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ABSTRACT

Single-image reflection removal (SIRR) is a highly ill-posed problem, where ex-
isting discriminative methods struggle to recover regions heavily corrupted by re-
flections and often fail to generalize in the wild. This work presents a new frame-
work that reframes SIRR as a guided generation task by adapting a pre-trained
Diffusion Transformer (DiT) into a precise restoration model. The key principle
is to regulate the generative flexibility of DiTs within a structured latent space.
To this end, we design two core components, including i) a reflection-equivariant
VAE that encodes reflection artifacts into a compact latent prior; and ii) a set of
learnable prompts that provides direct, task-specific guidance while bypassing the
ambiguity of text-based conditioning; These designs transform a general-purpose
image editing DiT into a precise and robust tool for reflection removal, capable
of reconstructing transmission layers with high fidelity and fine detail. Exten-
sive experiments reveal that our model achieves new state-of-the-art performance
on standard benchmarks and, critically, generalizes strongly to challenging real-
world images. Code will be made publicly available.

1 INTRODUCTION

What I cannot create, I do not understand. – Richard Feynman

Capturing photos through (semi-)transparent surfaces like windows is a common practice in daily
life, yet it often produces images interfered by reflections. These reflections superimpose distracting
patterns onto the transmission layer, undermining both the aesthetic quality of the photograph and
the reliability of downstream vision tasks, such as depth estimation, stereo matching, and optical
flow (Tsin et al., 2003; Yang et al., 2016; Costanzino et al., 2023; Jiang et al., 2024), to name just a
few. Single-image reflection removal (SIRR) addresses this challenge by decomposing a composite
image into its transmission and reflection layers. The task is fundamentally ill-posed, since a single
observed image admits infinitely many possible decompositions, making it a longstanding issue in
computational photography and image restoration.

Early approaches tackled SIRR using optimization with handcrafted priors, such as sparsity (Guo
et al., 2014) or ghosting cues (Shih et al., 2015). While conceptually elegant, these methods re-
lied on strong assumptions that rarely hold in complex, real-world scenes. With the rise of deep
learning, CNN-based methods trained on large-scale synthetic datasets (Zhang et al., 2018; Wei
et al., 2019) brought significant progress. Pioneering works leveraged perceptual features from pre-
trained networks like VGGNet to separate transmission and reflection layers (Li et al., 2020; Hu &
Guo, 2021), demonstrating the effectiveness of semantic priors. Subsequent models (Hu & Guo,
2023; Zhao et al., 2025; Hu et al., 2024) advanced this line by incorporating stronger backbones,
such as Swin Transformers (Liu et al., 2021) and Focal Networks (Yang et al., 2022), to better pre-
serve and propagate discriminative clues. Despite these advances, existing methods face two critical
limitations. First, their inherently discriminative nature restricts them to pixel-to-pixel mappings,
making it difficult to plausibly reconstruct scene content where the transmission layer is heavily
occluded. Without a generative prior, they often produce residual reflections or overly smoothed
outputs. Second, they show limited generalization, struggling with diverse, in-the-wild inputs that
deviate from synthetic training distributions. One may refer to Fig. 1 for illustrative examples.

The recent revolution in generative modeling, fueled by the scalability of Diffusion Transformers
(DiTs) (Peebles & Xie, 2023) trained on web-scale data, has redefined state-of-the-art image syn-
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Figure 1: Examples of two types of challenges. In comparison with the previous SOTA method
DAI (Hu et al., 2025), our model exhibits clear advantages in these challenging scenarios.

thesis. Models such as Stable Diffusion 3 (Esser et al., 2024) and FLUX.1 (Black Forest Labs,
2025) showcase breathtaking photorealism and increasingly controllable image editing, highlight-
ing the immense potential of DiTs as powerful world priors.

Yet this generative capacity is a double-edged sword for meticulous restoration tasks like SIRR.
On the one hand, DiTs can plausibly reconstruct heavily occluded regions, where discriminative
models typically fail. On the other hand, their creative freedom can easily become a liability, say
naively prompting a model to “remove the reflection” may yield incorrect textures, distort geometry,
or overwrite details that should be preserved. Unlike open-ended generation, SIRR demands faithful
disentanglement of the transmission and reflection layers. This tension exposes the central dilemma,
i.e., how can we harness the generative strength of DiTs while constraining them to act as reliable
restoration tools? We argue that the solution lies in taming the generative process through princi-
pled mechanisms, which raises two key questions: 1) how to establish a latent space that faithfully
represents the reflection, transmission, and their mixture, and 2) how to instruct the model to execute
this highly specific removal task without relying on ambiguous natural language.

