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Abstract

This study aims to address the pervasive chal-001
lenge of quantifying uncertainty in large lan-002
guage models (LLMs) without logit-access.003
Conformal Prediction (CP), known for its004
model-agnostic and distribution-free features,005
is a desired approach for various LLMs and006
data distributions. However, existing CP meth-007
ods for LLMs typically assume access to the008
logits, which are unavailable for some API-009
only LLMs. In addition, logits are known010
to be miscalibrated, potentially leading to de-011
graded CP performance. To tackle these chal-012
lenges, we introduce a novel CP method that013
(1) is tailored for API-only LLMs without logit-014
access; (2) minimizes the size of prediction015
sets; and (3) ensures a statistical guarantee of016
the user-defined coverage. The core idea of this017
approach is to formulate nonconformity mea-018
sures using both coarse-grained (i.e., sample019
frequency) and fine-grained uncertainty notions020
(e.g., semantic similarity). Experimental results021
on both close-ended and open-ended Question022
Answering tasks show our approach can mostly023
outperform the logit-based CP baselines.024

1 Introduction025

Large Language Models (LLMs) have made signif-026

icant advancements (Thoppilan et al., 2022; Wei027

et al., 2022, 2023), highlighting the research po-028

tential of natural language generation (Peinl and029

Wirth, 2023). However, they often generate infor-030

mation that is not accurate, factual, or grounded031

in reality, referred to as "hallucination" (LeCun,032

2023). Therefore, it is crucial to quantify LLM033

uncertainty to ensure responsible responses.034

However, uncertainty quantification (UQ) for035

LLMs is challenging due to the complex data dis-036

tributions and inner model mechanism, as well as037

the often limited access to logit information. A038

potential solution is to use conformal prediction039

(CP) (Vovk et al., 2005; Angelopoulos and Bates,040

2021; Kato et al., 2023), which is known for being041

model-agnostic and distribution-free, and with rig- 042

orous coverage guarantees. Given a user-defined 043

error rate α, CP provides a guaranteed coverage 044

rate for prediction sets/intervals. It measures the 045

uncertainty from a model prediction using noncon- 046

formity score functions, e.g., 1− f(X)Y (Sadinle 047

et al., 2019), where f(X)Y is the softmax score for 048

the true label Y . 049

Most of the existing CPs for LLMs rely on the 050

access to model logits to measure nonconformity 051

scores. For instance, Kumar et al. (2023) define 052

nonconformity scores as softmax scores for logits 053

of different options in the multi-choice question an- 054

swering (MCQ) task and Quach et al. (2023) apply 055

the conformal risk control framework (Angelopou- 056

los et al., 2021), an extension of CP, to LLMs by 057

utilizing model-based log probability. However, 058

for some API-only LLMs like Bard (Manyika and 059

Hsiao, 2023), logit-access is almost impossible for 060

end users. Even though the logits are available (e.g., 061

for GPT 4V (OpenAI, 2023)), they are known to 062

be miscalibrated and can lead to degraded perfor- 063

mance of CP w.r.t. estimating the prediction sets or 064

intervals (Nguyen and O’Connor, 2015; Lin et al., 065

2022), e.g., a large set size (i.e., low efficiency). 066

To enable CP without logit-access, a straightfor- 067

ward way is to calculate the frequency of each re- 068

sponse via sampling and approximate model-based 069

probabilities. However, we theoretically prove that 070

this approach is extremely computationally expen- 071

sive (Lemma 3.1). As nonconformity scores typi- 072

cally measure the level of uncertainty, CP depends 073

on the ranking of the nonconformity measures 074

rather than their actual values (Shafer and Vovk, 075

2008). Therefore, we propose to sample responses 076

for a certain number of times (e.g., 30) for each in- 077

put and then utilize the frequency of each response 078

as a coarse-grained uncertainty notion. This ap- 079

proach reduces the overall sampling costs and elim- 080

inates the dependence on the logits. However, 081

when using frequency as the only nonconformity 082
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Figure 1: Illustrations of the proposed problem and solution. Three uncertainty notions for measuring nonconformity:
(1) Frequency-only, where the nonconformity score is calculated as 1− the frequency of a response out of 10 samplings.
Concentration issues arise at scores of 0.6, 0.7, and 0.8. For instance, responses from different prompts (e.g., "Big Bill Broonzy"
and "Joan Rivers") have the same score of 0.6, as well as responses within the same prompt (e.g., "Bill Boonzy" and "Sir William
Rockington") which both have a score of 0.7, and so forth. (2) Frequency combined with NE, where the nonconformity score
is calculated as 1− frequency + NE, revealing concentration issues at scores of 0.75 and 0.86. (3) Frequency, NE, and SS
combined, where the nonconformity score is calculated as 1− frequency + NE − SS, with no observed concentration issues.

measure, we observe that nonconformity scores083

concentrate on certain values as some responses084

may share the same frequency even if they have085

varied levels of uncertainty (see Figure 1), conse-086

quently diminishing the efficiency of prediction087

sets. To distinguish between responses that share088

the same frequency, we first identify two potential089

causes: the respective concentration issues across090

different prompts and within the same prompt. We091

then propose two additional fine-grained uncer-092

tainty notions: normalized entropy (NE), measur-093

ing prompt-wise self-consistency to alleviate con-094

centration issues across different prompts; and se-095

mantic similarity (SS), measuring response-wise096

similarity to the most frequent response within the097

same prompt, to mitigate internal concentration is-098

sues specific to the prompt. Figure 1 illustrates099

the different nonconformity scores defined using100

frequency-only, frequency combined with NE, and101

frequency combined with NE and SS as noncon-102

formity measures, respectively. By considering103

various uncertainty information, the proposed non-104

conformity score function can better distinguish105

the uncertainty of different responses.106

Our contributions are summarized as follows:107

• To our knowledge, this is the first CP work dedi-108

cated to LLMs without logit-access that provides109

a coverage guarantee for the prediction set with110

a small size.111

• We propose a novel CP approach that uses both112

course-grained and fine-grained uncertainty no-113

tions as the non-conformity measures. We also114

theoretically prove (1) it is computationally infea- 115

sible to use response frequency to approximate 116

model output probability, and (2) our approach 117

ensures a rigorous statistical coverage guarantee. 118

• We conduct experiments on both close- and open- 119

ended QA tasks and demonstrate the effective- 120

ness of our method. Notably, we mostly surpass 121

all baselines, including four logit-access methods 122

and one method without logit-access. 123

2 Preliminaries of Conformal Prediction 124

Conformal prediction (CP) (Vovk et al., 2005) is a 125

model-agnostic method offering distribution-free 126

uncertainty quantification, which produces predic- 127

tion sets/intervals containing ground-truth labels 128

with a desired error rate α. One of the widely used 129

CP methods is split CP. Formally, let (X,Y ) be a 130

sample, where X represents features and Y repre- 131

sents the outcome. We denote the calibration set as 132

(Xi, Yi)i=1,...,n and the test set as (Xtest, Ytest). CP 133

presents the following nesting property: 134

α1 > α2 ⇒ C1−α1(X) ⊆ C1−α2(X). (1) 135

Theorem 2.1 (Conformal coverage guarantee). 136

Suppose (Xi, Yi)i=1,...,n and (Xtest, Ytest) are 137

independent and identically distributed (i.i.d.). 138

C1−α(Xtest) is a set-valued mapping satisfying 139

the nesting property in Eq. 1. Then the following 140

holds: 141

P (Ytest ∈ C1−α(Xtest)) ≥ 1− α, (2) 142

where α ∈ (0, 1) is the user-defined error rate. 143
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Nonconformity Measures. The nonconformity144

