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Abstract

Nanobodies are compact, stable, and highly specific binding proteins that can
access epitopes inaccessible to conventional antibodies, making them ideal scaf-
folds for therapeutic design. We present a masked discrete denoising framework
for nanobody generation (NanoMDLM) that learns to reconstruct CDRs on a
fixed scaffold, with region-specific masking that emphasizes diversity in CDR3.
For inference, we develop a platform for Nanobody Optimization for Selective
Interaction and Enhanced properties (NOSIE) via discrete simplex refinement
(DSR), a gradient-free, black-box guidance method that samples CDR comple-
tions and reweights them using Pareto-weighted softmax over predicted binding
and stability scores. At inference time, DSR steers NanoMDLM toward high-
performing sequences without retraining or differentiable reward access. Across
multiple antigens, including the GPCR MRGPRX2, NOSIE produces nanobodies
with competitive or superior in silico binding, thermostability, and CDR3 quality,
as assessed by NanoNet structure prediction, AlphaFold-Multimer co-folding, and
feature combination-based ranking. Together, these results provide a scalable,
sequence-only framework for multi-objective nanobody design, enabling numerous
therapeutic applications.

1 Introduction

Nanobodies, or VHH single-domain antibodies derived from camelids, are attractive therapeutic and
diagnostic agents due to their small size, stability, solubility, and ability to access buried epitopes
[Jovčevska and Muyldermans, 2020, Jin et al., 2023, Salvador et al., 2019, Uchański et al., 2020].
Their binding function is localized to three complementarity-determining regions (CDRs), with
CDR3 contributing most to antigen specificity [Mitchell and Colwell, 2018]. In silico design of
nanobody CDRs offers a scalable alternative to experimental screening [Longsompurana et al., 2023,
Ferraz et al., 2025], but remains challenging due to the combinatorial space of loop conformations
and the need to optimize multiple properties including affinity, immunogenicity, and thermostability
[Tadokoro et al., 2024].

Structure-based nanobody models, such as a fine-tuned RFdiffusion (RFantibody), have enabled
scaffold-aware design of nanobodies but require accurate 3D structures [Watson et al., 2023, Sumida
et al., 2024, Bennett et al., 2025]. In contrast, masked discrete diffusion language models (MDLMs)
offer a scalable sequence-only alternative and have been applied to peptide and protein design [Sahoo
et al., 2024, Shi et al., 2024, Wang et al., 2024, Goel et al., 2025, Tang et al., 2025, Vincoff et al.,
2025a]. Recent guidance strategies for discrete diffusion, including CFG [Ho and Salimans, 2022],
LaMBO-2/NOS [Gruver et al., 2023], and PepTune’s MCTS-guided sampling [Tang et al., 2025],
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have enabled post-hoc optimization of pretrained models. However, these methods assume full-
sequence mutation and do not address modular protein design settings, such as nanobodies, where
CDRs are preferentially altered for re-targeting. In this work, we introduce a nanobody-specific
MDLM (NanoMDLM) trained with CDR-only corruption and region-dependent masking rates
(Figure 1), combined with a discrete simplex refinement (DSR) framework that conducts Nanobody
Optimization for Selective Interaction and Enhanced properties (NOSIE). DSR uses black-box
binding and stability predictors to guide NanoMDLM generation via Pareto-weighted reweighting
over sampled completions, without requiring gradients or retraining (Figure 2). Across diverse
antigens, including the GPCR MRGPRX2, our NOSIE (NanoMDLM + DSR) framework generates
nanobody candidates with superior in silico performance compared to structure-based baselines,
matching or exceeding them in predicted binding, thermostability, and CDR3 quality.

Our contributions are as follows:

• We develop a CDR-constrained NanoMDLM trained with region-specific, rate-dependent
masking, emphasizing CDR3 while keeping the scaffold fixed.

• We introduce discrete simplex refinement (DSR): a gradient-free, black-box inference-time
guidance algorithm over categorical denoising distributions.