To address these aforementioned challenges, this work develops a novel generative framework with
the primary contributions summarized as follows:

• We present the first framework to repurpose a large-scale Diffusion-based image editing
model for single-image reflection removal, providing a principled blueprint for adapting
large-scale generative models to restoration tasks.

• To ensure faithful reflection removal, we design a reflection-equivariant variational autoen-
coder (VAE) that encodes a compact latent prior representing the contaminating input and
employ learnable prompts as direct, optimized embeddings to instruct the model.

• Extensive experiments are conducted to demonstrate that the approach achieves state-of-
the-art results on standard benchmarks and delivers superior visual quality and robustness
on challenging real-world images, addressing limitations of prior methods.

2 RELATED WORK

2.1 SINGLE IMAGE REFLECTION REMOVAL

Prior-based Methods. Pioneering work on SIRR formulated the task as an optimization problem,
regularized by handcrafted priors derived from the physical properties of the statistical regularities
of natural images (Levin & Weiss, 2007). These methods sought the most plausible decomposi-
tion by minimizing an objective function that balanced data fidelity with these priors. Prominent
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examples include relative smoothness assumptions (Chung et al., 2009; Li & Brown, 2014), where
the transmission layer is expected to be smoother than the reflection, gradient sparsity (Levin et al.,
2002; 2004; Fan et al., 2017), and the detection of ghosting cues from double reflections (Shih et al.,
2015). While insightful, the efficacy of these methods is fundamentally constrained by a reliance on
fragile assumptions, which are frequently violated in complex, real-world scenes. Consequently, the
performance is often limited to controlled environments, exhibiting poor generalization to in-the-
wild data (Wan et al., 2018). Nevertheless, these prior-based approaches established the conceptual
groundwork for the field, influencing the design of subsequent deep-learning methods.

Learning-based Methods. The advent of deep learning (Simonyan & Zisserman, 2015; He
et al., 2016), particularly Convolutional Neural Networks (CNNs), marked a paradigm shift in
SIRR (Zhang et al., 2018). By training on synthetic datasets, these methods learn to perform the
decomposition in an end-to-end fashion. The foundational insight was the use of semantic priors
from pre-trained classification networks. Zhang et al. (Zhang et al., 2018), for instance, pioneered
this by leveraging hypercolumn features from VGG-19 (Hariharan et al., 2015) to imbue their model
with greater semantic awareness, while ERRNet (Wei et al., 2019) further explored this by training
with misaligned image pairs. This core concept spurred a wave of architectural innovation, with
increasingly sophisticated modeling of the relationship between the transmission and reflection lay-
ers. One strategy is a two-stage approach, where the network first estimates one component to guide
the prediction of the other. RAGNet (Li et al., 2023) initially estimates the reflection to guide trans-
mission recovery. A parallel line of inquiry pursues simultaneous estimation through dual-stream
networks. The YTMT strategy (Hu & Guo, 2021) exemplifies this by restoring both layers concur-
rently with an interactive module; however, its reliance on a linear physical assumption limited its
performance. Other works, such as BDN (Yang et al., 2018) and IBCLN (Li et al., 2020), employ
iterative refinement, but their simpler interaction models can sometimes lead to heavy ghosting arti-
facts. More recent architectures have introduced even more complex interaction mechanisms. Dong
et al. (Dong et al., 2021) developed an iterative network that estimates a probabilistic reflection con-
fidence map, while DSRNet (Hu & Guo, 2023) introduced a mutually gated interaction mechanism.
To capture long-range dependencies, Transformer-based architectures like the DSIT (Hu et al., 2024)
and RDNet (Zhao et al., 2025) have also been adapted, pushing the state-of-the-art on benchmark
datasets. Recently, RRW (Zhu et al., 2024) proposed to detect the reflection area and then execute
removal. Despite their success, these methods are fundamentally discriminative;i.e. a deterministic
pixel-to-pixel mapping. This leads to two critical limitations: (1) a failure to reconstruct content
in regions heavily occluded by reflections, often resulting in blurriness or artifacts, and (2) poor
generalization to in-the-wild images whose statistics differ from the training data.

