
Accounting for Human Learning when Inferring
Human Preferences

Harry Giles
Centre for Human Compatible AI
harry@humancompatible.ai

Lawrence Chan
UC Berkeley

chanlaw@berkeley.edu

Abstract

Inverse reinforcement learning (IRL) is a common technique for inferring human
preferences from data. Standard IRL techniques tend to assume that the human
demonstrator is stationary, that is that their policy π doesn’t change over time.
In practice, humans interacting with a novel environment or performing well
on a novel task will change their demonstrations as they learn more about the
environment or task. We investigate the consequences of relaxing this assumption
of stationarity, in particular by modelling the human as learning. Surprisingly, we
find in some small examples that this can lead to better inference than if the human
was stationary. That is, by observing a demonstrator who is themselves learning, a
machine can infer more than by observing a demonstrator who is noisily rational.
In addition, we find evidence that misspecification can lead to poor inference,
suggesting that modelling human learning is important, especially when the human
is facing an unfamiliar environment.

1 Introduction

Directly specifying the desired task that a machine should perform can be challenging [14]. One
approach to this problem is through Inverse Reinforcement Learning (IRL), where the task is to learn
a reward function R which best explains the behaviour of a given (noisily-)optimal agent π [16], of
which the standard model is the Boltzmann-rational model [21, 22, 10, 7, 11, 12, 5].

One strong assumption that we challenge in this work is that of stationarity. Models of near-optimality
tend to assume that the agent’s demonstrations are stationary; that is, that the policy does not change
over time. This may not be the case for several reasons, as the following examples show:

1. For a robotics task, the human demonstrator’s performance might improve during demon-
strations, as they become quicker to complete a task as their understanding of the dynamics
develops, or as they explore and then exploit better strategies

2. With recommender systems, a human might still be learning their preferences; they might
not know how much they enjoy a certain genre of music until they have tried it.

3. When labelling images [8] or ranking demonstrations [7, 5], a human labeller might not
understand the instructions precisely at first, but then they develop a better understanding by
interacting with more examples.

In each of these examples, while a true human expert might not change their behavior through the
course of generating demonstrations or comparisons, a human demonstrator interacting with a novel
system might learn through the course of interacting.

Our key proposal is to account for non-stationary by modelling the demonstrator as learning. We first
investigate how this modelling choice interacts with IRL. Is there anything a machine inferrer can
learn from human demonstrators that are themselves learning? Our results show that the answer is yes.

Preprint. Under review.



Moreover, surprisingly we find that non-stationary learning demonstrators can be more informative
across several domains. Further, we shed light on this result by showing that a learning demonstrator
is able to disambiguate between rewards that stationary demonstrators cannot. Next, we investigate
the impacts of model misspecification in relation to stationarity, and find evidence that assuming
stationarity is harmful when the human demonstrator is learning. Encouragingly, we find that merely
modelling the demonstrator as learning is sufficient for the inferrer to get good performance in most
cases, even if the inferrer gets the parameters of the learning algorithm incorrect.

1.1 Related work

A large amount of recent work studies IRL with alternative assumptions. To list a few, Bobu et al.
[3] uses a modified version of the Boltzmann-rationality assumption; Evans et al. [9] presents an
algorithm for learning from various psychology-inspired algorithms; Reddy et al. [19] studies the
problem of IRL from an agent with false dynamics beliefs; Zhi-Xuan et al. [20] presents an algorithm
from learning from the trajectories of bounded planning agents; and Levine and Koltun [15] studies
IRL under the assumption that the demonstrations are merely locally (noisily-)optimal. However, in
the vast majority of work in this area, the agents are assumed to be stationary and don’t change their
revealed preferences over time.

Chan et al. [6] and Jacq et al. [13] do study versions of the task of learning from a learner. However,
Chan et al.’s Assistive Bandits studies the problem in the restricted domain of a multi-armed bandit,
and thus makes the assumption that the human only learns about the reward and not the dynamics.
Jacq et al.’s Learning from a learner presents an algorithm that relies on the assumption that later
actions have higher Q-value than earlier actions and then performs IRL from comparisons on top of
that. This work both considers sequential decision problems where the demonstrator does not know
the dynamics and makes a different assumption about the learning algorithms.

2 Background

A finite Markov Decision Process is a tupleM = (S,A, T, ρ, γ,Rθ, P0) with

• Finite sets of states S and actions A
• Transition probabilities T (s, a, s′) over s′ ∈ S, ∀s ∈ S, a ∈ A
• Initial state probabilities ρ over S
• Discount rate γ ∈ [0, 1)

• Parameterised reward function Rθ : S ×A → R, for parameter θ ∈ Θ

• Prior distribution over θ, P0

A policy π(a | s) gives a probability vector over actions a ∈ A for a given state s ∈ S . For policy π,
the action-value function Qπ : S ×A → R is the expected return of starting in state s, taking action
a, and then following policy π:

Qπ(s, a) = E [R(s, a) + γR(s′, a′) + . . . |π, T ]

The optimal action-value function Q∗ is defined to be Q∗(s, a) = maxπ Q
π(s, a), and the optimal

policy is π∗(· | s) ∼ Unif{argmaxaQ
∗(s, a)}.