measure N is a core element in CP. It measures145

uncertainty in the model’s output by assessing the146

deviation of a specific instance or output from pat-147

terns observed in the training data. Typically, we148

have logit access to models to measure nonconfor-149

mity, e.g., 1− f(X)Y . For LLMs, N is typically150

derived from the post-hoc logits.151

Split CP Steps. Split CP typically involves four152

steps (Angelopoulos and Bates, 2021):153

1. Establish heuristic uncertainty notions.154

2. Define the nonconformity measures/score func-155

tion N(x, y) ∈ R.156

3. Compute q̂ as the ⌈(n+1)(1−α)⌉
n quantile of the157

nonconformity scores.158

4. Use q̂ to generate prediction sets for new exam-159

ples: C(Xtest) = {Y : N(Xtest, Y ) ≤ q̂}.160

3 Methodology161

Our method considers two pivotal challenges aris-162

ing from the LLMs without logit-access: how to ap-163

proximate the logit information of LLMs; and how164

to further improve CP efficiency, i.e., small predic-165

tion sets. We propose the Logit-free Conformal166

Prediction for LLMs (LofreeCP), where its non-167

conformity measures consist of three notions: fre-168

quency, representing coarse-grained uncertainty;169

NE, representing prompt-wise fine-grained uncer-170

tainty; and SS, representing response-wise fine-171

grained uncertainty.172

3.1 Frequency As the Rankings Proxy173

A straightforward way is to approximate real pre-174

dictive probabilities through a sufficiently large175

number of samplings. However, as we show in176

Lemma 3.1, a minimum of 9,604 samples is re-177

quired to achieve a 95% confidence level with a 1%178

margin of error. Therefore, the implementation is179

impractical due to computational constraints.180

Lemma 3.1 (Minimum Sample Size for Confident181

Probability Estimation). Let freq(Yi) be the fre-182

quency of outcome Yi in the sampling, Ntotal be183

the total number of samplings, pi be the desired184

estimated probability, ϵ be the estimation error, and185

δ be the target confidence level. To determine the186

minimum sample size for confident probability es-187

timation, for any given ϵ > 0 and 0 < δ < 1, the188

following inequality must hold:189

P

{∣∣∣∣freq(Yi)

Ntotal
− pi

∣∣∣∣ ≤ ϵ

}
≥ δ. (3)190

Then, the minimum sample size Ntotal satisfying 191

Inequality 3 is given by: 192

Ntotal ≥
(u1−(1−δ)/2

2ϵ

)2

, (4) 193

where u1−(1−δ)/2 is the quantile of the standard 194

normal distribution corresponding to the confi- 195

dence level 1− (1− δ)/2. The proof of Lemma 3.1 196

is given in Appendix A.1. 197

Since nonconformity measures are grounded 198

in assessing the model’s predictive uncertainty 199

(Shafer and Vovk, 2008), the primary focus lies 200

in the rankings of uncertainty inherent in noncon- 201

formity measures rather than the absolute values 202

themselves. Further, self-consistency theory (Wang 203

et al., 2022; Li et al., 2022) states that a repetitively 204

sampled response is viewed as a form of consis- 205

tency linked to higher confidence in the response. 206

To empirically validate this intuition, we randomly 207

select 2000 questions from the TriviaQA dataset 208

(Joshi et al., 2017). We conducted 20 samplings 209

from the Llama-2-7b model (Touvron et al., 2023), 210

extracted logits, and subsequently computed model 211

output probabilities. The observed results depicted 212

in Figure 2a indicate a direct positive correlation 213

between response frequency and average real prob- 214

ability. As the response frequency climbs, there is 215

a corresponding increase in the average real prob- 216

ability, suggesting a growing level of confidence 217

and certainty in the model’s responses. Therefore, 218

we propose to use frequency as the proxy of proba- 219

bility ranking. It is defined as 220

F (ŷ(i)
a ,m) =

p̃[ŷ
(i)
a ]

m
, (5) 221

where ŷ
(i)
a is the a-th non-repeated sampled re- 222

sponse for i-th prompt, m is the sampling quantity 223

from LLMs for each prompt. However, only using 224

response frequency as nonconformity measures re- 225

sults in the concentration of nonconformity scores 226

on certain values. This issue makes it challenging 227

to discern nonconformity differences among re- 228

sponses with the same scores, rendering ineffective 229

calibration in CP. 230

3.2 Fine-grained Uncertainty Notions 231

To resolve the concentration issue, we propose two 232

fine-grained uncertainty measures. Firstly, inspired 233

by self-consistency theory (Wang et al., 2022; Li 234

et al., 2022), we incorporate NE, a prompt-wise 235

fine-grained uncertainty notion, to mitigate the con- 236

centration issue across different prompts. NE is 237
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Figure 2: Empirical findings with TriviaQA dataset.

a measure of the uncertainty or diversity in the238

model’s predictions when generating responses to239

a given prompt. It is defined as240

H(x(i)|{ŷ(i)
j }

m
j=1) =

∑n
a=1 p̃(ŷ

(i)
a ) log(p̃(ŷ

(i)
a ))

logm
, (6)241

where x(i) is the i-th instance of the prompt dataset,242

m is the number of sampled responses, n is the243

number of non-repeated responses, ŷ(i)j is the j-244

th sampled response. Following experiments in245

Section 3.1, we show that as NE increases, the246

number of unanswered questions also increases247

(Figure 2b), indicating a rise in uncertainty.248

Secondly, to address concentration issues within249

a prompt, we introduce SS as a response-wise fine-250

grained uncertainty measure. This metric semanti-251

cally assesses the similarity between each non-top-252

1 response and the top-1 response within a prompt.253

Intuitively, when two non-top-1 responses share the254

same frequency, the one more semantically similar255

to the top-1 response is more likely to express high256

confidence and low uncertainty. We use the cosine257

similarity to express SS. It is defined as258

SS(ŷ(i)
a , P

(i)

highest) =
v(ŷ

(i)
a ) · v(P (i)

highest)

∥v(ŷ(i)
a )∥ · ∥v(P (i)

highest)∥
, (7)259

where v(x) is the vector representation of x,260

P
(i)
highest is the response having the highest frequency261

for i-th prompt. However, if the response to be mea- 262

sured is the one with the highest frequency, we do 263

not consider SS with itself. 264

3.3 CP for LLMs Without Logit-Access 265

Considering both the coarse-grained and fine- 266

grained uncertainty notions, the final nonconfor- 267

mity score function of LofreeCP is defined as 268

N (i) = −F (ŷ(i)
a ,m) + λ1 ·H(x(i)|{ŷ(i)

j }
m
j=1)

