
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LEVERAGING IMITATION LEARNING AND LLMS FOR
EFFICIENT HIERARCHICAL REINFORCEMENT LEARN-
ING

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we introduce an innovative framework that combines Hierarchical
Reinforcement Learning (HRL) with Large Language Models (LLMs) to tackle
the challenges of complex, sparse-reward environments. A key contribution of our
approach is the emphasis on imitation learning during the early training stages,
where the LLM plays a crucial role in guiding the agent by providing high-level
decision-making strategies. This early-stage imitation learning significantly accel-
erates the agent’s understanding of task structure, reducing the time needed to adapt
to new environments. By leveraging the LLM’s ability to generate abstract repre-
sentations of the environment, the agent can efficiently explore potential strategies,
even in tasks with high-dimensional state spaces and delayed rewards. Our method
utilizes the LLM to assist action sampling via a dynamic annealing strategy and
aids the policy learning process through an LLM-based policy and value regular-
izer. This approach reduces computational costs and enhances the agent’s learning
process. Experimental results across three environments—MiniGrid, NetHack, and
Crafter—demonstrate that our method significantly outperforms baseline LLM-
based HRL algorithms in terms of training speed and success rates. The imitation
learning phase proves critical in enabling the agent to adapt quickly and perform
efficiently, highlighting the potential of integrating LLMs into HRL for complex
tasks.

1 INTRODUCTION

Reward sparsity is a persistent challenge in the early stages of exploration for reinforcement learning
(RL) environments. As these environments grow more complex, the difficulty for agents to encounter
rewards during initial exploration increases significantly. Researchers have continuously worked on
addressing reward sparsity to efficiently train agents (Vecerik et al., 2017; Hare, 2019). Hierarchical
reinforcement learning (HRL) offers a promising approach to addressing these issues. In HRL, the
decision-making problem is decomposed into two levels: high-level decision making, referred to as
an option, and low-level decision making, referred to as an action. Experimental evidence (Kulkarni
et al., 2016; Nachum et al., 2018b) suggests that HRL can address challenges that traditional RL
algorithms struggle with, demonstrating superior performance in general environments. However,
despite HRL’s potential, most approaches rely on predefined options and often require pre-training of
the option networks. This makes HRL notoriously difficult to implement and tune effectively.

LLMs have shown potential in mitigating some of these challenges. Recently, LLMs have demon-
strated their versatility across many domains, including natural language processing, code generation,
and decision-making tasks such as game playing and intelligent question-answering (Du et al., 2023).
A series of recent works (Zhou et al., 2024) suggest that LLMs can be leveraged as high-level
decision-makers to enhance the performance of RL agents. While promising, it is well-known that
LLM-based approaches are resource-intensive, which makes them less ideal compared to traditional
RL methods that are computationally lighter. This leads to the following question:

What is the most effective strategy to accelerate RL with LLMs?

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Algorithm framework of IHAC. Our framework is a two-phase algorithm designed to
improve the learning efficiency of reinforcement learning agents by incorporating high-level guidance
from LLM. In the first phase, imitation learning is used, where the agent benefits from LLM-generated
options to accelerate its exploration and learning process. The second phase transitions to standard
reinforcement learning, where the agent refines its policy and value networks, initially trained with
the help of the LLM, to further optimize its decision-making abilities. By balancing imitation learning
with reinforcement learning, IHAC achieves a more efficient learning process, especially in complex
and long-term environments with sparse rewards.

To address this question, we propose the Imitation Hierarchical Actor-Critic (IHAC) framework,
which accelerates the RL process in a hierarchical RL approach by incorporating high-level instruc-
tions from LLMs. The overview of IHAC is displayed in Figure 1. Our contributions are listed as
follows.

• We propose a novel approach to imitation learning by framing the decision-making process as
a hierarchical RL problem, where high-level options represent overarching instructions that an
agent can follow to enhance decision-making. Our key contribution lies in the two-phase design of
the proposed IHAC framework, which effectively balances imitation learning and reinforcement
learning. In the first phase, IHAC leverages an external LLM to generate a higher-policy action
distribution, which serves as input to both the actor and critic for simultaneous imitation learning.
This ensures that the LLM’s guidance is maximally utilized, enabling the agent to learn both action
selection and value estimation early on, when its interaction with the environment is limited. In
the second phase, IHAC transitions to a standard RL algorithm (e.g., PPO) to fine-tune the policy
further. This design significantly accelerates learning while reducing reliance on LLM in later
stages, achieving computational efficiency without sacrificing performance.

• To fully harness the power of the LLM, we introduce an adaptive sampling strategy that combines
input from both the RL agent and the LLM to derive better actions during the imitation learning
phase. Additionally, we propose an adaptive policy training strategy that facilitates a more precise
approximation of the agent’s policy with the help of the LLM. Both adaptive strategies help us
balance the LLM’s guidance with the RL agent’s learning potential.

• For our experiments, we test our algorithm on several standard hierarchical RL benchmarks, such
as MiniGrid Chevalier-Boisvert et al. (2023). Compared to existing baselines, our algorithm
demonstrates superior performance and greater efficiency, particularly in terms of token usage, due
to the incorporation of the LLM and our adaptive algorithm design.

2 RELATED WORKS

2.1 HIERARCHICAL REINFORCEMENT LEARNING (HRL)

The emergence of hierarchical reinforcement learning (HRL) has proven to be beneficial for address-
ing complex, large-scale problems and sparse, delayed rewards (Nachum et al., 2019). By introducing
sub-goals and training multi-level structures, HRL effectively enhances exploration. However, a
key challenge in HRL lies in establishing high-quality hierarchical structures to improve training

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

efficiency. One approach to establishing hierarchical structures involves manually setting them based
on tasks, such as graph-guided reinforcement learning (Lee et al., 2022; Gieselmann & Pokorny,
2021), or by artificially setting sub-goals (Florensa et al., 2017; Tessler et al., 2017). The intervention
of human priors renders the model non-generalizable. Additionally, there have been proposals to
allow agents to autonomously learn sub-tasks. Some achieve this by associating the sub-task space
with the current state (Zhang et al., 2020; Nachum et al., 2018a; Vezhnevets et al., 2017), while others
consider predicting the next sub-goal during the training process (Pitis et al., 2020).

To enhance training efficiency, some researchers have tackled this issue by constraining the tasks
of higher-level agents, limiting the state space of sub-tasks to the adjacent range of the current
state (Zhang et al., 2020). Luo et al. (2023) proposed introducing attention rewards to enable
higher-level agents to focus more on the environment. Others build a causality-driven hierarchical
reinforcement learning framework, leveraging a causality-driven discovery instead of a randomness-
driven exploration (Hu et al., 2023). Hierarchical in-Context Reinforcement Learning (HCRL) further
integrates in-context learning with HRL frameworks to dynamically generate sub-goals based on
ongoing task progress. This framework, through reflection and modularity, allows for correction of
sub-task errors and improves task efficiency (Sun et al., 2024). LLM Augmented Hierarchical Agents
have also leveraged LLMs to improve high-level decision-making, leading to better performance in
long-horizon tasks (Prakash et al., 2024).

2.2 LLM AGENT

Previous research has demonstrated that language can facilitate the construction of abstract repre-
sentations of both the environment and goals, especially in scenarios involving high-dimensional
state spaces and long planning horizons (Lin et al., 2023; Andreas et al., 2017; Akakzia et al., 2020;
Mirchandani et al., 2021). For example, Wu et al. (2019) showed that language could assist in learning
complex tasks, even when naive goal representations fail. By employing language-guided hindsight
goal relabeling, their approach achieved significant performance improvements. Jiang et al. (2019)
further explored the use of language in goal specification, demonstrating that high-level policies could
achieve their objectives by composing sub-policies guided by language. These studies underscore the
utility of language as a compositional tool in RL, enabling more effective learning and generalization
in complex, temporally-extended tasks.