A planner is a map D : Θ→ Π from reward parameter θ to policy π. The type of planner is assumed
before doing IRL. The optimal planner D∗ has D∗(θ) = π∗, the optimal policy. The Boltzmann
planner has Dβ(θ) = πβ , where πβ is the Boltzmann policy parameterised by β, defined to be the
policy satisfying1

π(a | s) =
expβQπ(s, a)∑
a′ expβQπ(s, a′)

1This does not necessarily define a unique policy, see for example Asadi and Littman [1].

2



Algorithm 1: BIRL variant for non-stationary agents
Input: Demonstrations (τ0, . . . , τn), prior P0(θ), initial parameters w0, learning algorithm

(F,L)
Initialise parameters wθ = w0, P(θ) = P0(θ)
for τ in (τ0, . . . , τn) do

πθ ← F (wθ);
Compute log-likelihood `(θ)←∑

(s,a)∈τ log πθ(a | s);
Update posterior logP(θ)← logP(θ) + `(θ);
Fill in the reward according to each θ, τθ;
Update agents wθ ← L(wθ, τθ)

end

Figure 1: Diagram of a learning algorithm, as
discussed in Section 2

The form of the IRL problem which we shall address
is not that which has access to an entire policy π,
but that which has access to only to a series of n
demonstrations (τ0, . . . , τn) which have been gener-
ated according to π.

As the primary form of non-stationarity we’d like to
address is learning, we propose the following model
of a learning agent. Given some parameter space
W , a learner consists of a policy-generating-function
F : W → Π which takes parameters w to policy
π ∈ Π, paired with an update-function L : W ×
{τ} →W for performing parameter updates, where
{τ} is the set of all single trajectories. The updates
occur once at the end of each trajectory. A diagram
of the learning process being assumed is given in
Figure 1. Note that our formulation technically allows for arbitrary changes in policies, however, in
this work we restrict our attention to “reasonable” learning algorithms.

3 Methods

To perform inference on θ, we use a variant on Bayesian Inverse Reinforcement Learning (BIRL) [18].
Given a sequence of trajectories (τ0, τ2, . . . , τn), we compute

P(θ|τ0, τ2, . . . , τn) =
P(τ0, τ2, . . . , τn|θ)P0(θ)∑

θ′∈Θ P(τ0, τ2, . . . , τn|θ′)P0(θ′)

A general algorithm is detailed in Algorithm 1.

3.1 Exploring inference performance in simulation

In an ideal world, we would be able to know a priori the reward parameters and learning algorithms
that real human demonstrators are using, and then compare the performance of an inferrer that
accounts for the correct learning algorithm, models learning incorrectly, or fails to account for
learning at all. However, because we don’t have access to the true reward parameters and learning
algorithms of any particular real human, we start by studying simulated demonstrators with known
learning algorithms and policy-generating functions, on environments where the ground truth reward
is known.

3.2 Agents

For our stationary demonstrators we consider the Boltzmann planner Dβ from Section 2. Our
non-stationary demonstrators use the parameters w ∈ W to maintain a table of Q-value estimates,
Q̂(s, a). These estimates are updated according to one of three different targets, corresponding with
observed state st, action at, and reward rt:

3



1. Lq — Q-learning with target y(st, at) = rt + γV̂ (st+1)

2. Ld — Direct Evaluation with reward-to-go target y(st, at) = rt + γrt+1 + · · ·+ γT−trT ,
for horizon T

3. Lλ — TD(λ) with target y(st, at) = rt + γ
(
λy(st+1, at+1) + (1− λ)V̂ (st+1)

)
. This

demonstrator interpolates between the Q-learning and Direct Evaluation agents.

Where for the current policy π, V̂ (s) = E[Q̂(s, a) | a ∼ π]. Note that Lq = Lλ=0 and Ld = Lλ=1.
For each state action pair visited in trajectory τi, the parameters are updated towards the target y(s, a)
with a learning rate of 1

N(s,a)+1 , where N(s, a) is the number of visits to (s, a):

Q̂(s, a)← N(s, a)

N(s, a) + 1
Q̂(s, a) +

1

N(s, a) + 1
y(s, a) (1)

The policy function F = F β returns the Boltzmann policy corresponding with current Q-value
estimates Q̂. In this paper, we initialise our estimates to zero, Q̂0 = 0. In simple environments we
expect this algorithm to converge to the Boltzmann policy πβ , but this is not guaranteed (for example
because of insufficient exploration).

3.3 Evaluation

To evaluate the quality of inference we look at the mutual information between reward parameters θ
and the trajectories τ . This is a suitable evaluation metric as it captures the reduction of uncertainty
in the reward parameter θ from having observed the demonstration:

Mi = H(θ)−H(θ | τ0, . . . , τi−1)

We also look at the mutual information of only one trajectory mi := H(θ)−H(θ | τi−1), as it will
be instructive later to see how the mutual information varies as the agent converges. In some cases we
look at the posterior probability of the true theta θ∗ per-timestep, pi = P(θ∗ | τi−1), or cumulatively
Pi = P(θ∗ | τ0, . . . , τi−1). In both cases we consider the cumulative metric to be most important.

4 Illustrative example

Consider a simple two state MDP with two actions A,B where with probability 1 − ε A leads to
an apple and B leads to a banana, and with probability ε the outcome is switched. Consider reward
hypotheses |Θ| = 2 where θ = 1 specifies a preference for apples and θ = 2 specifies a preference
for bananas. See Figure 2 for a diagram of this environment.