− λ2 · SS(ŷ(i)
a , P

(i)
highest),

(8) 269

where λ = (λ1, λ2) representing a hyperparam- 270

eter configuration controls the balance between 271

the coarse-grained and fine-grained uncertainty no- 272

tions. LofreeCP has the coverage guarantee: 273

Proposition 3.2 (Coverage guarantee of LofreeCP). 274

Suppose (Xi, Yi)i=1,...,n and (Xtest, Ytest) are i.i.d. 275

Let C1−α(Xtest) be defined as in Step 3. Then we 276

have the coverage guarantee: 277

P {Ytest ∈ C1−α (Xtest)} ≥ 1− α, 278

where α ∈ (0, 1) denotes the desired error rate. 279

The proof of the coverage guarantee of LofreeCP 280

is provided in Appendix A.2. 281

LofreeCP consists of three stages: calibration, 282

validation, and testing. The calibration stage aims 283

to find the quantile based on the desired error rate. 284

We sample m responses from the LLM for each 285

prompt and store them in a response pool. Then, we 286

obtain the nonconformity scores of the true labels 287

with the following rules: if the true label exists in 288

the pool, we use the nonconformity measures from 289

Equation 8 to calculate its nonconformity score; 290

otherwise, we set the nonconformity score as ∞ 291

to signify that it is nearly impossible to for the 292

LLM to generate the true response. After obtaining 293

all nonconformity scores of the calibration set, we 294

find the quantile based on the desired error rate. 295

We use this quantile as a threshold value for both 296

the validation and test stages. 297

We then use the validation set to choose the op- 298

tima hyperparameter configuration λ = (λ1, λ2). 299

Subsequently, we conduct evaluations on the test 300

set using the chosen configuration. Both stages 301

follow identical sampling steps to the calibration, 302

traversing all responses and calculating the noncon- 303

formity scores. We preserve the responses whose 304

nonconformity score is less than the threshold in 305

our final prediction set. The pseudocode of the 306

LofreeCP method is provided in Appendix B.9. 307
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Table 1: Results for TriviaQA using Llama-2-13b: Among all baselines, only First-Kwhite and First-Kblack are non-CP-based,
while the rest are CP-based methods. In the results, bold indicates that the method produces the best performance among all
methods; ✗ denotes that the method fails to produce the set with the desired error rate.

Methods Logit-Access
Error Rate

0.2 0.25 0.3
ECR SSC↑ APSS↓ ECR SSC↑ APSS↓ ECR SSC↑ APSS↓

First-Kwhite ✓ 82.1 76.6 3.39 76.1 72.9 1.90 ✗ ✗ ✗
CLM ✓ 80.2 73.4 2.29 75.2 69.1 1.55 70.1 68.3 1.28
SCP ✓ 80.3 75.7 2.25 75.1 70.0 1.59 70.3 74.5 1.21

SAPS ✓ 80.0 77.9 2.74 75.1 64.2 1.80 70.0 49.4 1.55
First-Kblack ✗ 80.1 76.8 2.70 76.4 72.2 1.90 ✗ ✗ ✗

LofreeCP (Ours) ✗ 80.1 79.0 2.19 75.3 74.5 1.43 70.3 76.7 1.08

Methods Logit-Access
Error Rate

0.35 0.4 0.45
ECR SSC↑ APSS↓ ECR SSC↑ APSS↓ ECR SSC↑ APSS↓

First-Kwhite ✓ ✗ ✗ ✗ 62.4 62.5 1.00 ✗ ✗ ✗
CLM ✓ 65.0 69.3 0.96 60.1 72.7 0.81 55.2 83.3 0.70
SCP ✓ 65.1 76.4 1.02 60.3 75.7 0.85 55.3 82.5 0.74

SAPS ✓ 65.1 57.4 1.28 60.1 70.7 0.85 55.1 76.5 0.72
First-Kblack ✗ 66.5 66.5 1.00 ✗ ✗ ✗ ✗ ✗ ✗

LofreeCP (Ours) ✗ 65.1 78.5 0.90 60.0 81.0 0.75 55.2 84.1 0.66

4 Experiments308

4.1 Experimental Setup309

Backbone LLMs and Evaluation Tasks. Since310

we need to compare LofreeCP with logit-based311

methods, from where logits can be retrieved di-312

rectly, we consider different open-source LLMs,313

including Llama-2-7B, Llama-2-13B, WizardLM-314

v1.2(13b) (Xu et al., 2023) and Vicuna-v1.5(7b)315

(Chiang et al., 2023) models as our backbone mod-316

els. Note that our method uses these LLMs as if317

they were API-only LLMs, i.e., it assumes no ac-318

cess to any internal information of LLMs. We use319

both open-ended Question-Answering (QA) and320

close-ended Multi-Choice Question-Answering321

(MCQ) tasks for evaluation.322

Datasets. We use standard benchmarking323

datasets TriviaQA and MMLU (Hendrycks et al.,324

2020), following (Kumar et al., 2023) and (Quach325

et al., 2023). We also include the WebQuestions326

benchmark (Berant et al., 2013). For QA, we use327

the TriviaQA dataset, which consists of trivia328

questions spanning a wide range of topics such329

as history and science, and the WebQuestions330

dataset, which is focused on questions asked by331

users on a search engine. MMLU dataset, covering332

57 subjects (e.g., mathematics, history), is used for333

MCQ. We focus on a subset of 16 subjects out of334

the total 57, as in Kumar et al. (2023).335

Baselines. Baselines include methods without336

logit-access and those based on logit:337

• Top-Kwhite. A logit-based non-CP method338

without coverage guarantee, which includes re-339

sponses with the first K highest probabilities for340

each prompt in the prediction set. 341

• Standard Split Conformal Prediction (SCP) 342

(Vovk et al., 2005). A logit-based CP method, 343

which follows the steps shown in Section 2. 344

• Sorted Adaptive Prediction Sets (SAPS) 345

(Huang et al., 2023). A logit-based CP method, 346

which uses the highest probability and replaces 347

other probabilities with some weighted values to 348

mitigate the miscalibration issue. 349

• Top-Kblack. A non-CP method without logit- 350

access and coverage guarantee, which includes 351

responses with the first K highest frequency for 352

each prompt in the prediction set. 353

• Conformal Language Modeling (CLM) 354

(Quach et al., 2023). The state-of-the-art 355

logit-based CP method, which uses the general 356

risk control framework. This baseline is only 357

used in QA as it is not applied to MCQ. 358

Metrics. We use following metrics for evaluation 359

(Angelopoulos and Bates, 2021): 360

• Empirical Coverage Rate (ECR) assesses 361

whether the conformal procedure has the correct 362

coverage with the theoretical guarantee. 363

• Size-Stratified Coverage (SSC) (Angelopoulos 364

et al., 2020) assesses the worst coverage rate of 365

each bin among different set sizes. 366

• Average Prediction Set Size (APSS) assesses the 367

efficiency of CP. We expect the APSS of an effi- 368

cient CP method to be small. 369

4.2 Results for QA 370

We perform QA using TriviaQA and WebQuestions 371

datasets. The results for Llama-2-13b are reported 372

in Tables 1-2, those for Llama-2-7b are shown in 373
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Table 2: Results for WebQuestions using Llama-2-13b.