• We frame DSR as a constrained stochastic optimization problem over the discrete simplex,
enabling modular, multi-objective generation.

• We benchmark our integrated NanoMDLM + DSR framework, NOSIE, against structure-
based models for nanobody design and show superior or comparable performance in binding,
stability, and structural plausibility.

2 Problem Formulation

Here we present the formulation of NOSIE. Detailed dataset and implementation methods can be
found in Appendix Sections C and D.

2.1 Nanobody Sequence Representation and CDR Masking

Let x ∈ ΣL be a nanobody amino acid sequence of length L, where Σ is the alphabet of 20 canonical
amino acids. The sequence is partitioned into:

x = (xFR1, xCDR1, xFR2, xCDR2, xFR3, xCDR3, xFR4),

where the CDR regions C = {CDR1,CDR2,CDR3} ⊂ {1, . . . , L} define the support over which
generation will occur. The framework regions (FRs) are treated as fixed context, derived from
a canonical humanized scaffold xscaffold, and are never perturbed or predicted during training or
inference.

2.2 Nanobody Masked Discrete Diffusion Model (NanoMDLM)

We define a forward corruption process q(x(t) | x(t−1)) over timesteps t = 1, . . . , T that progressively
masks only the complementarity-determining regions (CDRs) of the nanobody sequence, while
treating the scaffold residues as fixed context. Let x(0) denote the uncorrupted input sequence, and
x(T ) the fully masked CDRs.

We adopt a domain-specific corruption schedule, assigning each masked position i ∈ C a fixed
corruption strength γ(i) ∈ {γweak, γstrong} based on its membership in the CDRs:

γ(i) =

{
γweak if i ∈ CDR1 or CDR2,
γstrong if i ∈ CDR3,

with γstrong > γweak.

Given a masking schedule αt ∈ [0, 1], the corruption process is defined as:

q(x(t) | x(t−1)) =
∏
i∈C

Cat
(
x
(t)
i | α

γ(i)
t δ

x
(t−1)
i

+
(
1− α

γ(i)
t

)
u
)
,

where u is the uniform distribution over amino acids and δ is the Kronecker delta.
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Figure 1: NanoMDLM. Continuous-time training of discrete masked diffusion model NanoMDLM
under Region-Specific masking schedules, with SUBS parametrization and RoFormer as the denosing
backbone.

Scaffold positions j /∈ C are never corrupted and remain fixed: x(t)
j = x

(0)
j for all t.

The denoising model pθ(x(t−1) | x(t)) learns to invert this process by reconstructing masked CDRs
given the corrupted sequence and fixed scaffold. The training objective is:

LMDLM = Et,x(0),x(t)∼q

[
−
∑
i∈C

log pθ

(
x
(0)
i | x(t)

)]
.

2.3 Inference-Time Optimization via Discrete Simplex Refinement (NOSIE)

Let x(t) denote the corrupted CDR sequence at time t, and let pθ(x(t−1) | x(t)) be the model’s
categorical output distribution over each masked CDR position. Denote this distribution over tokens
at position i as π(t)

i ∈ ∆|Σ|, where ∆|Σ| is the probability simplex.

Our goal is to guide the generation process toward satisfying black-box reward functions:

fbind : ΣL → R, fstab : ΣL → R,

corresponding to predicted binding affinity and thermostability, respectively. These functions are not
differentiable and cannot be backpropagated through.

At each denoising step, we sample K candidate completions from the model:

{x(t−1)
k }Kk=1 ∼ pθ(x

(t−1) | x(t)),

evaluate their rewards, and define a scalarized objective:

R
(λ)
k = λbindfbind(x

(t−1)
k ) + λstabfstab(x

(t−1)
k ),

for scalarization weights λ = (λbind, λstab) ∈ ∆2.

