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ABSTRACT

Lifelong/continual test-time adaptation (TTA) refers to the problem where a pre-
trained source domain model needs to be continually adapted at inference time to
handle non-stationary test distributions. Continuously updating the source model
over long horizons can result in significant drift in the source model, forgetting the
source domain knowledge. Moreover, most of the existing approaches for lifelong
TTA require adapting all the parameters, which can incur significant computa-
tional cost and memory consumption, limiting their applicability on edge devices
for faster inference. We present FEATHER (liFelong tEst-time Adaptation wiTH
lightwEight adapteRs), a novel lightweight approach that introduces only a small
number of additional parameters to a pre-trained source model which can be unsu-
pervisedly and efficiently adapted during test-time for the new test distribution(s),
keeping the rest of the source model frozen. FEATHER disentangles the source
domain knowledge from the target domain knowledge, making it robust against
error accumulation over time. Another distinguishing aspect of FEATHER is that,
unlike some recent approaches for lifelong TTA that require access to the source
data for warm-starting the adaptation at test time, FEATHER does not have such a
requirement. FEATHER is also orthogonal to the existing lifelong TTA approaches
and can be augmented with these approaches, resulting in a significant reduction
in the number of additional parameters needed to handle the lifelong TTA set-
ting. Through extensive experiments on CIFAR-10C, CIFAR-100C, ImageNetC,
and ImageNet3DCC Robustbench benchmark datasets, we demonstrate that, with
substantially (85% to 94%) fewer trainable parameters, FEATHER achieves bet-
ter/similar performance compared to existing SOTA lifelong TTA methods, result-
ing in faster adaptation and inference at test-time. The source code for FEATHER
will be released upon publication.

1 INTRODUCTION

Real-world applications of deep learning models routinely encounter test data that may come from a
non-stationary distribution, that is different from the source training data distribution. For example,
when deployed in the wild, a model trained on clean images may observe various kinds of domain
shifts, such as low-light situations, camera flares, etc., at test time. In such settings, the source pre-
trained model is required to adapt at test (inference) time without any access to any labeled data from
the test domain. This problem setting is known as test-time adaptation (TTA) (Liang et al., 2023;
Sun et al., 2020; Liang et al., 2020; Liu et al., 2021; Wang et al., 2021; Zhou & Levine, 2021; S &
Fleuret, 2021). Moreover, doing so in a setting when the test domain itself may continuously undergo
a shift over time is even more challenging; in this setting, we need to ensure that the model performs
well on the new domain(s) while also not suffering from forgetting on the previously seen domains
in order to maintain its predictive accuracy on test inputs from previous domains. This problem
setting is referred to as lifelong/continual TTA and has received significant recent interest (Wang
et al., 2021; Niu et al., 2022; Hong et al., 2023; Song et al., 2023).

Although recent lifelong TTA methods have shown strong performance, they incur significant over-
heads at adaptation/inference time (e.g., the adaptation typically requires updates to all the param-
eters) and memory consumption. They usually also require access to the source domain data (not
practical in many settings) for warm-starting the adaptation for the test domains. Moreover, despite
using mechanisms to control the forgetting of the knowledge of the source domain, when faced with
long horizons of test distribution shifts, these methods may still suffer from significant forgetting.
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Figure 1: An overview of the lifelong/continual TTA setting, where a model trained on the source domain
(represented as clean images) is adapted to different domains occurring during test time (Low Light, Snow,
Fog, etc.) sequentially without any labels. Existing approaches adapt the same model to the target domain,
losing the source knowledge (θs). In contrast, our proposed method FEATHER (shown on the right) adapts the
newly added parameters (ω), keeping the source knowledge intact. Refer to Section 3.1 for more details.

