi . We then use this as a sub-routine in Algo-

rithm 3 which maintains a sequence of models ft produced by

ListUpdate (Algorithm 1) and takes as input a sequence of proposed

certificates (дi ,hi ) which claim to be certificates of sub-optimality

for the current model ft : it updates the current model whenever

such a proposed certificate is verified.

Input: Holdout dataset D , Target ϵ , and a stream of submissions

(f1, д1, h1), (f2, д2, h2), . . . of length at most U
NumberAccepted← 0

while NumberAccepted ≤ 2/ϵ and i ≤ U do
Consider the next submission (fi , дi , hi )
Compute µi ← µD (дi ), ∆i ← L(D, fi , дi ) − L(D, hi , дi )
if µi · ∆i < 3ϵ

4
then

Output: πi = ⊥ (Submission Rejected)

else
Output: πi = ⊤ (Submission Accepted)

NumberAccepted← NumberAccepted+1.

Algorithm 2: CertificateChecker(ϵ,D,U , (f1,д1,h1), . . .):
An algorithm that takes as input a stream of submis-

sions (fi ,дi ,hi ) and checks if (дi ,hi ) is a certificate of sub-
optimality for fi with sufficiently high parameter values.
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Theorem 4.1. LetD ∈ ∆(X×Y) be any distribution over labelled
examples, and let D ∼ Dn be a holdout dataset consisting of n i.i.d.
samples fromD. Suppose:n ≥ 65 ln(2U /δ ′)

ϵ 3 . Let π be the output stream
generated by CertificateChecker(ϵ,D, (f1,д1,h1), . . .) (Algorithm 2).
Then for any possibly adaptive process generating a stream of up toU
submissions (fi ,дi ,hi ) as a function of the output stream π ∈ {⊥,⊤}∗,
with probability 1 − δ over the randomness of D:

(1) For every round i such that πi = ⊥ (the submission is rejected),
we have that (дi ,hi ) is not a (µ,∆) certificate of sub-optimality
for fi for any (µ,∆) with µ · ∆ ≥ ϵ . And:

(2) For every round i such that πi = ⊤ (the submission is accepted),
we have that (дi ,hi ) is a (µ,∆)-certificate of sub-optimality
for fi for µ · ∆ ≥ ϵ/2.

The proof can be found in the Appendix.

We conclude this section by showing that we can use Certifi-

cateChecker (Algorithm 2) to run an algorithm FalsifyAndUpdate

(Algorithm 3) which persistently maintains a current model, and

is able to correctly accept and reject proposed certificates of sub-

optimality.

Input: An initial model f0, a holdout dataset D , Target ϵ , and a

stream of submissions (д1, h1), (д2, h2), . . . of length at

most U
Let t ← 0

Initialize an instance of CertificateChecker(ϵ, D, U , . . .)

while CertificateChecker has not halted do
Consider the next submission (дi , hi )
Feed the triple (ft , дi , hi ) to CertificateChecker and receive

πi ∈ {⊥, ⊤}
if πi = ⊥ then

Output: Submission (дi , hi ) is rejected.
else

Let t ← t + 1 and let ft = ListUpdate(ft−1, (дi , hi ))
Output: Submission (дi , hi ) is accepted. The new model is

ft .

Algorithm 3: FalsifyAndUpdate(ϵ,D, (f1,д1,h1), . . .): An al-

gorithm that maintains a sequence of models f1, . . . , fT
and accepts submissions of proposed certificates of sub-

optimality (дi ,hi ) that attempt to falsify the assertion that

the current model ft is not ϵ-Bayes optimal. It either accepts

or rejects each submission: if it accepts a submission then it

also updates its current model ft and outputs a new model

ft+1.

Theorem 4.2. Fix any ϵ,δ > 0. Let D ∈ ∆(X × Y) be any distri-
bution over labelled examples, and let D ∼ Dn be a holdout dataset
consisting of n i.i.d. samples fromD. Suppose: n ≥ 65 ln(2U /δ ′)

ϵ 3 . Then
for any (possibly adaptive) process generating a sequence of at most
U submissions {(дi ,hi )}Ui=1, with probability at least 1 − δ , we have
that FalsifyAndUpdate(ϵ,D, · · · ) satisfies:

(1) If (дi ,hi ) is rejected, then (дi ,hi ) is not a (µ,∆)-certificate of
sub-optimality for ft , where ft is the current model at the time
of submission i , for any µ,∆ such that µ · ∆ ≥ ϵ .

(2) If (дi ,hi ) is accepted, then (дi ,hi ) is a (µ,∆)-certificate of sub-
optimality for ft , where ft is the current model at the time of
submission i , for some µ,∆ such that µ · ∆ ≥ ϵ

2
. Moreover, the

new model ft+1 output satisfies L(D, ft+1,дi ) = L(D,hi ,дi )
and L(D, ft+1) ≤ L(D, ft ) −

ϵ
2
.

(3) FalsifyAndUpdate does not halt before receiving all U submis-
sions.

The proof can be found in the Appendix.

Remark 4.3. Note that FalsifyAndUpdate has sample complexity
scaling only logarithmically with the total number of submissions
U that we can accept, and no dependence on the complexity of the
submissions. This means that a relatively small holdout dataset D is
sufficient to run an extremely long-running bias bounty program (i.e.
handling a number of submissions that is exponentially large in the
size of the holdout set) that automatically updates the current model
whenever submissions are accepted and bounties are awarded.

4.1.1 Guaranteeing Groupwise Monotone Improvements. Because
the groups дi can have arbitrary intersections, Algorithm 3 does

not guarantee that ft+1 has error that is lower than that of ft on
all groups that were previously identified. Specifically, let G(ft )
denote the set of at most 2/ϵ groups дi that make up the internal

nodes of decision list ft — i.e. the set of groups corresponding to

submissions (дi ,hi ) that were previously accepted and incorporated
intomodel ft . It might be that for someдj ∈ G(ft ),L(D, ft+1,дj ) ≫
L(D, ft ,дj ). This kind of non-monotonic behavior is extremely

undesirable in the context of a bias bug bounty program, because it

means that previous instances of sub-optimal behavior on a group

дi that were explicitly identified and corrected for can be undone

by future updates.

There is a simple fix, however: whenever a new proposed certifi-

cate of sub-optimality (дi ,hi ) for a model ft is accepted and a new

model ft+1 is generated, add the proposed certificates (дj , fℓ) to
the front of the stream of submissions, for each pair of дj ∈ G(ft )
and ℓ ≤ t . Updates resulting from these submissions (which we

call repairs) might themselves generate new non-monotonicities,

but repeating this process recursively is sufficient to guarantee ap-

proximate groupwise monotonicity — and because we know from

Theorem 3.4 that the total number of updates T cannot exceed 2/ϵ ,
this process never adds more than

8

ϵ 3 submissions to the existing

stream, and thus affects the sample complexity bound only by low

order terms. The procedure, which we call MonotoneFalsifyAndUp-

date, is described as Algorithm 4. Here we state its guarantee:

Theorem 4.4. Fix any ϵ,δ > 0. LetD ∈ ∆(X×Y) be any distribu-
tion over labelled examples, and let D ∼ Dn be a holdout dataset con-

sisting of n i.i.d. samples from D. Suppose: n ≥
65 ln

(
2(U + 8

ϵ3
)

δ ′

)
ϵ 3 .Then

for any (possibly adaptive) process generating a sequence of at most
U submissions {(дi ,hi )}Ui=1, with probability at least 1 − δ , we have
that MonotoneFalsifyAndUpdate(ϵ,D, · · · ) satisfies all of the prop-
erties proven in Theorem 4.2 for FalsifyAndUpdate, and addition-
ally satisfies the following error monotonicity property. Consider
any model ft that is output, and any group дj ∈ G(ft ). Then:
L(D, ft ,дj ) ≤ minℓ<t L(D, fℓ ,дj ) +

ϵ
µD (дj )

.

The proof can be found in the appendix.