Over a demonstration of two trajectories, we compare a stationary agent — the Boltzmann plannerDβ

— with a Direct Evaluation learner (F β , Ld). Note that the mutual information for a non-stationary
agent in the first trajectory is always zero.

The mutual information is shown in Figure 2 for varying temperature β and noise ε. Interestingly, the
mutual information for the non-stationary agent does not depend on ε: the agent will either update
towards repeating the same action or update towards taking the opposite action, signalling their
preference in each case. On the other hand, the performance of the stationary agent decreases for
larger ε; this is because the action has less influence on the expected reward. For small ε the stationary
agent outperforms, and for large ε the non-stationary agent outperforms. In the case of ε = 0.5,
the action has no influence on the outcome, and therefore the stationary agent exhibits no mutual
information. However, the non-stationary agent is still able to disambiguate in this case because they
are signalling not only through their behaviour, but their change in behaviour.

5 Experiments

Motivated by our illustrative example, we compare the stationary and non-stationary models in
three domains: an ambiguous environment, adversarially designed such that the stationary policy is
invariant among θ ∈ Θ, a Gridworld with more interpretable policies, and random MDPs.

4



100 101 102

β

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ut

ua
li

nf
or

m
at

io
n,

M
2

Stationary, ε = 0.1
Stationary, ε = 0.25
Stationary, ε = 0.4
Stationary, ε = 0.47
Stationary, ε = 0.49
Stationary, ε = 0.5
Non-stationary

Figure 2: (Left) Diagram of the two-state MDP discussed in Section 4. (Right) The exact mutual
information given by a demonstration of two trajectories as a function of the Boltzmann parameter β,
plotted for a selection of noise parameters ε. As discussed in Section 4, the mutual information of the
stationary demonstrator depends on the value of ε, while the mutual information of the non-stationary
learning demonstrator is independent. In this case there exist values of ε such that the non-stationary
demonstrator can be more informative than the Boltzmann demonstrator.

In each experiment, we sample θ ∼ Unif{Θ}, and record demonstrations for a stationary Boltzmann
agent and a selection of the non-stationary agents described in Section 3.2. Taking the demonstrations
as input, we run BIRL, using the variant described in Algorithm 1 for the non-stationary agents.
We repeat each experiment n times and use a sample mean to estimate the metrics described in
Section 3.3.

5.1 Ambiguous MDP

0 100 200 300 400 500
i

0.0

0.2

0.4

0.6

0.8

1.0

P i

Demonstrator
Stationary
Non-stationary

β

1.0
5.0

Figure 3: Ambiguous environment posterior prob-
ability Pi (higher is better) for both a (non-
stationary) Direct Evaluation demonstrator com-
pared with a stationary demonstrator, for β = 1, 5,
including 95% bootstrapped confidence intervals.
As discussed in Section 5.1, due to shaping, observ-
ing the stationary Boltzmann demonstrator gives
no information about the reward parameter.

In our illustrative example we saw that that learn-
ing demonstrators can be more informative, in-
cluding the particular ambiguous case where
the stationary demonstrations don’t depend on θ.
We further verify this observation here through
use of reward shaping [17]. We consider an
MDP |S| = 4, |A| = 3 with arbitrarily chosen
transition dynamics. We consider an arbitrary
reward function which we shape three times,
|Θ| = 4, such that the Q-function in each state
Q(s, ·) is invariant up to a constant factor. In par-
ticular this means that the stationary Boltzmann
planner does not depend on the rewar parameter
θ.

We run n = 10 experiments, each with 500
trajectories, and give the posterior at the true re-
ward parameter θ∗ in Figure 3. We observe that
the non-stationary agent exhibits enough infor-
mation for good reward inference, converging
to a posterior of 1 in the case of β = 5, whereas
in each case the stationary agent exhibits none.
In conclusion we see again that through chang-
ing behaviour the learner demonstrator is able
to signal it’s preferences where the stationary
demonstrator cannot.

5



0 25 50 75 100 125 150 175
i

0.0

0.2

0.4

0.6

0.8

m
i

0 25 50 75 100 125 150 175
i

0.0

0.5

1.0

1.5

2.0

2.5

M
i

Demonstrator
Stationary
Non-stationary

β

2
10

Figure 5: The per-timestep mutual information mi (left) and cumulative mutual information Mi

(right) between trajectory τi and reward parameter θ, averaged over ε = 0.2, 0.4, 0.6, for stationary
Boltzmann and non-stationary Q-learning demonstrator, with 95% bootstrapped confidence intervals.
As discussed in Section 4, we see that for low β the non-stationary demonstrator can be more
informative than the Boltzmann demonstrator.

5.2 Gridworld experiment

Next we turn to study the implications from our illustrative example in a more natural setting.
We consider a 5 × 5 Gridworld environment based on OpenAI Gym’s ‘Frozen-Lake-v0’ [4]. The
environment has one hole state and two reward states. The reward parameter θ = (θ1, θ2) has θj ∈
{0, 1, 2, 3, 4}, giving |Θ| = 25. A parameter ε controls the noise in the environment: with probability
ε the direction taken is not the direction chosen by the agent, but one of the two perpendicular
directions. The environment is depicted in Figure 4.