We then compute Pareto-weighted sampling probabilities using softmax:

wk =
exp(βR

(λ)
k )∑K

j=1 exp(βR
(λ)
j )

,
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and update the token probabilities via empirical reweighting:

π̃
(t)
i (a) =

K∑
k=1

wk · ⊮{x(t−1)
k,i = a}, ∀i ∈ C, a ∈ Σ.

This yields a refined distribution π̃(t) that remains on the categorical simplex and concentrates
probability mass on reward-optimal trajectories.

Figure 2: Discrete Simplex Refinement. Sampling with Discrete Simplex Refinement (DSR)
where humanized scaffolds with masked CDRs are iteratively refined by candidate sampling, reward
evaluation, and tradeoff vector weighting, producing ranked nanobody sequences with optimized
binding, stability, and multi-objective performance.

2.4 Theoretical Framing of NOSIE

We frame this process as a constrained stochastic optimization problem over a product of cate-
gorical simplices. The denoising process is viewed as a policy over discrete action sequences
{x(0), . . . , x(T )}, and the guidance procedure acts as a black-box policy improvement step at each
time t, satisfying the update:

π̃(t) = arg min
π∈∆|Σ||C|

KL(π∥π(t))− η

K∑
k=1

R
(λ)
k log π(xk),

where π(t) is the base model distribution and π̃(t) is the refined posterior, as in mirror descent with
KL divergence.

This update guarantees an ascent in the expected scalarized reward under the current sampling
distribution (See Appendix Section B for proof). Moreover, by varying λ over a Das-Dennis
scalarization lattice on ∆2, we approximate the Pareto frontier of reward-optimal CDR sequences
across tradeoffs between binding and stability.
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3 Results

3.1 Guided Generation Scores

We assessed NOSIE’s ability to generate nanobodies with high predicted binding affinity and ther-
mostability across a panel of diverse antigens. For each target, we compared unconditional sampling,
MCTS-guided optimization introduced in PepTune [Tang et al., 2025], and our DSR method using
DeepNano [Deng et al., 2024] and NanoMelt [Ramon et al., 2025] predictors as evaluation metrics
for nanobody-antigen interaction and thermostability respectively. Figure 3 shows results for antigen
PD-L1. While the unconditional model produces plausible but suboptimal sequences, both MCTS and
NOSIE improve over this baseline. Notably, NOSIE consistently yields nanobody candidates with
stronger predicted binding and stable thermostability, outperforming MCTS across the top-ranked
sequences. These trends are further supported across additional antigens in Figure A7, with NOSIE
recovering sequences that frequently match or exceed the experimental nanobodies in affinity while
maintaining favorable developability.

Figure 3: Comparison of generated nanobody scores with antigen PD-L1, topK=100. Reference point
represents the scores of the known binding VHH (PDB: 7CZD_2). All three sampling methods were
run with 32 sampling timesteps. The x-axis shows antigen interaction scores predicted by DeepNano,
while y-axis shows thermostability scores regularized from NanoMelt-predicted melting temperatures.
For unconditional and MCTS methods, the top 100 sequences were ranked by the average of the
antigen interaction and thermostability scores, whereas NOSIE sequences were ranked according to
scalar rewards defined by the algorithm.

Even in more challenging cases such as the high-affinity antigen CTLA-4 (PDB:7DV4_1) [Gan et al.,
2022](Figure A7F), where reference binders are already near optimal, DSR produces competitive
alternatives with improved stability. This suggests that simplex-guided denoising effectively identifies
viable CDR variants even when the scope for affinity improvement is narrow, and excels in discovering
high-quality solutions in moderate-to-difficult design settings.

3.2 Validation on MRGPRX2

MRGPRX2 is an orphan G protein–coupled receptor expressed on mast cells that mediates IgE-
independent hypersensitivity and inflammatory responses, making it an attractive therapeutic target
for drug-induced pseudo-allergic reactions and related diseases [Al Hamwi et al., 2025].