Algorithm 4 introduces updates of the form (дj , fℓ), where fℓ is
a decision list previously generated by ListUpdate. We might worry

that these updates could produce a very large model, since on such
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Input: A model f0, a holdout dataset D , Target ϵ , and a stream of

submissions (д1, h1), (д2, h2), . . . of length at most U
Let t ← 0 and Initialize an instance of

CertificateChecker(ϵ, D, U + 8

ϵ 3
, . . .)

while CertificateChecker has not halted do
Consider the next submission (дi , hi )
Feed the triple (ft , дi , hi ) to CertificateChecker and receive

πi ∈ {⊥, ⊤}
if πi = ⊥ then

Output: Submission (дi , hi ) is rejected.
else

MonotoneProgress← FALSE

(дU , hU ) ← (дi , hi )
t ′ ← t and f ′t ′ ← ft
while MonotoneProgress = FALSE and CertificateChecker
has not halted do

Let t ′ ← t ′ + 1 and let

f ′t ′ = ListUpdate(f ′t ′−1, (дU , hU ))
MonotoneProgress← TRUE

for each pair ℓ < t , дj ∈ G(ft ) do
Feed the triple (ft , дj , fℓ ) to CertificateChecker

and receive πU ∈ {⊥, ⊤}
if πU = ⊤ (Submission accepted) then

MonotoneProgress← FALSE

(дU , hU ) ← (дj , fℓ )
Let t ← t + 1 and let ft = f ′t ′
Output: Submission (дi , hi ) is accepted. The new model is

ft .

Algorithm4:MonotoneFalsifyAndUpdate(ϵ,D, (f1,д1,h1), . . .):
A version of FalsifyAndUpdate that guarantees approximate

group-wise error monotonicity.

Figure 1: A pointer decision list. The shaded nodes are
monotonicity repairs caused by update дt . In this example,
there were two monotonicity repairs, corresponding to cer-
tificates of sub-optimality (дi , ft−1) and (дj , fi+1). Rather than
replicating the models ft−1 and fi+1, the updates are imple-
mented using pointers to the prefix of the decision list rep-
resenting models ft−1 and fi−1. Theorem 4.4 guarantees that
the entire length of the list (including nodes that implement
back-pointers) cannot grow beyond 2/ϵ .

an update, the new model fℓ at the first leaf of the new decision list

entirely replicates some previous decision list fℓ . However, note
that for any such update, fℓ is a prefix of ft . Therefore, rather than
replicating fℓ , we can introduce a backpointer to level ℓ of our

existing decision list, without increasing our model’s size. We call

such a model a pointer decision list, as shown in Figure 1. We call

the pointer nodes that are introduced to repair non-monotonicities

introduced by previous updates repair nodes of our pointer decision
list. These are the nodes that are shaded in our illustration in Figure

1.

4.2 Certificates of Bounded Complexity and
Algorithmic Optimization

We can also use our ListUpdate method as part of an algorithm

for explicitly computing (ϵ,C)-Bayes optimal models from data

sampled i.i.d. from the underlying distribution D. First, we must

show that if we find certificates of sub-optimality (д,h) ∈ C on our

dataset, that we can be assured that they are certificates of sub-

optimality on the underlying distribution. Next, wemust describe an

algorithmic method for finding (µ,∆) certificates of sub-optimality

that maximize µ · ∆. We provide such guarantees and algorithmic

methods in Appendix C.1.

5 EXPERIMENTS
We next provide an experimental illustration and evaluation of

our main algorithm MonotoneFalsifyAndUpdate (Algorithm 4), as

well as our optimization approach (Algorithm 5) paired with our

reduction to ternary cost sensitive classification. We report findings

on a number of different datasets and classification tasks from the

recently published Folktables package [9], which provides exten-

sive U.S. census-derived Public Use Microdata Samples (PUMS).

These granular and large datasets are well-suited to experimental

evaluations of algorithmic fairness, as they include a number of

demographic or protected features including race categories, age,

disability status, and binary sex categories.We refer to [9] for details

of the datasets examined below.

We implemented Algorithm 4 and divided each dataset examined

into 80% for training (д,h) pairs as proposed certificates of sub-

optimality for the algorithm’s current model, and 20% for use by

the certificate checker to validate improvements. In order to clearly

illustrate the gradual subgroup and overall error improvements,

we train a deliberately simple initial model (a decision stump).

In the first set of experiments, the sequence of subgroups is 11

different demographic groups given by features common to all of

the Folktables datasets. We consider four different datasets (three

pictured in Figure 2, a fourth in the appendix) corresponding to four

different states and prediction tasks, all for the year 2018 (the most

recent available). Table 2 in the Appendix and its caption detail

the states and tasks, the total dataset sizes, and the definitions and

counts of each demographic subgroup considered. Figure 5 in the

Appendix shows a sample fragment and the full feature set for one

of the prediction tasks.

In our first experiments, these 11 subgroups д were introduced

to Algorithm 4 in some order, and for each a depth 10 decision tree

h was trained on just the training data falling into that subgroup.

These (д,h) pairs are then given to the certificate checker, and if h
improves the holdout set error for д, the improvement is accepted

and incorporated into the model, and any needed monotonicity

repairs of previously introduced groups are made. Otherwise the

pair is rejected and we proceed to the next subgroup.

Each of the plots in Figure 2 shows the results of one experiment

of this type on test data. Since the subgroups are introduced in

some sequential order (given in the legends), we plot the subgroup

errors using dashed lines up until the round at which the group

is introduced, and solid lines thereafter. Subgroups whose trained

decision tree was rejected by the certificate checker are not shown
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at all. In Figure 3, a depiction of the decision list generated by the

employment task shown in the leftmost plot in Figure 2 is given.

As promised by Theorem 4.4, the overall and subgroup test er-

rors are all monotonically non-increasing after the introduction of

the subgroup, and generally enjoy significant improvement as the

algorithm proceeds. Note that even prior to the introduction of a

subgroup (dashed lines), the test errors are generally non-increasing.

Although this is not guaranteed by the theory, it is not necessarily

surprising, since before groups are introduced they often start from

a high baseline error. However, this is not always the case — for ex-

ample, on the Oregon income prediction task (middle panel) the test

error for the Native subgroup (light green) increases significantly

with the introduction of the subgroups for young and middle-aged

at rounds 3 and 4 before it has been introduced.

While not visible in Figure 2, we note that the order the demo-

graphic groups are introduced can have qualitative effects on the

behavior of the algorithm, including which subgroup improvements

are accepted, as shown in the first two rows of Figure 6 in the Ap-

pendix. However, regardless of the ordering, the final errors across

all groups end up comparable, with the differences generally being

in the second or third decimal place, as shown by Table 3 in the

Appendix.

Examining the actual pointer decision list produced in one of

these experiments is also enlightening — see Figure 3. We note a

couple of things. First, observing the repairs for the group “Young”,

we see that via the sequence of repairs, any “young” individual will

always be classified by the model h2 introduced at round 2 together
with the group “young". This is in contrast to the other groups,

whose members are split across a number of different models by

the pointer decision list. This indicates that being in the group

“young” is more salient than being in any of the racial or gender

groups in this task from the point of view of accurate classification.

Second, we note that unlike for the group “young”, repairs for other

groups do not necessarily point back to the round at which they

were introduced. For example, the right-most repairs for “Native

American”, “Black or AA”, and “Some Other Race” point back to

round 6, at which the group “Old” was introduced. This indicates

that the pointer decision list at round 6 is more accurate for each

of these groups then the decision trees h4 h3 and h1 that were

introduced along with these groups, despite the fact that these deci-

sion trees were trained only on examples from their corresponding

groups.