Methods Logit-Access
Error rate

0.35 0.4 0.45 0.5
ECR SSC↑ APSS↓ ECR SSC↑ APSS↓ ECR SSC↑ APSS↓ ECR SSC↑ APSS↓

First-Kwhite ✓ 66.4 57.5 6.18 61.6 58.1 3.81 57.5 55.0 2.91 50.6 49.0 1.97
CLM ✓ 65.3 50.5 4.54 60.5 52.9 2.86 55.0 51.6 1.81 50.1 56.8 1.27
SCP ✓ 65.1 46.7 4.61 61.6 49.3 3.01 55.2 55.8 2.02 50.2 57.8 1.39

SAPS ✓ 65.2 46.2 5.19 60.6 56.2 3.39 55.5 37.7 2.40 50.8 21.7 1.86
First-Kblack ✗ 65.1 54.9 6.20 60.0 55.3 3.78 56.9 54.4 2.91 53.7 52.4 1.97

LofreeCP (Ours) ✗ 65.1 61.1 5.33 60.0 60.0 2.68 55.1 60.1 1.60 50.3 59.9 1.06

the sensitivity analysis of Section 4.5 and those for374

WizardLM-v1.2(13b) and Vicuna-7b-v1.5 can be375

found in Appendix D. In Table 1, the LofreeCP376

method excels on TriviaQA across all error rate377

settings, outperforming the second-best method,378

CLM, by 7.7% in terms of APSS at an error rate379

of 0.25. Regarding SSC, our LofreeCP method380

surpasses the second-best method, First-Kwhite, by381

1.6%. In Table 2, our method demonstrates superior382

performance on WebQuestions in most settings.383

For instance, at an error rate of 0.45, our LofreeCP384

method outperforms the second-best method, CLM,385

by 11.6% in terms of APSS. Regarding SSC, we386

outperform the second-best method, SCP, by 4.3%.387

WizardLM-v1.2(13b) and Vicuna-7b-v1.5 exhibit388

similar trends to Llama-2-13b.389

The smallest APSS indicates that our method390

can produce the most efficient prediction sets. The391

highest SSC indicates that our method is attentive392

to the conditional coverage rate, achieving well-393

calibrated uncertainty estimates within diverse size394

categories. The rationale behind the observed su-395

perior performance is that our nonconformity mea-396

sure can capture the coarse-grained uncertainty of397

responses and effectively optimize nonconformity398

through fine-grained considerations, thereby miti-399

gating the inherent miscalibration issue in LLMs.400

4.3 Ablation Study401

To demonstrate the impact of our fine-grained un-402

certainty notions (NE and SS) on mitigating the403

concentration issues, we conduct a series of ab-404

lation studies using the TriviaQA dataset with a405

sampling quantity of 20. We compare LofreeCP406

with its different variants: we remove one fine-407

grained notion at a time (Freq&SS, removing the408

NE notion; and Freq&NE, removing the SS no-409

tion), and finally remove both fine-grained notions410

(Freq-Only). We report APSS and ECR, the direct411

indicators of the concentration issue, in Figure 3.412

Impact of Concentration Issue. As introduced413

in Section 3, the concentration issue occurs when414

the nonconformity score is concentrated on cer- 415

tain values. When we use the frequency-only vari- 416

ant (Freq-Only), this issue can be observed in all 417

error rate settings, as shown in Figure 3: Freq- 418

Only has the largest APSS and the most conser- 419

vative ECR. Due to its coarse-grained uncertainty 420

notion, Freq-Only tends to generate similar non- 421

conformity scores clustered into several groups, 422

making it hard to differentiate granular uncertain- 423

ties to produce efficient prediction sets. 424

Full Method Mitigates Concentration Issue. 425

We further observe that the concentration issue is 426

mitigated in all error rate settings by incorporating 427

fine-grained notions (NE & SS). For example, at 428

an error rate of 0.2, Freq-Only exhibits an APSS of 429

nearly 6.5, while the full method LofreeCP has an 430

APSS of 4.27, resulting in a drop of more than 23%. 431

The method including only SS or NE also mitigates 432

the concentration issue to some extent, while the 433

full method performs the best in terms of APSS and 434

ECR. The results suggest that NE and SS both have 435

a significant impact on improving the efficiency of 436

prediction sets by mitigating concentration issues 437

of nonconformity scores. 438

4.4 Results for MCQ 439

In addition to open-ended tasks, e.g. QA, LofreeCP 440

is also effective at close-ended tasks that can be con- 441

verted into a generation pipeline, e.g. MCQ. We 442

conduct MCQ experiments on the MMLU dataset 443

using Llama-2-13b with a sampling quantity of 20. 444

We present the results in Figure 4.1 LofreeCP ex- 445

hibits superior performance. When compared with 446

SCP and SAPS across all 16 subjects, LofreeCP 447

achieves the best performance in 9 subjects and ties 448

for the best in subjects of professional medicine, 449

college chemistry, and marketing, resulting in the 450

overall best performance in 12 out of 16 subjects. 451

In contrast, SCP only ties for the best in 3 sub- 452

1We omit the results from top-K methods as they exhibit
much larger APSS than other methods for MCQ.
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Figure 3: Ablation study. The blue bar chart represents APSS,
while the gray line represents ECR.

jects. SAPS achieves the solo best performance in453

3 subjects and ties for the best in 1 subject.454

An intriguing observation is related to subjects455

in the business and management (B&M) category456

(e.g., marketing and public relations). When us-457

ing LofreeCP method, these subjects show slightly458

larger APSS than the two logit-based methods,459

SCP and SAPS. This suggests that the logits for re-460

sponses to B&M questions predicted by the Llama-461

2-13b model are better calibrated than the remain-462

ing subjects from the Science, Technology, Engi-463

neering, and Mathematics (STEM) category. Our464

LofreeCP method mitigates the model miscalibra-465

tion issue by refraining from directly using logits.466

4.5 Sensitivity Analyses467

BackBone Models. To investigate the influence468

of different backbone models on the performance469

of LofreeCP, we conduct experiments using Llama-470

2-7b and Llama-2-13b with a sampling quantity of471

20. Results of SSC and APSS are shown in Figure472

5. We observe that better performance of APSS473

and SSC in the 13b setting than in the 7b setting.474

We believe this is because Llama-2-13b is more475

powerful than Llama-2-7b, and produces more con-476

fident and calibrated responses, thereby providing477

more efficient prediction sets. Results for Vicuna-478

v1.5(7b) are provided in Appendix D, indicating479

that Vicuna-v1.5(7b) can only produce prediction480

sets with higher error rates compared to Llama-2481

backbones. This is because Vicuna-v1.5(7b) is less482

powerful for these two datasets. This demonstrates483

2 2.5 3 3.5
APSS

Professional accounting
Business ethics

Management
Public relations

Marketing
College chemistry

Professional medicine
College medicine

Clinical knowledge
Anatomy

High school biology
Formal logic

Machine learning
College computer science

High school computer science
Computer security

SCP
SAPS
LICP
(Ours)