Language-assisted reinforcement learning provides agents with a high-level understanding of tasks
and environments. LLMs, with their powerful language processing capabilities, further expand this
field by offering more nuanced task guidance, abstract representations, and decision support (Kwon
et al., 2023; Du et al., 2023; Hu et al., 2023). Yao et al. (2023) introduced ReAct, a method where
the LLM generates “thoughts” to address problems based on observations. Building on ReAct,
Shinn et al. (2024) developed Reflexion, which leverages a few-shot verbal feedback approach to
improve decision-making abilities. Ahn et al. (2022) provided another viewpoint, endowing LLMs
with foundational “skills” along with corresponding value functions and affordance functions. With
LLMs’ assistance, each action selection is comprehensively considered, integrating the reward (value)
of the current action and its feasibility (affordance). Nottingham et al. (2023) describe how to
leverage Brief Language Inputs for Decision-making Responses (BLINDER) to condense the input
text to LLMs, effectively reducing the cost of invoking LLMs by approximately sixfold. Building on
these foundational studies, Li et al. (2023) proposed Interactive Task Planning (ITP), a framework
that leverages LLMs for dynamic task planning and replanning in robotic systems. By integrating
high-level planning with low-level skill execution, ITP enables robust adaptation to user feedback
and novel tasks without the need for task-specific training or extensive prompt engineering.

2.3 IMITATION LEARNING

In many previous studies, imitation has become a strategy to develop the performance of reinforcement
learning.

Introduced by Price & Boutilier (2003), the student agent can observe the state transitions induced by
the mentor’s actions and use the information gleaned from these observations to update the estimate
of the value of its own states and actions, thus accelerating the process of RL training.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

What’s more, Oh et al. (2018) describes the Self-Imitation Learning strategy, which can utilize
experience from the past. The agent will learn from its past options and rewards to develop itself, i.e.,
the agent itself is both the student and the mentor.

As for hierarchical cases, Le et al. (2018) provides a method to expand imitation learning to HRL.
It provides a method to divide HRL into high-level IL and low-level RL. The meta-controller takes
actions by imitating an expert agent, while the lower controller receives commands from the meta-
controller, which is the same as in HRL.

Recent work in imitation learning has introduced the Hindsight Modular Reflection (HMR) framework,
which allows agents to learn from both failed and successful trajectories by reflecting on sub-task
failures and incorporating those insights into future decisions. This method effectively addresses
sparse reward environments by using hindsight experience replay to convert hard-to-achieve goals
into manageable intermediate sub-goals (Sun et al., 2024).

3 METHODOLOGY

3.1 PRELIMINARY: DEFINITION OF AGENTS

Hierarchical Markov Decision Process We define a Hierarchical Markov Decision Process (HMDP)
asM = (S,A,O, P, r, γ), where S is the state space, which includes all possible states the system
can be in. A is the action space, which consists of all possible low-level actions an agent can take. O
is the option space, which consists of all high-level actions. For instance, for the MiniGrid game, the
high-level action can be some general instructions (“grab a bear"), and the low-level action can be the
detailed action (“move right for 2 seconds"). P : S × A × S → [0, 1] is the transition probability
function, where P (s′|s, a) represents the probability of transitioning from state s ∈ S to state s′ ∈ S
after taking action a ∈ A. r : S×A → R is the reward function, which defines the reward r(s, a) the
agent receives after taking action a in state s. γ ∈ [0, 1] is the discount factor, which determines the
importance of future rewards relative to immediate rewards. In our work, we are interested in finding
a policy π(·|·) : S → ∆(A), which maximizes the expected cumulative reward E[

∑∞
t=0 γ

trt].

Large Language Model Our framework utilizes a language model LLM to help the agent to find
the optimal policy. We briefly introduce the details of them here. Let L be the language space that
consists of sentences in the natural language. Let LLM(·|·) : L → ∆(O) be the LLM that takes the
language as its input which outputs an option. For instance, the input of an LLM can be “Agent sees
a key and hold nothing", and the output is some high-level option like “go to key, pick up key".

Algorithm 1 IHAC

Require: Language model LLM, predefined action net ActionNet, translator Trans, imitation ratio
λt, policy-value balance α

1: T ← {}, initialize πθ and Qw, t← 1
2: for i = 1, . . . , n do ▷ Phase I: imitation learning phase
3: Receive initial state s1, step h = 1, Done = False
4: while not Done do
5: Set πLLM(·|sh)← ActionNet(LLM(·|Trans(sh)), sh)
6: Sample action by ah ∼ (1− λt)πθ(·|sh) + λt · πLLM(·|sh)
7: Take action ah, observe rh, update state to sh+1, update Done, h← h+ 1, t← t+ 1
8: end while
9: T ← T ∪ τ = (s1, a1, r1, . . . , sh, ah, rh), update πθ, Qw following equation 1

10: end for
11: Run standard RL algorithm (i.e., PPO) starting from πθ and Qw ▷ Phase II: RL phase

3.2 PROPOSED ALGORITHM

We propose our algorithm, IHAC, as outlined in Algorithm 1 . Broadly, the algorithm consists of two
phases: the LLM imitation learning phase and the standard RL phase. In the first phase, the agent
focuses on training its policy network, πθ, and value network, Qw, to an effective state. Crucially,
IHAC accelerates this process by leveraging high-level suggestions provided by a language model,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

LLM, which significantly boosts learning efficiency, especially in the early stages when data samples
are limited. We will provide further details on how LLM enhances the learning process later in the
text. At the conclusion of the first phase, IHAC outputs a well-trained policy network, πθ, and value
network, Qw, both of which have been shaped effectively with the assistance of the LLM. In the
second phase, IHAC begins using an existing RL algorithm, such as PPO, to continue refining the
policy, starting from the already optimized πθ and Qw.

Why two-phase? Our two-phase algorithm design offers several advantages. First, it enables efficient
token usage during training. Specifically, in our approach, the LLM is invoked only during the
imitation learning phase, which constitutes a small portion of the overall learning process (in our
experiments, for instance, it accounts for no more than 20 percent of the total epochs). This reduces
the computational overhead from frequent LLM queries and minimizes overall token consumption.
Second, the two-phase setup, along with key design components, allows for a dynamic trade-off
between the LLM and the reinforcement learning (RL) approach. This structure combines the
efficiency of the LLM with the superior effectiveness of the RL agent.

3.3 DETAILS OF IHAC

From here we discuss several key algorithm design innovations of our IHAC.

High-Level Language Model Option One of our key observations is that LLMs can provide effective
high-level suggestions. For instance, if we provide the LLM with the current game status, such as
"Agent sees a key and holds nothing," the LLM can generate general solutions based on its common-
sense knowledge. However, utilizing these high-level solutions remains challenging, especially when
the gap between high-level strategies and low-level actions is significant. To address this, we propose
several algorithmic components, as shown in Line 5. We introduce a translator module, denoted as
Trans(·) : S → L, which is an embedding model that maps any state s to a language description
l. For example, in the MiniGrid game, Trans could take the abstract grid state as input and output
a sentence describing the game status, such as "the player is in the corner with a knife in hand."
Additionally, we use a predefined option module, denoted as ActionNet : O×S → A, which infers
an action a based on both the high-level option and the current state. To summarize, as suggested in
Line 5, we combine these elements into a composite LLM module, denoted as πLLM, representing the
LLM’s guidance policy.

To improve efficiency, we limit the LLM’s choices to a predefined set of options. This design
reduces the complexity of the decision-making process, enabling more focused and relevant outputs.
Additionally, the prompt structure ensures that the LLM’s suggestions are reasonable and aligned
with task goals, while achieving token efficiency by invoking the LLM only when necessary and
restricting its output to predefined options.

Annealing Strategy in Sampling Given πLLM, we now demonstrate how it can be leveraged to
accelerate the RL agent’s learning process during Phase I. We first focus on Line 6. Essentially,
actions are selected by considering both the suggestions from the RL policy πθ and the guidance
from πLLM. At stage h, the action ah is sampled as follows:

ah ∼ (1− λt)πθ(·|sh) + λt · πLLM(·|sh).