The experiments described so far apply our framework and al-

gorithm to a setting in which the groups considered are simple

demographic groups, introduced in a fixed ordering. We finish with

a brief experimental investigation of the approach described in

Section 4.2and Appendix C.1, in which the discovery of updates is

posed as an optimization problem. Specifically, we implemented

the ternary CSC approach of Section C.1.1. In our implementation,

following the approach taken in [1, 25], we learn a ternary classifier

by first learning two separate depth 7 decision tree regression func-

tions for the costs of predicting 0 and 1, while the cost of predicting

"?" is always 0 as per Section C.1.1. Our final ternary classifier

chooses the prediction that minimizes the costs predicted by the

regression functions.

We applied the CSC approach to the ACS income task using

Folktables datasets for thirteen different states in the year 2016.

One interesting empirical phenomenon is the speed with which

this approach converges, generally stopping after two to five rounds

and not finding any further subgroup improvements to the current

model. In Figure 4, we compare these subgroup test errors to those

obtained by the simple sequential introduction of those subgroups

discussed earlier. In the left panel, the x axis represents each of the

11 subgroups, and the color coding of the points represents which

of the 13 state datasets is considered. The y values of the points

measure the signed difference of the test errors of the CSC approach

and the simple sequential approach (using a fixed ordering), with

positive values being a win for sequential and negative values a win

for CSC. The right panel visualizes the same data, but now grouped

by states on the x axis and with color coding for the groups.

The overarching message of the figure is that though CSC does

not directly consider these subgroups, and instead optimizes for

the complex subgroup giving the best weighted improvement to

the overall error, it is nevertheless quite competitive on the simple

subgroups, with the mass of points above and belowy = 0 being ap-

proximately the same. Combined with the very rapid convergence

of CSC, we can thus view it as an approach that seeks rich subgroup

optimization while providing strong basic demographic group per-

formance “for free”. Further, combining the two approaches (e.g.

running the CSC approach then sequentially introducing the basic

groups) should only yield further improvement.

6 A PRELIMINARY DEPLOYMENT
We conclude by informally reporting findings from a preliminary

deployment of our bias bounty framework to a group of 83 stu-

dents divided into 36 teams in an undergraduate class on ethical

algorithm design at the University of Pennsylvania in the Spring

of 2022. In order to expedite this deployment in a limited time

window, we made a few departures from the formal framework.

First, we did not implement the adaptive data analysis mechanisms

to prevent overfitting to the holdout set, but instead reported er-

rors on the holdout set regardless of whether a proposed update

is accepted or not. Second, in order to avoid the systems overhead

of implementing a full client-server architecture and its potential

security mechanisms, each team was instead given a self-contained

notebook implementing both tools for finding (д,h) pairs and the

functionality for accepting updates and incorporating them into

a revised decision list. Each notebook contained access to one of

two Folktables datasets and classification tasks, which were divided

roughly evenly between the teams. Students were told there were

absolutely no constraints on the approaches they could take to

finding improving д,h pairs — they could do so by human intuition,

manual exploratory data analysis, or they could entirely automate

the process using ML or other techniques. They were generally

encouraged to find as many accepted updates as they could during

the duration of the deployment.

Despite the very preliminary nature of this exercise, a number

of informal and high-level observations can nevertheless be made.

First, despite wide variations in the quantitative backgrounds of

the students (the only prerequisite to the course being exposure

to introductory programming), virtually all of the most successful

teams adopted hybrid approaches that involved some combination

of manual or data-driven discovery of groups along with more

automated means of finding д, followed by training of h on д.
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Figure 2: Results of an implementation of algorithm Algorithm 4 on a number of different tasks and U.S. state datasets from
the Folktables package. Left: employment task for NY, middle: income task for OR, and right: coverage task for TX. See text
for discussion.

Figure 3: The pointer decision list generated by an implementation of algorithm MonotoneFalsifyAndUpdate (Algorithm 4)
on an ACS employment task for New York State. Repair nodes are in gray.

Figure 4: Comparison of basic demographic subgroup test errors for sequential and CSC approaches. See text for details.

For instance, many groups automatically scanned through the

feature space by column, or combinations of a small number of

columns, to identify which values for each feature the current model

performed poorly on, and then trained models on these subsets

of the data. Note this has an advantage of interpretability over

the groups generated by the algorithmic approaches developed in

Section 4.2, as the groups are always explicit functions of categorical

values over a small number of features (e.g. “Native American

Women" or “Young Men"). However, this method is also restricted

to tabular data that has a nicely structured feature space: if instead

students were tasked with bias hunting over a collection of images,

given only the input pixel matrix, such a strategy would not be

sufficient.

Another notable feature of the exercise is that the purely algo-

rithmic approaches appeared insufficient: groups who employed

a combination of manual data analytics and algorithmic methods

were able to bring errors down better than groups who employed

purely algorithmic approaches similar to those in Section 4.2. This

emphasizes the fact that there is really an advantage to doing a true

deployment of such a system within a community, as opposed to

attempting to automatically identify all issues.
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Round Group Description

Group

Error Pre

Update

Group

Error Post

Update

Group

Error Im-

provement

Group

Weight

Overall

Model

Error

0 1.0000 0.2796

1 male sex (M) 0.2866 0.1734 0.1133 0.5238 0.2203

2 female sex (M) 0.2719 0.1658 0.1061 0.4762 0.1698

3 ages 17 to 24 and non-white (M) 0.0447 0.0414 0.0032 0.0526 0.1696

4 over the age of 30 working without pay in a family business (A) 0.2258 0.1452 0.0806 0.0021 0.1694

5 self-employed in own not incorporated business, professional practice, or farm (A) 0.2255 0.2205 0.0050 0.0884 0.1690

6 over the age of 62 (retired) (M) 0.2322 0.2291 0.0031 0.1193 0.1686

7 First-line supervisors of office and administrative support workers (A) 0.3073 0.2661 0.0413 0.0074 0.1683

8 real estate brokers and sales agents (A) 0.3154 0.2905 0.0249 0.0082 0.1681

9 first-line supervisors of retail sales workers (A) 0.2583 0.2494 0.0088 0.0154 0.1680

10 office clerks, general (A) 0.2135 0.1842 0.0292 0.0117 0.1676

11 paint, coating, and adhesive manufacturing (A) 0.1713 0.1657 0.0055 0.0185 0.1675

12 those born in California, Mexico, or Southeast Asia generally working as medical technicians (M) 0.2126 0.2032 0.0094 0.0255 0.1671

13 accountants/Auditors who work 40 hour work weeks (A) 0.2883 0.2793 0.0090 0.0076 0.1671

14 female sex secretaries and administrative assistants, except legal, medical, and executive (A) 0.2586 0.2533 0.0053 0.0129 0.1670

15 machine learning classifier over errors on current model (A) 0.5600 0.3200 0.2400 0.0009 0.1668

Table 1: Details of the efforts of one particular team, see text
for discussion.

Some detail on the efforts of one of the most successful teams is

provided in Table 1, where for each successive (д,h) pair accepted,
we show an English description of the group, and indication of

whether it was discovered by (A)utomated or (M)anual techniques,

as well as the pre- and post-update group errors, the group weight,

and the overall model error after each update. A number of obser-

vations are in order. First, in general the earlier groups discovered

are simpler and often manually discovered, whereas the later ones

tend to be more complex and automated. Indeed, the final group

accepted is not even defined by features of the dataset at all, but

rather is trained on the errors of the overall model. Second, echoing

the increasing complexity and specificity of successive groups, we

see that there are generally diminishing marginal returns in both

the group weights and the reduction of overall model error. We

might expect both increasing group complexity and diminishing re-

turns to be general features of bias bounty events conducted under

our particular algorithmic framework.
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A DESIDERATA FOR A BIAS BOUNTY PROGRAM
Here we lay out a number of desiderata for a bias bounty program that would be run continuously and at scale, and how our method

addresses these needs.

(1) The program should be able to accept a very large number of submissions on an ongoing basis. As a result, there should be a category

of bounties for which the submissions should be able to be evaluated automatically. Our method suggests the following category:

submissions that identify a group of non-negligible size such on which our existing model has performance that is worse than optimal

by some non-negligible amount.