Figure 4: Results on MCQ task, with the error rate of 0.2.
Our method and baselines are applied individually to each of
the 16 subjects.

that CP performance for LLMs is largely dependent 484

on the performance of the backbone models. 485

Sampling Quantity The sampling quantity regu- 486

lates the number and types of sampled responses ac- 487

quired from LLMs, thereby influencing frequency, 488

NE and SS. We vary the sampling quantity from 10 489

to 40 on the TriviaQA dataset using Llama-2-13b, 490

incrementing by 5 each time. Results shown in Fig- 491

ure 6 suggest that a larger sampling quantity tends 492

to present better performance w.r.t. efficiency. This 493

is because, with a higher sampling quantity, the fre- 494

quency notion more accurately represents response 495

rankings. Of particular interest is that, at an error 496

rate of 0.2, the sampling quantity of 15 exhibits in- 497

ferior performance compared to the quantity of 10. 498

We hypothesize it is because a sampling quantity 499

of 15 remains insufficient to adequately represent 500

rankings meanwhile introducing more non-robust 501

randomness in responses. In addition, we observe 502

0.25 0.3 0.35 0.4 0.45
Error Rate

0

2

4

6

8

10
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C
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Figure 5: Results of the sensitivity analysis for different
backbone models: Llama-2-7b and Llama-2-13b.
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Figure 7: Sensitivity analysis of temperature.

a larger impact of the sampling quantity on APSS503

when a small error rate guarantee is required.504

Temperature Scaling. The temperature (Hinton505

et al., 2015) in LLMs adjusts the randomness in506

generated outputs by scaling logits during the soft-507

max operation. Higher temperatures boost the di-508

versity of the output, which may further affect the509

performance of LofreeCP. In this experiment, we510

vary temperatures2 (0.5, 0.75, 1.0, 1.25, and 1.5) in511

the Llama-2-13b model. Results for the TriviaQA512

dataset are presented in Figure 7. The smallest513

(best) APSS is observed at a temperature of 0.75.514

We observe an overall growing trend as the temper-515

ature increases from 0.75 to 1.50. This indicates516

that excessive diversity can result in uncertain and517

suboptimal predictions. The decline from 0.50 to518

0.75 implies that too much determinism may hurt519

CP efficiency due to a lack of randomness and520

diversity. We also note a significant temperature521

influence on APSS when aiming for low error rates.522

5 Related Work523

Conformal Prediction for NLP. CP has already524

found diverse applications in NLP, e.g., text infill-525

ing and part-of-speech prediction Dey et al. (2021),526

sentiment analysis Maltoudoglou et al. (2020), and527

Automatic Speech Recognition Ernez et al. (2023).528

In the application of CP to LLMs, existing meth-529

ods are predominantly logit-based. For instance,530

Kumar et al. (2023) apply standard CP (Vovk et al.,531

2005) to Llama-2-13b (Touvron et al., 2023) for the532

2Temperature ranges between 0 and 2.

MCQ task by computing softmax scores of token 533

logits for options to measure nonconformity. Simi- 534

larly, Quach et al. (2023) extend CP to LLMs using 535

the general risk control framework (Angelopou- 536

los et al., 2021). However, recent studies have 537

pointed out that relying solely on logits may be 538

flawed due to the potential issue of hallucinations 539

in LLMs (LeCun, 2023). Consequently, there is 540

ongoing research aiming to reduce reliance on log- 541

its. Huang et al. (2023) propose to use the high- 542

est probability and replace other probabilities with 543

weighted values. All these methods involve the 544

utilization of logits. 545

Uncertainty Estimation in LLMs. Recent de- 546

velopments in LLMs have highlighted the im- 547

portance of estimating their uncertainty. While 548

there has been significant research on uncertainty 549

in NLP (Van Landeghem et al., 2022; Ulmer 550

et al., 2022), several methods exist to estimate 551

the confidence of LLMs. These include Deep En- 552

semble methods (Lakshminarayanan et al., 2017), 553

Monte Carlo dropout (Gal and Ghahramani, 2016), 554

Density-based estimation (Yoo et al., 2022), Confi- 555

dence learning (DeVries and Taylor, 2018), as well 556

as approaches based on logits. However, recent 557

studies highlight concerns that LLMs may generate 558

unfaithful and nonfactual content (Maynez et al., 559

2020). Additionally, the logits of LLMs’ outputs 560

often exhibit overconfidence when producing these 561

incorrect answers, indicating that logits alone may 562

not be entirely reliable for studying uncertainty 563

(Desai and Durrett, 2020; Miao et al., 2021; Vas- 564

concelos et al., 2023). 565

6 Conclusion 566

We study the critical problem of CP for API-only 567

LLMs without logit-access. We propose a novel 568

solution to define the nonconformity score func- 569

tion by leveraging uncertainty information from 570

diverse sources. In particular, under a limited sam- 571

pling budget, we first use the response frequency as 572

the coarse-grained proxy of uncertainty levels. We 573

then propose two fine-grained uncertainty notions 574

(NE and SS) to further distinguish uncertainty at 575

a nuanced level. Our proposed approach does not 576

rely on model logits and can alleviate the known 577

miscalibration issue when using logits. Experi- 578

ments demonstrate the superior performance of our 579

approach compared to logit-based and logit-free 580

baselines. Our work opens up a new avenue to un- 581

certainty estimation in LLMs without logit-access. 582
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Limitations583

Our approach encounters a common limitation of584

open-ended Natural Language Generation (NLG)585

tasks: the unbounded output space. In our work, we586

address this challenge by sampling a fixed number587

of times for every prompt from LLMs to achieve588

a comprehensive output space, but we recognize589

the potential for more effective and convincing ap-590

proaches to handle this issue within the framework591

of CP. Secondly, another future direction is to ex-592

pand our CP method to non-exchangeability sce-593

narios, particularly in NLG domains, where cal-594

ibration and test sets may not adhere strictly to595

the assumption of being independent and identi-596

cally distributed (i.i.d.). Finally, due to financial597

constraints, we do not evaluate our approach on598

several proprietary LLMs (e.g., GPT 4) that allow599

users to obtain token log probabilities. Thus future600

work can validate our method on these models.601

Ethics Statement602

This paper does not raise any ethical concerns. The603

data and resources we use are all open-sourced and604

openly accessible. Access to Llama-2 is available605

upon request with permission from Meta.606
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A Theoretical Proofs791

A.1 Proof of Lemma 3.1792

Proof. When Ntotal is sufficiently large, the Linde-793

berg–Lévy central limit theorem yields the follow-794

ing equation:795

freq(Yi)
Ntotal

− pi√
pi(1− pi)/Ntotal

∼ N(0, 1).796

From this, we conclude that797

P

{∣∣∣∣∣
freq(Yi)
Ntotal

− pi√
pi(1− pi)/Ntotal

∣∣∣∣∣ ≤ u1−(1−δ)/2

}
= δ.798

Approximately replacing pi in the denominator799

with freq(Yi)
Ntotal

, we obtain800

P{freq(Yi)
Ntotal

− u1−(1−δ)/2·801 √
freq(Yi)

Ntotal
(1− freq(Yi)

Ntotal
) ≤802

pi ≤
freq(Yi)