TENT CoTTA FEATHER0

20

40

60

80

100

60.3

0.4

32.5

100

32.9

7.2

CIFAR-100C

TENT CoTTA FEATHER0

20

40

60

80

100

66.5

0.2

63.2

100

62.6

12.2

ImageNetC

TENT CoTTA FEATHER0

20

40

60

80

100 95.9

0.2

59.9

100

60.5

12.2

ImageNet3DCC
Error % Trainable Params %

Figure 2: Error and % of trainable parameters for CIFAR100C, ImageNetC, and ImageNet3DCC. Lower
is better for both error and trainable parameter percentage. TENT, adapting only BN params, leads to the
lowest number of parameter updates during test time; however, the error accumulation in TENT results in poor
performance (high error rate). CoTTA adapting the entire model during test time (100% trainable parameters)
significantly improves the error rate. In contrast, FEATHER (adapting only newly added adapter parameters)
performance shows that a similar error rate can be achieved with a drastic reduction in trainable parameters
(only 7.2% and 12.2% trainable parameters), making the TTA methods parameter efficient.

In this work, we propose FEATHER (liFelong tEst-time Adaptation wiTH lightwEight adapteRs),
a parameter-efficient approach, to address both these issues in a principled way. In particular, the
design of FEATHER (Fig. 1) ensures that (1) it does not require adapting all the model parameters
at test time while still resulting in performance that is better/comparable to approaches that require
updating all the parameters, and (2) unlike existing continual TTA approaches based on pseudo-
labeling and entropy-minimization (Wang et al., 2021), which are prone to error accumulation over
time, FEATHER disentangles the source (training) and target (test) domain knowledge so that even
with continuous shifts in the test domain, the knowledge of the source domain remains preserved,
enabling domain-specific TTA for each future domain. FEATHER achieves this by introducing a set
of lightweight adapters to a base architecture. These adapters can be efficiently updated at inference
time (with the base architecture’s weights remaining frozen) using only the unlabeled test data.
Another distinguishing aspect of FEATHER is that the updates to the adapter parameters does not
require access to the source domain data (which some recent works require in order to do a warm-
start (Song et al., 2023)). We evaluate FEATHER on four widely used benchmarks in lifelong TTA
(CIFAR10C, CIFAR100C, ImageNetC, and ImageNet3DCC) and show that the existing methods
can be made parameter efficient by a massive margin (85%-94% fewer trainable parameters;
also see Fig. 2) with comparable or better performance on the task.

2 PROBLEM SETUP AND FORMULATION

Let DS =
{
x
(m)
s , y

(m)
s

}M

m=1
denote the source domain (S) data used to train a model fθ where

θ denotes the model parameters. The model fθ takes an input x and makes a prediction ŷ (the
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predicted label corresponds to the index of the maximum value in the output vector). We denote
the source domain pre-trained parameters as θs. During the training phase, the model fθ is pre-
trained using source domain data as θs = minθ

1
M

∑M
m=1 LS

(
fθ

(
x
(m)
s

)
, y

(m)
s

)
, where LS is the

supervised loss function for the source domain S data, and y
(m)
s is the ground truth label for the

input x(m)
s . An example of the supervised loss function for classification is the cross-entropy loss:

LS(fθ(xs), ys) = −
∑

k y
(k)
s log fθ(xs)

(k), where the index k denotes the kth class.

At test-time, we assume access to only the source domain pre-trained model θs and do not assume
access to source domain data. In test-time adaptation, the goal is to adapt the source model to predict

the labels of unlabeled test inputs from a different distribution. Formally, let DTd =
{
x
(n)
d

}Nd

n=1
denote the test data from the target domain Td. We assume no access to DS during test-time and
are only provided with θs. At test time, for a domain Td, we perform an adaptation θs → θd

using the test inputs Td to get adapted parameters θd as θd = minθ
1
Nd

∑Nd

n=1 LTd
(
fθ

(
x
(n)
d

))
,

where LTd is the test-time adaptation loss for test inputs, that can be realized using an unsupervised
loss. For example, one such unsupervised TTA loss for classification used by TENT (Wang et al.,
2021) is the entropy loss LTd(fθ(xd)) = −

∑
k fθ(xd)

(k) log fθ(xd)
(k), where the k denotes the

class index. Other losses, such as cross-entropy between a student and teacher model, can also be
employed (Wang et al., 2022). Having obtained θd, we make predictions for a test input xd from the
new domain as ŷ = fθd(xd).