(2) Since the program allows open participation and judges submissions automatically, it should be prepared for adversarial submissions,

and be able to distinguish between genuine problems discovered on the underlying population or distribution, from cherrypicked

examples designed to overfit the competition dataset. Our framework suggests a natural solution to this problem: bounty hunters

submit a model describing a group д on which performance is sub-optimal, and a model h which demonstrates the sub-optimality of

our existing model on д. Since д and h are themselves models, they can be evaluated on a holdout set to prevent overfitting, and we

can use techniques from adaptive data analysis to safely re-use the same holdout set across many submissions [11–13].

(3) For bounties it awards automatically, it should be able to correct the problem identified automatically. Our framework naturally does

this, given that bounty hunters submit pairs (д,h), which are the objects we need to correct our model.

(4) The process should be convergent in the sense that there should be no way to produce a sequence of submissions that guarantees the

submitter an unlimited amount of money. Said another way, if we award bounties for identifying legitimate problems that we then go

on to “fix”, our fixes should actually make progress in some quantifiable way. The convergence analysis of our framework establishes

this.

(5) The model that results from the automatic patches resulting from the submitted bounties should be “simple” in the sense that the

patching operation should itself be computationally easy (since it may need to be repeated many times), and evaluating the final

model should also be computationally easy. The “updates” in our framework are elementary, and produces a simple object (a decision

list composed of the models submitted) that is easy to evaluate.

(6) Awarding a bounty (and correcting the corresponding problem) should not decrease the performance for any other group: fixing one

problem should not introduce others. The monotone improvement property of our method satisfies this.

(7) We should impose as few burdens on the “bounty hunters” as possible. Here, it might seem that our framework falls short because it

places two kinds of burdens on “bounty hunters”: first, it requires that they submit models д that identify the group on which the

current model performs poorly, rather than just identifying subsets of examples on which the model performs poorly. Second, it

requires that they submit models h that demonstrate improvements on these groups — and perhaps the burden of improving on a

group д should be left to the organization deploying the model in the first place! But we note that these requirements are solving real

problems that would otherwise arise:

(a) As noted above, if bounty hunters simply submitted examples on which the current model performed poorly, rather than a model д
identifying such examples, then we would be unable to distinguish cherrypicked examples from real distributional problems.

(b) If we did not require that bounty hunters submit a model h that demonstrates improved performance on the group д they submitted,

then we would be subject to the following difficulty: it might be, for example, that the group д that the bounty hunter identifies

(correctly) as having high error corresponds to a group like “blurry images” on which improved performance is impossible. Problems

of this sort cannot be fixed, and do not correspond to deviations from Bayes optimality. Requiring bounty hunters to submit a model

h that demonstrates improved performance disambiguates “blurry images” problems from real deviations from Bayes optimality.

Of course, in a real system, we should strive to reduce the burden on the bounty hunter as much as possible. So, for example, we might

provide an interface that allows the bounty hunter to identify a collection of examples on which the current model performs poorly,

and then attempts to automatically train a model д to capture examples like those identified by the bounty hunter. Similarly, given a

group д, we could provide an interface that automatically attempts to use standard methods to train a good model h on examples

from д. Interfaces like this could make the bounty program accessible to a wider audience, without requiring any machine learning

expertise.

B PROOFS FROM SECTION 3
Theorem B.1. Fix any ϵ > 0, and any collection of (group,model) pairs C. There exists a (µ,∆)-certificate of sub-optimality (д,h) ∈ C for f if

and only if f is not (ϵ,C)-Bayes optimal for ϵ < µ∆.

Proof. We need to prove two directions. First, we will assume that f is (ϵ,C)-Bayes optimal, and show that in this case there do not exist

any pairs (д,h) ∈ C such that (д,h) form a (µ,∆)-certificate of sub-optimality with µ · ∆ > ϵ . Fix a pair (д,h) ∈ C. Without loss of generality,

we can take ∆ = L(D, f ,д) − L(D,h,д) (and if ∆ ≤ 0 we are done, so we can also assume that ∆ > 0). Since f is (ϵ,C)-Bayes optimal, by

definition we have that:

∆ = L(D, f ,д) − L(D,h,д) ≤
ϵ

µд(D)

Solving, we get that ∆ · µд ≤ ϵ as desired.
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Next, we prove the other direction: We assume that there exists a pair (д,h) ∈ C that form an (µ,∆)-certificate of sub-optimality, and

show that f is not (ϵ,C)-Bayes optimal for any ϵ < µ · ∆. Without loss of generality we can take µ = µд(D) and conclude:

L(D, f ,д) − L(D,h,д) ≥ ∆ =
µ · ∆

µд(D)
≥

ϵ

µд(D)

which falsifies (ϵ,C)-Bayes optimality for any ϵ < µ · ∆ as desired. □

Theorem B.2. Algorithm 1 (ListUpdate) has the following properties. If (дt+1,ht+1) form a (µ,∆)-certificate of sub-optimality for ft , and
ft+1 = ListUpdate(ft , (дt+1,ht+1)) then:

(1) The new model matches the performance of ht+1 on group дt+1: L(D, ft+1,дt+1) = L(D,ht+1,дt+1), and
(2) The overall performance of the model is improved by at least µ · ∆: L(D, ft+1) ≤ L(D, ft ) − µ · ∆.

Proof. It is immediate from the definition of ft+1 that L(D, ft+1,дt+1) = L(D,ht+1,дt+1), since for any x such that дt+1(x) = 1,

ft+1(x) = ht+1(x). It remains to verify the 2nd condition. Because we also have that for every x such that дt+1(x) = 0, ft+1(x) = ft (x), we
can calculate:

L(D, ft+1) = Pr

D
[дt+1(x) = 0] · E

D
[ℓ(ft+1(x),y)|дt+1(x) = 0] + Pr

D
[дt+1(x) = 1] · E

D
[ℓ(ft+1(x),y)|дt+1(x) = 1]

= Pr

D
[дt+1(x) = 0] · E

D
[ℓ(ft (x),y)|дt+1(x) = 0] + Pr

D
[дt+1(x) = 1] · E

D
[ℓ(ht+1(x),y)|дt+1(x) = 1]

≤ Pr

D
[дt+1(x) = 0] · E

D
[ℓ(ft (x),y)|дt+1(x) = 0] + Pr

D
[дt+1(x) = 1]

(
E
D
[ℓ(ft (x),y)|дt+1(x) = 1] − ∆

)
≤ L(D, ft ) − µ∆

□

Theorem B.3. Fix any ϵ > 0. For any initial model f0 with loss L(D, f0) = ℓ0 and any sequence of models f1, . . . , fT , such that fi =
ListUpdate(fi−1, (дi ,hi )) and each pair (дi ,hi ) forms a (µ,∆)-certificate of suboptimality for fi−1 for some µ,∆ such that µ · ∆ ≥ ϵ , the length of
the update sequence must be at most T ≤ ℓ0

ϵ ≤
1

ϵ .

Proof. By assumption L(D, f0) = ℓ0. Because each (дi ,hi ) is a (µ,∆)-certificate of suboptimality of fi−1 with µ · ∆ ≥ ϵ , we know from

Theorem 3.3 that for each i , L(D, fi ) ≤ L(D, fi−1) − ϵ . Hence L(D, fT ) ≤ ℓ0 −Tϵ . But loss is non-negative: L(D, fT ) ≥ 0. Thus it must be

that T ≤ ℓ0
ϵ as desired. □

C MATERIAL FROM SECTION 4
Theorem C.1. Let D ∈ ∆(X × Y) be any distribution over labelled examples, and let D ∼ Dn be a holdout dataset consisting of n i.i.d.

samples from D. Suppose: n ≥ 65 ln(2U /δ ′)
ϵ 3 . Let π be the output stream generated by CertificateChecker(ϵ,D, (f1,д1,h1), . . .) (Algorithm 2). Then

for any possibly adaptive process generating a stream of up to U submissions (fi ,дi ,hi ) as a function of the output stream π ∈ {⊥,⊤}∗, with
probability 1 − δ over the randomness of D:

(1) For every round i such that πi = ⊥ (the submission is rejected), we have that (дi ,hi ) is not a (µ,∆) certificate of sub-optimality for fi for
any (µ,∆) with µ · ∆ ≥ ϵ . And:

(2) For every round i such that πi = ⊤ (the submission is accepted), we have that (дi ,hi ) is a (µ,∆)-certificate of sub-optimality for fi for
µ · ∆ ≥ ϵ/2.