Figure 4: A visualisation of our Grid-
world environment discussed in Sec-
tion 5.2.

We run n = 150 experiments and we include here the
results for the Q-learning agent averaged over noise pa-
rameters ε = 0.2, 0.4, 0.6. The mutual information per
trajectory mi and cumulative mutual information Mi are
given in Figure 5. Further experiments and experimental
details can be found in the appendix, Section A.

We see that for low β = 2 the non-stationary demonstrator
can be more informative than the Boltzmann demonstrator,
whereas for high β = 10 the stationary demonstrator
outperforms. A lower β leads to a weaker signal across
the board as the demonstrator’s actions exhibit more noise.
In the appendix (Section A), we discuss how the non-
stationary demonstrator performance is robust to higher
amounts of action noise ε. We also discuss an observed
phenomenon where mutual information seems to spike for
earlier demonstrations in the case of the Direct Evaluation
agent.

5.2.1 Gridworld misspecification

A natural question is whether modelling learning is necessary; perhaps a learning demonstrator is
just as informative when the observer is modelling them as stationary. To assess whether this is true,
we look at the effect of having the wrong model for the Gridworld environment. When a model
is misspecified, mutual information is not a valid measure of performance, instead we look at the
posterior metrics pi, Pi introduced in Section 3.3.

First, we study the effects of making an incorrect assumption as to whether a demonstrator is stationary
or not. We run n = 150 experiments for each form of misspecification. The cumulative posterior
after 181 trajectories P181 is given in Figure 7. The per-trajectory posterior pi is given in Figure 6.
Further results and experimental details can be found in the appendix, Section A.

6



0 50 100 150
i

0.04

0.05

0.06

0.07

0.08

p i

Demonstrator = Non-stat

0 50 100 150
i

Demonstrator = Stat

Inferrer
Non-stat
Stat

Figure 6: Per-trajectory posterior probabilities pi in the Gridworld domain for misspecified models
among a stationary Boltzmann Dβ to Q-learning Lq, for β = 2, including a 95% bootstrapped
confidence interval. Results averaged over ε = 0.2, 0.4, 0.6. As discussed in Section 5.2.1, we see
that misspecification leads to poor inference, particularly in the early stages of demonstration.

Non-stat Stat
Demonstrator

N
on

-s
ta

t
S

ta
tIn

fe
rr

er

44 6

6 34

Figure 7: Posterior probabilities P181

(%) in the Gridworld domain for mis-
specified models among a stationary
Boltzmann Dβ to Q-learning Lq, both
with β = 2. We see that the off-diagonal
does better than the prior of 4%, but
barely so.

We see that misspecification leads to poor inference, only
very marginally improving on the posterior of 4%. Further-
more, we see in Figure 6 that per-trajectory performance
is worst for the earliest trajectories. In the case where
the non-stationary demonstrator is assumed to be station-
ary, inference improves over time as the agent converges
to the policy expected by the inferrer. This gives justi-
fication for the common practice in IRL demonstrations
whereby the demonstrator is given some time to under-
stand the experiment setup and practice demonstrating
before data collection begins (for example, see the instruc-
tions in Christiano et al. [7]). In the other case, where
a stationary agent is assumed to be non-stationary, infer-
ence improves over time because the inferrer, modelling
the stationary demonstrator as converging, is increasingly
expecting the (near-)optimal behaviour that it is observing.

Second we look at the effects of correctly allowing for
non-stationarity but having the incorrect model. We assess
this by considering the TD(λ) model Lλ where the demon-
strator has parameter λ = λD and the inferrer has parameter λ = λI . We run n = 150 experiments
for a mesh of values λD, λI ∈ [0, 1]. Figure 8 gives a heatmap of the cumulative posterior after a
demonstration of 181 trajectories, P181.

We observe that inference is mostly robust to misspecification of λ. For example, when the demon-
strator has parameter λD = 0.5, the inferrer assigns a posterior ≥ 20% to the true reward for all λI
in the range [0, 0.8]. Only at the bottom left and bottom right (where the inferrer’s model is most
misspecified) is performance is comparable to the performance of mismodelling the demonstrator as
stationary. In each case, the inferrer does better than the prior 4%.

5.3 Random MDPs

To explore a more general domain, next we consider randomly generated MDPs with |A| = 2 and for
|S| ∈ {3, 4, 5, 6}. Two of the states generate reward in {−1, 1}, giving |Θ| = 16. We run n = 200
experiments, each with a demonstration of 200 trajectories. The mutual information is given in
Figure 9 for |S| = 3, and additional results are available in Section A of the appendix.

Interestingly, we find in all of the Random MDP experiments that although per-trajectory information
is lower for the non-stationary agent, the more important measure of cumulative mutual information

7



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

λD

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

λ
I

45 44 38 38 35 28 24 19 16 9 6

43 42 44 42 36 31 26 21 15 10 6

41 46 44 41 41 34 29 19 14 10 7

36 40 41 43 43 41 32 23 16 8 6

32 37 39 41 41 42 36 26 18 12 7

28 29 33 39 40 43 37 31 21 12 7

19 25 30 31 37 38 42 37 23 13 7

14 17 19 23 27 31 38 42 33 20 7

11 11 13 13 17 21 24 33 39 23 9

5 8 9 7 10 12 13 18 27 39 10

4 4 6 8 7 7 5 11 8 12 34

Figure 8: The posterior probability P181 (%) after 181 observed trajectories in the Gridworld domain.
We observe that inference is robust to misspecificaiton of λ. For example, when the demonstrator has
parameter λD = 0.5, the inferrer assigns a posterior ≥ 20% to the true reward for λI ∈ [0, 0.8].