Here, 0 < λt < 1 is the imitation ratio, which represents the influence of πLLM. Initially, λt is set to a
higher value, allowing the LLM’s policy to significantly guide action selection. This aids in exploring
the environment more effectively, especially when reward signals are sparse. As training progresses,
λt is gradually annealed, reducing the influence of πLLM and enabling the agent to rely increasingly
on its own policy, πθ, which becomes more refined over time. This sampling design, combined with
the annealing strategy, addresses challenges related to sparse rewards and ensures a smooth transition
from exploration to exploitation. Ultimately, this approach enhances the reinforcement learning
agent’s performance.

Accelerated Training Aided by LLM Next we show that how to utilize the policy πLLM to assist the
training process of the RL policy πθ as well as its value Qw, which greatly helps the later Phase II.
Starting from Line 9, we have a buffer set T that stores all the past experiences so far.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Given the LLM-policy πLLM, we update our RL agent πθ and Qw by the standard imitation learning
style. In detail, we update them by solving the following minimization problem:

min
θ,w

∑
s,a,s′,r∼T

(1− α)KL(πθ(·|s) ∥ πLLM(·|s))

+ α
[
Qw(s, a)− (r + γĒa′∼π̄θ(·|s′)Q̄w(s

′, a′))− KL(π̄θ(·|s′)∥πLLM(·|s′))
]2

,
(1)

where KL(·∥·) represents the KL-divergence, 0 < α < 1 represents the trade-off between the update
of the policy network and the update of the value network, π̄θ, Q̄w suggest that these parameters are
fixed during training. The KL regularizer term encourages πθ to be closed to πLLM, which is inspired
by Zhang et al. (2024). Essentially speaking, we utilize LLM to guide the training for both our policy
network and the value network. Although it seems that the value network Qw does not play its role
during Phase I, we want to highlight that it serves as the value network in Phase II, which is standard
for the actor-critic framework. Experimentally, we show that a high-quality value network serves an
importanbt role in the final performance of the agent.

In general, our usage of πLLM as well as the structured training process, combined with careful token
management, ensure that our reinforcement learning agent can efficiently learn from the LLM while
minimizing resource usage.

4 EXPERIMENTS

In this section, we present the experimental setup and results to assess the effectiveness of our
proposed method. We conducted experiments using the MiniGrid (Chevalier-Boisvert et al., 2023),
NetHack (Küttler et al., 2020), and Crafter (Hafner, 2022) as our environments and we choose
Prakash et al. (2024) and Zhou et al. (2024) as our baselines. See Appendix A for more details.

4.1 EXPERIMENT SETUP

Baselines To benchmark our approach, we compared IHAC against two related hierarchical reinforce-
ment learning algorithms combined with LLM: LLM4Teach (Zhou et al., 2024) and LLM×HRL
(Prakash et al., 2024). We made a few modifications to the original implementations to both baselines
for a fair comparison, and we left the details to Appendix A.

Component setup for IHAC For ActionNet, these options are crafted based on domain knowledge
and are intended to guide the LLM towards making decisions that are both effective and aligned
with the task’s objectives.There are two main types ActionNet, Navigation and Interact. We use A*
algorithm to get the optimal action for agent going to the corresponding object. Interact contains all
actions like "pick up" and "open". For Trans , we adapt the description method, which is consistent
with previous methods (Prakash et al., 2024; Zhou et al., 2024). Trans takes the observation as
the input. It will find all important items (e.g. key in MiniGird environment) and show the current
condition of the agent (e.g. hp and weapon in NetHack environment). It can translate the observation
to a prompt which will be given to the LLM to generate current option.

4.2 EXPERIMENT RESULTS FOR MINIGRID

Environment description We compare our IHAC with baselines on four distinct procedurally
generated tasks within the MiniGrid environment (Chevalier-Boisvert et al., 2023): SimpleDoorKey,
TwoDoorKey, KeyInBox, and RandomDoorKey. The agent is randomly placed in these environments,
each with limited visibility. The objective is to explore the environment, find the correct key, and
use it to unlock the door and exit. In SimpleDoorKey, the agent must find a single key and a door
to unlock. TwoDoorKey presents multiple doors that the agent needs to unlock sequentially to find
the exit. In KeyInBox, the key is hidden inside a box, requiring the agent to interact with the box
to retrieve the key. RandomDoorKey adds an element of uncertainty, with the key randomly placed
either inside a box or elsewhere in the environment.

Environment adaptation For MiniGrid, the LLM outputs a set of options: go to target, pick up, drop,
open, wait, and explore. These options are selected based on the agent’s current state. For example, if

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

the agent sees a box, it will choose to interact with it. Each option returns a distribution over specific
actions, which is then used to guide the reinforcement learning agent. For all the approaches, we
evaluate their policies every 20 iterations with 5 randomly generated testing seeds and report the
averaged testing performance here. For some baselines, the models had not fully converged by the
time they reached the predetermined number of iterations due to slower training speeds. However, to
ensure a fair comparison with the other LLM-assisted models, we terminated training at the same
iteration count for all models, even though some baselines had not yet converged, and included them
in the experimental results. We use Vicuna 7b (Team, 2023) to conduct our experiments.

Task Method Performance

Avg. Step l Avg. Return
r

Avg. Success
Rate β

Consumed to-
kens

SDK
IHAC 28.4± 9.7 0.82± 0.06 0.97± 0.06 2.29× 108

LLM4Teach 30.2± 10.4 0.81± 0.07 0.96± 0.06 7.13× 109

LLM×HRL 31.4± 11.8 0.79± 0.08 0.94± 0.09 3.32× 109

TDK
IHAC 20.0± 8.2 0.81± 0.06 0.96± 0.06 1.92× 108

LLM4Teach 33.9± 10.4 0.86± 0.06 0.95± 0.07 3.16× 109

LLM×HRL 21.1± 9.5 0.87± 0.05 0.95± 0.09 2.11× 109

KIB
IHAC 29.19± 7.3 0.81± 0.06 0.96± 0.07 3.58× 108

LLM4Teach 37.9± 14.5 0.77± 0.09 0.93± 0.10 5.97× 109

LLM×HRL 35.7± 12.7 0.80± 0.08 0.94± 0.08 4.95× 109

RBK
IHAC 30.6± 8.6 0.81± 0.06 0.97± 0.07 3.93× 108

LLM4Teach 34.1± 10.3 0.79± 0.06 0.95± 0.08 7.36× 109

LLM×HRL 47.7± 12.5 0.77± 0.07 0.92± 0.06 5.81× 109

Table 1: Performance of different methods on various tasks in MiniGrid environment. For average
step term, smaller result means the better performance.

Results The main results are shown in Figure 9. Our experimental results primarily compare the
average steps needed for success, the reward rate, and the success rate. Our model performed better
in all four environments with sparse rewards, which means it can get high and stable return rate
and success rate with fewest number of iterations. At the same time, the steps it used also decrease
quickly and it can even surpass the benchmark set by other baseline models. Our model demonstrates
a significant advantage compared to existing large model-assisted reinforcement learning models.
Especially in more complex environment, the advantage of our model will be more obvious. We
analyze the results in detail.

• KeyInBox(KIB) and TwoDoorKey(TDK): In these two environment, our model achieved good
performance after 2,500 iterations, while the other models converged to optimal performance
around 4,500 iterations, which is 1 times more than our method.

• SimpleDoorKey(SDK): We can observe that in this environment, the curves of the three models are
very close to each other. IHAC shows a slight acceleration effect. This is because the environment
is quite simple, and the agent only needs to directly obtain the key and open the door, resulting in
good performance from all three models.

• RandomBoxKey(RBK): This task requires the agent to open the box, retrieve the key, and finally
open the door. However, the presence of the key in the box is random, which adds to the difficulty
of the task. Our model performs exceptionally well, showing a significantly faster convergence
speed compared to other models, and it is able to complete the task with fewer steps.