Proof. We first consider any fixed triple of functions fi : X → Y,hi : X →,Y,дi : X → {0, 1}. Observe that we can write:

µi · ∆i = µD (дi ) · (L(D, fi ,дi ) − L(D,hi ,дi ))

=

∑
(x,y)∈D 1[дi (x) = 1]

n
·

∑
(x,y)∈D 1[дi (x) = 1] · (ℓ(fi (x),y) − ℓ(hi (x),y))∑

(x,y)∈D 1[дi (x) = 1]

=
1

n

∑
(x,y)∈D

1[дi (x) = 1] · (ℓ(fi (x),y) − ℓ(hi (x),y))

Since each (x ,y) ∈ D is drawn independently fromD, each term in the sum 1[дi (x) = 1] · (ℓ(fi (x),y) − ℓ(hi (x),y)) is an independent random

variable taking value in the range [−1, 1]. Thus µi · ∆i is the average of n independent bounded random variables and we can apply a

Chernoff bound to conclude that for any value of δ ′ > 0:

Pr

D∼Dn

[
|µi · ∆i − µD (дi ) · (L(D, fi ,дi ) − L(D,hi ,дi ))| ≥

√
2 ln(2/δ ′)

n

]
≤ δ ′
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Solving for n we have that with probability 1 − δ ′, we have |µi · ∆i − µD (дi ) · (L(D, fi ,дi ) − L(D,hi ,дi ))| ≤
ϵ
4
if:

n ≥
32 ln(2/δ ′)

ϵ2

This analysis was for a fixed triple of functions (fi ,hi ,дi ), but these triples can be chosen arbitrarily as a function of the transcript π . We

therefore need to count how many transcripts π might arise. By construction, π has length at mostU and has at most 2/ϵ indices such that

πi = ⊤. Thus the number of transcripts π that can arise is at most:

(U
2

ϵ

)
· 22/ϵ ≤ U 2/ϵ

, and each transcript results in some sequence of U

triples (fi ,hi ,дi ). Thus for any mechanism for generating triples from transcript prefixes, there are at mostU 2/ϵ+1
triples that can ever arise.

We can complete the proof by union bounding over this set. Taking δ ′ = δ
U 2/ϵ+1 and plugging into our Chernoff bound above, we obtain that

with probability 1 − δ over the choice of D, for any method of generating a sequence ofU triples {(fi ,hi ,дi )}
U
i=1 from transcripts π , we have

that: maxi |µi · ∆i − µD (дi ) · (L(D, fi ,дi ) − L(D,hi ,дi ))| ≤
ϵ
4
so long as:

n ≥
32( 2ϵ + 1) ln(2U /δ

′)

ϵ2
≥

65 ln(2U /δ ′)

ϵ3

Finally, note that whenever this event obtains, the conclusions of the theorem hold, because we have that πi = ⊤ exactly when

µi · ∆i ≥
3ϵ
4
. In this case, µD (дi ) · (L(D, fi ,дi ) − L(D,hi ,дi )) ≥

3ϵ
4
− ϵ

4
= ϵ

2
as desired. Similarly, whenever πi = ⊥, we have that

µD (дi ) · (L(D, fi ,дi ) − L(D,hi ,дi )) ≤
3ϵ
4
+ ϵ

4
= ϵ as desired. □

Theorem C.2. Fix any ϵ,δ > 0. LetD ∈ ∆(X ×Y) be any distribution over labelled examples, and let D ∼ Dn be a holdout dataset consisting
of n i.i.d. samples from D. Suppose: n ≥ 65 ln(2U /δ ′)

ϵ 3 . Then for any (possibly adaptive) process generating a sequence of at most U submissions
{(дi ,hi )}

U
i=1, with probability at least 1 − δ , we have that FalsifyAndUpdate(ϵ,D, · · · ) satisfies:

(1) If (дi ,hi ) is rejected, then (дi ,hi ) is not a (µ,∆)-certificate of sub-optimality for ft , where ft is the current model at the time of submission
i , for any µ,∆ such that µ · ∆ ≥ ϵ .

(2) If (дi ,hi ) is accepted, then (дi ,hi ) is a (µ,∆)-certificate of sub-optimality for ft , where ft is the current model at the time of submission i , for
some µ,∆ such that µ ·∆ ≥ ϵ

2
. Moreover, the new model ft+1 output satisfies L(D, ft+1,дi ) = L(D,hi ,дi ) and L(D, ft+1) ≤ L(D, ft )−

ϵ
2
.

(3) FalsifyAndUpdate does not halt before receiving allU submissions.

Proof. This theorem follows straightforwardly from the properties of Algorithm 1 and Algorithm 2. From Theorem 4.1, we have that with

probability 1 − δ , every submission accepted by CertificateChecker (and hence by FalsifyandUpdate) is a (µ,∆)-certificate of sub-optimality

for ft with µ · ∆ ≥ ϵ/2 and every submission rejected is not a (µ,∆)-certificate of sub-optimality for any µ,∆ with µ · ∆ ≥ ϵ .
Whenever this event obtains, then for every call that FalsifyAndUpdate makes to ListUpdate(ft−1, (дi ,hi )) is such that (дi ,hi ) is a

(µ,∆)-certificate of sub-optimality for ft−1 for µ · ∆ ≥ ϵ/2. Therefore by Theorem 3.3, we have that L(D, ft+1,дi ) = L(D,hi ,дi ) and
L(D, ft+1) ≤ L(D, ft ) −

ϵ
2
. Finally, by Theorem 3.4, if each invocation of the iteration ft = ListUpdate(ft−1, (дi ,hi )) is such that (дi ,hi ) is

a (µ,∆)-certificate of sub-optimality for ft−1 with µ · ∆ ≥ ϵ/2, then there can be at most 2/ϵ such invocations. Since FalsifyAndUpdate

makes one such invocation for every submission that is accepted, this means there can be at most 2/ϵ submissions accepted in total. But

CertificateChecker has only two halting conditions: it halts when either more than 2/ϵ submissions are accepted, or when U submissions

have been made in total. Because with probability at least 1 − δ no more than 2/ϵ submissions are accepted, it must be that with probability

1 − δ , FalsifyAndUpdate does not halt until allU submissions have been received. □

Theorem C.3. Fix any ϵ,δ > 0. LetD ∈ ∆(X ×Y) be any distribution over labelled examples, and let D ∼ Dn be a holdout dataset consisting

of n i.i.d. samples from D. Suppose: n ≥
65 ln

(
2(U + 8

ϵ3
)

δ ′

)
ϵ 3 .Then for any (possibly adaptive) process generating a sequence of at mostU submissions

{(дi ,hi )}
U
i=1, with probability at least 1 − δ , we have that MonotoneFalsifyAndUpdate(ϵ,D, · · · ) satisfies all of the properties proven in Theorem

4.2 for FalsifyAndUpdate, and additionally satisfies the following error monotonicity property. Consider any model ft that is output, and any
group дj ∈ G(ft ). Then: L(D, ft ,дj ) ≤ minℓ<t L(D, fℓ ,дj ) +

ϵ
µD (дj )

.