Generative Methods. To overcome the limitations of discriminative approaches, some works have
turned to generative modeling. Early explorations in this domain utilized Generative Adversarial
Networks (GANs) (Fan et al., 2017; Hu & Guo, 2021; 2023) to enhance the perceptual quality of
the restored transmission layer. While GANs can produce sharp textures, their adversarial training
is notoriously unstable, and they often struggle with new artifacts. The recent ascendancy of diffu-
sion models has opened a more promising avenue, given their demonstrated power in general image
restoration tasks like super-resolution (Fei et al., 2023) and inpainting (Rombach et al., 2022). How-
ever, adapting these models for SIRR is non-trivial, as the task requires precise layer disentanglement
rather than detail synthesis. Initial explorations into diffusion-based SIRR, such as L-DiffER (Hong
et al., 2024) and PromptRR (Wang et al., 2024), have leveraged language guidance as an additional
conditioning signal. This approach, however, faces a critical bottleneck: the ambiguity and difficulty
of describing complex, non-semantic reflection patterns in text. Furthermore, these models are typi-
cally trained from scratch on task-specific datasets, limiting their access to the vast world knowledge
embedded in large-scale, pre-trained foundation models. Another recent work, DAI (Hu et al., 2025)
attempts to leverage a one-step diffusion prior. However, this method fundamentally operates as a
discriminative, pixel-to-pixel regression network, using the diffusion model as a prior rather than a
generative engine. As such, it sacrifices the very generative capabilities needed to reconstruct heav-
ily occluded regions (see Fig. 1 for a visual comparison). How to harness the immense generative
power of a pre-trained foundation model for SIRR without resorting to imprecise textual control or
reverting to a discriminative framework remains a problem.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: The overall pipeline of our proposed method. In Stage I, we use reflection-equivalence
loss to regularize the latent space; during Stage II, the VAE encoder and decoder are frozen, with a
learnable text prompt and the DiT model to be trained;
2.2 GENERATIVE IMAGE EDITING

Our work is situated within the rapidly advancing field of generative image editing. While early
methods often involved manipulating the latent space of GANs (Ling et al., 2021; Wang et al., 2022;
Pan et al., 2023), the current state-of-the-art is now defined by large-scale text-to-image diffusion
models like Stable Diffusion (Rombach et al., 2022), Imagen (Saharia et al., 2022), and FLUX.1.
The evolution of control mechanisms for these models has followed several key paradigms. The
first and most common mode of control is the text prompt. A significant body of work, such as
InstructPix2Pix (Brooks et al., 2023), has focused on training models to follow editing instructions
in natural language. While versatile for creative tasks, text is ill-suited for restoration tasks like
SIRR, as describing the precise instructions of removing a reflection in words is both impractical
and ambiguous. A second paradigm introduced explicit structural conditioning. Landmark methods
like ControlNet (Zhang et al., 2023) and T2I-Adapter (Mou et al., 2024) allow users to guide gen-
eration with auxiliary inputs like edge maps or depth maps. Works like OminiControl (Tan et al.,
2024) and UNO (Wu et al., 2025b) have explored fine-grained control by manipulating the model’s
internal features. While these provide powerful, general-purpose toolkits for manipulation, they of-
ten struggle with the high-fidelity content preservation required for restoration. Most recently, the
field has seen the rise of massive, general-purpose image editing models like GPT-4o, FLUX.1 Kon-
text (Black Forest Labs, 2025), and Qwen3-Image-edit (Wu et al., 2025a), which have demonstrated
remarkable progress in instruction-following and content-preserving editing. However, their output
fidelity, while impressive, often falls short of the stringent requirements for high-precision image
restoration tasks (Yang et al., 2025a). Furthermore, their reliance on the aforementioned control
paradigms still limits their applicability to tasks like SIRR. In this work, we leverage these powerful
foundation models as a starting point and introduce the crucial missing piece for adapting them to
the specialist task of SIRR.

3 METHODOLOGY

Our method is designed to tame a powerful pre-trained image editing DiT 1for the precise and robust
task of removing reflections from a single image. To realize this, our methodology is composed of
two components, as illustrated in Figure 2: (1) a reflection-equivariant VAE that represents the
reflection, transmission, and their mixture in a faithful manner, and (2) a set of learnable prompts
that instruct the DiT to perform the removal task.