4.3 EXPERIMENT RESULTS FOR NETHACK

Environment description We compare performance on two procedurally generated tasks in the
NetHack environment (Samvelyan et al., 2021): LavaCross and Monster. In LavaCross, the agent
must drink a potion of flight from its inventory and fly over a lava pit to reach the exit. The challenge
lies in correctly identifying and using the potion at the right moment while avoiding the lava. In
Monster, the agent explores a 10x10 room while being chased by two monsters.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Environment adaptation We use the embedded NetHack environment provided by Goodger et al.
(2023). The NLE (NetHack Learning Environment) translates symbolic states into natural language,
functioning as the Trans module in this specific environment. Additionally, it provides relevant
options based on the current state. Thus, the LLM only needs to choose a rational option from the list
of provided options. Each of these options corresponds to a distribution over specific actions, from
which the reinforcement learning agent samples to execute in the environment. For our experiments,
we utilized ChatGPT-3.5-turbo (Ye et al., 2023). We set the scenario by providing the model with a
detailed description of the task it was about to undertake. We evaluate our model every 10 iterations
with 5 randomly generated testing seed.

Figure 2: Nethack environment
screenshot

0 2000 4000 6000 8000
epoch

0.2

0.4

0.6

su
cc

es
s r

at
e

lava

Ours
LLM4Teach
LLM×HRL

Figure 3: Lavacross environ-
ment result

0 2000 4000 6000 8000
epoch

0.2

0.4

0.6

0.8

su
cc

es
s r

at
e

monster

Ours
LLM4Teach
LLM×HRL

Figure 4: Monster environment
result

Results The experimental results are shown in Figures 10 and 11. Overall, IHAC outperforms the
two baselines. A detailed analysis is provided below:

• LavaCross: IHAC trains slightly faster than the other two algorithms. The final success rate is
similar, but when comparing token usage, we observed that since IHAC stops using the language
model after the imitation phase, the number of tokens spent is significantly reduced.

• Monster: In this experiment, during the early stages of training, IHAC’s training speed is faster
than the other two algorithms, achieving a higher success rate in a shorter amount of time. When
the model converges, IHAC’s success rate is higher than the other two algorithms, with IHAC
outperforming LLM4Teach significantly and also surpassing LLM×HRL.

In the lava environment, IHAC achieves a higher success rate compared to both LLM×HRL and
LLM4Teach, with success rates of IHAC improves the success rate by 14.75% over LLM×HRL and
by 21.31% over LLM4Teach. Additionally, IHAC consumes significantly fewer tokens, which is
90% less than LLM×HRL and 95% less than LLM4Teach.

4.4 EXPERIMENT RESULTS FOR CRAFTER

Environment description Crafter (Hafner, 2022) is a 2D version of the Minecraft environment,
featuring the same complex state space but with a smaller observation space. Similar to Minecraft,
it requires the agent to gather resources and craft tools to survive in a hazardous environment. We
focus on one hierarchical task in Crafter: MakeStonePickaxe. In this task, the agent must first collect
enough wood, craft a workbench, and then use the workbench to create a wooden pickaxe. After
acquiring the wooden pickaxe, the agent uses it to gather stone and finally crafts a stone pickaxe at
the workbench. Therefore, there are five achievements involved in each game that the agent aims to
complete. See Figure 5 for an example.

Environment adaptation We apply (Moon et al., 2023) as our basic network structure as Hafner
(2022) shows that basic PPO algorithm performs not satisfactorily in relatively easy achievements
and hardly accomplishes difficult achievements implemented in Crafter environment. Check Table
A.1 in Hafner (2022) for further detailed results. In our experiment, each iteration will have 8 parallel
experiments running simultaneously, and every 5 iterations will be evaluated once.

Results From Figure 6, we observe that our proposed IHAC method consistently outperforms both
baseline algorithms in terms of success rate across all tasks:

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: Crafter exam-
ple

Task IHAC LLMxHRL LLM4Teach

Collect Stone 67.14 ± 7.98 55.68 ± 8.04 10.42 ± 2.56

Make Wood Pickaxe 82.60 ± 3.02 73.76 ± 3.56 53.42 ± 4.98

Make Stone Pickaxe 13.64 ± 1.47 4.80 ± 2.64 2.08 ± 0.91

Collect Wood 95.65 ± 0.59 96.19 ± 1.34 74.03 ± 2.64

Place Table 95.24 ± 0.25 86.15 ± 1.67 63.82 ± 2.89

Consumed Tokens 6.83× 105 3.57× 107 5.26× 107

Figure 6: Success rates and consumed tokens in Crafter.

• Collect wood: All methods achieve a near 100% success rate, indicating that this is a relatively
straightforward task for hierarchical reinforcement learning agents.

• Collect stone: While all methods continue to perform well, there is a noticeable slight drop in the
success rate for the LLM4Teach approach. Our method maintains a high success rate, showing
robustness even in more complex tasks.

• Make wood pickaxe and Make stone pickaxe: As the tasks become more complex, we see that
IHAC remains the most reliable, with LLM×HRL showing competitive performance. However,
LLM4Teach struggles to maintain a comparable success rate, particularly in crafting the stone
pickaxe, likely due to its inefficient exploration during earlier stages.

• Place table: This task requires multiple sequential steps, and IHAC continues to show superior
performance, demonstrating its ability to handle more complex hierarchical tasks.

One of the key advantages of the IHAC algorithm is its efficient use of tokens. As shown in the final
bar of the graph (Figure 6), IHAC consumes significantly fewer tokens compared to both LLM4Teach
and LLM×HRL. This is a critical factor, as token consumption directly correlates with computational
cost and efficiency. Our IHAC algorithm employs LLMs only during the early imitation learning
phase, where LLM guidance is used once per step. As detailed results shown in Appendix 6, in
difficult and long-term environment, IHAC only consumes less than 2% of the tokens consumed by
LLM×HRL, and nearly 1% of the tokens used by LLM4Teach. This is because IHAC only queries
the LLM during the IL phase, which spans the first fifth of the total training iterations.

In contrast, LLM4Teach lacks high-level sampling guidance, resulting in extended training steps.
Additionally, it queries the LLM five times per step to generate the option distribution, leading to
significant token consumption. LLM×HRL, while using a sampling policy to prevent the agent from
acting inefficiently, also faces high token usage due to the complex environment. Specifically, 11
different options (detailed in Appendix B.4) are presented for the LLM to choose from at each step,
requiring the agent to query the LLM 11 times per step to obtain the option distribution. This frequent
querying is the primary factor driving up token consumption. Both LLM×HRL and LLM4Teach
query the LLM throughout the entire training process, resulting in a large token overhead. Detailed
baseline prompt designing methods are shown here Appendix A. Our approach, on the other hand,
enables the model to rapidly learn an initial policy, effectively addressing the sparse reward problem
and dramatically reducing token usage in later stages.

4.5 ABLATION STUDY

In this section, we conduct the ablation study of IHAC. We compare IHAC with several of its variants
to suggest the effectiveness of each component IHAC has. We select the MiniGrid environment with
the KeyInBox task to compare. The results are in Figure 7. The methods compared include the base
model, an optimized prompt model, and several variations with different loss functions and sampling
strategies. See 8 for more details. Below is a summary of the results for each model:

• (I) Base Model (LLM×HRL): This model employs a fixed sampling policy with standard PPO
updates during training, without the application of imitation learning. In the early stages, we
observe that the Base Model requires more time steps to learn how to complete the task.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 7: Success Rate, Return & Eplen of Minigrid KeyInBox
environment

(I) (II) (III) (IV) (V)
NP ✗ ✓ ✓ ✓ ✓
NS ✗ ✗ ✓ ✓ ✓
IL ✗ ✗ ✗ ✓ ✓
TV ✗ ✗ ✗ ✗ ✓

Figure 8: Ablation studies
with different components en-
abled.

• (II) NP: This variant differs from the Base Model by incorporating a new prompting method,
similar to IHAC, while still maintaining a fixed sampling policy and traditional PPO updates,
without imitation learning. In this experiment, the Optimized Prompt performs similarly to the
Base Model, with a slightly higher success rate. This is because the optimized prompt does not
significantly alter the outcome of the LLM.

• (III) NP+NS: This model adopts the IHAC sampling policy throughout the entire training pro-
cess but does not include an imitation learning phase. In this experiment, Annealed Sampling
outperforms the Optimized Prompt, achieving a higher success rate and faster training speed. This
is because the decaying influence on sampling allows the model to sample according to the real
distribution, which helps maintain the convergence of the algorithm.