0 50 100 150 200
i

0.0

0.2

0.4

0.6

0.8

1.0

m
i

0 50 100 150 200
i

0.0

0.5

1.0

1.5

2.0

2.5
M

i

Demonstrator
Stationary
Non-stationary

β

2
5

Figure 9: Mutual information for Random MDP experiments with |S| = 3, β = 2, 5, comparing
stationary Boltzmann demonstrator with non-stationary Q-learning demonstrator. Left: per-trjactory
mutual information mi (higher is better) including 95% bootstrapped confidence intervals. Right:
cumulative mutual information Mi. As discussed in Section 5.3, we see that although per-trajectory
information is lower for agents which are learning, the cumulative mutual information can be higher.

is higher. This highlights a crucial difference between the two models. The stationary agent is giving
answers to a single highly informative question, namely a request for a (near-)optimal demonstration.
Whereas the non-stationary demonstrator is giving answers to a multitude of different — in this case
less informative — questions, namely the demonstrator’s preference for the trajectories experienced
so far, as represented through changes in behaviour.

6 Limitations and Future work

Experiments with real humans. As a first step toward studying the interaction of demonstrator
learning with the reward learning of an inferrer, we conducted experiments entirely in simulation.
Future work should perform experiments with real humans while finding ways to surmount the
difficulties noted in Section 3.1. Furthermore, it should be explored as to whether the model used in
this paper is in fact a suitable model for human learning.

Larger domains and approximate inference As we performed exact inference in this work, we
were restricted to domains with a small set of discrete reward parameters. Future work could study
how well our results hold up when we instead perform approximate inference on domains with larger
reward parameter spaces, or model the learning algorithm also as a random variable among a family
of algorithms.

8



Broader Impact

Many real-world tasks we would like AIs to do are difficult because they lack an easily-specified
reward function. For example, it’s very difficult to specify a reward function that would induce
courteous behavior in a self-driving car, and even harder to make one that correctly balances all the
trade-offs that a car would face in the real world [2]. Reward inference is one approach to tackling
this problem — instead of requiring a designer to specify the reward, it only requires a designer to
specify a prior over reward functions and provide a dataset from which to learn the reward.

Thus, any work that contributes to better reward inference contributes to building better AIs in these
real-world tasks, and our work is no exception. As an example of the possible applications of our
work, better understanding what the users of our AI desire could lead to recommender systems that
can optimize for individual user preferences and autonomous cars that adapt to the risk and time
preferences of their riders.

However, better reward inference could be used by bad actors in malicious ways. For example, many
intentionally malicious behaviors may be hard to specify manually. Just like it is hard to specify the
reward for a courteous car, it is hard to specify the reward of a purposely rude car. Better reward
inference would make it easier to specify either type of behavior.

A better understanding of what individual humans want could also be used to manipulate their
behavior. For example, a better model of person’s preferences for internet browsing could be used to
develop more effective personalized online scams or spear phishing attacks.

References
[1] Kavosh Asadi and Michael L. Littman. An alternative softmax operator for reinforcement

learning. CoRR, 2016. URL http://arxiv.org/abs/1612.05628v5.

[2] Edmond Awad, Sohan Dsouza, Richard Kim, Jonathan Schulz, Joseph Henrich, Azim Shariff,
Jean-François Bonnefon, and Iyad Rahwan. The moral machine experiment. Nature, 563(7729):
59–64, 2018.

[3] Andreea Bobu, Dexter RR Scobee, Jaime F Fisac, S Shankar Sastry, and Anca D Dragan. Less
is more: Rethinking probabilistic models of human behavior. In Proceedings of the 2020
ACM/IEEE International Conference on Human-Robot Interaction, pages 429–437, 2020.

[4] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. CoRR, 2016. URL http://arxiv.org/abs/1606.
01540v1.

[5] Daniel S Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating beyond
suboptimal demonstrations via inverse reinforcement learning from observations. arXiv preprint
arXiv:1904.06387, 2019.

[6] Lawrence Chan, Dylan Hadfield-Menell, Siddhartha Srinivasa, and Anca Dragan. The assistive
multi-armed bandit. In 2019 14th ACM/IEEE International Conference on Human-Robot
Interaction (HRI), pages 354–363. IEEE, 2019.

[7] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei.
Deep reinforcement learning from human preferences. In Advances in Neural Information
Processing Systems, pages 4299–4307, 2017. URL: https://papers.nips.cc/paper/
7017-deep-reinforcement-learning-from-human-preferences.pdf.

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[9] Owain Evans, Andreas Stuhlmüller, and Noah Goodman. Learning the prefer-
ences of ignorant, inconsistent agents. In Thirtieth AAAI Conference on Arti-
ficial Intelligence, 2016. URL: https://pdfs.semanticscholar.org/31bf/
e42e77a572bd83c0529e0f03bc3dc8af52c2.pdf.

