
LodeStar: Long-horizon Dexterity via Synthetic Data

Augmentation from Human Demonstrations

Weikang Wan1∗ Jiawei Fu1∗ Xiaodi Yuan1 Yifeng Zhu2 Hao Su1

1University of California San Diego 2The University of Texas at Austin

Abstract: Developing robotic systems capable of robustly executing long-horizon

manipulation tasks with human-level dexterity is challenging, as such tasks require

both physical dexterity and seamless sequencing of manipulation skills while ro-

bustly handling environment variations. While imitation learning offers a promis-

ing approach, acquiring comprehensive datasets is resource-intensive. In this

work, we propose a learning framework and system LODESTAR that automat-

ically decomposes task demonstrations into semantically meaningful skills us-

ing off-the-shelf foundation models, and generates diverse synthetic demonstra-

tion datasets from a few human demos through reinforcement learning. These

sim-augmented datasets enable robust skill training, with a Skill Routing Trans-

former policy effectively chaining the learned skills together to execute complex

long-horizon manipulation tasks. Experimental evaluations on three challenging

real-world long-horizon dexterous manipulation tasks demonstrate that our ap-

proach significantly improves task performance and robustness compared to pre-

vious baselines. Videos are available at lodestar-robot.github.io.

Keywords: Dexterous Manipulation, Imitation Learning, Sim-to-Real

A Few Human Demonstrations

Synthetic Data Generation Robust Autonomous Policy

Figure 1: We present LODESTAR, a framework for learning robust long-horizon dexterous
manipulation from a few human demonstrations. LODESTAR segments demonstrations into se-
quential skills using off-the-shelf foundation models, and augments each skill via simulation-based
residual reinforcement learning. The synthesized skill data is co-trained with real-world data, and a
Skill Routing Transformer composes the learned skills into a robust autonomous policy capable of
completing complex real-world tasks.

1 Introduction

Developing multi-fingered robotic systems capable of long-horizon manipulation with human-level

dexterity has been a longstanding goal in robotics research. Consider everyday activities such as

watering a plant with a spray bottle as shown in Fig. 1: this requires not only physical dexterity to

∗Equal contribution.

9th Conference on Robot Learning (CoRL 2025), Seoul, Korea.

https://lodestar-robot.github.io/


insert and twist the nozzle, lift and hold the bottle upright, and press the trigger, but also the ability to

seamlessly sequence these distinct behaviors while robustly handling environment variations. Imita-

tion learning (IL) from human demonstrations [1–3] offers an effective pathway for teaching robots

such behaviors. However, for such tasks, acquiring massive, comprehensive, and diverse datasets

necessary to ensure policy robustness across potential perturbations and environmental variations

encountered in the real world is often costly and resource-intensive [4, 5]. This challenge motivates

our investigation into methods that leverage structured data generation from limited demonstrations,

aiming to enable robots to perform long-horizon dexterous manipulation tasks robustly.

Prior works have explored generating large datasets from a few demonstrations using replay-based

transformation with motion planning [6–9]. While effective, these methods are often limited to par-

allel grippers or fixed-hand motions. Moreover, naive composing the adapted segments can lead

to low-quality or low-diversity demonstrations, hindering generalizable policy learning. Another

direction leverages reinforcement learning (RL) in simulation to synthesize diverse data. Recent

advances have enabled dexterous skills such as grasping [10–12] and in-hand reorientation [13–15],

as RL exploration can discover varied and robust behaviors. However, these results are typically

limited to single-stage tasks, rely on hand-tuned simulators and rewards, and remain sensitive to the

sim-to-real gap. In parallel, several works decompose long-horizon manipulation into sequential

skills and chain them to solve complex tasks [16–21], reducing both the complexity of data gener-

ation and policy learning. Yet, smooth and reliable skill transfer remains challenging due to state

distribution mismatches at skill boundaries [22], often requiring additional regularization [23, 24] or

optimization [25] techniques, which may destabilize policy learning. Despite these advances, robust

long-horizon dexterous manipulation from limited data still faces two key challenges: (1) how to au-

tomatically segment tasks into semantically meaningful skills with appropriate initial and terminal

state distributions; and (2) how to generate diverse training data to robustify individual skills, and

effectively chain them into a coherent policy that completes the full task.

To address these challenges, we propose a structured and scalable framework LODESTAR that de-

composes long-horizon dexterous manipulation into three stages: skill segmentation, synthetic data

generation for robust skill learning, and skill composition via a Skill Routing Transformer (SRT)

policy. We first segment demonstrations into sequential manipulation skills and intermediate tran-

sition motions by leveraging foundation models (VFMs, VLMs) [26–28] to extract visual, spa-

tial, and contact cues directly from raw videos, avoiding manual annotation or predefined primitive

skills. For each manipulation skill, we train a robust policy via residual reinforcement learning in

simulation environments generated through real-to-sim techniques with augmentation and domain

randomization. The learning process is grounded in a small number of real demonstrations, ensur-

ing task relevance and avoiding reward engineering. We further synthesize diverse and physically

feasible transition trajectories between skills, eliminating the need for explicit goal specification or

slow execution speed of real-world motion planning. Finally, we train a SRT policy on the gener-

ated data to compose the learned skills, enabling coherent execution of the full long-horizon task.

Our key contribution is a scalable learning framework LODESTAR for robust long-horizon dexter-

ous manipulation from a few human demos. By combining automatic segmentation via foundation

models, real-to-sim synthetic data generation for skill acquisition, and skill composition for sim-to-

real deployment, LODESTAR enables complex manipulation sequences without requiring extensive

task-specific data or manual engineering effort. We validate its effectiveness on three challenging

real-world tasks, showing that it outperforms SOTA baselines by an average of 25% success rate.

2 Related Work

2.1 Dexterous Manipulation

Dexterous manipulation remains a long-standing and significant challenge in robotics [29–32],

primarily due to the high degrees of freedom involved. Traditional planning and control ap-

proaches [33–36] often rely on simplified system models, which struggle to scale to complex, long-

horizon tasks. Recent advances have demonstrated the effectiveness of learning-based methods for

specific dexterous skills such as grasping [10–12, 37], in-hand reorientation [14, 15, 38], and tool

2



use [39–43]. However, these methods typically target isolated skills rather than integrated, sequen-

tial behaviors. In contrast, we tackle the more challenging task of sequencing multiple dexterous

skills [25], which requires both fine-grained control and temporal coordination.

2.2 Synthetic Data Generation for Robotic Manipulation

Synthetic simulation data have been used to alleviate the burden of real-world data collection and im-

prove policy generalization in robotic manipulation. Recent studies [9, 44–52] show that co-training

policy with simulation data can greatly improve policy performance and robustness by diversifying

the training distribution beyond what real-world data alone can offer. Real-to-sim approaches have

been used to generate realistic and diverse simulation assets and scenes from real-world inputs via

3D reconstruction [53–59], inverse graphics [60], and foundation model-assisted generation [45, 61–

63]. Techniques for sim-to-real transfer include domain randomization [13, 38, 46, 64–67], system

identification [68–73] and simulator augmentation [44, 74, 75]. However, naive randomization and

augmentation are insufficient to close the sim-to-real gap [46, 62], particularly in long-horizon tasks

involving multi-stage and multi-object interactions, where the large variation space hinders effective

learning. To address this, our pipeline improves training robustness and efficiency by segmenting

demonstrations into multiple stages and applying demonstration-guided augmentation and random-

ization to expand simulation coverage for each stage.

2.3 Skill Chaining for Long-horizon Robotic Manipulation

Established methods tackle long-horizon tasks by decomposing them into simpler, reusable sub-

tasks, reducing the agent’s decision burden via temporally extended actions or skills [76, 77]. Skill

discovery approaches fall into three categories: predefined measures [6–8, 22, 78–85], skill discov-

ery from demonstrations [17, 86–94], and unsupervised self-exploration [16, 19, 95–100]. Naively

sequential chaining skills often lead to “hand-off” failures, where the terminal state of one skill falls

outside the feasible range of the succeeding skill. Prior work mitigates this by updating each skill to

encompass the terminal state of the preceding skill [16–21], or by aligning skill boundaries through

reward shaping via adversarial [23, 24] or bidirectional training [25]. Closest to our work, [78]

learns a transition policy to bridge skills, but assumes it can be trained via random exploration and is

limited to simple, predefined primitives. However, these methods typically require either extensive

environment interaction [24, 25, 78, 79, 83], annotated demonstrations [6, 8], or high computational

resources [101, 102], limiting their scalability to contact-rich, high-DoF dexterous tasks. Our work

addresses this by segmenting skills from a small number of demonstrations, and combines insights

from skill chaining with recent advances in foundation models [26, 27, 103].

3 Problem Formulation

We formulate our learning problem as a Markov Decision Process (MDP) defined by the tuple

(S,A, R, P, ρ0, γ), where S is the state space, A is the action space, R(s, a, s′) is the reward func-

tion, P (s′ | s, a) is the transition distribution, ρ0 is the initial state distribution, and γ is the discount

factor. We aim to solve a long-horizon task T , which can potentially be decomposed into a se-

quence of subtasks {T1, T2, . . . , TK}, where K is the total number of subtasks and varies for each

long-horizon task. Each subtask Ti is associated with an initiation set Ii ⊂ S and a termination set

Ei ⊂ S , indicating the valid start and end states for completing subtask Ti. A policy π : S → A in-

duces a distribution over trajectories, and is optimized to maximize the expected sum of discounted

rewards Eπ

[

∑T−1
t=0 γtR(st, at, st+1)

]

, where T is the episode horizon. We assume access to a

small set of full expert demonstrations De = {τej }
N
j=1, where τej is a trajectory of state-action pairs.

4 Approach

We introduce LODESTAR, a framework designed to enable robust long-horizon dexterous manipula-

tion by leveraging a few human demonstrations and sim-augmented data. An overview of the system

architecture is shown in Fig. 2. LODESTAR comprises three key components: (1) Skill Segmen-

tation (Sec. 4.1): decomposing human demonstrations into motion and manipulation phases using

3



Skill Segment Digital Twins 

Skill Segment

Skill Policy 𝜋𝜎𝑖
Real-to-Sim

Co-training

Transition

Motion 𝑎𝑡Discriminator

Func.
VLM

Augmented Skill Data

Skill Segmentation Skill Routing

Skill Training

Single-frame Annot.