• (IV) NP+NS+IL: This experiment includes an imitation learning phase but differs from our
approach by applying only the policy loss. By the RL phase, the policy network is trained, but
the value network remains unchanged. The annealed sampling strategy is used during imitation
learning, and actions are sampled directly from the policy network during the RL phase. In this
experiment, we observe that without training the V network, more steps are required to train it
during the PPO phase. Its performance is very similar to, but slightly worse than, our algorithm.

• (V) NP+NS+IL+TV (Proposed Model): Our model combines both value and policy losses, along
with annealed sampling during the imitation learning phase. The IL phase enables the network to
quickly learn a baseline policy. With additional imitation learning on the V network, the transition
from IL to RL is smoother. As a result, our model achieves the best performance among all tested
algorithms.

5 CONCLUSION

In this work, we addressed the challenges of solving complex tasks with sparse rewards by proposing
a novel two-phase training framework that combines imitation learning and reinforcement learning.
Our approach efficiently leverages LLMs during the early imitation learning phase, allowing the
agent to rapidly acquire foundational skills and significantly accelerate reinforcement learning.
A key contribution of our framework is the strategic use of LLMs restricted to the pre-training
phase, which substantially reduces token consumption while maintaining strong performance. This
lightweight and efficient design balances the powerful reasoning capabilities of LLMs with practical
resource constraints, making it suitable for real-world applications. Additionally, the integration of a
hierarchical structure combining value-based and policy-based learning enables faster convergence
and better task generalization. Techniques such as annealed sampling and adaptive policy training
further enhance learning efficiency by ensuring a smooth transition from LLM-guided exploration
to agent-driven exploitation. Our experimental results demonstrate that the proposed framework
achieves superior performance with improved sample efficiency and reduced computational costs
compared to baseline methods. Future work will focus on extending this framework to more complex
environments and exploring advanced strategies to further reduce reliance on LLMs.

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Olivia Cortes, Benjamin David,
Chelsea Finn, Clayton Fu, Karol Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Ahmed Akakzia, Himanshu Sahni, Maxime Chevalier-Boisvert, Carl Doersch, and Mark Lapeer.
Learning to reach goals via iterated supervised learning. In Proceedings of the 2020 Conference
on Neural Information Processing Systems, 2020.

Jacob Andreas, Dan Klein, and Pieter Abbeel. Modular multitask reinforcement learning with policy
sketches. In International Conference on Machine Learning, pp. 166–175. PMLR, 2017.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems, Salem
Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld: Modular &
customizable reinforcement learning environments for goal-oriented tasks. CoRR, abs/2306.13831,
2023.

Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter Abbeel, Abhishek
Gupta, and Jacob Andreas. Guiding pretraining in reinforcement learning with large language
models. In International Conference on Machine Learning, pp. 8657–8677. PMLR, 2023.

Carlos Florensa, Yan Duan, and Pieter Abbeel. Stochastic neural networks for hierarchical re-
inforcement learning. In ICLR, 2017. URL https://openreview.net/forum?id=
B1oK8aoxe.

Robert Gieselmann and Florian T Pokorny. Planning-augmented hierarchical reinforcement learning.
IEEE Robotics and Automation Letters, 6(3):5097–5104, 2021.

Nikolaj Goodger, Peter Vamplew, Cameron Foale, and Richard Dazeley. A nethack learning environ-
ment language wrapper for autonomous agents. Journal of Open Research Software, 11, 06 2023.
doi: 10.5334/jors.444.

Danijar Hafner. Benchmarking the spectrum of agent capabilities, 2022. URL https://arxiv.
org/abs/2109.06780.

Joshua Hare. Dealing with sparse rewards in reinforcement learning, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Bin Hu, Chenyang Zhao, Pu Zhang, Zihao Zhou, Yuanhang Yang, Zenglin Xu, and Bin Liu. Enabling
intelligent interactions between an agent and an llm: A reinforcement learning approach. arXiv
preprint arXiv:2306.03604, 2023.

Yuke Jiang, Shixiang Shane Gu, Kevin P Murphy, and Chelsea Finn. Language as an abstraction for
hierarchical deep reinforcement learning. In Advances in Neural Information Processing Systems,
volume 32, 2019.

Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchical deep
reinforcement learning: Integrating temporal abstraction and intrinsic motivation. Advances in
neural information processing systems, 29, 2016.

Heinrich Küttler, Nantas Nardelli, Alexander H. Miller, Roberta Raileanu, Marco Sel-
vatici, Edward Grefenstette, and Tim Rocktäschel. The nethack learning envi-
ronment. In Advances in Neural Information Processing Systems 33 (NeurIPS
2020), 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
569ff987c643b4bedf504efda8f786c2-Abstract.html.

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with language
models. arXiv preprint arXiv:2303.00001, 2023.

Hoang Le, Nan Jiang, Alekh Agarwal, Miroslav Dudik, Yisong Yue, and Hal Daumé, III. Hierarchical
imitation and reinforcement learning. In Jennifer Dy and Andreas Krause (eds.), Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 2917–2926. PMLR, 10–15 Jul 2018. URL https://proceedings.
mlr.press/v80/le18a.html.

11

https://openreview.net/forum?id=B1oK8aoxe
https://openreview.net/forum?id=B1oK8aoxe
https://arxiv.org/abs/2109.06780
https://arxiv.org/abs/2109.06780
https://proceedings.neurips.cc/paper/2020/hash/569ff987c643b4bedf504efda8f786c2-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/569ff987c643b4bedf504efda8f786c2-Abstract.html
https://proceedings.mlr.press/v80/le18a.html
https://proceedings.mlr.press/v80/le18a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Seungjae Lee, Jigang Kim, Inkyu Jang, and H. Jin Kim. Dhrl: A graph-based approach for long-
horizon and sparse hierarchical reinforcement learning. In NeurIPS, 2022.

Boyi Li, Philipp Wu, Pieter Abbeel, and Jitendra Malik. Interactive task planning with language
models, 2023. URL https://arxiv.org/abs/2310.10645.

Jessy Lin, Yuntian Du, Oliver Watkins, Danijar Hafner, Pieter Abbeel, Dan Klein, and Anca Dragan.
Learning to model the world with language. arXiv preprint arXiv:2308.01399, 2023.

Sihong Luo, Jia Chen, Zhen Hu, Cheng Zhang, and Bo Zhuang. Hierarchical reinforcement learning
with attention reward. In Proceedings of the 2023 International Conference on Autonomous Agents
and Multiagent Systems, pp. 2804–2806, May 2023.

Sharva Mirchandani, Siddharth Karamcheti, and Dorsa Sadigh. Ella: Exploration through learned
language abstraction. Advances in Neural Information Processing Systems, 34:29529–29540,
2021.

Seungyong Moon, Junyoung Yeom, Bumsoo Park, and Hyun Oh Song. Discovering hierarchical
achievements in reinforcement learning via contrastive learning, 2023. URL https://arxiv.
org/abs/2307.03486.

Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical rein-
forcement learning. In NIPS, 2018a. URL https://proceedings.neurips.cc/paper/
2018/hash/e6384711491713d29bc63fc5eeb5ba4f-Abstract.html.

Ofir Nachum, Shixiang (Shane) Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018b. URL https://proceedings.neurips.cc/paper_files/
paper/2018/file/e6384711491713d29bc63fc5eeb5ba4f-Paper.pdf.

Ofir Nachum, Haoran Tang, Xingyu Lu, Shixiang Gu, Honglak Lee, and Sergey Levine. Why does
hierarchy (sometimes) work so well in reinforcement learning? CoRR, abs/1909.10618, 2019.
URL http://arxiv.org/abs/1909.10618.

Kellen Nottingham, Yasaman Razeghi, Kevin Kim, John Lanier, Pierre Baldi, Roy Fox, and Satinder
Singh. Selective perception: Optimizing state descriptions with reinforcement learning for language
model actors. arXiv preprint arXiv:2307.11922, 2023.