3.1 RECTIFYING THE LATENT SPACE FOR REFLECTION REMOVAL

Our investigation begins with the VAE component of the pre-trained FLUX.1 model, which is re-
sponsible for encoding the reflection-corrupted input image. As shown in Table 1, while the original
VAE excels at reconstructing standard images, its performance (measured by SSIM) degrades signif-
icantly on synthetic mixtures of background and reflection layers. Given encoder E and decoder D,

1Here, we choose FLUX.1 Kontext (Black Forest Labs, 2025) as our base model.
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Table 1: SSIM comparison on synthetic VAE reconstruction and real-world SIRR. While a simple
reconstruction finetune helps reconstruct synthetic mixtures, it fails in the SIRR task. Our method
succeeds on both, demonstrating the importance of a properly structured latent space.

Model Non-Mixed Recon. 50% Mixed Recon. SIRR on Real20

Vanilla FLUX-VAE 0.909 0.859 0.841
Fine-tuning with Lrecon 0.918 0.876 0.842
Ours(Lrecon + Lequiv) 0.919 0.877 0.871

a straightforward solution is to finetune the VAE on these mixed images using a standard pixel-wise
reconstruction loss, as suggested by stable diffusion (Rombach et al., 2022):

Lrecon = ∥D(E(x))− x∥+ LPIPS(D(E(x)), x). (1)

While this baseline approach improves the reconstruction metric on synthetic data by brute-forcing
the VAE to accommodate the new distribution, the lack of structure proves critical when moving
from reconstruction to reflection removal. Our goal is therefore not merely to improve reconstruction
metrics, but to restructure the latent space to be reflection-equivariant. We aim to align the VAE’s
latent geometry with the linear physics of reflection formation, where an observed image Iobs can be
seen as a linear blend of a background B and a reflection R: Iobs ≈ (1 − α)B + αR. We enforce
this property by finetuning the encoder, E, such that the encoding of the mixture is approximately
equal to the mixture of the encodings:

E(Iobs) ≈ (1− α)E(B) + αE(R). (2)

To achieve this, we introduce a crucial equivariance loss, Lequiv, alongside the standard reconstruc-
tion loss. During training, we sample a background B, a reflection R, and a random interpolation
factor α ∈ [0, 1] to create the mixture Iobs. The equivariance loss then penalizes any deviation from
the desired linear behavior in the latent space:

Lequiv = ∥E(Iobs)− ((1− α)E(B) + αE(R))∥1 . (3)

As shown in Table 1, our method achieves reconstruction scores on synthetic data comparable to
the baseline. The true benefit of our approach, however, is demonstrated in the SIRR performance.
By explicitly enforcing linearity, our finetuned VAE learns a smooth, well-behaved space that gen-
eralizes beyond the synthetic training data. This proper latent structure is the key to its superior
performance on real images, where the unstructured MSE-finetuned VAE fails to perform.

3.2 LEARNABLE PROMPTS FOR PRECISE TASK GUIDANCE

A significant challenge in adapting pre-trained image editors for a restoration task like SIRR is
bridging the semantic gap between human instruction and the model’s operational capabilities. Text
prompts, the standard modality, are fundamentally ill-suited for this task. It is infeasible to describe
the complex, non-semantic patterns of an arbitrary reflection in words, and a generic prompt like
remove the reflection is too ambiguous and doesn’t work in practice. To overcome this, we introduce
a set of learnable prompts, denoted as Ptask, which are optimized to become a highly specialized,
non-verbal task embedding. Our approach connects the model’s text-based pre-training with our
task-specific fine-tuning through a strategic initialization and optimization process.

Semantic Initialization. We begin by initializing the prompt by tokenizing a simple, descriptive
sentence: “please remove the reflection within the image.” The resulting sequence of text embed-
dings serves as initialization for our learnable prompt vectors. This initialization is crucial; it lever-
ages the model’s semantic pre-training, placing the optimization of the task prompt in a semantically
meaningful starting point of the embedding space. The model already possesses an understanding
of concepts, providing a strong inductive bias and a good starting point for optimization.

Optimization into a Task Vector. These initialized vectors are replacing the output of text encoders.
During fine-tuning, the prompt vectors are untethered from their linguistic origins and are optimized
via backpropagation. This allows Ptask to evolve from a generic, human-readable instruction into a
direct, optimized task embedding that exists in the model’s native operational space. In essence, this
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Table 2: Quantitative comparison with SoTA methods on public SIRR benchmarks (Real20, SIR2,
Nature) and the average scores. Best results are in bold and second best are underlined.