Propagate

First Frame

Transition 

Data

Sampling

𝜋𝜎1
Skill Data

Skill Data

Residual Learning

Track

𝜋𝜎𝑖
𝜋𝜎𝐾

Skill Routing Transformer

Rollout

Skill Segment

Current Frame

Figure 2: LODESTAR Pipeline. LODESTAR consists of three sequential stages. (1) Human
demonstrations are segmented into manipulation and transition phases using discriminators built
from VLM. (2) Each skill is augmented via residual RL in simulation to train robust policies.(3)
Skill Routing Transformer policy composes and selects skills or transition actions during execution,
enabling coherent long-horizon manipulation in real-world settings.

per-frame skill discriminators derived from vision-language models and tracked keypoints; (2) Syn-

thetic Data Generation for Robust Skill Policies Learning (Sec. 4.2): training individual robust

skill policies enhanced by synthetic demonstrations from residual reinforcement learning (RL) pol-

icy; (3) Skill Composition via Skill Routing Transformer (SRT) policy (Sec. 4.3): learning a

SRT policy to sequence and compose the learned skills to accomplish long-horizon tasks.

4.1 Skill Segmentation

In long-horizon dexterous manipulation, human behavior often exhibits a natural decomposition

which alternates between two modes: (i) transition motions corresponding to inter-skill transit

movements [8, 104] that involve either no object interaction or only passive contact, and (ii) manip-

ulation skill involving fine-grained, contact-rich manipulations primarily actuated by the hand. We

propose decomposing each expert demonstration τej = {(st, at)}
T
t=1 into an alternating sequence of

manipulation skill and transition motion segments: τe = τσ1
→ τµ1

→ τσ2
→ · · · → τµK−1

→
τσK

, where each τσi
denotes the demonstration of a semantically meaningful manipulation skill σi

(e.g., inserting, twisting) to solve the subtask Ti, and each τµi
denotes a motion segment serving as

a transition between skills. To identify skill segments, we propose a pipeline that leverages vision

foundation models and vision-language models to construct a per-frame discriminator function for

each skill. Each discriminator di(st) : S → {0, 1} determines whether a given frame belongs to the

skill σi, and is formulated as a conjunction of two constraints: di(st) = ✶

[

C
point
i (st) ∧ Ccontact

i (st)
]

,

where C
point
i (·) is a keypoint spatial relation constraint and Ccontact

i (·) is a fingertip contact constraint

which describes whether the fingertip has contact with the object of interest (see Appendix for more

details). Unlike prior works [105, 106] that define a skill by its terminal state distribution Ei, we

classify skills at the frame level. This formulation is more tractable in dexterous skills, where end

states are typically task-specific and diverse across human demonstrations [25], whereas the execu-

tion process exhibits consistent spatial and contact patterns.

Keypoint Proposal. To obtain skill-centric spatial constraints, we annotate N semantically mean-

ingful keypoints {p̂l}
N
l=1 on task-relevant objects in the first frame of a random reference demon-

stration for each task. These annotated keypoints serve as priors for other demonstrations. We then

use the semantic correspondence model DIFT [27] to propagate the initial keypoints to the first

4



frame of other demonstrations, obtaining consistent keypoints across demonstrations. Then, we ap-

ply Co-Tracker [26] to track the keypoints {p
(j)
l (t)}Tt=1 across each trajectory. This procedure yields

per-frame object keypoints, with only a single manual annotation required.

Stage-wise Discriminator Function Generation. Given the language instruction of the task, we use

visual prompting with OpenAI o3 model [28] to generate the number of semantic manipulation skill

stages and corresponding Python functions for each stage-wise discriminator d
(s)
i (st). Following

prior works [106, 107], we leverage VLMs to specify structured relations (e.g., relative distances,

alignment conditions) as symbolic arithmetic expressions, rather than manipulating numerical values

directly. This approach improves the generalizability and interpretability of the discriminators.

4.2 Synthetic Data Generation for Robust Skill Policies Learning

To improve the robustness and generalization of each skill policy, we leverage simulation to train

RL policies under diverse and augmented conditions. For each skill σi, we construct a realistic

simulation environment, augment its initial and terminal state distributions as well as physical pa-

rameters, transfer the corresponding real-world segments into simulation by state estimation, train a

base imitation learning policy πbase
σi

using the transferred segment data, and train a residual RL pol-

icy πres
σi

complementing the base policy. We then collect simulated demonstrations under real-world

observation space and co-train the final policy πσi
using both real and simulated data.

Real-to-Sim Transfer. For each skill σi, we construct a simulation environment that closely

matches the real-world scene. To achieve this, we first use existing off-the-shelf 3D reconstruc-

tion models [108] to generate textured object meshes from multi-view images. For articulated ob-

jects, following prior work [56], we manually separate each mesh into individual links and define

their kinematic relationships by adding articulations. To model physical parameters (e.g., mass,

friction), we avoid explicit system identification, which typically requires extensive real-world in-

teraction [109, 110]. Instead, we adopt domain randomization: during training, dynamics pa-

rameters are sampled from a predefined range, which is effective for sim-to-real transfer. From

expert demonstrations τσi
, we extract the observed initial and terminal states for each skill σi,

denoted as I real
i and E real

i , respectively. These correspond to the observed states at the bound-

aries of skill segments. To improve robustness, we augment both sets via object-centric pertur-

bations (e.g., pose noise, small translations, and rotations. See Appendix for details), yielding:

Iaug
i = Augment(I real

i ), Eaug
i = Augment(E real

i ). We use FoundationPose [111] to estimate the 6D

poses of the objects involved for real-to-sim demonstration transfer.

Skill Policies Training. Given the simulation environment for each skill σi and converted

demonstration segments from τσi
, the goal is to train a robust policy πσi

within the correspond-

ing initial distribution Iaug
i and end distribution Eaug

i . Specifically, we first use the converted

demonstration segments to train a base policy πbase
σi

with Behavior Cloning (BC), i.e., πbase
σi

=
argmaxπbase

σi

E(st,at) [log πbase(at | st)], and then train a residual policy πres
σi

using PPO [112] with

privileged state information and binary sparse reward. During RL training, the actions from both

policies are combined πbase
σi

(st) + πres
σi
(st). We use orthogonal initialization [113] for the residual

policy network and progressive exploration schedule [114] to stabilize training (see Appendix for

more details). After that, we rollout the trained policy initialized from Iaug
i to collect successful

trajectories (end within Eaug
i ) with real-world observable state information in simulation. Finally, we

co-train a policy πσi
with the simulation trajectories and real-world trajectories using the same BC

loss. Notably, real-world data is used to both enable base policy training via state estimation and

co-train with simulated data for enhanced robustness.

4.3 Skill Composition via Skill Routing Transformer (SRT) Policy

Given the trained skill policies πσi
, we aim to chain them together to achieve long-horizon ma-

nipulation. To transfer from the terminal state of one skill to the initial state of the succeeding

skill, a direct solution is to use motion planning in the real world. However, such method faces

challenges in selecting reachable goals between the state distributions Eaug
i−1 and Iaug

i which may re-

quire additional human-designed rules, and its computational expense often limits execution speed,

especially in cluttered dexterous manipulation scenarios. Instead, we generate diverse and physi-

5



Grasp Insert & Press Insert & Press Place Press

Grasp Reorient Insert Twist

Grasp Insert Twist Grasp PlacePress

Plant Watering

Liquid Handling

Light Bulb Assembly

Skills Transitions

Figure 3: Real-world Rollout Visualization.We evaluate LODESTAR on three challenging real-
world tasks (Plant Watering, Light Bulb Assembly, and Liquid Handling). The figure visualizes the
segmentation results produced by our skill segmentation pipeline on human demonstration trajecto-
ries. Skill names are automatically generated by a vision-language model.

cally plausible trajectories in simulation. During data generation, we randomly sample state pairs

(send, sstart) ∼ Eaug
i−1×Iaug

i , and generate smooth trajectories between them via motion planning. We

then filter out the infeasible ones to ensure all trajectories reach targets without collision. This yields

a transition dataset Dtrans containing tuples (st, at, kt), where kt ∈ {transition, skilli} denotes

the execution stage.

We then use this dataset to train a transformer-based policy Skill Routing Transformer (SRT) policy,

which predicts the current transition motion and the stage (select either transition or one skill) for

the next timestep. SRT policy πg : O → A × K maps the current observation ot to a dense action

at ∈ A and a discrete stage kt ∈ K, where K = {transition} ∪ {skilli}
K
i=1. In transition

stage, the policy outputs low-level actions to bridge between two skills. In skilli stage, it executes

the trained skill policy πσi
. We implement πg using a Transformer-based architecture over a history

of past observations, enabling temporal context awareness in mode prediction and action generation.

5 Experimental Evaluation

We answer the following research questions through experiments: Q1. Does LODESTAR lead to bet-

ter transfer performance and robustness using the generated synthetic data? Q2. Does LODESTAR

help chaining multiple skill policies to accomplish long-horizon tasks? Q3. Can LODESTAR help

to improve policy generalization under out-of-distribution (OOD) conditions?