In the continual/lifelong TTA setting (Wang et al., 2022; Song et al., 2023), the test examples can
arrive sequentially from different target domains. Thus, in lifelong TTA, there can be D target
domains {Td}Dd=1, making the distribution of test data non-stationary. Moreover, we assume that
the learner gets no information about the switch in the domain. These aspects make lifelong TTA
considerably more challenging than standard TTA. Further, in online lifelong TTA, the learner gets
to see the test input only once, and multiple passes are not allowed.

To handle the above issues and the error accumulation and catastrophic forgetting of the earlier
domains caused by the continuously drifting test domain distributions, we present a framework
based on augmenting a base network with a small number of trainable adapter parameters (Houlsby
et al., 2019; Hu et al., 2021; Varshney et al., 2021). The base network is kept frozen at test time,
and only the adapter parameters are updated using an unsupervised loss. Updating only the adapters
significantly improves the parameter efficiency without compromising the performance. We would
like to note here that, while the idea of adapters has been used for efficient supervised finetuning
and continual learning, we leverage adapters for the lifelong TTA setting where we are required to
perform unsupervised finetuning of the model at test time.

3 LIFELONG TEST-TIME ADAPTATION WITH ADAPTERS

In this section, we provide a detailed description of our framework. While our framework is general
and can be applied to a variety of base architectures and adapters for vision as well as NLP tasks,
here we describe it assuming a feed-forward base architecture in which we employ group-wise and
point-wise convolutional filters between layers (as shown in Fig. 1). These additional filters, which
consist of only a small number of additional parameters, act as adapters, and can be efficiently
updated at test time given unlabeled input(s) from a new distribution.

3.1 FEATHER: LIFELONG TEST-TIME ADAPTATION WITH LIGHTWEIGHT ADAPTERS

One approach to solving TTA is to update the entire network parameters at test time. However, this
can lead to forgetting of the knowledge of the source domain as well as (in the continual TTA setting)
the knowledge of other previously encountered domains. To address this issue, recent work has
considered keeping the source model frozen except for the batch normalization parameters (Wang
et al., 2021), or simply updating the batch normalization statistics using the test data (Schneider et al.,
2020). A drawback of this approach is its reduced flexibility/capacity in handling test distributions
that might be significantly different from the source domain distribution.

Another line of work adapts the entire network, but to mitigate forgetting, they introduce a param-
eter restoring mechanism that resets some of the parameters back to the source domain pre-trained
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model (Wang et al., 2022; Brahma & Rai, 2023). Even though the resetting mechanism is designed
to handle error accumulation in the long run, updating the entire network can still result in error
accumulation over time. Moreover, updating the entire network and restoring back by a small per-
centage at every update iteration makes the adaptation and inference computationally heavy since
the gradients need to be computed for the entire model parameters with respect to the minibatch.

In contrast to these approaches, our approach FEATHER introduces lightweight adapters to the base
network and, at test time, only updates the adapter parameters using an unsupervised loss. Adapting
additional weights not only helps reduce the computational overhead drastically but also provides
control over the error accumulation due to a small number of adapted parameters.

When adapting the optimal source domain parameters θs to the optimal target domain parameters
θd, we also wish to preserve the source domain knowledge (represented by θs). To achieve this, we
rely on updating only the adapter parameters, which we denote as ω, while keeping θs frozen at test
time. Therefore, the parameters θd of a test domain d would be θs ∪ ω.

For the choice of a lightweight adapter, the primary objective is parameter efficiency, with compara-
ble or better predictive accuracy. Previously, a wide range of design choices have been proposed to
make the adapters parameter efficient (Houlsby et al., 2019; Hu et al., 2021; Varshney et al., 2021).
In our work, we specifically design adapters considering the requirement for making them compati-
ble with identity transformation to remove the dependency on the availability of the source training
dataset for initial warmups (see section 3.2 for more details). Primarily, given a pre-trained model
(also referred to as base model in TTA setup) with parameters θs, we insert new adapter parameters
(ω) in between layers. Considering every layer in the base model (θ(l)s ) acting as a sequence of fea-
ture transformations over the input, we insert adapters (ω(l)

s ) after the feature transformations. For
instance, consider a sequence of transformations present in the base model