Methods Real20 (20) SIR2 (454) Nature (20) Avg.

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

N
on

-G
en

.

ERRNet(CVPR’19) 22.89 0.803 23.55 0.882 22.18 0.756 23.47 0.874
IBCLN(CVPR’20) 21.86 0.762 24.20 0.884 23.57 0.783 24.08 0.875
YTMT(NeurIPS’21) 23.26 0.806 24.08 0.890 23.85 0.810 24.04 0.883
Dong et al.(ICCV’21) 23.34 0.812 24.25 0.901 23.45 0.808 24.18 0.894
DSRNet(ICCV’23) 23.91 0.818 25.71 0.906 25.22 0.832 25.62 0.899
Zhu et al.(CVPR’24) 21.83 0.801 25.48 0.897 26.04 0.846 25.37 0.909
DSIT(NeurIPS’24) 25.22 0.836 26.43 0.911 26.77 0.847 26.40 0.905
RDNet(CVPR’25) 25.71 0.850 26.69 0.908 26.31 0.846 26.63 0.903

G
en

. DAI (ArXiv’25) 25.21 0.841 27.47 0.919 26.81 0.843 27.35 0.913
Ours 27.27 0.871 27.99 0.921 27.30 0.838 27.93 0.916

Table 3: Comparison of state-of-the-art methods on the OpenRR benchmark. Please note that none
of these methods, including ours, are trained on the OpenRR training set. Best results are in bold.

Metric ERRNet IBCLN YTMT Dong et al. DSRNet DSIT RDNet DAI Ours

PSNR 22.60 24.33 22.20 23.76 23.30 24.77 24.87 25.27 27.76
SSIM 0.802 0.930 0.797 0.817 0.803 0.869 0.850 0.831 0.843

process distills the abstract concept of reflection removal into a set of precise, low-level instructions
that are directly interpretable by the DiT’s attention mechanisms. The learnable prompt effectively
becomes the operational command that instructs the DiT on how to utilize the information provided
by the input. This provides a clear and highly effective way to guide a large-scale generative model.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Our entire framework is implemented in PyTorch and consists of a two-stage training process: first
training the reflection-equivariant VAE, and then fine-tuning the Diffusion Transformer.

Reflection-Equivariant VAE Training. The first stage focuses on training our VAE to learn a
structured latent space for reflection. To make sure that the latent space won’t change dramatically,
we train a Low-Rank Adaptation (LoRA) adapter with a rank of 8. The training is conducted for
30,000 iterations using the AdamW optimizer with a learning rate of 1e-4. To learn a robust and
general representation of reflections, we use the high-quality PD-12M (Meyer et al., 2024) dataset,
exposing the model to approximately 3.84 million unique images with a global batch size of 128.

DiT Fine-Tuning. The second stage involves fine-tuning the main reflection removal model. We ini-
tialize our model from a pre-trained FLUX.1 Kontext checkpoint to leverage its powerful generative
prior and extensive world knowledge. The full model is then fine-tuned using the AdamW optimizer
with a fixed learning rate of 1e-5 and a batch size of 32. Following established best practices in the
field, our training data is a curated mixture of real-world and synthetic image pairs. To ensure high-
fidelity data augmentation, the synthetic pairs (composite and transmission) are generated using the
physically-grounded pipeline and model proposed by RDNet (Zhao et al., 2025).

4.2 QUANTITATIVE PERFORMANCE EVALUATION

Datasets. Our evaluation is performed on several widely-used benchmark datasets. For quantita-
tive analysis, we use four standard test sets: Nature (Dong et al., 2021), SIR2 (Wan et al., 2022),
Real20 (Zhang et al., 2018), and OpenRR (Yang et al., 2025b).
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(a) Input (b) YTMT (c) DSRNet (d) DSIT

(e) RDNet (f) DAI (g) Ours (h) GT

Figure 3: Qualitative comparisons on Real20 and OpenRR. Please zoom in for more details.

Evaluation Metrics. We use the two most common metrics in image restoration to measure the
quality of the recovered transmission layer: Peak Signal-to-Noise Ratio (PSNR) and Structural Sim-
ilarity Index Measure (SSIM). For both metrics, higher values indicate better performance.