We selected MRGPRX2 as the benchmark antigen for two main reasons: (1) biologically, its shallow
binding pocket, promiscuous ligand recognition, and clinical relevance make it a strong candidate
for in silico nanobody design [Al Hamwi et al., 2022], and (2) computationally, recent work shows
that AlphaFold-Multimer (AFM) [Evans et al., 2021] can reliably distinguish positive from negative
binding pairs for MRGPRX2 (a discriminative capability not established for most other antigens)
making it a robust test-bed for benchmarking nanobody design methods [Harvey et al., 2025].

We benchmarked three nanobody libraries using AFM confidence metrics, including the Linear
Combination Feature (LCF) [Harvey et al., 2025]. A pilot set of 20 RFantibody Bennett et al.
[2025] sequences was compared to 20 NOSIE designs. Despite the small sample size, AFM consis-
tently showed NOSIE performing on par or better: its mean LCF matched RFantibody (0.045 vs.
0.039/0.045) but with lower variance, and it outperformed on pAE (13.289 vs. 15.637/14.401) and
ipTM (0.450 vs. 0.402/0.428) (Table 1). Predicted complexes show confident binding interfaces
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Table 1: Comparison of average AFM metrics (mean with SEM in parentheses) across 20 pilot
nanobody sequences targeting MRGPRX2, generated with RFantibody (RFa) and NOSIE, evaluated
using the best-ranked AFM model for each complex. The input to RFa-AF is an AF2 predicted
structure of MRGPRX2, while the input to RFa-PDB is the PDB:7VV6 structure of MRGPRX2.

Method LCF ↑ pTM ↑ ipTM ↑ pAE ↓ pDockQ ↑
RFa-AF 0.039 (0.006) 0.679 (0.011) 0.402 (0.031) 15.637 (0.830) 0.290 (0.025)
RFa-PDB 0.045 (0.009) 0.690 (0.013) 0.428 (0.051) 14.401 (1.335) 0.317 (0.042)
NOSIE 0.045 (0.005) 0.681 (0.011) 0.450 (0.031) 13.289 (0.637) 0.288 (0.018)

Figure 4: AFM-predicted structures of the three top NOSIE nanobody binders to MRGPRX2

and plausible CDR3 structures (Figure 4), highlighting NOSIE’s ability to generate high-quality
nanobodies without structural input. Unlike RFantibody, which benefits from access to experimental
antigen structures (as seen in the performance gap between RFa-AF and RFa-PDB) Bennett et al.
[2025], NOSIE operates with only the antigen sequence, yet is still able to produce a meaningful
fraction of quality binders, suggesting its strong potential for generalizable applications.

4 Discussion

Our results demonstrate that CDR-constrained masked discrete denoising, combined with black-box
multi-objective simplex refinement, enables potent nanobody design – all without requiring structural
input or differentiable objectives. By restricting corruption to CDRs and emphasizing CDR3 through
region-dependent masking, our NanoMDLM captures functional diversity while preserving scaffold
integrity. DSR further improves sequence quality through gradient-free inference-time guidance,
projecting Pareto-weighted reward estimates back onto the categorical simplex. Benchmarking
against RFantibody Bennett et al. [2025], our method achieves strong performance in predicted
binding, buried surface area, and stability, with structurally plausible CDR3 loops validated via
NanoNet prediction Cohen et al. [2022] and AFM-based co-folding Evans et al. [2021].

Looking ahead, the NOSIE framework is extensible to additional black-box objectives such as
immunogenicity, pH sensitivity, or expression propensity, and can be integrated with high-throughput
wet-lab selection Xia et al. [2025], which are currently ongoing. Moreover, by conditioning reward
models on target isoforms Vincoff et al. [2025b,a] or post-translational states Peng et al. [2025],
future work can expand this strategy toward highly specific nanobody generation that discriminates
between closely related proteoforms, enabling a new class of programmable and precision-targeted
biologics.
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A Algorithm

We present the full pseudocode for nanobody generation via masked discrete denoising and inference-
time multi-objective guidance. The framework comprises two stages: training a CDR-constrained
MDLM, and guided generation using discrete simplex refinement.