Experimental Setup We evaluate our framework on 3 challenging real-world dexterous manipu-

lation tasks requiring both fine-grained precision and reactivity (as shown in Fig. 3): 1) Liquid

Handling involves the robot picking up a pipette from a rack, aspirating liquid from a reagent bot-

tle, dispensing it into a test tube, returning the pipette to the rack, and disposing of the used tip. 2)

Plant Watering requires grasping a spray nozzle, positioning it onto a bottle, securely twisting it in

place, and triggering it to water the plants while holding the bottle. 3) Light Bulb Assembly tasks

the robot with gripping a light bulb, reorienting the bulb in-hand for insertion, and precisely screw-

ing the bulb into a base until lighting. Our real-world setup uses an xArm7 robot paired with either

a three-finger hand or a four-finger LEAP hand [115], and utilizes 2 RealSense D435 cameras. Real

world data is collected via human teleoperation using a Rokoko Glove to track finger movements

and a VIVE Ultimate Tracker to track wrist pose. We use Isaacgym [116] for the simulation envi-

6



Plant Watering Light Bulb Assembly Liquid Handling Average(%)
0

20

40

60

80

2/20
3/20

2/20 11.7
3/20

4/20

2/20
15.0

5/20

3/20

6/20
23.3

4/20 4/20 4/20 20.04/20

6/20

4/20
23.3

7/20

12/20

7/20

43.3
8/20

10/20
11/20

48.3

Real-only T-STAR Seq-Dex MimicGen SkillMimicGen LodeStar-Pose LodeStar-PC

Figure 4: Success rates across three challenging real-world tasks and their average.
LODESTAR-PC demonstrates superior performance on average and across tasks, boosting average
success by at least 25% compared to the baselines.

ronments. See Appendix for the detailed environment setup, system configuration and evaluation

protocol.

Grasp Insert Screw Grasp Spray Place
0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

fa
ilu

re
 ra

te

Real (15) Real (50)
MimicGen SkillMimicGen LodeStar-PC

Figure 5: Cumulative Failure Rate on the
Plant Watering task.

Baselines and Metrics We compare LODESTAR

with the following baselines: 1) Real-only uses the

same architecture and training as LODESTAR, but is

only trained on real-world demonstrations. 2) Skill-

chaining baselines: T-STAR [23] uses terminal-

state regularization, and Seq-Dex [25] uses bidi-

rectional optimization. To ensure fairness, we use

both simulation and real-world data for these meth-

ods. 3) Automatic Data-Generation methods: Mim-

icGen [6] employs replay-augmentation on object-

centric segments, and SkillMimicGen [8] extends

this idea to skill-level augmentation with skill chain-

ing via motion planning. We evaluate two variants

of our framework, “LODESTAR-POSE” conditions

skill policy on estimated initial object poses (as real-

time pose estimation is impractical due to its infer-

ence overhead), and “LODESTAR-PC” (default option) conditions each skill policy on raw point-

cloud observations. Each of the methods evaluates 20 trials. See Appendix for implementation

details.

5.1 Results and Analysis

LODESTAR is effective for real-to-sim-to-real transfer performance and robustness (Q1). As

illustrated in Fig. 4, LODESTAR-PC achieves the best performance on average and in the three

challenging tasks. Compared to the best automatic data-generation baseline SkillMimicGen that

uses replay-based demonstration transformation on the object-centric skill segments, LODESTAR-

PC boosts the average performance by 25%. We attribute the improvement to two main factors: 1)

LODESTAR adopts domain randomization in real-to-sim transfer to learn more robust sim-to-real

behavior, while replay-based methods may fail due to the gaps from sensors and the controller in

the bidirectional transfer between simulation and reality. 2) LODESTAR uses residual RL on a base

policy from imitation learning to correct imperfect demonstrations and generalize across broader

state distributions through exploration. On the contrary, replay-based methods may fail to cover a

diverse range of initial and terminal skill states because of the kinematic constraints in the source

demonstrations. Notably, LODESTAR-POSE, despite its simplicity—conditioning skill policy solely

on the estimated initial object pose—performs effectively and even surpasses LODESTAR-PC in the

light bulb assembly task, which involves a less cluttered environment than the other two tasks. This

7



suggests that when occlusion is minimal and pose estimation is reliable, LODESTAR-POSE serves

as a simple yet effective solution.

LODESTAR is effective for long-horizon skill chaining (Q2). As shown in Fig. 4, LODESTAR sig-

nificantly outperforms prior skill chaining methods. Compared with T-Star and Seq-Dex, which ap-

ply uni- or bi-directional optimization on skill boundaries, LODESTAR avoids such regularization for

training stabilization and instead employs a more efficient stage transition to chain skills, boosting

performance by over 25%. In addition, we observe that online motion planning in SkillMimicGen

often fails because of state estimation error from occlusion and sensor perception errors, whereas

LODESTAR chains skills trained on generated successful synthetic transitions.

Method (# Demos) Larger Init Disturbances
Distribution

Real-only (15) 0/20 1/20
Real-only (50) 4/20 5/20
SkillMimicGen (15) 5/20 4/20
LODESTAR(15) 10/20 8/20

Table 1: Success rates under OOD condi-
tions on the Light Bulb Assembly task.

LODESTAR is effective for improving policy ro-

bustness and generalization under OOD situa-

tions (Q3). We evaluate policies by initializing

with a larger distribution or applying disturbances

on the Light Bulb Assembly task. As shown in

Tab. 1, although more real-world data (15 demos vs.

50 demos) boosts the performance from 0 to 20%

and 5% to 25%, LODESTAR achieves ∼2 times

higher success rate with only 15 demos and exhibits

emergent behavior under disturbances, thereby demonstrating superior robustness and generaliza-

tion. See Appendix for more details and visualization.

Cumulative Failure Rate Analysis. Fig. 5 shows the cumulative failure rates throughout the task

execution on the Plant Watering task. LODESTAR-PC consistently achieves the lowest failure rate

at each stage, demonstrating superior robustness and compounding stability. In contrast, methods

trained purely on real-world demonstrations suffer from early failure accumulation, particularly after

the “Insert” and “Screw” stage. Both MimicGen and SkillMimicGen reduce early-stage failures but

plateau in later stages. These results underscore the effectiveness of our approach in mitigating error

accumulation and ensuring reliable execution over extended task horizons.

Simulation Real-world

LODESTAR 74% 10/20
w/ predefined skills 65% 6/20
RL fine-tuning 45% 3/20
w/o transition stage 62% 6/20
w/o sim augmentation 91% 4/20
w/o real co-training 76% 7/20

Table 2: Success Rates with Ablated Com-
ponents on the Light Bulb Assembly task.

Ablations. We further evaluate the contribution

of key components in LODESTAR through abla-

tion studies on the Light Bulb Assembly task, as

shown in Tab. 2. Compared to using human pre-

defined skills, our skill segmentation pipeline im-

proves real-world success rate by 20%, highlight-

ing its effectiveness in capturing meaningful skill

boundaries. LODESTAR also significantly outper-

forms using RL fine-tuning (by 35% in real world),

benefiting from residual RL which stabilizes simu-

lation training. Removing the transition stage or simulation augmentation leads to 20% and 30%

drops in real-world success respectively, indicating the importance of smooth skill composition and

simulation distribution augmentation. Finally, co-training with real-world data yields an additional

15% improvement over simulation-only training, demonstrating its value in enhancing sim-trained

policies. These results again highlight the effectiveness of these key designs in LODESTAR.

6 Conclusion

To summarize, we presents LODESTAR, a system for automatic skill decomposition and synthetic

data generation from human demonstrations for long-horizon dexterous manipulation tasks. The

sim-augmented datasets enable robust skill acquisition, while a global policy integrates and chains

these skills into long-horizon executions, enhancing robustness and generalization in real-world

environments. The results on three real-world challenging tasks show that LODESTAR achieves 2

times higher success rate compared to the best baseline, while also generalizing to a broader range of

environment variations. These highlight the potential of combining structured task representations

with scalable synthetic data augmentation for efficient and generalizable dexterous robot learning.

8



7 Limitations.

Despite compelling results, our approach has several limitations, which also highlight multiple av-

enues for future works: First, while our method demonstrates significant improvements over baseline

approaches, the overall task performance has not yet reached saturation and exhibits room for further

enhancement. Future research could investigate techniques like human-in-the-loop online correc-

tion mechanisms to potentially boost performance levels. Second, the depth sensors used for con-

structing 3D point clouds, keypoint projection, and pose estimation can be unreliable—particularly

when dealing with transparent or highly reflective objects (in our experiments, we manually applied

opaque tape to transparent test tubes). Future work might integrate additional sensing modalities,

such as tactile contact information, to improve both skill decomposition and policy learning. Third,

our real-to-sim pipeline currently overlooks dynamic parameters. Future efforts could apply system-

identification techniques to model dynamics in simulation more precisely, thereby enhancing the

fidelity of sim-to-real transfer. Lastly, all experiments have been conducted using rigid objects.

We did not investigate tasks involving deformable objects, as these objects remain challenging to

reconstruct and simulate accurately. Extending our framework with advanced simulation and repre-

sentation methods for deformable objects would broaden its applicability.

9



References

[1] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan,

K. Hausman, A. Herzog, J. Hsu, et al. Rt-1: Robotics transformer for real-world control

at scale. arXiv preprint arXiv:2212.06817, 2022.

[2] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch, S. Levine, and C. Finn.

Bc-z: Zero-shot task generalization with robotic imitation learning. In Conference on Robot

Learning, pages 991–1002. PMLR, 2022.

[3] A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang, R. Kulkarni, L. Fei-Fei, S. Savarese,

Y. Zhu, and R. Martı́n-Martı́n. What matters in learning from offline human demonstrations

for robot manipulation. arXiv preprint arXiv:2108.03298, 2021.

[4] H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard. Recent advances in robot

learning from demonstration. Annual review of control, robotics, and autonomous systems, 3

(1):297–330, 2020.

[5] A. O’Neill, A. Rehman, A. Maddukuri, A. Gupta, A. Padalkar, A. Lee, A. Pooley, A. Gupta,

A. Mandlekar, A. Jain, et al. Open x-embodiment: Robotic learning datasets and rt-x models:

Open x-embodiment collaboration 0. In 2024 IEEE International Conference on Robotics

and Automation (ICRA), pages 6892–6903. IEEE, 2024.

[6] A. Mandlekar, S. Nasiriany, B. Wen, I. Akinola, Y. Narang, L. Fan, Y. Zhu, and D. Fox.

Mimicgen: A data generation system for scalable robot learning using human demonstrations.

In 7th Annual Conference on Robot Learning, 2023.