9

http://arxiv.org/abs/1612.05628v5
http://arxiv.org/abs/1606.01540v1
http://arxiv.org/abs/1606.01540v1
https://papers.nips.cc/paper/7017-deep-reinforcement-learning-from-human-preferences.pdf
https://papers.nips.cc/paper/7017-deep-reinforcement-learning-from-human-preferences.pdf
https://pdfs.semanticscholar.org/31bf/e42e77a572bd83c0529e0f03bc3dc8af52c2.pdf
https://pdfs.semanticscholar.org/31bf/e42e77a572bd83c0529e0f03bc3dc8af52c2.pdf


[10] Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal
control via policy optimization. In International Conference on Machine Learning, pages 49–58,
2016.

[11] Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse
reinforcement learning. arXiv preprint arXiv:1710.11248, 2017.

[12] Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, and Dario Amodei. Reward
learning from human preferences and demonstrations in atari. In Advances in Neural Informa-
tion Processing Systems, pages 8011–8023, 2018. URL: https://papers.nips.cc/paper/
8025-reward-learning-from-human-preferences-and-demonstrations-in-atari.
pdf.

[13] Alexis Jacq, Matthieu Geist, Ana Paiva, and Olivier Pietquin. Learning from a learner. In
International Conference on Machine Learning, pages 2990–2999, 2019.

[14] Joel Lehman, Jeff Clune, Dusan Misevic, Christoph Adami, Lee Altenberg, Julie Beaulieu,
Peter J Bentley, Samuel Bernard, Guillaume Beslon, David M Bryson, et al. The surprising
creativity of digital evolution: A collection of anecdotes from the evolutionary computation and
artificial life research communities. Artificial Life, 26(2):274–306, 2020.

[15] Sergey Levine and Vladlen Koltun. Continuous inverse optimal control with locally optimal
examples. arXiv preprint arXiv:1206.4617, 2012.

[16] Andrew Y. Ng and Stuart J. Russell. Algorithms for inverse reinforcement learning. In
Proceedings of the Seventeenth International Conference on Machine Learning, ICML ’00,
pages 663–670, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc. ISBN
1-55860-707-2. URL http://dl.acm.org/citation.cfm?id=645529.657801.

[17] Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. Policy invariance under reward transforma-
tions: Theory and application to reward shaping. In Proceedings of the Sixteenth International
Conference on Machine Learning, pages 278–287, San Francisco, CA, USA, 1999. Morgan
Kaufmann Publishers Inc. ISBN 1558606122.

[18] Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcement learning. In IJCAI,
volume 7, pages 2586–2591, 2007.

[19] Sid Reddy, Anca Dragan, and Sergey Levine. Where do you think you’re going?: Inferring
beliefs about dynamics from behavior. In Advances in Neural Information Processing Systems,
pages 1454–1465, 2018.

[20] Tan Zhi-Xuan, Jordyn L Mann, Tom Silver, Joshua B Tenenbaum, and Vikash K Mans-
inghka. Online bayesian goal inference for boundedly-rational planning agents. arXiv preprint
arXiv:2006.07532, 2020.

[21] Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum entropy
inverse reinforcement learning. In Proceedings of the 23rd National Conference on Artificial
Intelligence - Volume 3, AAAI’08, pages 1433–1438. AAAI Press, 2008. ISBN 9781577353683.

[22] Brian D Ziebart, J Andrew Bagnell, and Anind K Dey. Modeling interaction via the principle of
maximum causal entropy. 2010.

10

https://papers.nips.cc/paper/8025-reward-learning-from-human-preferences-and-demonstrations-in-atari.pdf
https://papers.nips.cc/paper/8025-reward-learning-from-human-preferences-and-demonstrations-in-atari.pdf
https://papers.nips.cc/paper/8025-reward-learning-from-human-preferences-and-demonstrations-in-atari.pdf
http://dl.acm.org/citation.cfm?id=645529.657801


A Gridworld experiments

Our Gridworld experiments were run for ε ∈ {0.2, 0.3, 0.4, 0.45, 0.49, 0.6, 0.65, 0.66}, for stationary
Boltzmann demonstrator Dβ and learning algorithms Lq, Ld. The initial state distribution is uniform
over the non-terminal states. We use γ = 0.98. Trajectories were cutoff at a maximum length of 100
timesteps. Value iteration for stationary agents was run till convergence, with a tolerance of 10−9 for
maximum Q-value divergence between iteration steps.

In the main body we include results for Lq , and averaged over ε = 0.2, 0.4, 0.6. We note that mutual
information is generally higher for Lq compared with Ld. To see a full array of results consult
Figures 10, 11, 12, 13. For misspecification results consult Figures 14, 15, 16, 17.

We see from these results that as with the illustrative examples, more noise leads to lower mutual
information in the stationary case. The information from a Direct Evaluation demonstrator does
not vary much with ε, however the Q-learning demonstrator appears to improve as more noise is
introduced. We suspect that this is in part because more noise leads to slower convergence and more
changes in behaviour. It is also evident, more-so from the misspecification plots Figures 16, 17,
that stationary inference is more sensitive to β compared with both non-stationary models. In our
experiments β is always correctly specified, but this suggests that non-stationary might suffer less
from a misspecified β.