Algorithm 1 Training CDR-Constrained MDLM for Nanobody Generation
1: Input: Nanobody sequence dataset D, scaffold mask S, CDR mask C, corruption schedule
{αt}Tt=1, CDR-specific exponents γweak, γstrong

2: for each training step do
3: Sample sequence x(0) ∼ D
4: Initialize x(t) ← x(0)

5: for each position i ∈ C do

6: Determine γ(i)←
{
γweak, i ∈ CDR1 or CDR2
γstrong, i ∈ CDR3

7: Sample masking with probability 1− α
γ(i)
t

8: end for
9: Construct corrupted input x(t) with sampled masks; leave x

(t)
j = x

(0)
j for j ∈ S

10: Compute model logits pθ(x
(0)
i | x(t)) for i ∈ C

11: Compute cross-entropy loss:

LMDLM = −
∑
i∈C

log pθ(x
(0)
i | x(t))

12: Update model parameters θ using gradient∇θLMDLM
13: end for
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Algorithm 2 Multi-Objective Discrete Simplex Refinement (DSR) for Nanobody Generation

1: Input: Trained MDLM pθ(x
(t−1) | x(t)), reward models fbind, fstab, temperature β, number of

tradeoffs L, number of seeds S, candidates per seed K, top-k output size
2: Generate tradeoff vectors {λ(ℓ)}Lℓ=1 over ∆2 (e.g., via Das-Dennis lattice)
3: Initialize empty list C ← ∅
4: for ℓ = 1 to L do ▷ Loop over tradeoff weights
5: for s = 1 to S do ▷ Loop over independent seeds
6: Initialize x(T ) ∼ MASKED_CDR_NOISE()
7: for t = T to 1 do
8: Sample {x(t−1)

k }Kk=1 ∼ pθ(x
(t−1) | x(t))

9: for k = 1 to K do
10: Evaluate rewards:

Rk = λ
(ℓ)
bindfbind(x

(t−1)
k ) + λ

(ℓ)
stabfstab(x

(t−1)
k )

11: end for
12: Compute softmax weights:

wk =
exp(βRk)∑K
j=1 exp(βRj)

13: for each CDR position i ∈ C do
14: for each token a ∈ Σ do
15: Update:

π̃i(a) =

K∑
k=1

wk · ⊮{x(t−1)
k,i = a}

16: end for
17: end for
18: Sample x(t−1) from π̃ at each i ∈ C
19: end for
20: Add final sequence x(0) and its reward to list C
21: end for
22: end for
23: Sort C by scalarized reward: R(x) = λT [fbind(x), fstab(x)]
24: Return: Top-k nanobody sequences from C

11



B Discrete Simplex Refinement Proof

We provide a proof that Discrete Simplex Refinement (DSR) updates at each denoising step guarantee
a monotonic improvement in expected scalarized reward.
Theorem B.1 (DSR Monotonic Improvement). Let π(t) be the uniform distribution over K samples
{xk}Kk=1 drawn from the base model at timestep t, i.e., π(t)(xk) = 1

K for all k. Let Rk :=

R(λ)(xk) ∈ R be the corresponding scalarized rewards. Define the DSR-updated distribution as:

π̃(t)(xk) :=
exp(βRk)∑K
j=1 exp(βRj)

=: wk,

where β > 0 is the temperature parameter. Then:
Ex∼π̃(t) [R(x)] ≥ Ex∼π(t) [R(x)],

with strict inequality whenever the rewards {Rk} are not all equal.

Proof. The expected reward under the original uniform distribution is:

Ex∼π(t) [R(x)] =

K∑
k=1

1

K
Rk =

1

K

K∑
k=1

Rk.

The expected reward under the DSR-updated distribution is:

Ex∼π̃(t) [R(x)] =

K∑
k=1

wkRk =

K∑
k=1

exp(βRk)∑K
j=1 exp(βRj)

Rk.