Proof. The proof that MonotoneFalsifyAndUpdate satisfies the first two conclusions of Theorem 4.2:

(1) If (дi ,hi ) is rejected, then (дi ,hi ) is not a (µ,∆)-certificate of sub-optimality for ft , where ft is the current model at the time of

submission i , for any µ,∆ such that µ · ∆ ≥ ϵ .
(2) If (дi ,hi ) is accepted, then (дi ,hi ) is a (µ,∆)-certificate of sub-optimality for ft , where ft is the current model at the time of submission

i , for some µ,∆ such that µ · ∆ ≥ ϵ
2
. Moreover, the new model ft+1 output satisfies L(D, ft+1) ≤ L(D, ft ) −

ϵ
2
.

are identical and we do not repeat them here. Wemust show that with probability 1−δ , CertificateChecker (and henceMonotoneFalsifyAndUp-

date) does not halt before processing allU submissions. Note that MonotoneFalsifyAndUpdate initializes an instance of CertificateChecker

that will not halt before receiving U + 8

ϵ 3 many submissions. Thus it remains to verify that our algorithm does not produce more than 8/ϵ3

many submissions to CertificateChecker in its monotonicity update process. But this will be the case, because by Theorem 3.4, t ≤ 2

ϵ , and so
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after each call to ListUpdate, we generate at most 4/ϵ2 many submissions to CertificateChecker. Since there can be at most 2/ϵ such calls to

ListUpdate, the claim follows.

To see that the monotonicity property holds, assume for sake of contradiction that it does not — i.e. that there is a model ft , a group
дj ∈ G(ft ), and a model fℓ with ℓ < t such that:

L(D, ft ,дj ) > L(D, fℓ ,дj ) +
ϵ

µD (дj )

In this case, the pair (дj , fℓ) would form a (µ,∆)-certificate of sub-optimality for ft with µ · ∆ ≥ ϵ . But if L(D, ft ,дj ) > L(D, fℓ ,дj ) +
ϵ

µD (дj )
,

then this certificate must have been rejected, which we have already established is an event that occurs with probability at most δ . □

C.1 Certificates of Bounded Complexity and Algorithmic Optimization
In this section we show how to use our ListUpdate method as part of an algorithm for explicitly computing (ϵ,C)-Bayes optimal models

from data sampled i.i.d. from the underlying distribution D. First, we must show that if we find certificates of sub-optimality (д,h) ∈ C on

our dataset, that we can be assured that they are certificates of sub-optimality on the underlying distribution. Here, we invoke uniform

convergence bounds that depend on C being a class of bounded complexity. Next, we must describe an algorithmic method for finding (µ,∆)
certificates of sub-optimality that maximize µ · ∆. Here we give two approaches. The first approach is a reduction to cost sensitive (ternary)

classification: the result of the reduction is that the ability to solve weighted multi-class classification problems over some class of models

gives us the ability to find certificates of sub-optimality over a related class whenever they exist. The second approach takes an “EM” style

alternating maximization approach over дi ∈ G and hi ∈ H in turn, where each alternating maximization step can be reduced to a binary

classification problem. It is only guaranteed to converge to a local optimum (or saddlepoint) of its objective — i.e. to find a certificate of

sub-optimality (дi ,hi ) that cannot be improved by changing either дi or hi unilaterally — but has the merit that it requires only standard

binary classification algorithms for a class G andH to search for certificates of sub-optimality in G ×H . For simplicity of exposition, in this

section we restrict attention to the binary classification problem, where the labels are binary (Y = {0, 1}) and our loss function corresponds

to classification error (ℓ(ŷ,y) = 1[ŷ , y]) — but the approach readily extends to more general label sets (replacing VC-dimension with the

appropriate notion of combinatorial dimension as necessary).

The algorithmic problem we need to solve at each round t is, given an existing model ft−1, find a (µ,∆)-certificate of optimality (д,h) ∈ C
for ft−1 that maximizes µ · ∆ as computed on the empirical data D — i.e. to solve:

(дt ,ht ) = arg max

(д,h)∈C
µD (д) · (L(D, ft−1,д) − L(D,h,д)) (1)

We defer for now the algorithmic problem of finding these certificates, and describe a generic algorithm that can be invoked with any

method for finding such certificates. First, we state a useful sample complexity bound proven in [24] in a related context of multi-group

fairness — we here state the adaptation to our setting.

Lemma C.4 (Adapted from [24]). Let G denote a class of group indicator functions with VC-dimension dG andH denote a class of binary
models with VC-dimension dH . Let f be an arbitrary binary model. Then if:

n ≥ Õ

(
(dH + dG ) + log(1/δ )

η2

)
we have that with probability 1 − δ over the draw of a dataset D ∼ Dn , for every д ∈ G and h ∈ H :��µD (д) · (L(D, f ,д) − L(D,h,д)) − µD (дp ) · (L(D, f ,д) − L(D,h,д))�� ≤ η

With our sample complexity lemma in hand we are ready to present our generic reduction from training an (ϵ,C)-Bayes optimal model to

the optimization problem over C given in (1). It is a reduction from the problem of training an (ϵ,C)-Bayes optimal model to the optimization

problem over C given in (1).

Theorem C.5. Fix an arbitrary distribution D over X × Y, a class of group indicator functions G of VC-dimension dG and a class of binary
modelsH of VC-dimension dH . Let C ⊆ G ×H and ϵ > 0 be arbitrary. If:

n ≥ Õ

(
(dH + dG ) + log(1/δ )

ϵ3

)
and D ∼ Dn , then with probability 1 − δ , TrainByOpt(D,C, ϵ) (Algorithm 5) returns a model f that is (ϵ,C)-Bayes optimal, using at most 2/ϵ
calls to a sub-routine for solving the optimization problem over (д,h) ∈ C given in (1).

Proof. Each of the partitioned datasets Dt has size at least Õ
(
(dH+dG )+log(1/δ )

ϵ 2

)
and is selected independently of ft−1 and so we can

invoke Lemma C.4 with η = ϵ/8 and δ = δ/T to conclude that with probability 1 − δ , for every round t :

|µD (дt ) · (L(D, ft−1,дt ) − L(D,ht ,дt )) − µD (дt ) · (L(D, ft−1,дt ) − L(D,ht ,дt ))| ≤
ϵ

8
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Input: A dataset D, a set of group/model pairs C, and accuracy parameter ϵ .
Let f0 : X → {0, 1} be an arbitrary initial model and T = 2/ϵ
Randomly divide D into T equally sized datasets: D1, . . . ,DT .
for t = 1 to T do

Let

(дt ,ht ) = arg max

(д,h)∈C
µD (д) · (L(D, ft−1,д) − L(D,h,д))

if µD (дt ) · (L(D, ft−1,дt ) − L(D,ht ,дt )) ≤ 3ϵ
4
then

Output: Model ft−1
else

Let ft = ListUpdate(ft−1, (дt ,ht ))
Output:Model fT

Algorithm 5: TrainByOpt(D,C, ϵ): An algorithm for training an (ϵ,C)-Bayes optimal model given the ability to optimize over

certificates (д,h) ∈ C.

For the rest of the argument we will assume this condition obtains. By assumption, at every round t the models (дt ,ht ) exactly maximize

µD (дt ) · (L(D, ft−1,дt ) − L(D,ht ,дt )) amongst all models (д,h) ∈ C, and so in combination with the above uniform convergence bound, they

are ϵ/4-approximate maximizers of µD (дt ) · (L(D, ft−1,дt ) − L(D,ht ,дt )). Therefore, if at any round t ≤ T the algorithm outputs a model

ft−1, it must be because:

max

(д,h)∈C
µD (д) · (L(D, ft−1,д) − L(D,h,д)) ≤

3ϵ

4

+
ϵ

4

= ϵ

Equivalently, for every (д,h) ∈ C, it must be that:

L(D, ft−1,д) ≤ L(D,h,д) +
ϵ

µD (д)

By definition, such a model is (ϵ,C)-Bayes optimal.