We emphasise another feature of the Direct Evaluation agents where there is a spike in mutual
information towards the beginning of the demonstration, see Figures 10, 11. Attributing behaviour to
a specific past experience is easier in the early stages when the list is smaller. Here this is overall
more informative than later demonstrations for which individual trajectories have less impact on
specific decisions.

B Random MDP experiments

Our random MDP experiments were run for |S| ∈ {3, 4, 5, 6}, for a stationary Boltzmann demonstra-
tor Dβ and learning algorithms Lq, Ld. The initial state distribution is uniform over the non-terminal
states. We use γ = 0.5. Trajectories were cutoff at a maximum length of 100 timesteps. Value
iteration for stationary agents was run till convergence, with a tolerance of 10−9 for maximum
Q-value divergence between iteration steps. To see a full array of results consult Figures 16, 17.

As with the Gridworld domain, we see a repeat of the phenomenon of the information spike for both
the Direct Evaluation agent and the Q-learning agent, although it is less strong in the latter case. The
effect appears to be stronger for higher |S|, where the environment is more complex.

Mutual information in general appears to increase with |S|. This is not surprising since with more
starting states, and a larger set of possible trajectories, there are more ways for the demonstrator to
signal their preferences.

As discussed in Section 5.3, the Q-learning demonstrator outperforms the stationary demonstrator in
each case. We see here that this cumulative outperformance of occurs very early on, in most cases
within the first 30 trajectories.

As with the Gridworld domain, per-trajectory mutual information appears generally to be higher
for higher Boltzmann parameter β, however in this case we see that cumulative mutual information
is generally lower. Similar to the effect discussed in 5.3, this is because the demonstrator is very
effectively signalling a near the optimal trajectory, but the scope of this information is narrow and
does not reflect enough the reward along suboptimal trajectories. In this domain, this results in less
overall mutual information.

11



0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m
i

β = 2 β = 5
ε

=
0.2

ε
=

0.2
ε

=
0.2

ε
=

0.2
β = 10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m
i

ε
=

0.3
ε

=
0.3

ε
=

0.3
ε

=
0.3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m
i

ε
=

0.4
ε

=
0.4

ε
=

0.4
ε

=
0.4

0 50 100 150
i

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m
i

0 50 100 150
i

0 50 100 150
i

ε
=

0.45
ε

=
0.45

ε
=

0.45
ε

=
0.45

Demonstrator
Stationary
Q-learning
Direct Eval

Figure 10: Mutual information per timestep mi among a variety of ε and β, for specified experiments
with the demonstrator being either stationary Boltzmann, Q-learning, or Direct Evaluation.

12



0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m
i

β = 2 β = 5
ε

=
0.49

ε
=

0.49
ε

=
0.49

ε
=

0.49
β = 10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m
i

ε
=

0.6
ε

=
0.6

ε
=

0.6
ε

=
0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m
i

ε
=

0.65
ε

=
0.65

ε
=

0.65
ε

=
0.65

0 50 100 150
i

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m
i

0 50 100 150
i

0 50 100 150
i

ε
=

0.66
ε

=
0.66

ε
=

0.66
ε

=
0.66

Demonstrator
Stationary
Q-learning
Direct Eval

Figure 11: Mutual information per timestep mi among a variety of ε and β, for specified experiments
with the demonstrator being either stationary Boltzmann, Q-learning, or Direct Evaluation.

13



0.0

0.5

1.0

1.5

2.0

2.5

M
i

β = 2 β = 5
ε

=
0.2

ε
=

0.2
ε

=
0.2

ε
=

0.2
β = 10

0.0

0.5

1.0

1.5

2.0

2.5

M
i

ε
=

0.3
ε

=
0.3

ε
=

0.3
ε

=
0.3

0.0

0.5

1.0

1.5

2.0

2.5

M
i

ε
=

0.4
ε

=
0.4

ε
=

0.4
ε

=
0.4

0 50 100 150
i

0.0

0.5

1.0

1.5

2.0

2.5

M
i

0 50 100 150
i

0 50 100 150
i

ε
=

0.45
ε

=
0.45

ε
=

0.45
ε

=
0.45

Demonstrator
Stationary
Q-learning
Direct Eval

Figure 12: Cumulative mutual information Mi among a variety of ε and β, for specified experiments
with the demonstrator being either stationary Boltzmann, Q-learning, or Direct Evaluation.

14



0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
i

β = 2 β = 5
ε

=
0.49

ε
=

0.49
ε

=
0.49

ε
=

0.49
β = 10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
i

ε
=

0.6
ε

=
0.6

ε
=

0.6
ε

=
0.6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
i

ε
=

0.65
ε

=
0.65

ε
=

0.65
ε

=
0.65

0 50 100 150
i

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
i

0 50 100 150
i

0 50 100 150
i

ε
=

0.66
ε

=
0.66

ε
=

0.66
ε

=
0.66

Demonstrator
Stationary
Q-learning
Direct Eval

Figure 13: Cumulative mutual information Mi among a variety of ε and β, for specified experiments
with the demonstrator being either stationary Boltzmann, Q-learning, or Direct Evaluation.