Junhyuk Oh, Yijie Guo, Satinder Singh, and Honglak Lee. Self-imitation learning. In Jennifer Dy and
Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 3878–3887. PMLR, 10–15 Jul 2018.
URL https://proceedings.mlr.press/v80/oh18b.html.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Silviu Pitis, Harris Chan, Stephen Zhao, Bradly C Stadie, and Jimmy Ba. Maximum entropy
gain exploration for long horizon multi-goal reinforcement learning. In ICML, 2020. URL
http://proceedings.mlr.press/v119/pitis20a.html.

Bharat Prakash, Tim Oates, and Tinoosh Mohsenin. Using llms for augmenting hierarchical agents
with common sense priors. In The International FLAIRS Conference Proceedings, volume 37,
2024.

Bob Price and Craig Boutilier. Accelerating reinforcement learning through implicit imitation.
Journal of Artificial Intelligence Research, 19:569–629, 2003.

12

https://arxiv.org/abs/2310.10645
https://arxiv.org/abs/2307.03486
https://arxiv.org/abs/2307.03486
https://proceedings.neurips.cc/paper/2018/hash/e6384711491713d29bc63fc5eeb5ba4f-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/e6384711491713d29bc63fc5eeb5ba4f-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2018/file/e6384711491713d29bc63fc5eeb5ba4f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/e6384711491713d29bc63fc5eeb5ba4f-Paper.pdf
http://arxiv.org/abs/1909.10618
https://proceedings.mlr.press/v80/oh18b.html
http://proceedings.mlr.press/v119/pitis20a.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Mikayel Samvelyan, Robert Kirk, Vitaly Kurin, Jack Parker-Holder, Minqi Jiang, Eric Hambro, Fabio
Petroni, Heinrich Küttler, Edward Grefenstette, and Tim Rocktäschel. Minihack the planet: A
sandbox for open-ended reinforcement learning research, 2021. URL https://arxiv.org/
abs/2109.13202.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Nathaniel Shinn, Francesco Cassano, Anand Gopinath, Karthik Narasimhan, and Shuang Yao.
Reflexion: Language agents with verbal reinforcement learning. Advances in Neural Information
Processing Systems, 36, 2024.

Chuanneng Sun, Songjun Huang, and Dario Pompili. Hierarchical in-context reinforcement learning
with hindsight modular reflections for planning, 2024. URL https://arxiv.org/abs/
2408.06520.

Vicuna Team. Vicuna: An open-source chatbot impressing gpt-4 with 90https://lmsys.org/
blog/2023-03-30-vicuna/, 2023. Accessed: 2024-10-01.

Chen Tessler, Shahar Givony, Tom Zahavy, Daniel J Mankowitz, and Shie Mannor. A deep hierarchical
approach to lifelong learning in minecraft. In AAAI, 2017. URL http://aaai.org/ocs/
index.php/AAAI/AAAI17/paper/view/14630.

Kolby Tupper. Nethack-llm: Large language models for nethack. https://github.com/
kolbytn/nethack-llm, 2023. Accessed: 2024-10-01.

Mel Vecerik, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal Piot, Nicolas Heess,
Thomas Rothörl, Thomas Lampe, and Martin Riedmiller. Leveraging demonstrations for deep
reinforcement learning on robotics problems with sparse rewards. arXiv preprint arXiv:1707.08817,
2017.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In ICML,
2017. URL http://proceedings.mlr.press/v70/vezhnevets17a.html.

Yiding Wu, Hing Chan, Jamie Kiros, Sanja Fidler, and Jimmy Ba. Actrce: Augmenting experience
via teacher’s advice. In International Conference on Learning Representations, 2019.

Shuang Yao, Jing Zhao, Dayiheng Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yushi Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations, 2023.

Junjie Ye, Xuanting Chen, Nuo Xu, Can Zu, Zekai Shao, et al. A comprehensive capability analysis
of gpt-3 and gpt-3.5 series models. arXiv preprint arXiv:2303.10420, 2023. URL https:
//arxiv.org/abs/2303.10420.

Shenao Zhang, Sirui Zheng, Shuqi Ke, Zhihan Liu, Wanxin Jin, Jianbo Yuan, Yingxiang Yang,
Hongxia Yang, and Zhaoran Wang. How can llm guide rl? a value-based approach, 2024.

Tianren Zhang, Shangqi Guo, Tian Tan, Xiaolin Hu, and Feng Chen. Generating
adjacency-constrained subgoals in hierarchical reinforcement learning. In NIPS,
2020. URL https://proceedings.neurips.cc/paper/2020/hash/
f5f3b8d720f34ebebceb7765e447268b-Abstract.html.

Zihao Zhou, Bin Hu, Chenyang Zhao, Pu Zhang, and Bin Liu. Large language model as a policy
teacher for training reinforcement learning agents, 2024.

13

https://arxiv.org/abs/2109.13202
https://arxiv.org/abs/2109.13202
https://arxiv.org/abs/2408.06520
https://arxiv.org/abs/2408.06520
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14630
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14630
https://github.com/kolbytn/nethack-llm
https://github.com/kolbytn/nethack-llm
http://proceedings.mlr.press/v70/vezhnevets17a.html
https://arxiv.org/abs/2303.10420
https://arxiv.org/abs/2303.10420
https://proceedings.neurips.cc/paper/2020/hash/f5f3b8d720f34ebebceb7765e447268b-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f5f3b8d720f34ebebceb7765e447268b-Abstract.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A BASELINE MODIFICATION

We modify these baselines. In LLM4Teach, the prompt consisted solely of the observation (obs),
leading to highly open-ended responses from the LLM, which made it challenging to extract useful
information. To enhance stability, we modified the prompt by appending "Choose an option from [oi,
...]" at the end, which is the same as our format. LLM×HRL originally relied on a pre-trained neural
network for skills, which required substantial engineering effort and did not guarantee reliable outputs.
We replaced the neural network with pre-defined skill functions to maintain consistency with our
own algorithm. In general, all these algorithms use the same logic from Trans and ActionNet,
ensuring the fairness. To be more specific, given fixed current state, all these three methods will call
the same Trans function to get the corresponding option and ActionNet will output the higher-
level action distribution for the next operation. The only difference between IHAC and baselines is
how to utilize the higher-level action distribution.

B DETAILED EXPERIMENT SETTINGS

B.1 COMPUTATIONAL RESOURCES

All our experiments are conducted on two NVIDIA A6000 GPUs for training, and we utilize PyTorch
as our primary deep learning framework Paszke et al. (2019). In MiniGrid, we use Vicuna 7b Team
(2023) as the higher policy model. In NetHack and Crafter, it is too difficult for Vicuna to infer the
current state, so we apply ChatGPT 3.5-turbo Ye et al. (2023) instead.

B.2 MINIGRID SETTINGS

MiniGrid is a terrific environment Chevalier-Boisvert et al. (2023) for applying HRL because its
natural tasks can easily be divided into sub-tasks. In our work, we implement SimpleDoorKey,
TwoDoorKey, KeyInBox, and RandomBoxKey. We use two NVIDIA A6000 GPUs for train-
ing.

Hyperparameters

We use PPO as the base algorithm for the controller Zhou et al. (2024). The actor and critic networks
in MiniGrid share a simple and effective architecture. The policy network (actor) is a two-layer fully
connected neural network that maps the input embedding to the action space. The first layer consists
of 64 hidden units with ReLU activation, followed by an output layer with the dimensionality equal
to the size of the action space. Similarly, the value network (critic) shares a similar structure, with the
final output being a single scalar representing the state value. We list all the parameters involved in
the RL and IL training below.

Variable Value
Number of trajectories per iteration 10
Number of epochs per iteration 3
Minibatch size 128
Entropy loss coefficient 0.001
Value function loss coefficient 0.5
Discount factor 0.99
Learning rate 0.001
Clipping parameter 0.2
Maximum gradient norm 0.5

Table 2: RL hyperparameters in MiniGrid experiments.