Baselines. We compare GenSIRR against a representative set of recent and influential SIRR meth-
ods, including the CNN-based ERRNet (Wen et al., 2019), IBCLN (Li et al., 2020), YTMT (Hu &
Guo, 2021) and Dong et al. (Dong et al., 2021) as well as more recent architectures like DSIT (Hu
et al., 2024) and RDNet (Zhao et al., 2025). We also included DAI (Hu et al., 2025), a model
trained with a more sophisticated dataset and large-scale pretraining. These baselines cover a range
of architectural designs and reflect the current state-of-the-art.

Results on Publicly Available Datasets. As shown in Table 2 and Table 3, GenSIRR establishes a
new state-of-the-art across all benchmark datasets. Our method consistently outperforms all base-
line models in both PSNR and SSIM, often by a significant margin. The performance gains are
particularly pronounced on the more challenging datasets like Real20 and OpenRR, which contain
complex structures and diverse reflection types. This demonstrates the superior capability of our
generative approach to handle difficult cases where previous discriminative models struggle. The
strong results on the real-world SIR2 dataset underscore the excellent generalization ability of our
framework, a key weakness we aimed to address.

4.3 QUANTITATIVE PERFORMANCE EVALUATION

Visual Results. We provide visual comparisons in Figure 3 to highlight the qualitative superiority
of GenSIRR. On challenging examples, our method is visibly more effective at removing complex
reflections while preserving scene fidelity compared to prior state-of-the-art approaches.

Generalization to Challenge In-the-Wild Images. The true strength of GenSIRR is most evident
in its performance on real-world images, as shown in Figure 4. While competing methods often fail
to adapt to the domain shift from synthetic training data, producing unnatural artifacts or incom-
plete removal of reflections, our model demonstrates remarkable robustness. GenSIRR effectively

7
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(a) Input (b) IBCLN (c) YTMT (d) DSRNet

(e) DSIT (f) RDNet (g) DAI (h) Ours

Figure 4: Qualitative comparisons on real-world cases. Please zoom in for more details.

removes complex reflections while preserving the natural appearance and fine details of the under-
lying scene, confirming its superior generalization capabilities.

Downstream Applications. The success of a reflection removal method is not just its visual quality,
but its utility in improving the performance of downstream computer vision systems. Reflections can
catastrophically degrade the performance of high-level vision models by introducing false objects,
conflicting geometric cues, and semantic ambiguity. Here, we provide a qualitative comparison
on monocular depth estimation and zero-shot image segmentation, as in Fig. 5. For each task, we
compare the output of a state-of-the-art foundation model when run on: (1) the original image with
reflections; (2) the output from previous SoTA, DAI, and DSIT; (3) the output from our method.

4.4 ABLATION ANALYSIS

To validate the effectiveness of the component in our GenSIRR framework, we conduct ablation
studies on the challenging Real20 dataset. We analyze the contribution of the reflection-equivariant
VAE and the learnable prompts. The quantitative results are summarized in Table 4 and Table 5.

On the Rationale of the Reflection-Equivariant VAE. Our hypothesis is that a structured latent
space is helpful for SIRR. To verify this, we train a variant of our model where the reflection-
equivariant VAE is replaced with a standard VAE trained only with a reconstruction loss (Lrecon),
removing the linearity constraint (Lequiv). As shown in Table 4, both changes lead to a significant
drop in performance. This experiment confirms that the reflection-equivalence enables a precise and
complete removal of the reflection.

On the Efficacy of Learnable Prompts. We argue that learnable prompts provide a more precise
and effective form of task guidance than fixed text. To ablate this component, we replace our learn-
able prompts with a fixed text prompt, ”Please remove the reflection in this image.” The results in
Table 5 show a marked degradation in performance. In some cases, it fails to remove complex re-
flection patterns. We also tried to randomly initialize the prompt or use RDNet (Zhao et al., 2025)’s
prompt generator to generate a prompt. However, both choices failed to generate meaningful con-
tent, and the loss doesn’t converge. A possible reason may involve the vast nature of the prompt

8
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(a) Input (b) DSIT (c) DAI (d) Ours

Figure 5: Qualitative evaluation on downstream vision tasks. (Middle Rows) Monocular depth esti-
mation using Depth Anything V2 (Yang et al., 2024). Reflections in the original input induce severe
geometric artifacts (e.g., false surfaces) in the predicted map. While the baseline method mitigates
some errors, significant distortions remain. Our method yields a geometrically coherent depth map.
(Bottom Rows) Zero-shot segmentation using the Segment Anything Model (Kirillov et al., 2023).
Reflections pollute the semantic understanding of the scene. Our method eliminates these false pos-
itives, enabling SAM to correctly segment the scene content.