F(l−1) → θ(l)s → F(l) → . . .F(l+n−1) → θ(l+n)
s → F(l+n)

where F(l) represents the transformed features after the lth layer of the base model (θ(l)s ). Note
F(l) ∈ Rh×w×c here denotes the feature map with h, w and c as its the height, width, and number of
channels, respectively, where the parameters θ(l)s define a convolution operation g

θ
(l)
s
(F(l−1)). After

inserting adapters in between, we obtain the sequence

F(l−1) → θ(l)s → F(l) → ω(l) → F(l)
ω → . . .F(l+n−1) → θ(l+n)

s → F(l+n)

where F
(l)
ω depicts the transformation made by the newly added adapters. Fig.1 (lower right) pro-

vides a detailed representation of such a sequence. In practice, we only insert the adapters in a few
locations, depending on the computational and memory budget. For test-time adaptation, we propose
to adapt only the newly added adapter parameters, keeping the rest of the network frozen. For the
lth layer, we denote the frozen parameters and adapter parameters using θ

(l)
s and ω(l), respectively.

For brevity of notation, we omit l, and use θs and ω to denote θ
(l)
s and ω(l), respectively.

The choice of adapters is architecture-specific, with their parameter-efficiency and ease of parameter
update being the key consideration. For example, for language tasks, one choice could be low-rank
adapters, such as LoRA (Hu et al., 2021). In this work, we focus on vision tasks with convolution-
based architectures. For this setting, we propose using a combination of pointwise and groupwise
convolution for adapter modules, which can be used as lightweight, parameter-efficient adapters.
Groupwise COnvolution (GCO) using r number of groups, where r ≪ c reduces the number of
parameters by a considerable margin, requiring only c

r times fewer parameters than the standard
convolution filter. In contrast, PointWise Convolution (PWC) helps handle the drawback of GCO
capturing fewer feature maps. For PWC, we use convolution filters of size 1 × 1 × c, which are
9× more parameter efficient than standard 3× 3 convolution operation. Combining both operations
(GWC and PWC) makes the transformation parameter efficient by a significant margin.

We use gωG to denote 3× 3 GCO operation of group size r having adapter parameters ωG and gωP to
denote the PWC operation having adapter parameters ωP. GCO and PWC modify the feature map
as F(l)

G = gωG

(
F(l)

)
and F

(l)
P = gωP

(
F(l)

)
, respectively. Further, we use ω to collectively denote

ωG and ωP. A noteworthy point about the proposed mechanism is that the base model architecture
needs no modifications for insertion of these adapters since the dimensions of F(l)

G and F
(l)
P are the
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same as the incoming feature map F(l). Combining F
(l)
G and F

(l)
P , we obtain the final transformed

feature map, F(l)
A , using adapters as F

(l)
A = F

(l)
G ⊕ F

(l)
P , where ⊕ denotes element-wise addition.

(also see Fig. 1, lower right, for a visual representation of the proposed operation)

3.2 PRESERVING SOURCE KNOWLEDGE WITH ZERO AND IDENTITY INITIALIZATION

Introducing adapters after any layer of the pre-trained source model can affect the feature represen-
tations of source data. Therefore, an initialization scheme is required for the adapter parameters to
ensure that the source feature representations are not affected. One way to address this issue is to
initialize the adapter parameters using a warmup training done on the source dataset (Song et al.,
2023). However, this requires access to the source dataset. In FEATHER, we address this issue by
introducing a new initialization strategy which avoids the need of access to the source data.

Specifically, we make the initial configuration of the adapter parameters equivalent to an identity
function. The parameters of GWC (ωG) are initialized with zeros. For PWC parameters (ωP), we
initialize it with a four-dimensional tensor Q (input channel × output channel × kernel size ×
kernel size) where kernel size is 1, and the first two dimensions reflect an identity matrix for no
interaction between the channels. With this initialization, for the initial configuration, we have
F

(l)
G = gωG←0

(
F(l)

)
= 0, and F

(l)
P = gωP←Q

(
F(l)

)
= F(l), and the overall transformation due

to the adapter becomes F
(l)
A = F

(l)
G ⊕ F

(l)
P = 0 ⊕ F(l) = F(l), which shows that our proposed

initialization of adapters makes the initial adapter parameter configuration equivalent to an identity
function. Appendix D Fig. 3 elaborates on the activation space of the PWC kernel applied on the
input feature map, leading to no cross-channel interactions and the same output feature map as input.