Prompts

Below are four examples of prompt design for MiniGird, corresponding to four different tasks
respectively.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Variable Value
Number of trajectories per iteration 10
Number of epochs per iteration 3
Minibatch size 128
Value function loss coefficient (α) 0.25
Entropy loss coefficient (1-α) 0.75
Learning rate 0.001
KL divergence coefficient in Q 0.5
Maximum gradient norm for q 0.5
Maximum value for q 2
Sampling Discount factor 0.99
Sampling Update Interval 10
Pretraining Percentage 10%

Table 3: IL pretraining hyperparameters in MiniGrid experiments.

SimpleDoorKey Example Prompt

Problem title : SimpleDoorKey
Description : In a locked 2D grid room, there is an agent whose task is to open the door. The
door can only be opened while agent holds the key. The agent can perform the following
actions: explore, go to its goal, pick up its goal, drop its carrying object, or open its goal. You
need to minimize the step to open the door. Your response should include your reason and
follow the format "Answer : (Your Choice)".
Example:
Observation : Agent see a key and holding nothing. Choose an option from ["explore", "go to
key, pick up key"].
Answer : Explore.

TwoDoor Example Prompt

Problem title : TwoDoor
Description : In a locked 2D grid room, there is an agent whose task is to open the door. The
door can only be opened while agent holds the key. There are two different doors and you
only need to open one of them. The agent can perform the following actions: explore, go
to its goal, pick up its goal, drop its carrying object, open its goal. You need to minimize
the step to open the door. Your response should include your reason and follow the format
"Answer : (Your Choice)".
Example:
Observation : Agent see door 1, door 2, key, hold nothing. Choose an option from ["explore",
"go to key, pick up key", "go to door 1, open door 1", "go to door 2, open door2"]
Answer : Go to key, pick up key.

KeyInBox Example Prompt

Problem title : KeyInBox
Description : In a locked 2D grid room, there is an agent whose task is to open the door.
The door can only be opened while agent holds the key. And the key is in a box. The agent
can perform the following actions: explore, go to its goal, pick up its goal, drop its carrying
object, open its goal, or toggle its goal. You need to minimize the step to open the door. Your
response should include your reason and follow the format "Answer : (Your Choice)".
Example: Observation : Agent see a box and holding nothing. Choose an option from
["explore", "go to box, toggle the box"]
Answer : go to the box, toggle the box.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

RandomBoxKey Example Prompt

Problem title : RandomBoxKey
Description : In a locked 2D grid room, there is an agent whose task is to open the door.
The door can only be opened while agent holds the key. The key could be outside the box
or inside the box. The agent can perform the following actions: explore, go to its goal, pick
up its goal, drop its carrying object, open its goal, or toggle its goal. You need to minimize
the step to open the door. Your response should include your reason and follow the format
"Answer : (Your Choice)".
Example:
Observation: Agent sees a box and a key, holding nothing. Choose an option from ["explore",
"go to box, toggle the box", "go to key, pick up key"].
Answer: Go to key, pick up key.

Trans and ActionNet

We maintain the same Trans and ActionNet setting as Zhou et al. (2024). We primarily use five
different options: explore, go to, pick up, drop, and open.

• explore: When the agent chooses explore as the current option, it will explore the currently
unseen tiles.

• goto: This option takes an item as input (e.g., "go to door") and generates actions using the
A* algorithm until the agent reaches the goal.

• pickup: This is a one-step action to pick up the front item.
• drop: This is a one-step action to drop the item that the agent is holding.
• open: This is a one-step action to open the front item, for example the door and the box.

Experiment Result in Detail

We provide the detailed asymptotic performances for all tasks in Table 3. The Minigrid results are
averaged over 5 tests runs.

Figure 9: The tested average returns, task completion success rates, and steps (eplen) vs. the training
iteration index of the compared methods across four environments. Our model uses just 1/10 of the
tokens required by the other two models. We use dashed lines to clearly mark the transition between
the imitation learning phase and the reinforcement learning phase. From the graphs, it is clear that in
the later stage of reinforcement learning, the model’s performance continues to improve.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B.3 NETHACK SETTINGS

Hyperparameters

We use PPO as the base algorithm for the controller Schulman et al. (2017), and we list all the
parameters involved in the RL and IL below. We follow Küttler et al. (2020) to set the backbone
architecture, which adapts CNN LeCun et al. (1998) for both the actor and critic networks.

Variable Value
Number of trajectories per iteration 10
Number of epochs per iteration 3
Minibatch size 128
Entropy loss coefficient 0.001
Value function loss coefficient 0.5
Discount factor 0.99
Learning rate 0.001
Clipping parameter 0.2
Maximum gradient norm 0.5

Table 4: RL hyperparameters in Nethack experiments.

Variable Value
Number of trajectories per iteration 10
Number of epochs per iteration 3
Minibatch size 128
Value function loss coefficient (α) 0.25
Entropy loss coefficient (1-α) 0.75
Learning rate 0.001
KL divergence coefficient in Q 0.5
Maximum gradient norm for q 0.5
Maximum value for q 2
Sampling Discount factor 0.97
Sampling Update Interval 10
Pretraining Percentage 10%

Table 5: IL pretraining hyperparameters in Nethack experiments.

Prompts

Below are two prompt examples for LavaCross and Monster.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

LavaCross Example Prompt

Problem title : LavaCross
Description : You are a game agent in the Nethack environment. Your goal is to drink the
potion and cross lava. First, you need to drink the potion which is already in your inventory.
Next, you need to cross lava lake and enter the exit. You need to minimize the step to open
the door. Your response should include your reason and follow the format "Answer : (Your
Choice)".
Example:
Observation: "You have a +1 club (weapon in hand)", "You have a +2 sling (alternate weapon;
not wielded)", "You have 19 uncursed flint stones (in quiver pouch)", "You have 29 uncursed
rocks", "You have an uncursed +0 leather armor (being worn)", "Strength: 18/18", "Dexterity:
15", "Constitution: 16", "Intelligence: 7", "Wisdom: 9", "Charisma: 10", "Depth: 1", "Gold:
0", "HP: 16/16", "Energy: 2/2", "AC: 8", "XP: 1/0", "Time: 7", "Position: 39|8", "Hunger:
Not Hungry", "Monster Level: 0", "Encumbrance: Unencumbered", "Dungeon Number: 0",
"Level Number: 1", "Score: 10", "Alignment: Neutral", "Condition: Levitating", "You see a
vertical wall far west", "You see a vertical wall near east", "You see a southeast corner near
southeast", "You see a horizontal wall near south and southwest", "You see a area of lava near
south southwest", "You see a stairs up near west southwest", "You see a stairs down very near
east", "You see a lava very near south southwest", "You see a horizontal wall adjacent north,
northeast, and northwest", "You see a lava adjacent southwest and west".
Choice : ["move north", "move south", "move east", "move west", "move northwest", "move
northeast", "move southwest", "move southeast"]
Answer: "move southwest"

Monster Example Prompt

Problem title : Monster
Description : You are a game agent in the Nethack environment. Your goal is to leave the
room by killing monsters. You need to minimize the step to open the door. Your response
should include your reason and follow the format "Answer : (Your Choice)".
Example:
Observation: "You have a +0 short sword (weapon in hand)", "You have 14 +0 daggers
(alternate weapon; not wielded)", "You have an uncursed +1 leather armor (being worn)",
"You have an uncursed potion of sickness", "You have an uncursed lock pick", "You have an
empty uncursed sack", "Strength: 15/15", "Dexterity: 15", "Constitution: 10", "Intelligence:
11", "Wisdom: 15", "Charisma: 9", "Depth: 1", "Gold: 0", "HP: 12/12", "Energy: 2/2",
"AC: 7", "XP: 1/0", "Time: 2", "Position: 37|9", "Hunger: Not Hungry", "Monster Level: 0",
"Encumbrance: Unencumbered", "Dungeon Number: 0", "Level Number: 1", "Score: 0",
"Alignment: Chaotic", "Condition: None", "You see a stairs down near east", "You see a dark
area near east, southeast, and south", "You see a dark area very near southwest and west",
"You see a dark area adjacent north, northeast, and northwest", "You see a kobold adjacent
south",
Choice : ["move north", "move south", "move east", "move west", "move northwest", "move
northeast", "move southwest", "move southeast, "attack the kobold"]
Answer: "attack the kobold."