Table 4: The choice of training VAE.

Choice w/o Training Lrecon Ours

PSNR 25.72 25.79 27.27
SSIM 0.841 0.842 0.871

Table 5: The choice of prompt.

Setup Random RDNet Prompt Fix Ours

PSNR N/A N/A 26.52 27.27
SSIM N/A N/A 0.830 0.871

embedding space. A randomly initialized prompt lacks any semantic anchor, forcing the model to
search an enormous space for a meaningful task vector from scratch. Without an initial direction,
the optimization process fails to find a useful signal. Similarly, while the RDNet prompt generator
is effective within its own architecture, its output is not semantically aligned with the pre-trained
knowledge of model like FLUX.1, and thus also fails to provide a valid starting point.

5 CONCLUSION

In this work, we introduced GenSIRR, a novel framework that successfully addresses the long-
standing challenges of single-image reflection removal, particularly in cases of heavy contamination
and in-the-wild generalization. We argued that the limitations of prior methods stem from their
discriminative nature, which restricts their ability to plausibly reconstruct occluded scene content.
To overcome this, we proposed a paradigm shift: taming a pre-trained DiT-based image editing
model to reframe SIRR as a guided generative task. Our core insight was to model the removal inside
a structured latent space. We realized this through two designs: a reflection-equivariant VAE that
extracts a compact latent prior of the unwanted reflection, and the learnable prompt token to learn
precise task control. This strategy effectively transforms the powerful but unconstrained DiT into a
precise and controllable restoration tool. Our extensive experiments validate the superiority of this
approach, demonstrating that GenSIRR not only sets a new state-of-the-art on public benchmarks
but, delivers exceptional visual quality and robustness on challenging real-world images. We believe
GenSIRR presents a promising direction for leveraging large-scale generative models in complex
image restoration tasks.
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A LIMITATION

The primary limitation of GenSIRR is its inference speed. As a framework built upon an iterative
diffusion process with a large transformer backbone, generating a single image requires multiple re-
verse sampling steps. This stands in stark contrast to previous CNN-based methods, which typically
involve a single, fast forward pass. Our approach, therefore, prioritizes reconstruction quality, de-
tail fidelity, and generalization over the computational efficiency required for real-time applications.
However, this is an active area of research, and several promising avenues exist for future work to
mitigate this issue. One direction is to explore model distillation, where the knowledge from our
large GenSIRR model is transferred to a much smaller, faster student network. Additionally, recent
advances in few-step or single-step sampling techniques, such as consistency models or rectified
flow, could be adapted to our guided sampling scheme to reduce the number of required iterations
without a significant drop in quality. Investigating these acceleration strategies will be a key step
toward making our high-fidelity reflection removal practical for a broader range of applications.

B DISCLOSURE ON THE USAGE OF LLMS

Google’s Gemini was used as a writing assistant in the preparation of this manuscript. Its use was
limited to improving the grammar, clarity, and style of text drafted by the authors. All scientific
ideas, experiments, and conclusions are the original work of the human authors, who take full re-
sponsibility for the paper’s content.

C ADDITIONAL ANALYSIS

C.1 ON THE POSSIBILITY OF LORA FINE-TUNING THE DIT

Our primary model is fully fine-tuned, a computationally intensive process. A natural question is
whether a more parameter-efficient approach, such as Low-Rank Adaptation (LoRA) (Xu et al.,
2024), could achieve comparable performance. To investigate this in a principled manner, we first
analyzed the intrinsic rank of the task adaptation before attempting to train a LoRA-based model.