Similarly, if at any round t < T we do not output ft−1, then it must be that (дt ,ht ) forms a (µ,∆)-certificate of sub-optimality for

µ = µD (дt ) and ∆ = L(D, ft−1,д) − L(D,h,д) such that µ · ∆ ≥ 3ϵ
4
− ϵ

4
= ϵ

2
. By Theorem 3.4 we have that for any sequence of models

f0, f1, . . . , fT such that ft = ListUpdate(ft−1, (дt ,ht )) and (дt ,ht ) forms a (µ,∆)-certificate of sub-optimalty for ft−1 with µ · ∆ ≥ ϵ
2
, it must

be thatT ≤ 2

ϵ . Therefore, it must be that if our algorithm outputs model fT , then fT must be
ϵ
2
-Bayes optimal. If this were not the case, then

by Theorem 3.2, there would exist a (µ,∆)-certificate of sub-optimality (д∗,h∗) for fT with µ · ∆ ≥ ϵ
2
, which we could use to extend the

sequence by setting fT+1 = ListUpdate(fT , (д
∗,h∗)) — but that would contradict Theorem 3.4. Since ϵ/2-Bayes optimality is strictly stronger

than (ϵ,C)-Bayes optimality, this completes the proof. □

Algorithm 5 is an efficient algorithm for training an (ϵ,C)-Bayes optimal model whenever we can solve optimization problem (1) efficiently.

We now turn to this optimization problem. In Section C.1.1 we show that the ability to solve cost sensitive classification problems over a

ternary class K gives us the ability to solve optimization problem 1 over a related class CK . In Section C.1.2 we show that the ability to

solve standard empirical risk minimization problems over classes G andH respectively give us the ability to run iterative updates of an

alternating-maximization (“EM style”) approach to finding certificates (д,h) ∈ G × H .

C.1.1 Finding Certificates via a Reduction to Cost-Sensitive Ternary Classification. For this approach, we start with an arbitrary class K
of ternary valued functions p : X → {0, 1, ?}. It will be instructive to think of the label “?” as representing the decision to “defer” on an

example, leaving the classification outcome to another model. We will identify such a ternary-valued function p with a pair of binary valued

functions дp : X → {0, 1},hp : X → {0, 1} representing a group indicator function and a binary model h that might form a certificate of

sub-optimality (дp ,hp ). They are defined as follows:

Definition C.6. Given a ternary valued function p : X → {0, 1, ?}, the p-derived group дp and model hp are defined as:

дp (x) =

{
1 if p(x) ∈ {0, 1}

0 if p(x) =?
hp (x) =

{
p(x) if p(x) ∈ {0, 1}

0 if p(x) =?

In other words, interpreting p(x) =? as the decision for p to “defer” on x , дp defines exactly the group of examples that p does not defer
on, and hp is the model that makes the same prediction as p on every example that p does not defer on. Given a class of ternary functions K ,
let the K-derived certificates CK denote the set of pairs (дp ,hp ) that can be so derived from some p ∈ K : CK = {(дp ,hp ) : p ∈ K}. Similarly

let GK = {дp : p ∈ K} andHK = {hp : p ∈ K} denote the class of group indicator functions and models derived from K respectively.

Given a model f : X → {0, 1}, our goal is to reduce the problem of solving optimization problem (1) over CK to the problem of solving a

ternary cost-sensitive classification problem over K :
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Definition C.7. A cost-sensitive classification problem is defined by a model class K consisting of functions p : X → Y, where Y is some

finite label set, a distribution D over X ×Y, and a set of real valued costs c(x,y)(ŷ) for each pair (x ,y) in the support of D and each label

ŷ ∈ Y. A solution p∗ ∈ K to the cost-sensitive classification problem (D,K , {c(x,y)}) is given by:

p∗ ∈ argmin

p∈K
E

(x,y)∼D

[
c(x,y)(p(x))

]
i.e. the model that minimizes the expected costs for the labels it assigns to points drawn from D.

The reduction will make use of the following induced costs:

Definition C.8. Given a binary model f : X → Y, the induced costs of f are defined as follows:

c
f
(x,y)(ŷ) =


0 if ŷ =?

1 if f (x) = y , ŷ

−1 if ŷ = y , f (x)

0 otherwise.

Intuitively, it costs nothing to defer a decision to the existing model f — or equivalently, to make the same decision as f . On the other hand,

making the wrong decision on an example x costs 1 when f would have made the right decision, and making the right decision “earns” 1

when f would not have.

Lemma C.9. Fix an arbitrary distribution D over X ×Y, let K be a class of ternary valued functions, and let f : X → {0, 1} be any binary
valued model. Let p∗ be a solution to the cost-sensitive classification problem (D,K , {cf

(x,y)}), where c
f
(x,y) are the induced costs of f . We have

that:
(дp∗ ,hp∗ ) ∈ arg max

(д,h)∈CK
µD (д) · (L(D, f ,д) − L(D,h,д))

In other words, when D is the empirical distribution over D, (дp∗ ,hp∗ ) form a solution to optimization problem (1).

Proof. For any model p ∈ K , we can calculate its expected cost under the induced costs of f :

E
(x,y)∼D

[
c(x,y)(p(x))

]
= E

(x,y)∼D
[1[p(x) ,?] · 1[p(x) , f (x)] · (1[p(x) , y] − 1[p(x) = y])]

= E
(x,y)∼D

[
1[дp (x) = 1] · 1[hp (x) , f (x)](1[hp (x) , y] − 1[hp (x) = y])

]
= µD (дp ) · (L(D,hp ,дp ) − L(D, f ,дp ))

Thus minimizing E(x,y)∼D
[
c(x,y)(p(x))

]
is equivalent to maximizing µD (дp ) · (L(D, f ,дp ) − L(D,hp ,дp )) over p ∈ K . □

In other words, in order to be able to efficiently implement algorithm 5 for the class CK , it suffices to be able to solve a ternary cost

sensitive classification problem over K . The up-shot is that if we can efficiently solve weighted multi-class classification problems (for which

we have many algorithms which form good heuristics) over K , then we can find approximately CK -Bayes optimal models as well.

C.1.2 Finding Certificates Using Alternating Maximization. The reduction from optimization problem (1) that we gave in Section C.1.1

to ternary cost sensitive classification starts with a ternary class K and then finds certificates of sub-optimality over a derived class CK .

What if we want to start with a pre-defined class of group indicator functions G and models H , and find certificates of sub-optimality

(д,h) ∈ G ×H? In this section we give an alternating maximization method that attempts to solve optimization problem 1 by alternating

between maximizing over дt (holding ht fixed), and maximizing over ht (holding дt fixed):

дt = argmax

д∈G
µD (д) · (L(D, ft−1,д) − L(D,ht ,д)) (2)

ht = arg max

h∈H
µD (дt ) · (L(D, ft−1,дt ) − L(D,h,дt )) (3)

We show that each of these alternating maximization steps can be reduced to solving a standard (unweighted) empirical risk minimization

problem over G and H respectively. Thus, each can be solved for any heuristic for standard machine learning problems — we do not

even require support for weighted examples, as we do in the cost sensitive classification approach from Section C.1.1. This alternating

maximization approach quickly converges to a local optimum or saddle point of the optimization objective from from (1) — i.e. a solution

that cannot be improved by either a unilateral change of either дt ∈ G or ht ∈ H .

We begin with the minimization problem (3) over h, holding дt fixed, and show that it reduces to an empirical risk minimization problem

overH .

Lemma C.10. Fix any дt ∈ G and dataset D ∈ Xn . Let Dдt = {(x ,y) ∈ D : дt (x) = 1} be the subset of D consisting of members of group д.
Let h∗ = argminh∈H L(Dдt ,h). Then h

∗ is a solution to optimization problem 3.
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Proof. We observe that only the final term of the optimization objective in (3) has any dependence on h when дt is held fixed. Therefore:

arg max

h∈H
µD (дt ) · (L(D, ft−1,дt ) − L(D,h,дt )) = arg max

h∈H
−µD (дt ) · L(D,h,дt ))

= arg min

h∈H
L(D,h,дt )

= arg min

h∈H
L(Dдt ,h)

□

Next we consider the minimization problem (2) over д, holding ht fixed and show that it reduces to an empirical risk minimization

problem over G. The intuition behind the below construction is that the only points x that matter in optimizing our objective are those on

which the models ft−1 and ht disagree. Amongst these points x on which the two models disagree, we want to have д(x) = 1 if h correctly

predicts the label, and not otherwise.