Trans and ActionNet

We use the same setting fromTupper (2023). It can translate the observation from NetHack environ-
ment to a natural language as the input prompt. it will evaluate each action and choose the best one
as the high level action. We list options involved in Nethack as below:

• goto: This option takes an item as input (e.g., "go to weapon") and generates actions using
the A* algorithm until the agent reaches the goal.

• interact: This is a one-step action including all interactions with items, for example attack,
drink and etc.

Detailed Results

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

The table below shows the success rate for different achievements in the process of lavacross and
monster environment and the total tokens consumed during training.

0 2000 4000 6000 8000
epoch

0.2

0.4

0.6

su
cc

es
s r

at
e

lava

Ours
LLM4Teach
LLM×HRL

Figure 10: Lavacross environment result

0 2000 4000 6000 8000
epoch

0.2

0.4

0.6

0.8

su
cc

es
s r

at
e

monster

Ours
LLM4Teach
LLM×HRL

Figure 11: Monster environment result

B.4 CRAFTER SETTINGS

Crafter Hafner (2022) contains 22 different achievements, including "wake up" and "eat cow." We
focus on making a stone pickaxe. To accomplish this task, the agent must collect enough wood, make
a table, use the table to make a wood pickaxe, use the wood pickaxe to collect stones, and then make
the stone pickaxe on the table.

Hyperparameters

In this controller model, we use ResNet He et al. (2016) as our backbone structure , following the
settings of Moon et al. (2023). The tables below show our main hyperparameters for the experiments.

Variable Value
Number of epochs per iteration 3
Minibatch size 8
Clipping parameter 0.2
Value function loss coefficient 0.5
Entropy loss coefficient 0.01
Learning rate 0.0003
Maximum gradient norm 0.5
Auxiliary update frequency 8
Number of auxiliary epochs 6
Policy distribution coefficient 1.0
Value function distribution coefficient 1.0
Auxiliary KL loss coefficient 1.0
Auxiliary sampling weight decay 0.95

Table 6: RL hyperparameters in Crafter experiments.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Variable Value
Number of steps per iteration 512
Number of processing units 8
Learning rate 0.0003
Value function loss coefficient (α) 0.25
Entropy loss coefficient (1-α) 0.75
Sampling Discount factor 0.95
Sampling Update Interval 10
Sampling weight initial value 1.0
KL divergence coefficient in Q 0.5
Maximum Step length 512
Pretraining Percentage 20%

Table 7: IL pretraining hyper parameters in Crafter experiments.

Prompts

There are two prompt temples for Crafter tasks.

Crafter Example Prompt

Problem title : MakeWoodPickaxe
Description : You are a game agent in the Crafter environment. Your goal is to make a wood
pickaxe. First, you need to collect four woods. Next, you need to build a table to make a
wood pickaxe. Then, you should use the wood to make the stone pickaxe.
Observation:
Observation: Agent sees grass, coal, tree, stone, path, sand, table, water. You have 1
wood, 2 stone, 2 wood_pickaxe. Choose an option from ["attack zombie", "attack skeleton",
"drink water", "eat cow", "sleep", "chop tree", "get stone", "craft wood_pickaxe", "craft
stone_pickaxe", "build table", "explore"].
Answer : craft wood_pickaxe.

Crafter Example Prompt

Problem title : MakeStonePickaxe
Description : You are a game agent in the Crafter environment. Your goal is to make a stone
pickaxe. First, you need to collect four woods. Next, you need to build a table to make a
wood pickaxe. Then, you should use the wood pickaxe to get a stone. Finally, you should get
back to the table and make the stone pickaxe.
Example:
Observation: Agent sees grass, coal, tree, stone, path, sand, water. You have 1 wood. You are
thirsty now. Choose an option from ["attack zombie", "attack skeleton", "drink water", "eat
cow", "sleep", "chop tree", "get stone", "craft wood_pickaxe", "craft stone_pickaxe", "build
table", "explore"].
Answer : drink water.

Trans and ActionNet

We design Trans and ActionNet similar to MiniGrid B.2. Here are basic options used in Crafter:

• explore: When the agent chooses explore as the current option, it will explore the currently
map.

• goto: This option takes an item as input (e.g., "go to wood") and generates actions using the
A* algorithm until the agent reaches the goal.

• collect: This is a one-step action to collect the front item.
• drop: This is a one-step action to drop the item that the agent is holding.
• build: This is a one-step action to build the table, wood pickaxe or stone pickaxe.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

• attack: This is a one-step action to attack the front enemy.
• drink: This is a one-step action to drink water.
• sleep: This is a one-step action to sleep.

C SENSITIVITY ANALYSIS

In this section, we will do some sensitivity analysis in the MiniGrid Simple Door Key environment to
additional parameters used in our two-phase training process, including Pretraining Percentage (p),
the ratio (r = α/(1− α)) between value function loss coefficient and entropy loss coefficient, and
the updating method of λt.

Pretraining Percentage (p) p represents the proportion of total iterations dedicated to the imitation
learning phase. The base setting for p is 10%, and we tested alternative settings of 5% and 15%. The
results, as shown in Figure 12, include comparisons across three metrics: Episode Length, Return, and
Success Rate. From the results, we observe that the choice of p has minimal impact on performance,
as it nearly does not affect the performance or the convergence of IHAC. This analysis suggests that

Figure 12: Comparison of Pretraining Percentage (p) in MiniGrid Door Key environment.

our method is robust to changes in p, providing flexibility in adjusting the duration of the imitation
learning phase without significantly compromising performance.

Ratio (r) To analyze the effect of varying the ratio (r) between the value function loss coefficient and
the entropy loss coefficient, we conducted experiments with three different configurations: r = 1 : 3
(base configuration), r = 1 : 1, and r = 3 : 1. The results, presented in Figure 13, evaluate
performance across three metrics: Episode Length, Return, and Success Rate.

Figure 13: Comparison of different ratios (r) between value function loss and entropy loss coefficients
on MiniGrid Simple Door Key environment.

The results suggests increasing the weight of the policy loss (r = 1 : 3) results in improved
performance, with shorter episode lengths, higher returns, and greater success rates compared to
other configurations. These findings indicate that prioritizing the policy loss over the entropy loss
allows the model to optimize decisions more effectively, leading to better sample efficiency and task
completion metrics.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Updating Method of λt To evaluate the sensitivity of our method to the updating strategy for λt, we
conducted experiments with λt ∈ {0.99t, 0.95t, 0.75t}. Here λt denotes the decay factor applied to
anneal sampling. The results, shown in Figure 14, evaluate the performance across Episode Length,
Return, and Success Rate.

Figure 14: Comparison of different updating methods for λt in the MiniGrid Simple Door Key
environment.

From the results, we observe that IHAC is robust to the choice of λt ∈ {0.99t, 0.95t, 0.75t} as they
share nearly the same performance. Combining with the ablation study of λt in Section 4.5, we claim
that IHAC works as long as a large λt is selected.

Generally speaking, while our method introduces additional parameters, the tuning process remains
straightforward and these parameters have minimal impact on the overall experimental results. This
demonstrates the robustness of our approach, as the model performs well across a range of parameter
configurations. Notably, we observed that increasing the weight of the policy loss significantly
improves model training, which aligns with our intuition. By prioritizing the training of the policy,
we can achieve better performance, reinforcing the importance of focusing on optimizing the policy
for more effective decision-making.

22

	Introduction
	Related Works
	Hierarchical Reinforcement Learning (HRL)
	LLM Agent
	Imitation Learning

	Methodology
	Preliminary: definition of agents
	Proposed Algorithm
	Details of IHAC

	Experiments
	Experiment setup
	Experiment results for MiniGrid
	Experiment results for NetHack
	Experiment results for Crafter
	Ablation Study

	Conclusion
	Baseline modification
	Detailed experiment settings
	Computational resources
	MiniGrid Settings
	NetHack Settings
	Crafter Settings

	Sensitivity Analysis