15



0.02

0.04

0.06

0.08

0.10

0.12

p i
Q-learning Stationary
ε

=
0.2

ε
=

0.2
ε

=
0.2

ε
=

0.2
Direct Eval

0.02

0.04

0.06

0.08

0.10

0.12

p i
ε

=
0.3

ε
=

0.3
ε

=
0.3

ε
=

0.3

0.02

0.04

0.06

0.08

0.10

0.12

p i
ε

=
0.4

ε
=

0.4
ε

=
0.4

ε
=

0.4

0 50 100 150
i

0.02

0.04

0.06

0.08

0.10

0.12

p i

0 50 100 150
i

0 50 100 150
i

ε
=

0.45
ε

=
0.45

ε
=

0.45
ε

=
0.45

Demonstrator
Stationary
Q-learning
Direct Eval

β

2.0
5.0
10.0

Figure 14: Posterior per timestep pi among a variety of ε and β, for misspecified experiments with
the demonstrator being either stationary Boltzmann, Q-learning, or Direct Evaluation.

16



0.02

0.04

0.06

0.08

0.10

0.12

0.14

p i
Q-learning Stationary
ε

=
0.49

ε
=

0.49
ε

=
0.49

ε
=

0.49
Direct Eval

0.02

0.04

0.06

0.08

0.10

0.12

0.14

p i
ε

=
0.6

ε
=

0.6
ε

=
0.6

ε
=

0.6

0.02

0.04

0.06

0.08

0.10

0.12

0.14

p i
ε

=
0.65

ε
=

0.65
ε

=
0.65

ε
=

0.65

0 50 100 150
i

0.02

0.04

0.06

0.08

0.10

0.12

0.14

p i

0 50 100 150
i

0 50 100 150
i

ε
=

0.66
ε

=
0.66

ε
=

0.66
ε

=
0.66

Demonstrator
Stationary
Q-learning
Direct Eval

β

2.0
5.0
10.0

Figure 15: Posterior per timestep pi among a variety of ε and β, for misspecified experiments with
the demonstrator being either stationary Boltzmann, Q-learning, or Direct Evaluation.

17



0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P i
Q-learning Stationary

ε
=

0.2
ε

=
0.2

ε
=

0.2
ε

=
0.2

Direct Eval

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P i
ε

=
0.3

ε
=

0.3
ε

=
0.3

ε
=

0.3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P i
ε

=
0.4

ε
=

0.4
ε

=
0.4

ε
=

0.4

0 50 100 150
i

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P i

0 50 100 150
i

0 50 100 150
i

ε
=

0.45
ε

=
0.45

ε
=

0.45
ε

=
0.45

Demonstrator
Stationary
Q-learning
Direct Eval

β

2.0
5.0
10.0

Figure 16: Cumulative posterior Pi among a variety of ε and β, for misspecified experiments with
the demonstrator being either stationary Boltzmann, Q-learning, or Direct Evaluation.

18



0.0

0.2

0.4

0.6

0.8

P i
Q-learning Stationary

ε
=

0.49
ε

=
0.49

ε
=

0.49
ε

=
0.49

Direct Eval

0.0

0.2

0.4

0.6

0.8

P i
ε

=
0.6

ε
=

0.6
ε

=
0.6

ε
=

0.6

0.0

0.2

0.4

0.6

0.8

P i
ε

=
0.65

ε
=

0.65
ε

=
0.65

ε
=

0.65

0 50 100 150
i

0.0

0.2

0.4

0.6

0.8

P i

0 50 100 150
i

0 50 100 150
i

ε
=

0.66
ε

=
0.66

ε
=

0.66
ε

=
0.66

Demonstrator
Stationary
Q-learning
Direct Eval

β

2.0
5.0
10.0

Figure 17: Cumulative posterior Pi among a variety of ε and β, for misspecified experiments with
the demonstrator being either stationary Boltzmann, Q-learning, or Direct Evaluation.

19



0.0

0.5

1.0

m
i

β = 2 β = 5
|S|=

3
|S|=

3
|S|=

3
β = 10

0.0

0.5

1.0

m
i

|S|=
4

|S|=
4

|S|=
4

0.0

0.5

1.0

m
i

|S|=
5

|S|=
5

|S|=
5

0 100 200
i

0.0

0.5

1.0

m
i

0 100 200
i

0 100 200
i

|S|=
6

|S|=
6

|S|=
6

Demonstrator
Stationary
Q-learning
Direct Eval

Figure 18: Per-trajectory mutual information mi among a variety of |S| and β for the Random MDP
domain with demonstrator being either stationary Boltzmann, Q-learning, or Direct Evaluation.

20



0

1

2

M
i

β = 2 β = 5
|S|=

3
|S|=

3
|S|=

3
β = 10

0

1

2

M
i

|S|=
4

|S|=
4

|S|=
4

0

1

2

M
i

|S|=
5

|S|=
5

|S|=
5

0 100 200
i

0

1

2

M
i

0 100 200
i

0 100 200
i

|S|=
6

|S|=
6

|S|=
6

Demonstrator
Stationary
Q-learning
Direct Eval

Figure 19: Cumulative mutual information Mi among a variety of |S| and β for the Random MDP
domain with demonstrator being either stationary Boltzmann, Q-learning, or Direct Evaluation.

21


	Introduction
	Related work

	Background
	Methods
	Exploring inference performance in simulation
	Agents
	Evaluation

	Illustrative example
	Experiments
	Ambiguous MDP
	Gridworld experiment
	Gridworld misspecification

	Random MDPs

	Limitations and Future work
	Gridworld experiments
	Random MDP experiments