3.3 PARAMETER UPDATES FOR THE ADAPTERS

Note that, for FEATHER, only the adapter parameters (ω) are trainable and the rest of the network
parameters (θs) remain frozen as the source domain pre-trained weights. This ensures disentangle-
ment of the source domain knowledge and the target domain knowledge, prevents forgetting the
source domain knowledge, and the trainable ω parameters can continually acquire knowledge from
the dynamically changing target domains. Since the learner is agnostic to the change in the domain,
we adapt the adapter parameters using examples from a test input batch xb from time step t to t+ 1
as ωt → ωt+1, which is done as ωt+1 = ωt − η∇ωLU (fω(xb)), where η is the learning rate, xb

is a test input batch from domain d, fω is the model where θs parameters are frozen and only the
adapter parameters ω are learnable, and LU (fω(xb)) is the learning objective defined with respect
to adapter parameters (ω), which can be any unsupervised test-time adaptation loss.

4 RELATED WORK

Test-Time Adaptation (TTA): There has been significant recent progress on the problem of test-
time adaptation Liang et al. (2023). Test entropy minimization (TENT) (Wang et al., 2021) adapts
the batch-normalization (BN) parameters utilizing entropy minimization for test data predictions.
(Schneider et al., 2020) proposes a method to perform test-time adaptation by altering the source
domain’s batch normalization (BN) statistics using the statistics obtained from the test inputs.
EATA (Niu et al., 2022) addresses TTA by employing a weight regularizer; however, it primarily
emphasizes on preventing model forgetting of the source knowledge in TTA and does not specif-
ically cater to the challenges associated with forgetting in lifelong TTA. Niu et al. (2023) propose
sharpness-aware entropy minimization and batch-agnostic (group or layer) norm for TTA under
wild test settings. Chen et al. (2023) utilizes a learnable consistency loss, introducing adaptive pa-
rameters after each block, and only updates them during test-time. However, the effectiveness of
their proposed adaptive parameters is limited to addressing multi-source and single-source domain
generalization tasks for a non-continual setting, and their focus is not on parameter efficiency.

Lifelong/Continual Test-time Adaptation: CoTTA (Wang et al., 2022) addresses the challenge
of online lifelong Test-Time Adaptation (TTA) by utilizing weight averaging and augmentation av-
eraging techniques, as well as randomly restoring parameter values to the source domain model
parameters. NOTE (Gong et al., 2022) tackles the challenge of adapting to dynamic target domains
by including a normalization layer to handle instances that fall out of distribution and store the sim-
ulated i.i.d. data in memory obtained using balanced reservoir sampling. Gan et al. (2023) utilizes
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image-level visual prompts for adapting to target domains, keeping the source model parameters in-
tact. MECTA (Hong et al., 2023) performs pruning on cache data for back-propagation leading to a
reduction in memory requirement. Thus, MECTA is orthogonal to the parameter-efficient approach
of making lifelong TTA efficient with respect to the number of trainable parameters. EcoTTA (Song
et al., 2023) utilizes meta networks to adapt the frozen original network to the target domain and a
self-distilled regularization to handle catastrophic forgetting and error accumulation. However, the
main drawback of EcoTTA is the requirement of source domain training data that is needed in the
warm-up process of the meta-networks.

5 EXPERIMENTS

We evaluate FEATHER on several benchmark datasets which include CIFAR10C, CIFAR100C, Im-
ageNetC, and ImageNet3DCC, and compare it with relevant baselines. For fairness of comparison,
our baselines consist of methods that use the same training objective/mechanism and do not assume
access to the source domain training data at test time.