[7] Z. Jiang, Y. Xie, K. Lin, Z. Xu, W. Wan, A. Mandlekar, L. Fan, and Y. Zhu. Dexmimicgen:

Automated data generation for bimanual dexterous manipulation via imitation learning. arXiv

preprint arXiv:2410.24185, 2024.

[8] C. Garrett, A. Mandlekar, B. Wen, and D. Fox. Skillmimicgen: Automated demonstration

generation for efficient skill learning and deployment. arXiv preprint arXiv:2410.18907,

2024.

[9] Z. Xue, S. Deng, Z. Chen, Y. Wang, Z. Yuan, and H. Xu. Demogen: Synthetic demonstration

generation for data-efficient visuomotor policy learning. arXiv preprint arXiv:2502.16932,

2025.

[10] Y. Xu, W. Wan, J. Zhang, H. Liu, Z. Shan, H. Shen, R. Wang, H. Geng, Y. Weng, J. Chen,

et al. Unidexgrasp: Universal robotic dexterous grasping via learning diverse proposal gener-

ation and goal-conditioned policy. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 4737–4746, 2023.

[11] T. G. W. Lum, M. Matak, V. Makoviychuk, A. Handa, A. Allshire, T. Hermans, N. D. Ratliff,

and K. Van Wyk. Dextrah-g: Pixels-to-action dexterous arm-hand grasping with geometric

fabrics. arXiv preprint arXiv:2407.02274, 2024.

[12] H.-S. Fang, H. Yan, Z. Tang, H. Fang, C. Wang, and C. Lu. Anydexgrasp: General dex-

terous grasping for different hands with human-level learning efficiency. arXiv preprint

arXiv:2502.16420, 2025.

[13] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki,

A. Petron, M. Plappert, G. Powell, A. Ray, et al. Learning dexterous in-hand manipulation.

The International Journal of Robotics Research, 39(1):3–20, 2020.

[14] H. Qi, A. Kumar, R. Calandra, Y. Ma, and J. Malik. In-hand object rotation via rapid motor

adaptation. In Conference on Robot Learning, pages 1722–1732. PMLR, 2023.

10



[15] J. Wang, Y. Yuan, H. Che, H. Qi, Y. Ma, J. Malik, and X. Wang. Lessons from learning to

spin” pens”. arXiv preprint arXiv:2407.18902, 2024.

[16] G. Konidaris and A. Barto. Skill discovery in continuous reinforcement learning domains

using skill chaining. Advances in neural information processing systems, 22, 2009.

[17] G. Konidaris, S. Kuindersma, R. Grupen, and A. Barto. Robot learning from demonstration

by constructing skill trees. The International Journal of Robotics Research, 31(3):360–375,

2012.

[18] A. Clegg, W. Yu, J. Tan, C. K. Liu, and G. Turk. Learning to dress: Synthesizing human

dressing motion via deep reinforcement learning. ACM Transactions on Graphics (TOG), 37

(6):1–10, 2018.

[19] A. Bagaria and G. Konidaris. Option discovery using deep skill chaining. In International

Conference on Learning Representations, 2019.

[20] Y. Lee, J. Yang, and J. J. Lim. Learning to coordinate manipulation skills via skill behav-

ior diversification. In International Conference on Learning Representations, 2020. URL

https://openreview.net/forum?id=ryxB2lBtvH.

[21] X. B. Peng, M. Chang, G. Zhang, P. Abbeel, and S. Levine. Mcp: Learning composable

hierarchical control with multiplicative compositional policies. In H. Wallach, H. Larochelle,

A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Infor-

mation Processing Systems 32, pages 3681–3692. Curran Associates, Inc., 2019.

[22] J. Gu, D. S. Chaplot, H. Su, and J. Malik. Multi-skill mobile manipulation for object rear-

rangement. arXiv preprint arXiv:2209.02778, 2022.

[23] Y. Lee, J. J. Lim, A. Anandkumar, and Y. Zhu. Adversarial skill chaining for long-horizon

robot manipulation via terminal state regularization. arXiv preprint arXiv:2111.07999, 2021.

[24] Z. Chen, Z. Ji, J. Huo, and Y. Gao. Scar: Refining skill chaining for long-horizon robotic

manipulation via dual regularization. Advances in Neural Information Processing Systems,

37:111679–111714, 2024.

[25] Y. Chen, C. Wang, L. Fei-Fei, and C. K. Liu. Sequential dexterity: Chaining dexterous

policies for long-horizon manipulation. arXiv preprint arXiv:2309.00987, 2023.

[26] N. Karaev, I. Rocco, B. Graham, N. Neverova, A. Vedaldi, and C. Rupprecht. Cotracker: It is

better to track together. In European Conference on Computer Vision, pages 18–35. Springer,

2024.

[27] L. Tang, M. Jia, Q. Wang, C. P. Phoo, and B. Hariharan. Emergent correspondence from

image diffusion. Advances in Neural Information Processing Systems, 36:1363–1389, 2023.

[28] OpenAI. OpenAI o3: Introducing a new generation of reasoning models. https://openai.

com/index/introducing-o3-and-o4-mini/, 2025.

[29] J. K. Salisbury and J. J. Craig. Articulated hands: Force control and kinematic issues. The

International journal of Robotics research, 1(1):4–17, 1982.

[30] I. Mordatch, Z. Popović, and E. Todorov. Contact-invariant optimization for hand manipula-

tion. In Proceedings of the ACM SIGGRAPH/Eurographics symposium on computer anima-

tion, pages 137–144, 2012.

[31] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino,

M. Plappert, G. Powell, R. Ribas, et al. Solving rubik’s cube with a robot hand. arXiv

preprint arXiv:1910.07113, 2019.

11

https://openreview.net/forum?id=ryxB2lBtvH
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/


[32] Z. He, B. Ai, Y. Liu, W. Wan, H. I. Christensen, and H. Su. Learning dexterous deformable

object manipulation through cross-embodiment dynamics learning. In 3rd RSS Workshop on

Dexterous Manipulation: Learning and Control with Diverse Data, 2025.

[33] R. Fearing. Implementing a force strategy for object re-orientation. In Proceedings. 1986

IEEE International Conference on Robotics and Automation, volume 3, pages 96–102. IEEE,

1986.

[34] L. Han and J. C. Trinkle. Dextrous manipulation by rolling and finger gaiting. In Proceedings.

1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146),

volume 1, pages 730–735. IEEE, 1998.

[35] D. Rus. In-hand dexterous manipulation of piecewise-smooth 3-d objects. The International

Journal of Robotics Research, 18(4):355–381, 1999.

[36] Y. Bai and C. K. Liu. Dexterous manipulation using both palm and fingers. In 2014 IEEE In-

ternational Conference on Robotics and Automation (ICRA), pages 1560–1565. IEEE, 2014.

[37] W. Wan, H. Geng, Y. Liu, Z. Shan, Y. Yang, L. Yi, and H. Wang. Unidexgrasp++: Improving

dexterous grasping policy learning via geometry-aware curriculum and iterative generalist-

specialist learning. In Proceedings of the IEEE/CVF International Conference on Computer

Vision, pages 3891–3902, 2023.

[38] A. Handa, A. Allshire, V. Makoviychuk, A. Petrenko, R. Singh, J. Liu, D. Makoviichuk,

K. Van Wyk, A. Zhurkevich, B. Sundaralingam, et al. Dextreme: Transfer of agile in-hand

manipulation from simulation to reality. In 2023 IEEE International Conference on Robotics

and Automation (ICRA), pages 5977–5984. IEEE, 2023.

[39] Y. Liu, Y. Liu, C. Jiang, K. Lyu, W. Wan, H. Shen, B. Liang, Z. Fu, H. Wang, and L. Yi.

Hoi4d: A 4d egocentric dataset for category-level human-object interaction. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 21013–

21022, 2022.

[40] K. Shaw, Y. Li, J. Yang, M. K. Srirama, R. Liu, H. Xiong, R. Mendonca, and D. Pathak.

Bimanual dexterity for complex tasks. arXiv preprint arXiv:2411.13677, 2024.

[41] T. Lin, Z.-H. Yin, H. Qi, P. Abbeel, and J. Malik. Twisting lids off with two hands. arXiv

preprint arXiv:2403.02338, 2024.

[42] Y. Chen, C. Wang, Y. Yang, and C. K. Liu. Object-centric dexterous manipulation from

human motion data. arXiv preprint arXiv:2411.04005, 2024.

[43] Z.-H. Yin, C. Wang, L. Pineda, F. Hogan, K. Bodduluri, A. Sharma, P. Lancaster, I. Prasad,

M. Kalakrishnan, J. Malik, et al. Dexteritygen: Foundation controller for unprecedented

dexterity. arXiv preprint arXiv:2502.04307, 2025.

[44] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakrishnan, L. Downs, J. Ibarz,

P. Pastor, K. Konolige, et al. Using simulation and domain adaptation to improve efficiency

of deep robotic grasping. In 2018 IEEE international conference on robotics and automation

(ICRA), pages 4243–4250. IEEE, 2018.

[45] S. Nasiriany, A. Maddukuri, L. Zhang, A. Parikh, A. Lo, A. Joshi, A. Mandlekar, and Y. Zhu.

Robocasa: Large-scale simulation of everyday tasks for generalist robots. arXiv preprint

arXiv:2406.02523, 2024.

[46] J. Wang, Y. Qin, K. Kuang, Y. Korkmaz, A. Gurumoorthy, H. Su, and X. Wang. Cyberdemo:

Augmenting simulated human demonstration for real-world dexterous manipulation. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

17952–17963, 2024.

12



[47] L. Wang, J. Zhao, Y. Du, E. H. Adelson, and R. Tedrake. Poco: Policy composition from and

for heterogeneous robot learning. arXiv preprint arXiv:2402.02511, 2024.

[48] L. Ankile, A. Simeonov, I. Shenfeld, M. Torne, and P. Agrawal. From imitation to refinement–

residual rl for precise assembly. arXiv preprint arXiv:2407.16677, 2024.