Ntotal
+ u1−(1−δ)/2·803 √

freq(Yi)

Ntotal
(1− freq(Yi)

Ntotal
)}804

= δ.805

Therefore, to ensure806

u1−(1−δ)/2 ·

√
freq(Yi)

Ntotal
(1− freq(Yi)

Ntotal
) · 2 ≤ 2ϵ,807

we only need808 √
1/4

Ntotal
· u1−(1−δ)/2 · 2 ≤ 2ϵ.809

This simplifies to810

Ntotal ≥
(u1−(1−δ)/2

2ϵ

)2

811

812

A.2 Proof of Proposition 3.2813

Proof. Let N denote the nonconformity measures814

of the calibration set (Xi, Yi)i=1,...,n, and let α1815

and α2 be the desired error rates, where α1 > α2.816

As indicated in Step 2, we have q̂1 ≤ q̂2. Given817

C(Xtest) = {Y : N(Xtest, Y ) ≤ q̂}, it follows that818

C1−α1(X) ⊆ C1−α2(X). Consequently, the nest-819

ing property, as defined in Equation 1, is satisfied.820

Therefore, Proposition 3.2 holds.821

B Implementation Details 822

B.1 Dataset 823

The TriviaQA benchmark (available at https: 824

//nlp.cs.washington.edu/triviaqa/ or can 825

be accessed from Hugging Face at https: 826

//huggingface.co/datasets/trivia_qa) and 827

the WebQuestions benchmark (available at 828

worksheets.codalab.org or can be accessed 829

from Hugging Face at https://huggingface. 830

co/datasets/web_questions) are employed for 831

QA. Both datasets operate within a closed-book 832

setting, where LLMs refrain from using supporting 833

text when answering questions. 834

The MMLU benchmark (can be accessed 835

from Hugging Face at https://huggingface. 836

co/datasets/lukaemon/mmlu) is designed for 837

MCQ, which covers 57 subjects across STEM, the 838

humanities, the social sciences, and more. For 839

our MCQ experiments, we leverage the dataset 840

containing 16 subjects from the MMLU bench- 841

mark: computer security, high school computer 842

science, college computer science, machine learn- 843

ing, formal logic, high school biology, anatomy, 844

clinical knowledge, college medicine, professional 845

medicine, college chemistry, marketing, public re- 846

lations, management, business ethics, professional 847

accounting. 848

For the TriviaQA dataset, we randomly select 849

10,000 question-answer pairs. Similarly, for the 850

WebQuestions dataset, we randomly select 5,000 851

question-answer pairs. Regarding the MMLU 852

dataset, we use all available data for each of the 16 853

subjects. Across all three datasets, we apply the 854

same splitting strategy: 50% of the data serves as 855

the calibration set, 25% as the validation set, and 856

25% as the test set for each trial. 857

B.2 Backbone LLMs 858

We utilize the Hugging Face API to access 859

open-source LLMs in our experiments, includ- 860

ing Llama-2-7B (accessible at huggingface. 861

co/meta-llama/Llama-2-7b-hf), Llama- 862

2-13B (accessible at huggingface.co/ 863

meta-llama/Llama-2-13b-hf), WizardLM- 864

v1.2(13b) (accessible at huggingface.co/ 865

WizardLM/WizardLM-13B-V1.2), and Vicuna- 866

v1.5(7b) (accessible at huggingface.co/lmsys/ 867

vicuna-7b-v1.5). Access to Llama-2-7b and 868

Llama-2-13b requires requesting approval via 869

the Meta website (https://llama.meta.com/). 870

Upon approval, access to these resources will be 871
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granted.872

B.3 Metrics873

For SSC, We focus exclusively on bins with a set874

size greater than 0 and a sample number exceeding875

10% of the total test samples. This is because bins876

with a size of 0 and fewer samples lack reliability877

for coverage measurement.878

B.4 LLMs Parameters879

We employ the default Transformer generative LMs880

parameters for our experiments, using default stan-881

dard sampling with do_sample set to True, top_k882

set to 0, top_p set to 1, and Temperature set to883

1, except when conducting model hyperparameter-884

tuning experiments. In such hyperparameter-tuning885

cases, we explicitly mention the parameters in main886

body of the paper.887

B.5 Semantic Similarity888

The measure of semantic similarity was established889

leveraging the FastText model available within the890

gensim package. The configuration parameters891

were carefully selected, defining a vector size of892

200 and imposing a minimum count threshold of 1893

to ensure robustness and inclusivity in the model’s894

representations.895

B.6 Experiment trails896

We conduct 50 trials for all experiments, then aver-897

age the results to eliminate randomness during the898

calibration.899

B.7 Error Rate Settings900

We do not apply the same error rate settings across901

different models or datasets. This is because each902

model varies in its coverage ability for the same903

dataset. Likewise, the same model doesn’t possess904

identical coverage abilities for different datasets.905

Therefore, we adjust error rate settings for different906

combinations of model and dataset accordingly.907

B.8 GPUs908

We utilize six NVIDIA RTX 3090 graphics cards909

to support experiments.910

B.9 Pseudocode911

We show the pseudocode in Method 1, where we912

do not explicitly display the repetitive process of913

using various hyperparameter configurations to de-914

termine the best one. In our actual implementations,915

we explore the range [0:0.05:2] for both λ1 and λ2.916

This range spans from 0 to 2, with each step incre- 917

menting by 0.05, thus covering values such as 0, 918

0.05, 0.1, 0.15, and so forth up to 2. Subsequently, 919

we form different combinations to execute the cali- 920

bration and validation stages. Ultimately, we utilize 921

the best hyperparameter configurations for testing 922

purposes. 923

Method 1 LofreeCP method
Require: Prompt x(i), LLM fθ , response ŷ

(i)
j , current sam-

pling number j, required sampling number m, response
pool P (i), response with the highest frequency P

(i)
highest,

semantic similarity between response a and b: S(a,b)
1: for x(i), i = 1 to n do

P (i) = {} ▷ Calibration stage starts
2: for j = 1 to m do

ŷ
(i)
j ←− fθ(x

(i)) ▷ Sample response from LLM
given the prompt

3: if ŷ(i)
j in P (i) then

p̃[ŷ
(i)
j ] ++ ▷ Increment frequency for existing

response
4: else

p̃[ŷ
(i)
j ] = 1 ▷ Initialize frequency for new response

5: end if
6: end for
7: Sort(P (i))
8: Get P (i)

highest ▷ Get the response with the highest
frequency

9: if y(i) in P (i) then
N (i) = p̃[ŷ

(i)
a ]
m

+ λ1 · H(x(i)|{ŷ(i)
j }

m
j=1) - λ2 ·

S(ŷ
(i)
a , P

(i)
highest)

10: else
N (i) =∞ ▷ Nonconformity measures

11: end if
12: end for
13: q̂α = Quantile({N (1), N (2), ..., N (n)}, ⌈(n+1)(1−α)⌉

n
) ▷

Find quantile q̂α ▷ Calibration stage ends
14: for sampling same as 1 ~ 7 do ▷ Validation / Test stage

starts
15: for each ŷ

(i)
α in P (i) do

N
(i)
α = P (i)[ŷ

(i)
α ]

m
+ λ1 · H(x(i)|{ŷ(i)

j }
m
j=1) - λ2 ·

S(ŷ
(i)
α , P

(i)
highest)