To establish monotonic improvement, we show that:
K∑

k=1

wkRk ≥
1

K

K∑
k=1

Rk.

Case 1: If all rewards are equal, i.e., Rk = c for some constant c and all k, then:

wk =
exp(βc)∑K
j=1 exp(βc)

=
exp(βc)

K exp(βc)
=

1

K
,

so π̃(t) = π(t) and equality holds.

Case 2: If the rewards are not all equal, we use the following key lemma:

Lemma B.2 (Softmax Improvement Property). For any non-constant vector (R1, . . . , RK) and
β > 0:

K∑
k=1

exp(βRk)∑K
j=1 exp(βRj)

Rk >
1

K

K∑
k=1

Rk.

Proof of Lemma. Define f(β) =
∑K

k=1
exp(βRk)∑K
j=1 exp(βRj)

Rk. Note that:

• f(0) = 1
K

∑K
k=1 Rk (uniform weighting)

• f ′(β) = Varsoftmaxβ (R) ≥ 0, with strict inequality when Rk are not all equal

To see this, compute:

f ′(β) =

K∑
k=1

wkR
2
k −

(
K∑

k=1

wkRk

)2

= E[R2]− (E[R])2 = Var(R),

where the expectation is taken with respect to the softmax distribution with temperature β−1.

Since Var(R) > 0 when Rk are not all equal, we have f ′(β) > 0 for all β > 0. Therefore,
f(β) > f(0) for any β > 0.
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C Data Curation and Processing

C.1 Pre-training Dataset and Tokenization

The pre-training dataset comprises 3,395,594 unpaired heavy chain sequences curated by HuDiff [Ma
et al., 2024], sourced from the OAS database, and aligned using the IMGT numbering scheme. All
sequences were aligned to a length of 152 residues. For tokenization, we employed an amino acid
tokenizer with a vocabulary of 23 tokens, comprising the 20 canonical amino acids, an ‘X’ token for
unknown residues, a ‘-’ token for padding, and a ‘<mask>’ token for masked positions.

C.2 Benchmark Dataset

The experimental antigens and their paired reference nanobodies were obtained from SAbDab-nano
[Schneider et al., 2022]. After filtering for Homo Sapiens species, a resolution cutoff of 3.0 Å, and
complexes containing only two molecules, the initial pool consisted of 35 complex structures. Manual
screening was then performed to remove redundant antigens with identical sequences, yielding 25
distinct antigen sequences used for unconditional sequence generation screening in Figure A1.

C.3 Humanized Scaffold for Sampling Inference

During inference, we employed a universal humanized nanobody scaffold [Vincke et al., 2009] for
the framework regions, while sampling the CDRs from our model. To construct the input sequence,
the h-NbBcII10FGLA sequence was first aligned to a fixed length of 152 residues using the IMGT
numbering scheme, consistent with our training sequences. The CDR regions were then substituted
with mask tokens for model inference.

D NanoMDLM Implementation Details

D.1 Region-Dependent Masking

Building on state-dependent [Shi et al., 2024] and bond-dependent masking for peptides [Tang et al.,
2025], we propose a masking schedule where the probability of masking tokens in CDR1 and CDR2
increases more slowly at early timesteps t compared to CDR3 tokens. This design reflects the more
conserved nature of CDR1 and CDR2, while allowing greater diversity in CDR3 sequences (as shown
in Figure A2). We define the discrete-time log-linear masking schedule σ(t) = − log(1− t1/γweak)
for CDR1 and CDR2, and the log-polynomial schedule σ(t) = − log(1− t1/γstrong) for CDR3.

The masking probabilities αt = exp(−σ(t)) for the CDR tokens are thus:

α
γ(i)
t =

{
1− t1/γweak if i ∈ CDR1 or CDR2,
1− t1/γstrong if i ∈ CDR3,

with γstrong > γweak.

In our implementation, we set γweak = 1/3 and γstrong = 1.