[49] A. Maddukuri, Z. Jiang, L. Y. Chen, S. Nasiriany, Y. Xie, Y. Fang, W. Huang, Z. Wang,

Z. Xu, N. Chernyadev, et al. Sim-and-real co-training: A simple recipe for vision-based

robotic manipulation. arXiv preprint arXiv:2503.24361, 2025.

[50] A. Wei, A. Agarwal, B. Chen, R. Bosworth, N. Pfaff, and R. Tedrake. Empirical analysis of

sim-and-real cotraining of diffusion policies for planar pushing from pixels. arXiv preprint

arXiv:2503.22634, 2025.

[51] H. Geng, F. Wang, S. Wei, Y. Li, B. Wang, B. An, C. T. Cheng, H. Lou, P. Li, Y.-J. Wang, et al.

Roboverse: Towards a unified platform, dataset and benchmark for scalable and generalizable

robot learning. arXiv preprint arXiv:2504.18904, 2025.

[52] H. Liu, W. Wan, X. Yu, M. Li, J. Zhang, B. Zhao, Z. Chen, Z. Wang, Z. Zhang, and H. Wang.

Navid-4d: Unleashing spatial intelligence in egocentric rgb-d videos for vision-and-language

navigation. 2025.

[53] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. Rgb-d mapping: Using kinect-style

depth cameras for dense 3d modeling of indoor environments. The international journal of

Robotics Research, 31(5):647–663, 2012.

[54] M. Tancik, E. Weber, E. Ng, R. Li, B. Yi, T. Wang, A. Kristoffersen, J. Austin, K. Salahi,

A. Ahuja, et al. Nerfstudio: A modular framework for neural radiance field development. In

ACM SIGGRAPH 2023 conference proceedings, pages 1–12, 2023.

[55] Z. Jiang, C.-C. Hsu, and Y. Zhu. Ditto: Building digital twins of articulated objects from

interaction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 5616–5626, 2022.

[56] M. Torne, A. Simeonov, Z. Li, A. Chan, T. Chen, A. Gupta, and P. Agrawal. Reconciling

reality through simulation: A real-to-sim-to-real approach for robust manipulation. arXiv

preprint arXiv:2403.03949, 2024.

[57] S. Patel, X. Yin, W. Huang, S. Garg, H. Nayyeri, L. Fei-Fei, S. Lazebnik, and Y. Li. A real-to-

sim-to-real approach to robotic manipulation with vlm-generated iterative keypoint rewards.

arXiv preprint arXiv:2502.08643, 2025.

[58] W. Ye, F. Liu, Z. Ding, Y. Gao, O. Rybkin, and P. Abbeel. Video2policy: Scaling up manip-

ulation tasks in simulation through internet videos. arXiv preprint arXiv:2502.09886, 2025.

[59] H. Xia, E. Su, M. Memmel, A. Jain, R. Yu, N. Mbiziwo-Tiapo, A. Farhadi, A. Gupta, S. Wang,

and W.-C. Ma. Drawer: Digital reconstruction and articulation with environment realism.

arXiv preprint arXiv:2504.15278, 2025.

[60] Z. Chen, A. Walsman, M. Memmel, K. Mo, A. Fang, K. Vemuri, A. Wu, D. Fox, and

A. Gupta. Urdformer: A pipeline for constructing articulated simulation environments from

real-world images. arXiv preprint arXiv:2405.11656, 2024.

[61] Y. Wang, Z. Xian, F. Chen, T.-H. Wang, Y. Wang, K. Fragkiadaki, Z. Erickson, D. Held,

and C. Gan. Robogen: Towards unleashing infinite data for automated robot learning via

generative simulation. arXiv preprint arXiv:2311.01455, 2023.

[62] T. Dai, J. Wong, Y. Jiang, C. Wang, C. Gokmen, R. Zhang, J. Wu, and L. Fei-Fei. Automated

creation of digital cousins for robust policy learning. arXiv preprint arXiv:2410.07408, 2024.

13



[63] Z. Mandi, Y. Weng, D. Bauer, and S. Song. Real2code: Reconstruct articulated objects via

code generation. arXiv preprint arXiv:2406.08474, 2024.

[64] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain randomization

for transferring deep neural networks from simulation to the real world. In 2017 IEEE/RSJ

international conference on intelligent robots and systems (IROS), pages 23–30. IEEE, 2017.

[65] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel. Sim-to-real transfer of robotic

control with dynamics randomization. In 2018 IEEE international conference on robotics

and automation (ICRA), pages 3803–3810. IEEE, 2018.

[66] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac, N. Ratliff, and D. Fox. Clos-

ing the sim-to-real loop: Adapting simulation randomization with real world experience. In

2019 International Conference on Robotics and Automation (ICRA), pages 8973–8979. IEEE,

2019.

[67] B. Mehta, M. Diaz, F. Golemo, C. J. Pal, and L. Paull. Active domain randomization. In

Conference on Robot Learning, pages 1162–1176. PMLR, 2020.

[68] A. Kumar, Z. Fu, D. Pathak, and J. Malik. Rma: Rapid motor adaptation for legged robots.

arXiv preprint arXiv:2107.04034, 2021.

[69] B. Evans, A. Thankaraj, and L. Pinto. Context is everything: Implicit identification for dy-

namics adaptation. In 2022 International Conference on Robotics and Automation (ICRA),

pages 2642–2648. IEEE, 2022.

[70] F. Muratore, T. Gruner, F. Wiese, B. Belousov, M. Gienger, and J. Peters. Neural posterior

domain randomization. In Conference on robot learning, pages 1532–1542. PMLR, 2022.

[71] P. Huang, X. Zhang, Z. Cao, S. Liu, M. Xu, W. Ding, J. Francis, B. Chen, and D. Zhao. What

went wrong? closing the sim-to-real gap via differentiable causal discovery. In Conference

on Robot Learning, pages 734–760. PMLR, 2023.

[72] A. Z. Ren, H. Dai, B. Burchfiel, and A. Majumdar. Adaptsim: Task-driven simulation adap-

tation for sim-to-real transfer. arXiv preprint arXiv:2302.04903, 2023.

[73] M. Memmel, A. Wagenmaker, C. Zhu, P. Yin, D. Fox, and A. Gupta. Asid: Active exploration

for system identification in robotic manipulation. arXiv preprint arXiv:2404.12308, 2024.

[74] K. Rao, C. Harris, A. Irpan, S. Levine, J. Ibarz, and M. Khansari. Rl-cyclegan: Reinforcement

learning aware simulation-to-real. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 11157–11166, 2020.

[75] D. Ho, K. Rao, Z. Xu, E. Jang, M. Khansari, and Y. Bai. Retinagan: An object-aware approach

to sim-to-real transfer. In 2021 IEEE International Conference on Robotics and Automation

(ICRA), pages 10920–10926. IEEE, 2021.

[76] R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for

temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211,

1999.

[77] G. Konidaris. On the necessity of abstraction. Current opinion in behavioral sciences, 29:

1–7, 2019.

[78] Y. Lee, S.-H. Sun, S. Somasundaram, E. S. Hu, and J. J. Lim. Composing complex skills by

learning transition policies. In International conference on learning representations, 2019.

[79] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum. Hierarchical deep reinforce-

ment learning: Integrating temporal abstraction and intrinsic motivation. Advances in neural

information processing systems, 29, 2016.

14



[80] J. Oh, S. Singh, H. Lee, and P. Kohli. Zero-shot task generalization with multi-task deep

reinforcement learning. In International Conference on Machine Learning, pages 2661–2670.

PMLR, 2017.

[81] Y. Zhu, J. Tremblay, S. Birchfield, and Y. Zhu. Hierarchical planning for long-horizon manip-

ulation with geometric and symbolic scene graphs. In 2021 IEEE International Conference

on Robotics and Automation (ICRA), pages 6541–6548. Ieee, 2021.

[82] T. Silver, A. Athalye, J. B. Tenenbaum, T. Lozano-Pérez, and L. P. Kaelbling. Learning

neuro-symbolic skills for bilevel planning. arXiv preprint arXiv:2206.10680, 2022.

[83] S. Nasiriany, H. Liu, and Y. Zhu. Augmenting reinforcement learning with behavior prim-

itives for diverse manipulation tasks. In 2022 International Conference on Robotics and

Automation (ICRA), pages 7477–7484. IEEE, 2022.

[84] S. Cheng and D. Xu. League: Guided skill learning and abstraction for long-horizon manip-

ulation. IEEE Robotics and Automation Letters, 8(10):6451–6458, 2023.

[85] Y. Guo, B. Tang, I. Akinola, D. Fox, A. Gupta, and Y. Narang. Srsa: Skill retrieval and

adaptation for robotic assembly tasks. arXiv preprint arXiv:2503.04538, 2025.

[86] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal. Learning and generalization of motor skills

by learning from demonstration. In 2009 IEEE international conference on robotics and

automation, pages 763–768. IEEE, 2009.

[87] Z. Su, O. Kroemer, G. E. Loeb, G. S. Sukhatme, and S. Schaal. Learning manipulation

graphs from demonstrations using multimodal sensory signals. In 2018 IEEE international

conference on robotics and automation (ICRA), pages 2758–2765. IEEE, 2018.

[88] D. Xu, S. Nair, Y. Zhu, J. Gao, A. Garg, L. Fei-Fei, and S. Savarese. Neural task program-

ming: Learning to generalize across hierarchical tasks. In 2018 IEEE international confer-

ence on robotics and automation (ICRA), pages 3795–3802. IEEE, 2018.

[89] T. Kipf, Y. Li, H. Dai, V. Zambaldi, A. Sanchez-Gonzalez, E. Grefenstette, P. Kohli, and

P. Battaglia. Compile: Compositional imitation learning and execution. In International

Conference on Machine Learning, pages 3418–3428. PMLR, 2019.

[90] Y. Zhu, P. Stone, and Y. Zhu. Bottom-up skill discovery from unsegmented demonstrations for

long-horizon robot manipulation. IEEE Robotics and Automation Letters, 7(2):4126–4133,

2022.