16: end for
17: C(x

(i)
test) = {ŷ

(i)
a : N

(i)
α ≤ q̂} ▷ Nonconformity

measures
18: end for ▷ Validation / Test stage ends

C Prompts 924

C.1 Few-shot Prompts of TriviaQA 925

We use the 32-shot question-answer pair prompts 926

from the TriviaQA dev set, the same as those in 927

Quach et al. (2023). 928

Answer these questions. 929

Q: Which American-born Sinclair won the 930

Nobel Prize for Literature in 1930? 931

A: Sinclair Lewis 932
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Q: Where in England was Dame Judi Dench933

born?934

A: York935

Q: In which decade did Billboard936

magazine first publish an American hit937

chart?938

A: 30s939

Q: From which country did Angola achieve940

independence in 1975?941

A: Portugal942

Q: Which city does David Soul come from?943

A: Chicago944

Q: Who won Super Bowl XX?945

A: Chicago Bears946

Q: Which was the first European country947

to abolish capital punishment?948

A: Norway949

Q: In which country did the widespread950

use of ISDN begin in 1988?951

A: Japan952

Q: What is Bruce Willis’ real first953

name?954

A: Walter955

Q: Which William wrote the novel Lord Of956

The Flies?957

A: Golding958

Q: Which innovation for the car was959

developed by Prince Henry of Prussia in960

1911?961

A: Windshield wipers962

Q: How is musician William Lee Conley963

better known?964

A: Big Bill Broonzy965

Q: How is Joan Molinsky better known?966

A: Joan Rivers967

Q: In which branch of the arts is968

Patricia Neary famous?969

A: Ballet970

Q: Which country is Europe’s largest971

silk producer?972

A: Italy973

Q: The VS-300 was a type of what?974

A: Helicopter975

Q: At which university did Joseph976

Goebbels become a doctor of philosophy?977

A: Heidelberg978

Q: Which prince is Queen Elizabeth II’s979

youngest son?980

A: Edward981

Q: When did the founder of Jehovah’s982

Witnesses say the world would end?983

A: 1914 984

Q: Who found the remains of the Titanic? 985

A: Robert Ballard 986

Q: Who was the only Spice Girl not to 987

have a middle name? 988

A: Posh Spice 989

Q: What are the international 990

registration letters of a vehicle from 991

Algeria? 992

A: DZ 993

Q: How did Jock die in Dallas? 994

A: Helicopter accident 995

Q: What star sign is Michael Caine? 996

A: Pisces 997

Q: Who wrote the novel Evening Class? 998

A: Maeve Binchy 999

Q: Which country does the airline Air 1000

Pacific come from? 1001

A: Fiji 1002

Q: In which branch of the arts does 1003

Allegra Kent work? 1004

A: Ballet 1005

Q: Banting and Best pioneered the use of 1006

what? 1007

A: Insulin 1008

Q: Who directed the movie La Dolce Vita? 1009

A: Federico Fellini 1010

Q: Which country does the airline LACSA 1011

come from? 1012

A: Costa Rica 1013

Q: Who directed 2001: A Space Odyssey? 1014

A: Stanley Kubrick 1015

Q: Which is the largest of the Japanese 1016

Volcano Islands? 1017

A: Iwo Jima 1018

Q: (Question) 1019

A: 1020

C.2 Prompts of Webquestions 1021

We also use 32-shot question-answer pair prompts 1022

from the Webquestions train set. 1023

Answer these questions. 1024

Q: What country is the Grand Bahama 1025

Island in? 1026

A: Bahamas 1027

Q: What two countries invaded Poland in 1028

the beginning of WW2? 1029

A: Germany 1030

Q: Which countries border the US? 1031

A: Canada 1032

Q: Where is Rome, Italy located on a 1033
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map?1034

A: Rome1035

Q: What is Nina Dobrev’s nationality?1036

A: Bulgaria1037

Q: What country does Iceland belong to?1038

A: Iceland1039

Q: What does Thai mean?1040

A: Language1041

Q: Who was Ishmael’s mom?1042

A: Hagar1043

Q: What are the major cities in France?1044

A: Paris1045

Q: What city did Esther live in?1046

A: Susa1047

Q: What sport do the Toronto Maple Leafs1048

play?1049

A: Ice Hockey1050

Q: What is Martin Cooper doing now?1051

A: Inventor1052

Q: What county is the city of Hampton,1053

VA in?1054

A: Hampton1055

Q: What county is Heathrow Airport in?1056

A: London1057

Q: What type of car does Michael Weston1058

drive?1059

A: Wishcraft1060

Q: What was Tupac’s name in Juice?1061

A: Bishop1062

Q: Who does Maggie Grace play in Taken?1063

A: Kim1064

Q: What style of music did Louis1065

Armstrong play?1066

A: Jazz1067

Q: Where does Jackie French live?1068

A: Australia1069

Q: Where is Jack Daniels factory?1070

A: Tennessee1071

Q: What is Charles Darwin famous for?1072

A: Evolution1073

Q: Where to visit in N. Ireland?1074

A: Antrim1075

Q: What are dollars called in Spain?1076

A: Peseta1077

Q: Who plays Meg in Family Guy?1078

A: Mila Kunis1079

Q: Where did Martin Luther King get1080

shot?1081

A: Memphis1082

Q: What was Nelson Mandela’s religion?1083

A: Methodism1084

Q: Who will win the 2011 NHL Stanley 1085

Cup? 1086

A: Canada 1087

Q: What is Henry Clay known for? 1088

A: Lawyer 1089

Q: What is the money of Spain called? 1090

A: Euro 1091

Q: Where are Sunbeam microwaves made? 1092

A: Florida 1093

Q: Where was Kennedy when he got shot? 1094

A: Dallas 1095

Q: Where did the Casey Anthony case take 1096

place? 1097

A: Orlando 1098

Q: (Question) 1099

A: 1100

C.3 Prompts of MMLU 1101

Each subject in MMLU uses similar prompts. We 1102

take the high school biology as examples. 1103

Please engage in the multiple-choice 1104

question-answering task. You should 1105

generate the option (A, B, C, or D) you 1106

think is right. Examples are provided. 1107

(Select 8-shot randomly from other 1108

subjects) 1109

This is a question from high school 1110

biology. 1111

A piece of potato is dropped into a 1112

beaker of pure water. Which of the 1113

following describes the activity after 1114

the potato is immersed into the water? 1115

(A) Water moves from the potato into the 1116

surrounding water. 1117

(B) Water moves from the surrounding 1118

water into the potato. 1119

(C) Potato cells plasmolyze. 1120

(D) Solutes in the water move into the 1121

potato. 1122

The correct answer is option: B. 1123

You are the world’s best expert in high 1124

school biology. Reason step-by-step and 1125

answer the following question. 1126

From the solubility rules, which of the 1127

following is true? 1128

(A) All chlorides, bromides, and iodides 1129

are soluble 1130

(B) All sulfates are soluble 1131

(C) All hydroxides are soluble 1132

(D) All ammonium-containing compounds 1133
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are soluble1134

The correct answer is option:1135

D Additional Results1136

D.1 Sensitivity Experiments1137

More results regarding sampling quantity and tem-1138

perature sensitivity are included in Figures 8-9 due1139

to the page limit in the main body.1140
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Figure 8: All results of the sensitivity analysis to variations
in sampling quantity.
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Figure 9: All results of the sensitivity analysis to variations
in temperature.