Intrinsic Rank Analysis. We computed the weight delta (the difference between our fully fine-
tuned GenSIRR model and the pre-trained FLUX.1 base model) for each layer of the DiT. We
then applied Principal Component Analysis (PCA) to this delta matrix to determine the number of
principal components (i.e., the rank) required to explain 90% of the variance. A low intrinsic rank
across layers would suggest that the task can be learned with a simple, low-rank update, making
it an ideal candidate for LoRA. The results, visualized in Figure 6, were revealing. We found that
the required rank was not uniformly low. Instead, we observed a distinct pattern where the intrinsic
rank starts low, increases significantly in the middle layers of the network, often responsible for
more abstract feature processing, and then drops again in the final output layers. Crucially, many
of these internal blocks exhibited an intrinsic rank far exceeding 512, a value typically considered
a high rank for LoRA. This analysis strongly suggests that SIRR is not a simple stylistic adaptation
but requires substantial, high-rank modifications to the model’s core internal representations.

C.2 ON THE IMAGE SYNTHESIS ABILITY OF REFLECTION-EQUIVARIANT VAE

A critical consideration in our design is whether the proposed linearity constraint, while beneficial
for our latent subtraction task, might inadvertently degrade the VAE’s fundamental image synthesis
capabilities. A VAE that cannot faithfully represent complex scenes would be a poor foundation for
any restoration task. To investigate this, we evaluate the generative quality of our trained Reflection-
Equivariant VAE against the baseline FLUX VAE from which it was adapted. We use the GenEval
to quantitatively assess the model’s ability to synthesize images based on a variety of compositional
prompts. The benchmark evaluates performance across several attributes, including object presence,
counting, and spatial relationships. As shown in Table 6, our Reflection-Equivariant VAE not only
preserves but slightly improves upon the synthesis capabilities of the baseline model. We observe
small but consistent performance gains across most categories, including single- and two-object
scenes, color fidelity, and positional accuracy, leading to a higher overall score. It demonstrates
that the linearity constraint does not introduce a detrimental trade-off. Instead, it appears to act as a
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(a) Q rank with EVR≥90% in double stream blocks (b) Q rank with EVR≥90% in single stream blocks

(c) K rank with EVR≥90% in double stream blocks (d) K rank with EVR≥90% in single stream blocks

(e) V rank with EVR≥90% in double stream blocks (f) V rank with EVR≥90% in single stream blocks

Figure 6: Intrinsic rank visualization for Q, K, and V projection matrices. We plot the minimum rank
required to reach an Explained Variance Ratio (EVR) of 90% for the weight deltas before and after
fine-tuning. The analysis is shown for both the double-stream (left column) and single-stream (right
column) transformer blocks. The consistently high rank, especially in the middle layers, indicates
that a low-rank update is insufficient for the SIRR task.

beneficial regularizer, encouraging the VAE to learn a more structured, disentangled, and semanti-
cally coherent latent space. This experiment validates our VAE design, confirming that we gain the
geometric structure required for our task without sacrificing the model’s core generative power.

Table 6: Comparison of image synthesis capabilities between our Reflection-Equivariant VAE and
the baseline FLUX VAE, evaluated on the GenEval benchmark. Our VAE, trained with the additional
linearity constraint, maintains and slightly improves upon the synthesis quality of the baseline.

Compositional Attribute Baseline VAE (FLUX) Ours (Reflection-Equivariant)
Single Object 97.81% 99.38%
Two Objects 77.78% 79.29%
Counting 72.81% 71.88%
Colors 76.86% 80.85%
Position 18.00% 21.25%
Color Attributes 42.25% 45.25%
Overall Score 0.64252 0.66316

D MORE VISUAL CASES

In this section, we bring more visual comparison on real-world cases in Fig. 7, Real20 in Fig. 8, SIR2
in Fig. 9, Nature and OpenRR in Fig. 10. As demonstrated in these cases, our method outperforms
the previous methods consistently.
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(a) Input (b) IBCLN (c) YTMT (d) DSRNet

(e) DSIT (f) RDNet (g) DAI (h) Ours

Figure 7: Qualitative comparisons on real-world cases. Please zoom in for more details.
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(a) Input (b) YTMT (c) DSRNet (d) DSIT

(e) RDNet (f) DAI (g) Ours (h) GT

Figure 8: Qualitative comparisons on Real20. Please zoom in for more details.
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(a) Input (b) YTMT (c) DSRNet (d) DSIT

(e) RDNet (f) DAI (g) Ours (h) GT

Figure 9: Qualitative comparisons on SIR2. Please zoom in for more details.
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(a) Input (b) YTMT (c) DSRNet (d) DSIT

(e) RDNet (f) DAI (g) Ours (h) GT

Figure 10: Qualitative comparisons on Nature and OpenRR. Please zoom in for more details.
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