[91] S. Li, Z. Huang, T. Chen, T. Du, H. Su, J. B. Tenenbaum, and C. Gan. Dexdeform: Dexterous

deformable object manipulation with human demonstrations and differentiable physics. arXiv

preprint arXiv:2304.03223, 2023.

[92] M. Xu, Z. Xu, C. Chi, M. Veloso, and S. Song. Xskill: Cross embodiment skill discovery. In

Conference on robot learning, pages 3536–3555. PMLR, 2023.

[93] W. Wan, Y. Zhu, R. Shah, and Y. Zhu. Lotus: Continual imitation learning for robot ma-

nipulation through unsupervised skill discovery. In 2024 IEEE International Conference on

Robotics and Automation (ICRA), pages 537–544. IEEE, 2024.

[94] Z. Wang, J. Hu, C. Chuck, S. Chen, R. Martı́n-Martı́n, A. Zhang, S. Niekum, and

P. Stone. Skild: Unsupervised skill discovery guided by factor interactions. arXiv preprint

arXiv:2410.18416, 2024.

[95] J. Schmidhuber. Towards compositional learning with dynamic neural networks. Inst. für

Informatik, 1990.

15



[96] A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg, D. Silver, and

K. Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In International

conference on machine learning, pages 3540–3549. PMLR, 2017.

[97] P.-L. Bacon, J. Harb, and D. Precup. The option-critic architecture. In Proceedings of the

AAAI conference on artificial intelligence, volume 31, 2017.

[98] O. Nachum, S. S. Gu, H. Lee, and S. Levine. Data-efficient hierarchical reinforcement learn-

ing. Advances in neural information processing systems, 31, 2018.

[99] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine. Diversity is all you need: Learning skills

without a reward function. arXiv preprint arXiv:1802.06070, 2018.

[100] K. Hausman, J. T. Springenberg, Z. Wang, N. Heess, and M. Riedmiller. Learning an embed-

ding space for transferable robot skills. In International Conference on Learning Represen-

tations, 2018.

[101] U. A. Mishra, S. Xue, Y. Chen, and D. Xu. Generative skill chaining: Long-horizon skill

planning with diffusion models. In Conference on Robot Learning, pages 2905–2925. PMLR,

2023.

[102] U. A. Mishra, Y. Chen, and D. Xu. Generative factor chaining: Coordinated manipulation

with diffusion-based factor graph. In 8th Annual Conference on Robot Learning, 2024.

[103] S. Haldar and L. Pinto. Point policy: Unifying observations and actions with key points for

robot manipulation. arXiv preprint arXiv:2502.20391, 2025.

[104] P. Sundaresan, H. Hu, Q. Vuong, J. Bohg, and D. Sadigh. What’s the move? hybrid imitation

learning via salient points. arXiv preprint arXiv:2412.05426, 2024.

[105] Z. Zhang, Y. Li, O. Bastani, A. Gupta, D. Jayaraman, Y. J. Ma, and L. Weihs. Universal visual

decomposer: Long-horizon manipulation made easy. In 2024 IEEE International Conference

on Robotics and Automation (ICRA), pages 6973–6980. IEEE, 2024.

[106] W. Huang, C. Wang, Y. Li, R. Zhang, and L. Fei-Fei. Rekep: Spatio-temporal reasoning of

relational keypoint constraints for robotic manipulation. arXiv preprint arXiv:2409.01652,

2024.

[107] W. Huang, C. Wang, R. Zhang, Y. Li, J. Wu, and L. Fei-Fei. Voxposer: Composable 3d

value maps for robotic manipulation with language models. arXiv preprint arXiv:2307.05973,

2023.

[108] AR Code. AR Code. https://ar-code.com/, 2022.

[109] J. Bohg, K. Hausman, B. Sankaran, O. Brock, D. Kragic, S. Schaal, and G. S. Sukhatme.

Interactive perception: Leveraging action in perception and perception in action. IEEE Trans-

actions on Robotics, 33(6):1273–1291, 2017.

[110] N. Pfaff, E. Fu, J. Binagia, P. Isola, and R. Tedrake. Scalable real2sim: Physics-aware asset

generation via robotic pick-and-place setups. arXiv preprint arXiv:2503.00370, 2025.

[111] B. Wen, W. Yang, J. Kautz, and S. Birchfield. Foundationpose: Unified 6d pose estimation

and tracking of novel objects. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 17868–17879, 2024.

[112] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimiza-

tion algorithms. arXiv preprint arXiv:1707.06347, 2017.

[113] A. M. Saxe, J. L. McClelland, and S. Ganguli. Exact solutions to the nonlinear dynamics of

learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.

16

https://ar-code.com/


[114] X. Yuan, T. Mu, S. Tao, Y. Fang, M. Zhang, and H. Su. Policy decorator: Model-agnostic

online refinement for large policy model. arXiv preprint arXiv:2412.13630, 2024.

[115] K. Shaw, A. Agarwal, and D. Pathak. Leap hand: Low-cost, efficient, and anthropomorphic

hand for robot learning. Robotics: Science and Systems (RSS), 2023.

[116] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller,

N. Rudin, A. Allshire, A. Handa, et al. Isaac gym: High performance gpu-based physics

simulation for robot learning. arXiv preprint arXiv:2108.10470, 2021.

[117] R. Ding, Y. Qin, J. Zhu, C. Jia, S. Yang, R. Yang, X. Qi, and X. Wang. Bunny-visionpro:

Real-time bimanual dexterous teleoperation for imitation learning. 2024. URL https://

arxiv.org/abs/2407.03162.

[118] H. Zhu, A. Gupta, A. Rajeswaran, S. Levine, and V. Kumar. Dexterous manipulation with

deep reinforcement learning: Efficient, general, and low-cost. In 2019 International Confer-

ence on Robotics and Automation (ICRA), pages 3651–3657. IEEE, 2019.

[119] M. Ahn, H. Zhu, K. Hartikainen, H. Ponte, A. Gupta, S. Levine, and V. Kumar. Robel:

Robotics benchmarks for learning with low-cost robots. In Conference on robot learning,

pages 1300–1313. PMLR, 2020.

[120] X. Li, T. Zhao, X. Zhu, J. Wang, T. Pang, and K. Fang. Planning-guided diffusion policy learn-

ing for generalizable contact-rich bimanual manipulation. arXiv preprint arXiv:2412.02676,

2024.

[121] C. Wang, H. Shi, W. Wang, R. Zhang, L. Fei-Fei, and C. K. Liu. Dexcap: Scalable

and portable mocap data collection system for dexterous manipulation. arXiv preprint

arXiv:2403.07788, 2024.

[122] Y. Qin, W. Yang, B. Huang, K. Van Wyk, H. Su, X. Wang, Y.-W. Chao, and D. Fox.

Anyteleop: A general vision-based dexterous robot arm-hand teleoperation system. In

Robotics: Science and Systems, 2023.

[123] K. Zakka. Mink: Python inverse kinematics based on MuJoCo, July 2024. URL https:

//github.com/kevinzakka/mink.

[124] GitHub - xArm-Developer/xarm ros2: ROS2 developer packages for robotic products from

UFACTORY — github.com. https://github.com/xArm-Developer/xarm_ros2. [Ac-

cessed 04-05-2025].

[125] N. Ravi, V. Gabeur, Y.-T. Hu, R. Hu, C. Ryali, T. Ma, H. Khedr, R. Rädle, C. Rolland,

L. Gustafson, E. Mintun, J. Pan, K. V. Alwala, N. Carion, C.-Y. Wu, R. Girshick, P. Dollár,

and C. Feichtenhofer. Sam 2: Segment anything in images and videos. arXiv preprint

arXiv:2408.00714, 2024. URL https://arxiv.org/abs/2408.00714.

[126] C. Wang, H. Fang, H.-S. Fang, and C. Lu. Rise: 3d perception makes real-world robot

imitation simple and effective. In 2024 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 2870–2877. IEEE, 2024.

[127] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn. Learning fine-grained bimanual manipulation

with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

[128] C. Chi, Z. Xu, S. Feng, E. Cousineau, Y. Du, B. Burchfiel, R. Tedrake, and S. Song. Dif-

fusion policy: Visuomotor policy learning via action diffusion. The International Journal of

Robotics Research, page 02783649241273668, 2023.

[129] B. Sundaralingam, S. K. S. Hari, A. Fishman, C. Garrett, K. Van Wyk, V. Blukis, A. Millane,

H. Oleynikova, A. Handa, F. Ramos, et al. curobo: Parallelized collision-free minimum-jerk

robot motion generation. arXiv preprint arXiv:2310.17274, 2023.

17

https://arxiv.org/abs/2407.03162
https://arxiv.org/abs/2407.03162
https://github.com/kevinzakka/mink
https://github.com/kevinzakka/mink
https://github.com/xArm-Developer/xarm_ros2
https://arxiv.org/abs/2408.00714


[130] S. Haldar, Z. Peng, and L. Pinto. Baku: An efficient transformer for multi-task policy learn-

ing. arXiv preprint arXiv:2406.07539, 2024.

[131] A. Karpathy. minGPT: A minimal PyTorch reimplementation of the OpenAI GPT. https:

//github.com/karpathy/minGPT, 2021.

18

https://github.com/karpathy/minGPT
https://github.com/karpathy/minGPT


Supplementary Material

A Real Robot Platform

In this section, we provide details about our real robot platform, including the hardware setup,

teleoperation system, and environment setup.

A.1 Hardware Setup

Figure 6: Hardware Setup for LODESTAR. The hardware setup uses an xArm7 robot arm with
two RealSense D435 cameras. We use two different dexterous robotic hands: (Left) a three-fingered
hand with 9 degrees of freedom (DoF), and Right a four-fingered Leap hand with 16 DoF.

As shown in Fig. 6, our hardware system consists of an xArm7 robot mounted on the tabletop. We

use either a three-finger hand or a four-finger LEAP hand [115] at the end-effector of the xArm7

robot. There are two RealSense D435 cameras mounted on the left and right sides of the workspace,

respectively.