D.2 Results for WizardLM-v1.2 (13B) and1141

Vicuna-v1.5 (7B)1142

To save on computation costs, we use float16 preci-1143

sion (half-precision) for experiments in this section.1144

We use standard sampling with sampling quantity1145

of 30. Results for TriviaQA are shown in Table 3,1146

for WebQuestions are shown in Table 5. Results for1147

TriviaQA are shown in Table 4, for WebQuestions1148

are shown in Table 6.1149

Results for WizardLM-v1.2 (13B) and Vicuna-1150

v1.5 (7B) consistently align with the main body1151

results, demonstrating that the LofreeCP method1152

mostly outperforms the baselines.1153
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Table 3: Results for TriviaQA using WizardLM-v1.2.

Methods Logit-Access
Error Rate

0.25 0.3 0.35
ECR SSC↑ APSS↓ ECR SSC↑ APSS↓ ECR SSC↑ APSS↓

First-Kwhite ✓ 75.1 68.7 3.19 71.0 65.8 2.56 66.4 63.3 1.84
CLM ✓ 75.1 63.3 3.01 70.1 64.9 2.20 65.0 63.3 1.43
SCP ✓ 75.4 57.9 3.29 70.1 62.2 2.15 65.2 56.4 1.68

SAPS ✓ 75.1 70.6 3.83 70.1 53.2 2.30 65.1 54.9 1.37
First-Kblack ✗ 75.7 58.0 4.94 71.5 66.6 2.59 68.4 65.6 1.84

LofreeCP (Ours) ✗ 75.1 68.0 4.07 70.0 67.7 1.92 65.1 70.1 1.27

Methods Logit-Access
Error Rate

0.4 0.45 0.5
ECR SSC↑ APSS↓ ECR SSC↑ APSS↓ ECR SSC↑ APSS↓

First-Kwhite ✓ ✗ ✗ ✗ 55.2 56.0 0.99 ✗ ✗ ✗
CLM ✓ 60.1 65.3 1.25 55.1 69.1 0.92 50.1 71.3 0.81
SCP ✓ 60.0 65.9 1.30 55.1 67.8 1.01 50.1 70.1 0.82

SAPS ✓ 60.0 47.3 1.37 55.2 53.7 1.05 50.1 60.6 0.83
First-Kblack ✗ ✗ ✗ ✗ 56.9 57.4 0.99 ✗ ✗ ✗

LofreeCP (Ours) ✗ 60.2 69.8 0.98 55.3 70.4 0.81 50.2 72.5 0.69

Table 4: Results for TriviaQA using Vicuna-v1.5.

Methods Logit-Access
Error Rate

0.475 0.5 0.525
ECR SSC↑ APSS↓ ECR SSC↑ APSS↓ ECR SSC↑ APSS↓

First-Kwhite ✓ 53.0 42.1 2.23 50.4 42.4 1.63 ✗ ✗ ✗
CLM ✓ 52.5 45.1 2.60 50.1 45.5 1.39 47.5 47.7 1.21
SCP ✓ 52.6 39.0 2.66 50.0 40.5 1.43 47.9 49.3 1.14

SAPS ✓ 52.7 40.1 2.30 50.3 48.8 1.59 47.5 45.6 1.24
First-Kblack ✗ 53.4 44.1 2.75 50.9 42.3 1.62 ✗ ✗ ✗

LofreeCP (Ours) ✗ 52.5 39.3 2.27 50.0 39.1 1.33 47.6 50.1 1.12

Methods Logit-Access
Error Rate

0.4 0.45 0.5
ECR SSC↑ APSS↓ ECR SSC↑ APSS↓ ECR SSC↑ APSS↓

First-Kwhite ✓ 45.0 46.7 0.99 ✗ ✗ ✗ ✗ ✗ ✗
CLM ✓ 45.2 50.7 1.01 42.5 50.6 0.85 40.1 56.2 0.83
SCP ✓ 45.4 52.4 0.96 42.6 48.6 0.85 40.5 52.0 0.76

SAPS ✓ 45.0 46.2 1.04 42.6 50.8 0.84 40.1 57.9 0.75
First-Kblack ✗ ✗ ✗ ✗ 44.6 46.2 0.97 ✗ ✗ ✗

LofreeCP (Ours) ✗ 45.1 55.3 0.96 42.7 58.0 0.82 40.2 58.5 0.73

Table 5: Results for WebQuestions using WizardLM-v1.2.

Methods Logit-Access
Error rate

0.45 0.5 0.55 0.6
ECR SSC↑ APSS↓ ECR SSC↑ APSS↓ ECR SSC↑ APSS↓ ECR SSC↑ APSS↓

First-Kwhite ✓ 55.5 42.5 3.40 53.0 40.6 2.70 49.1 39.0 1.91 ✗ ✗ ✗
CLM ✓ 55.1 52.3 3.02 50.2 40.1 2.01 45.2 28.6 1.58 40.4 31.2 1.19
SCP ✓ 55.2 45.9 3.63 50.1 40.8 2.04 45.0 37.1 1.55 40.2 47.8 1.04

SAPS ✓ 55.0 45.7 3.38 50.1 41.1 2.15 45.2 28.6 1.58 40.4 31.2 1.19
First-Kblack ✗ 56.7 43.6 3.40 50.9 45.0 1.91 ✗ ✗ ✗ 41.4 41.1 1.00

LofreeCP (Ours) ✗ 55.0 45.3 2.87 50.0 46.5 1.88 45.1 49.9 1.18 40.1 51.7 0.82

Table 6: Results for WebQuestions using Vicuna-v1.5.

Methods Logit-Access
Error rate

0.575 0.6 0.625 0.65
ECR SSC↑ APSS↓ ECR SSC↑ APSS↓ ECR SSC↑ APSS↓ ECR SSC↑ APSS↓

First-Kwhite ✓ 43.2 23.8 1.99 41.7 26.9 1.57 ✗ ✗ ✗ 36.6 36.6 1.00
CLM ✓ 42.5 32.3 1.88 40.1 36.2 1.32 37.6 38.2 1.08 35.0 41.8 0.83
SCP ✓ 42.6 31.1 1.91 40.1 34.4 1.28 38.2 37.3 1.06 35.2 43.7 0.87

SAPS ✓ 42.5 32.3 1.88 40.1 36.2 1.32 37.6 38.2 1.08 35.0 41.8 0.83
First-Kblack ✗ 43.7 25.9 2.01 40.9 25.5 1.57 ✗ ✗ ✗ 36.8 36.8 1.00

LofreeCP (Ours) ✗ 42.5 32.4 1.73 40.1 36.7 1.22 37.5 39.6 0.97 35.0 39.3 0.81
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