For the forward corruption process q(x(t)|x(t−1)), this approach ensures a slower masking rate in
CDR1 and CDR2 at earlier stages of the diffusion process, while CDR3 are masked more quickly
with a stronger exponent γstrong. This enables the model to first focus

D.2 Training Strategy and Model Architecture

Pretraining of NanoMDLM for nanobodies was conducted on 4 NVIDIA DGX B200 GPUs, using
the AdamW optimizer with a learning rate of 0.0003 and weight decay of 0.075. At each reverse step,
token probabilities are modeled using a RoFormer network [Su et al., 2024]. The full set of model
hyperparameters is listed below.
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Table 2: Roformer Architecture Hyperparameters

Hyperparameter PepTune
Input Dimension 23 (vocab size)
Hidden Dimension 768
Intermediate Dimension 3072
Number of Layers 8
Attention Heads 8
Max Positional Embeddings 256
Hidden and Attention Dropout Probability 0.1

Table 3: Training and Validation Loss of NanoMDLM. Loss values are taken after convergence at 45
epochs when training NanoMDLM on 3 million unpaired human heavy chain sequences.

Model Train Loss (↓) Train PPL (↓) Val Loss (↓) Val PPL (↓)
Standard Masking 0.661 2.025 0.676 1.988
Region-Dependent Masking 0.600 1.983 0.642 1.948

E Scoring Models

Nanobody-Antigen Interaction. DeepNano [Deng et al., 2024] is a deep learning ensemble frame-
work with a prompt-based mechanism that guides attention to antigen-binding sites, achieving
state-of-the-art performance in nanobody-antigen interaction (NAI) prediction for virtual screening.
We use its predicted interaction score as

fbind(x) = DeepNano(x, y).

where y stands for the antigen sequence.

Thermostability. The thermostability score is based on NanoMelt [Ramon et al., 2025], a semi-
supervised ensemble model for predicting the apparent melting temperatures of nanobodies. Since
the model outputs raw melting temperatures, we regularize them to a [0, 1] score using the linear
transformation

fstab(x) =
NanoMelt(x)− Tmin

Tmax − Tmin
,

where Tmin and Tmax are taken from the distribution of the 640 training sequences.
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F Additional Studies on Sampling

F.1 Unconditional Generation Quality

Figure A1: Interaction scores with human antigens of experimental and unconditionally generated
nanobody sequences. Experimental human antigens and nanobody sequences were obtained from
SAbDab-nano. After filtering for one-to-one interaction complexes and applying redundancy reduc-
tion, 25 distinct antigens were selected. Interaction scores were predicted using DeepNano. For
each antigen, the score corresponding to its original experimental nanobody is shown as a purple
line. Scores for 1,000 unconditionally generated nanobody sequences from the base MDLM are
represented as skyblue dots.

Figure A2: Unconditional-generated nanobody sequence analysis. A-B: Shannon entropy of the
unconditionally generated sequences (N=1000); C-D: Minimum Levenshtein distance of the uncondi-
tionally generated sequences (N=1000)
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To evaluate sequence diversity, we calculated Shannon entropy and Jaccard similarity. Shannon
entropy H(X) = −

∑
p(x) log2 p(x) measures the variability of the amino acid distribution, with

higher values indicating greater diversity. As shown in Figure A2 (Panels A-B), region-dependent
masking results in slightly higher entropy across all CDR regions, suggesting it promotes greater
sequence diversity, particularly in CDR3.

Jaccard similarity J(A,B) = |A∩B|
|A∪B| assesses the overlap with reference sequences, with higher

values indicating better fidelity. Table 4 shows that standard masking yields higher Jaccard similarity
to the training and validation sequences, suggesting a stronger resemblance to the existing database.
In contrast, region-specific masking slightly reduces similarity but increases diversity.