A.1.1 Robot Arm

We use a joint velocity controller from BunnyVisionPro [117] to control the xArm7 robot. The

controller receives joint position commands at 20 Hz. These commanded positions are used by a

Proportional-Derivative (PD) controller to compute corresponding joint velocities. For safety, these

joint velocities are subsequently clipped before being used to command the robot’s motors at a rate

of 250 Hz.

A.1.2 Dexterous Hand

For the Liquid Handling task, we use a three-finger hand as shown in Fig. 7. For the Plant Watering

and the Light Bulb Assembly tasks, we use a four-finger LEAP hand as shown in Fig. 8.

The three-finger hand is inspired by the DClaw robot [118, 119]. It consists of 9 Dynamixel XL430-

W250-T servo motors and has 9 degrees of freedom (DOF) correspondingly. Compared to the

DClaw robot, we replace the metal connectors with 3D printed parts for a lower price and change

19



Figure 7: Three-finger Hand Used for the Liquid Handling Task. Left: The three-finger hand is
approaching the pipette. Right: The three-finger hand consists of 9 degrees of freedom and uses a
flat surface at the fingertips for better gripping performance.

Figure 8: LEAP Hand Used for the Plant Watering and Light Bulb Assembly Tasks. Left: The
LEAP hand is using the thumb, index, and middle fingers to grasp the spray nozzle. Right: The
LEAP hand is using the thumb and index fingers to screw the bulb in place.

the finger tips from a sphere to a flat surface for better gripping performance. The design of the

three-finger hand will be open-sourced on the paper website.

We use a light version of the LEAP hand that comprises 16 Dynamixel XL330-M288-T motors and

has 16 DOF correspondingly.

We use a joint position controller for both the three-finger hand and the LEAP hand. The controller

receives joint position commands at 20 Hz and sends the commands to the motors at 60 Hz. Since

Dynamixel motors have a PD controller internally, we opt not to do interpolation externally. Fur-

thermore, friction tape is applied to the fingertips of both hands to enhance friction and improve

object grasping.

A.1.3 Obtaining Point Cloud from Multi-view Cameras

For all three manipulation tasks, we use two RealSense D435 cameras for point cloud reconstruction

to address occlusion issues. In detail, we determine the extrinsics of the cameras in the robot base

coordinate by calibrating them with a ChArUco board. Then, the captured colorized point clouds

are transformed into the robot base coordinate and concatenated. We crop the concatenated point

clouds within the robot’s workspace. Additionally, to address the sim-to-real gap from sensor noise

encountered in the real world, we use Flying Point Augmentation [120], where large Gaussian noise

is randomly added to the point clouds with 0.5% probability. One example is shown in Fig. 9.

A.2 Teleoperation System

To collect demonstrations for dexterous manipulation requiring high precision and reactivity, the

teleoperation system needs to accurately track finger motions and hand poses. To this end, inspired

by DexCap[121], we use a Rokoko Smart glove to track finger joint positions and mount a Vive

Ultimate tracker on it to estimate hand poses as shown in Fig. 10. Since the Rokoko glove and the

20



Figure 9: Visualization of input real-world point clouds. The point clouds from the two cameras
are concatenated in the robot base coordinate and cropped to be within the workspace. We addition-
ally add a Gaussian noise with a small probability to the point clouds to enhance robustness against
the sim-to-real gap from sensor noise.

Figure 10: Teleoperation System for LODESTAR. We use a Rokoko Smart glove to track finger
motions and mount a Vive Ultimate tracker on the glove to track hand poses.

Vive tracker can only stream data to a Windows machine, we forward the tracking data at 50 Hz

from the Windows machine to a Ubuntu laptop for controlling the robot.

We apply a low-pass filter to the tracked hand poses and finger joint positions to generate smooth

motion for the robot. We directly use the filtered hand pose from the Vive tracker as the target

pose of the end effector of the xArm7 robot. We calculate the fingertip positions from human data,

linearly transform the positions to account for the larger finger sizes of the robotic hands, and use the

transformed positions as the target for the fingertips of the robotic hands [122]. We use mink [123],

a differential inverse kinematics library, to calculate the joint positions for both the robotic hands

and the xArm7 robot at the same time.

A.3 Environment Setup

In this section, we provide the details of the environment setup for the three dexterous manipulation

tasks: Liquid Handling, Plant Watering, and Light Bulb Assembly.

21



Figure 11: Environment Setup for the three dexterous manipulation tasks. Left: Liquid Han-
dling. Middle: Plant Watering. Right: Light Bulb Assembly.

A.3.1 Liquid Handling

In the Liquid Handling task, the tabletop workspace contains: 1) a pipette, 2) a rack, 3) a reagent

bottle, 4) a test tube, 5) a container for dispensed tips, and 6) other objects that commonly appear in

a biochemical experiment. In this task, the robot needs to

1. grasp the pipette from the rack,

2. aspirate liquid from the reagent bottle,

3. dispense the liquid into the test tube,

4. put the pipette back onto the rack, and

5. dispose of the used tip into the container below.

A.3.2 Plant Watering

In the Plant Watering task, there are 1) a spray nozzle, 2) a spray bottle body, 3) a nozzle stand to

hold the spray nozzle vertically, 4) a container to hold the bottle body, 5) an open cardboard box,

and 6) a potted plant to be watered. To water the plant, the robot needs to

1. grasp the spray nozzle from the nozzle stand,

2. insert it onto the spray bottle body,

3. securely twist it in place,

4. grasp the assembled spray bottle,

5. press the trigger in front of the plant while holding the bottle, and

6. place the spray bottle into the cardboard box.

A.3.3 Light Bulb Assembly

In the Light Bulb Assembly task, the workspace consists of 1) a light bulb and 2) a bulb base. To

accomplish the task, the robot needs to

1. grasp the light bulb,

2. reorient the bulb in-hand for insertion,

3. insert the light bulb into the bulb base,

4. precisely screw the bulb into the base until illumination.

B Simulation Training Details

In this section, we introduce more details about training in simulation, including the used simulator,

task designs, skill segmentation, real-to-sim transfer, residual reinforcement learning (residual RL),

skill policy training, and skill routing transformer policy.

22



B.1 The Simulator

We use Isaac Gym [116] as the simulator backend. We use the xArm7 model from its ROS pack-

age [124] and the LEAP hand model from [115]. For the three-finger hand, we manually designed

its 3D model and exported it to URDF. The 3d models of the objects in the workspace are gen-

erated from multi-view images with AR-Code [108]. Inspired by [56], we manually separate the

meshes into individual links and define the kinematic relationships for the articulated objects to be

manipulated. See more details in Sec. B.3.1.

B.2 Skill Segmentation

We perform frame-level segmentation of long-horizon dexterous demonstrations into multiple skill

segments. This section details the keypoint proposal method and the generation of the discriminator

function used for segmenting the demonstration trajectories.

B.2.1 Keypoint Proposal

0
2 1

2

1

0 0
2

1

Figure 12: Process of keypoint semantic correspondence and tracking. A semantic correspon-
dence model propagates annotated keypoints from the initial frame of one demonstration (left) to
the initial frame of another (middle). Subsequently, a point tracking model tracks these keypoints
in further frames of this demonstration (right).

For each of the three demonstration tasks (Liquid Handling, Plant Watering, and Light Bulb Assem-

bly), we randomly select a reference demonstration trajectory. With this reference trajectory, we

manually annotate N semantically meaningful keypoints {p̂l}
N
l=1 on task-related objects in the first

frame. Then, we propagate these initial keypoints to the first frame of other demonstration trajec-

tories with the semantic correspondence model DIFT [27], obtaining consistent keypoints among

all the demonstrations. After that, we track the keypoints for each frame from start to end within

each trajectory with Co-Tracker [26]. A sample for the process above for each task is visualized in

Fig. 12.

B.2.2 Discriminator Function Generation

We design the language instruction for each task and feed it with the first image and the correspond-

ing tracked keypoints into the OpenAI o3 model, which outputs the total number of skill stages and

the corresponding discriminator functions d
(s)
i (st) in Python.

B.3 Real-to-Sim Transfer

Given the segmented demonstration for each skill, we need to create 3D models of the objects and

place them at their corresponding positions in the simulation environment. In this section, we show

the details for creating the 3d assets and estimating the object poses.

B.3.1 3D Asset Generation

We use AR-Code [108] to create the textured mesh for each object by capturing multi-view images.

This will take around 3-5 minutes for each object. We show a full list of the meshes created in

23



Figure 13: Textured Meshes Created for the three manipulation tasks. Left: Liquid Handling.
Middle: Plant Watering. Right: Light Bulb Assembly.

Fig. 13. Following the methodology in [56] for articulated objects, we manually decompose their

meshes into individual links and establish their kinematic relationships by defining articulations

which take around 3-5 minutes for each articulated objects.

B.3.2 State Estimation

Accurate estimation of object poses within the workspace is crucial for seamlessly transferring ob-

jects to simulation and generating synthetic augmented trajectories for skill training. We leverage

tracked keypoints (see Sec. B.2.1) to prompt SAM2 [125] and obtain a segmentation mask for each

object of interest. Using this segmentation mask and the reconstructed 3D mesh, we then employ

FoundationPose [111] to estimate the objects’ 6D poses.

B.3.3 Domain Randomization

To enhance the robustness against the sim-to-real gap for each skill policy, we apply domain ran-

domization to various simulation properties for the objects involved. The randomization parameters

are given in Tab. 3.

Parameter Type Distribution Parameter Type Distribution

object mass Scaling U(0.5, 1.5) joint lower range Additive N (0, 0.01)
object static friction Scaling U(0.7, 1.3) joint upper range Additive N (0, 0.01)
robot static friction Scaling U(0.7, 1.3) joint damping Scaling E(0.3, 3.0)
state observation Additive U(−0.002, 0.002) joint stiffness Scaling E(0.75, 1.5)
action Additive N (0, 0.01) gravity Scaling U(0.9, 1.1)
restitution Scaling U(0.5, 1.5) Compliance Scaling U(0.5, 1.5)

Table 3: Randomization ranges for physical and control parameters. U(a, b) denotes uniform
distribution over [a, b]. N (µ, σ2) denotes Gaussian distribution with mean µ and variance σ2.
E(a, b) denotes exponential-uniform distribution, i.e., E(a, b) = exp(U(log a, log b)).