Lemma C.11. Fix any ht ∈ H and dataset D ∈ Xn . Let:

D1

ht
= {(x ,y) ∈ D : ht (x) = y , ft−1(x)} D0

ht
= {(x ,y) ∈ D : ht (x) , y = ft−1(x)}

Dht =
©­­«

⋃
(x,y)∈D1

ht

(x , 1)
ª®®¬ ∪

©­­«
⋃

(x,y)∈D0

ht

(x , 0)
ª®®¬

Let д∗ = argminд∈G L(Dht ,д). Then д
∗ is a solution to optimization problem (2).

Proof. For each д ∈ G, we partition the set of points (x ,y) ∈ Dht such that д(x) = 1 according to how they are labelled by ft1 and ht :

S1(д) = {(x ,y) ∈ Dht : д(x) = 1, ft−1(x) = ht (x) = y} S2(д) = {(x ,y) ∈ Dht : д(x) = 1, ft−1(x) = ht (x) , y}

S3(д) = {(x ,y) ∈ Dht : д(x) = 1, ft−1(x) , ht (x) = y} S4(д) = {(x ,y) ∈ Dht : д(x) = 1, ft−1(x) = y , ht (x)}

i.e. amongst the points in group д, S1(д) consists of the points that both ft−1 and ht classify correctly, S2(д) consists of the points that
both classify incorrectly, and S3(д) and S4(д) consist of points that ft−1 and ht disagree on: S3(д) are those points that ht classifies correctly,
and S4(д) are those points that ft−1 classifies correctly. Write:

w1(д) =
|S1(д)|

|Dht |
w2(д) =

|S2(д)|

|Dht |
w3(д) =

|S3(д)|

|Dht |
w4(д) =

|S4(д)|

|Dht |

to denote the corresponding proportions of each of the sets Si within Dht .

Now observe that µD (д) = w1(д) +w2(д) +w3(д) +w4(д), L(D, ft−1,д) =
w2(д)+w3(д)

µD (д)
, and L(D,ht ,д) =

w2(д)+w4(д)
µD (д)

. Therefore we can

rewrite the objective of optimization problem (2) as:

argmax

д∈G
µD (д) · (L(D, ft−1,д) − L(D,ht ,д)) = argmax

д∈G
(w2(д) +w3(д)) − (w2(д) +w4(д))

= argmax

д∈G
w3(д) −w4(д)

= arg min

д∈G
w4(д) −w3(д)

= arg min

д∈G
L(Dht ,д)

□

With these two components in hand, we can describe our alternating maximization algorithm for finding G × H certificates of sub-

optimality for a model ft−1 (Algorithm 6)

We have the following theorem:

Theorem C.12. Let D ∈ (X × Y)n be an arbitrary dataset, ft−1 : X → Y be an arbitrary model, G andH be arbitrary group and model
classes, and ϵ > 0. Then after solving at most 2/ϵ empirical risk minimization problems over each of G andH , AltMinCertificateFinder (Algorithm
6) returns a (µ,∆)-certificate of sub-optimality (дt ,ht ) for ft−1 that is an ϵ-approximate local optimum (or saddle point) in the sense that:

(1) For every h ∈ H , (дt ,h) is not a (µ ′,∆′) certificate of sub-optimality for ft−1 for any µ ′ · ∆′ ≥ µ · ∆ + ϵ , and
(2) For every д ∈ G, (д,ht ) is not a (µ ′,∆′) certificate of sub-optimality for ft−1 for any µ ′ · ∆′ ≥ µ · ∆ + ϵ
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Input: A dataset D, a model ft−1, group and model classes G andH , and an error parameter ϵ .
Let (д∗,h∗) ∈ G × H be an arbitrary initial certificate.

CurrentValue← µD (д
∗) · (L(D, ft−1,д

∗) − L(D,h∗,д∗))
Let:

h∗ = arg min

h∈H
L(Dд∗ ,h) д∗ = arg min

д∈G
L(Dh∗ ,д)

while µD (д
∗) · (L(D, ft−1,д

∗) − L(D,h∗,д∗) ≥ CurrentValue + ϵ do
CurrentValue← µD (д

∗) · (L(D, ft−1,д
∗) − L(D,h∗,д∗))

Let:

h∗ = arg min

h∈H
L(Dд∗ ,h) д∗ = arg min

д∈G
L(Dh∗ ,д)

Output: Certificate (дt ,ht ) = (д∗,h∗)
Algorithm 6: AltMinCertificateFinder(D, ft−1,G,H , ϵ): An algorithm for finding ϵ-locally optimal certificates of sub-optimality

(дt ,ht ) ∈ G × H for model ft−1.

Proof. By the halting condition of the While loop, every iteration of the While loop increases µD (д
∗) · (L(D, ft−1,д

∗) − L(D,h∗,д∗)) by
at least ϵ . Since this quantity is bounded in [−1, 1], there cannot be more than 2/ϵ iterations. Each iteration solves a single empirical risk

minimization problem over each ofH and G.

The certificate (дt ,ht ) finally output is a (µ,∆) certificate of sub-optimality for µ = µD (дt ) and ∆ = (L(D, ft−1,дt ) − L(D,ht ,дt )). It must

be that the objective µD (дt ) · (L(D, ft−1,дt ) − L(D,ht ,дt )) = µ · ∆ cannot be improved by more than ϵ by re-optimizing either ht or дt , by
definition of the halting condition and by Lemmas C.10 and C.11. The theorem follows. □

D ADDITIONAL MATERIAL FROM SECTION 5

Dataset Total White Black Asian Native Other Two+ Male Female Young Middle Old

NY Employment 196966 138473 24024 17030 10964 5646 829 95162 101804 68163 47469 81334

Oregon Income 21918 18937 311 923 552 823 372 11454 10464 5041 9124 7753

Texas Coverage 98927 72881 11192 4844 6660 2555 795 42128 56799 42048 31300 25579

Florida Travel 88070 70627 10118 2629 2499 1907 290 45324 42746 16710 35151 36209

Table 2: Summaries of the four Folktables state/task datasets we use in the experiments discussed below, indicating total
population size and the sizes of the different demographic subgroups considered. The full descriptors of the demographic
subgroups are: (race subgroups)White; Black or African American; Asian; Native Hawaiian, Native American, Native Alaskan,
or Pacific Islander; Some Other Race; Two or More Races; (binarized sex subgroups) Male; Female; (age subgroups) Young;
Middle; Old.

Figure 5: A fragment of the Folktables ACS PUMS dataset, with the 16 features considered for an employment prediction task:
age (AGEP), education (SCHL), marital status (MAR), relationship (RELP), disability status (DIS), parent employee status (ESP),
citizen status (CIT), mobility status (MIG), military service (MIL), ancestry record (ANC), nation of origin (NATIVITY), hearing
difficulty (DEAR), visual dificulty (DEYE), learning disability (DREM), sex (SEX), and race (RAC1P).

Total White Black Asian Native Some Other Race Two+ Male Female Young Middle Old

0.0004 0.016 0.065 0.023 0.037 0.020 0.033 0.016 0.008 0.040 0.045 0.030

Table 3: Absolute differences in final overall and subgroup test errors between two different sequential orderings. See text for
details.
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Figure 6: Sample results of an implementation of algorithmMonotoneFalsifyAndUpdate (Algorithm 4) on a number of differ-
ent task and U.S. state datasets from the Folktables package. In each row, the left panel shows group error rates on the test
data; the middle panel shows group error rates on the training data; and the right panel shows the absolute difference of test
and training error rates. First row: ACS employment task for New York state. Second row: ACS employment task for New York
but with a different order of introduction of the groups. Third row: ACS income task for Oregon. Fourth row: ACS coverage
task for Texas. Fifth row: ACS travel time task for Florida. See text for discussion.
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