Table 4: Mean pairwise Jaccard similarity for unconditionally generated nanobody sequence (N=1000)

Masking Method Full Sequence CDR1 CDR2 CDR3
Standard Masking 0.980503 0.529960 0.511030 0.580592
Region-Specific Masking 0.977800 0.463944 0.418981 0.528402

Figure A3: Scores of unconditionally generated nanobodies with selected antigens. The antigens in
A-E are with experimental nanobodies that exhibit moderate interaction scores (0.4-0.65).

Figure A4: NanoNet-predicted structures of NbBCII10 humanized (FGLA mutant) and three
NanoMDLM unconditional generated nanobodies
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F.2 DSR Generation Quality

Figure A5: Hyperparameter search for DSR sampling conducted on antigen CTLA-4 (PDB:7DV4_1),
topK=100.

Hyperparameter Search for DSR. In this analysis, we conducted a hyperparameter search for DSR
sampling on antigen CTLA-4 [Gan et al., 2022]. In A5, each subplot compares different combinations
of training epochs, sampling timesteps (T), and sampling seeds (S), showing the antigen interaction
and thermostability scores of the top 100 sequences generated in each configuration. Panels B–C
correspond to the base model trained for only 10 epochs. As observed, while the antigen interaction
scores exhibit moderate variation, these shorter training runs result in noticeably lower thermostability
scores. This suggests that longer training allows the base model to better capture the underlying
biological properties of the CDRs. In contrast, the results from the epoch-45 base model (panels A,
D–F) highlight that intermediate sampling timesteps and number of seeds—particularly in panels
E—achieve a favorable balance, producing high-quality candidates while avoiding excessive variance.
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Figure A6: Candidate reward trajectories for NOSIE optimization on (A) PDL-1 and (B) MRGPRX2.
Each panel corresponds to a different weighting scheme for the binding affinity term (λ). Boxplots
show the distribution of candidate rewards at each timestep, while the yellow diamonds track the
median reward of the final top-100 candidate sequences across timesteps.

Figure A7: Scores of DSR-generated nanobodies with antigens from SAbDab-nano. The antigens in
A-E are with experimental nanobodies that exhibit moderate interaction scores (0.4-0.65).

Validation on Therapeutic Antigens. To emphasize therapeutic applications that prioritize strong tar-
get engagement, we assign a weight of≥ 0.5 to the nanobody–antigen interaction score for therapeutic
antigens A8. Accordingly, we present NOSIE results for three clinically relevant targets—PD-L1,
the SARS-CoV-2 Spike protein, and TNF—each of which has established clinical-stage nanobody
candidates [Raybould et al., 2020]. Across these antigens, NOSIE generates sequences that not
only achieve high binding affinity but also maintain favorable thermostability, underscoring the
framework’s ability to balance multiple objectives relevant for therapeutic development. Importantly,
NOSIE also generalizes to antigens without existing clinical-stage nanobodies, as demonstrated by
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its performance on MRGPRX2, thereby highlighting its potential for broad applicability in both
well-studied and novel therapeutic contexts.

Figure A8: NOSIE-generated nanobody scores across therapeutic targets (A-C) PD-L1, SARS-Cov-2
Spike protein, TNF with clinical-stage nanobodies, and (D) MRGPRX2.
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F.3 MCTS Generation Quality

Figure A9: MCTS property scores over iteration on two epochs version of the base MDLM model

Figure A9 presents the progression of antigen interaction and thermostability scores among MCTS
iterations for the two base MDLM models trained for 45 or 10 epochs. Consistent with previous
observations in DSR sampling, panels B and D (10-epoch models) show that while antigen interaction
scores improve with iterations, the thermostability scores remain comparatively lower than those
of the 45-epoch models (panels A and C). This echoes the earlier finding that sufficient training
until convergence enables the model to better capture the underlying biological properties of CDRs,
leading to more stable and higher-quality sequence generation.

Figure A10: Scores of MCTS-generated nanobodies with antigens (topK=100). The antigens shown
here are the same as in A7. The ones in A-E are with a experimental nanobodies that exhibit moderate
interaction scores (0.4-0.65).
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