B.4 Residual Reinforcement Learning

Given the converted skill segments in simulation, we generate synthetic augmentation data to im-

prove the robustness and generalization for each skill policy. We utilize residual reinforcement

learning (residual RL) to create diverse simulated demonstrations. In this section, we introduce the

details for the base policy and the residual policy in residual RL.

B.4.1 Base Policy Training

With the skill segments converted into simulation, we first train a state-based base policy using

Behavior Cloning. This base policy utilizes a similar diffusion-based architecture in [126] (the vision

encoder is replaced with an MLP to encoder object pose) and outputs an action chunk [127, 128]

to predict a set of future actions. The observation space of the base policy is shown in Tab. 4 .The

detailed parameters for training the base policy are given in Tab. 5.

24



Name Dimension Name Dimension

Arm joint position 7 Hand joint position 9 / 16
Arm joint velocity 7 Hand joint velocity 9 / 16
Object Pose Nobj * 6 Fingertip pose Nfinger * 6

Table 4: The observation space of base policy.

Parameter Value Parameter Value

Downsampling dimensions [256, 512, 1024] Embedding dimensions 64
Kernel size 5 Observation horizon 2
Prediction horizon 16 Action horizon 8
DDPM training steps 100 DDIM inference steps 4
Gradient steps 200000 Batch size 1024
Learning rate 1e-4 Optimizer AdamW

Table 5: State-based diffusion policy hyperparameters.

B.4.2 Residual Policy Training

We utilize Proximal Policy Optimization (PPO), a model-free RL algorithm, to learn a residual

policy complementing the base policy. The residual policy use a simple MLP architecture. The

observation space of residual policy is shown in Tab 6. The hyperparameters used in PPO training

are given in Tab. 7. In addition, we use orthogonal initialization [113] and progressive exploration

schedule [114] for the residual policy learning. The progressive exploration schedule employs an

ϵ-greedy strategy where, at each step, the agent uses the residual policy with probability ϵ and

otherwise relies solely on the base policy. The probability ϵ increases linearly from 0 to 1 over H

environment steps, where H = 100K.

Name Dimension Name Dimension

Arm joint position 7 Hand joint position 9 / 16
Arm joint velocity 7 Hand joint velocity 9 / 16
Object states Nobj * 13 fingertip state Nfinger * 13
Contact Forces Nobj * 3 - -

Table 6: The observation space of residual policy. The object and fingertip state includes position,
orientation, linear velocities and angular velocities.

B.5 Skill Policy Training

We use 1000 generated simulation demonstrations and 15 real world demonstrations to co-train

the final skill policy. The observation space of the skill policy is shown in Tab. 8. We adopt a

diffusion-based policy architecture similar to that of the base policy. Specifically, for LODESTAR-

PC, we utilize the policy architecture from [126], which comprises a 3D encoder built with sparse

convolutions for point cloud encoding and a diffusion-based action head. For LODESTAR-POSE,

this 3D sparse encoder is replaced with an MLP.

B.6 Skill Routing Transformer (SRT) Policy

Given the trained skill policies, we train a Skill Routing Transformer (SRT) policy to chain them to

accomplish the long-horizon task. In this section, we give the details for generating the transition

dataset and policy training.

25



Hyperparameter Value Hyperparameter Value

PPO rollout steps 8 Batches per agent 4
Learning epochs 5 Desired KL 0.16
Episode length 200 Policy iteration threshold 0.005
Discount factor 0.96 GAE parameter 0.95
Entropy coeff. 0.0 PPO clip range 0.2
Learning rate 0.0003 Value loss coeff. 1.0
Max gradient norm 1.0 Initial noise std. 0.8
Clip actions 1.0 Clip observations 5.0

Table 7: Hyperparameters for RL policy.

Name Dimension Name Dimension

Arm joint position 7 Hand joint position 9 / 16
Arm joint velocity 7 Hand joint velocity 9 / 16
Initial object pose Nobj * 6 Point num 1024

Table 8: The observation space of skill policy. The initial object pose is used for LODESTAR-POSE

and the point cloud is used for LODESTAR-PC.

B.6.1 Transition Data Generation

For generating transition trajectories between skill segments, we randomly sample state pairs

(send, sstart) ∼ Eaug
i−1 × Iaug

i , where Eaug
i−1 is the termination set for the previous skill segment and

Iaug
i is the initial set for the subsequent skill segment. For each sampled state pair, we then utilize

cuRobo [129] to generate a collision-free transition trajectory. We continue this process until 1000

trajectories have been successfully generated for each specific transition motion between consecu-

tive skills.

B.6.2 Policy Training

For Skill Routing Transformer (SRT) policy, we use similar architecture with BAKU [130], an

efficient transformer for multi-task policy learning. The SRT policy architecture is shown in Fig. 14

. We use a 3D encoder built with sparse convolution [126] to encode point cloud input and an MLP

to encode the robot state. The observation trunk use minGPT [131] architecture and the action head

use an MLP. The action head output an action chunk and stage (to decide either a skill or transition).

The parameters of SRT policy is shown in Tab. 9. The SRT policy utilizes the same point cloud

observation space as the skill policy that takes point cloud as input, with this observation space

detailed in Tab. 8.

Hyperparameter Value Hyperparameter Value

Observation trunk Transformer Transformer architecture minGPT [131]
Transformer hidden dim 256 Observation history length 10
Voxel size (mm) 5 Point feature dim 512
Encoding block 4 Decoding block 1
Action head MLP Action head hidden dim 512
Action head hidden ddepth 2 Action chunking length 10
Optimizer Adam Mini-batch size 64

Table 9: Hyperparameters for Skill Routing Transformer policy.

26



Observation 

Trunk

Action

Token

Action 

Head
MLP

3D

Encoder

Robot State

Point Cloud

Action

Chunk

Stage

Figure 14: Skill Routing Transformer Policy Architecture.

C Experiment Settings and Evaluation Details

C.1 Training Demonstration Dataset

By using the teleoperation system introduced in Sec. A.2, we collect 15 trajectories for each of the

three manipulation tasks (Liquid Handling, Plant Watering, and Light Bulb Assembly).

C.2 Experiment Settings

For each task, we use 15 real trajectories to train LODESTAR and all the baselines (Real-only, T-

STAR [23], Seq-Dex [25], MimicGen [6], and SkillMimicGen [8]).

We evaluate LODESTAR and all the baselines for 20 trials. We start each trial with different poses

for both the robot and the objects in the workspace. We try our best to ensure consistent initial

conditions for the evaluation of different methods. For each of the three manipulation tasks, the robot

has to sequentially complete the operations defined in Sec. A.3. After completing the operations

sequentially, we terminate each trial and call it a success when

• in the Liquid Handling task, the tip falls into the container below,

• in the Plant Watering task, the spray bottle is put into the cardboard box,

• in the Light Bulb Assembly task, the light bulb is illuminated.

C.3 Robustness under out-of-distribution (OOD) conditions

We visualize the OOD experiments with a larger initial distribution condition in Fig 15. The red

and blue rectangles represent the distribution of demonstration data for the initial pose of the light

bulb and the black base. The multiple light bulbs and black bases illustrate different initial posi-

tions across evaluation episodes. Faded ones indicate failures, while solid ones indicate successes.

Lodestar demonstrates stronger generalizability than the real-only baseline with fewer demonstra-

tions.

C.4 Failure Cases Analysis

We performed a statistical analysis of the failure occurrences of LODESTAR during the main ex-

periments, with the specific stages of failure illustrated in Fig.16. The data indicate that a majority

of failures manifested across various skill stages. However, a subset of failures also occurred dur-

ing the transition stages. Our investigation revealed that these transition stage failures are typically

attributable to two primary causes: (1) even in instances of passive contact, minute in-hand displace-

ments occasionally led to the object falling; and (2) occasional collisions where the grasped object,

undergoing rapid motion during the transition phase, inadvertently struck another object immedi-

ately prior to the intended contact.

27



LodeStar (15 demos) Real-only (50 demos)

Figure 15: OOD Evaluation on Larger Init Distributions.

Grasp

1/12
Insert

1/12

Screw

4/12

Spray

3/12

Place0/12

Transition

3/12

Plant Watering
(12 failures)

Grasp

1/10

Reorient 3/10

Insert

3/10

Twist1/10

Transition

2/10

Light Bulb Assembly
(10 failures)

Grasp

2/9

Insert & Press

4/9

Place1/9

Press0/9

Transition

2/9

Liquid Handling
(9 failures)

Figure 16: Failure Cases Distribution on Three Tasks.

28


	Introduction
	Related Work
	Dexterous Manipulation
	Synthetic Data Generation for Robotic Manipulation
	Skill Chaining for Long-horizon Robotic Manipulation

	Problem Formulation
	Approach
	Skill Segmentation
	Synthetic Data Generation for Robust Skill Policies Learning
	Skill Composition via Skill Routing Transformer (SRT) Policy

	Experimental Evaluation
	Results and Analysis

	Conclusion
	Limitations.
	Real Robot Platform
	Hardware Setup
	Robot Arm
	Dexterous Hand
	Obtaining Point Cloud from Multi-view Cameras

	Teleoperation System
	Environment Setup
	Liquid Handling
	Plant Watering
	Light Bulb Assembly


	Simulation Training Details
	The Simulator
	Skill Segmentation
	Keypoint Proposal
	Discriminator Function Generation

	Real-to-Sim Transfer
	3D Asset Generation
	State Estimation
	Domain Randomization

	Residual Reinforcement Learning
	Base Policy Training
	Residual Policy Training

	Skill Policy Training
	Skill Routing Transformer (SRT) Policy
	Transition Data Generation
	Policy Training


	Experiment Settings and Evaluation Details
	Training Demonstration Dataset
	Experiment Settings
	Robustness under out-of-distribution (OOD) conditions
	Failure Cases Analysis