There are multiple corruptions in a benchmark dataset and the learner comes across a test input batch
remaining agnostic to the information about which domain this batch has come from. For instance,
CIFAR10C and CIFAR100C consist of images from 15 different types of image corruptions that can
occur due to reasons such as adverse weather conditions, low light, camera aberration, etc. More
details of the benchmark datasets are provided in Appendix B.

Evaluation Metrics: For evaluation metrics, we follow existing approaches and report the error rate.
We also compute negative log-likelihood (NLL) and Brier score to compare the uncertainty estimates
of the approaches. Details of all the evaluation metrics are present in Appendix C. For computational
complexity and parameter efficiency measures, we use the number of trainable/adaptable parameters
along with GPU memory budget and wall-clock time.

5.1 COMPARED APPROACHES

In order to evaluate the efficacy of FEATHER, we conduct a comparative analysis of its performance
against several (lifelong) test-time adaptation approaches. Source indicates the source domain pre-
trained model without any adaptation. Pseudo-label (Lee et al., 2013) utilizes hard pseudo-labels
and updates the batch normalization parameters using backpropagation. BN Adapt (Li et al., 2017;
Schneider et al., 2020) only computes the batch normalization statistics while keeping all the net-
work parameters frozen, including the Batch Norm parameters. TENT-online (Wang et al., 2021)
denotes the performance of TENT in the setting when the test data arrives continually, but the in-
formation about domain change is accessible. This knowledge about change in the domain makes
the learning problem much simpler. Nonetheless, such information regarding the change in the
domain may not be readily available in practical situations. TENT-lifelong indicates the perfor-
mance of TENT in the lifelong TTA setting, where the domain change information is unavailable.
CoTTA (Wang et al., 2022) utilizes weight-averaged, augmentation averaged pseudo labels and ran-
dom restoration of a small part of parameters to the source pre-trained parameters. Apart from these
baselines, in Table 4, we also report some additional comparisons of FEATHER with other recent
SOTA methods, such as NOTE (Gong et al., 2022), EATA (Niu et al., 2022) and EcoTTA (Song
et al., 2023).

5.2 RESULTS

For lifelong/continual test-time adaptation, Table 1-3 summarizes our results on the 4 benchmark
datasets where we compare FEATHER with other methods. For all the experiments with FEATHER,
we use the learning objective and TTA scheme proposed by CoTTA Wang et al. (2022). In every TTA
setting, the model pre-trained on the source dataset is termed the base model (θs). CoTTA unfreezes
all the model parameters and adapts these parameters during test time. In contrast, FEATHER adds
the proposed lightweight adapters to the pre-trained base model and only adapts the newly added
adapter parameters (ω) along with the BN parameters of the base model. Note that the primary
objective of FEATHER is to reduce the parameter update cost while maintaining the adaptation
performance. Since the newly added parameters are inserted in between layers, the added adapter
modules ensure equal input and output dimensions at the insertion locations of the base model’s
architecture. Therefore, the fraction/percentage of added parameters may vary depending on the ar-
chitecture choice of the base model. Refer to Appendix F for architecture-specific adapter locations.
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Table 1: CIFAR10-to-CIFAR10C online lifelong test-time adaptation task. The numbers denote the classifica-
tion error (%) obtained with the highest corruption of severity level 5. TENT-online uses domain information
denoted using +. Note that FEATHER (shown in the table) only uses 13.61% adapter parameters added to
the base model, and only these additional parameters (with BN parameters) are adapted during the test time,
keeping the rest of the parameters frozen. In contrast, CoTTA requires adapting all (100%) of the parameters.

Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
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Source 72.33 65.71 72.92 46.94 54.32 34.75 42.02 25.07 41.30 26.01 9.30 46.69 26.59 58.45 30.30 43.51
BN Adapt 28.08 26.12 36.27 12.82 35.28 14.17 12.13 17.28 17.39 15.26 8.39 12.63 23.76 19.66 27.30 20.44
Pseudo-label 26.70 22.10 32.00 13.80 32.20 15.30 12.70 17.30 17.30 16.50 10.10 13.40 22.40 18.90 25.90 19.80
TENT-online+ 24.80 23.52 33.04 11.93 31.83 13.71 10.77 15.90 16.19 13.67 7.86 12.05 21.98 17.29 24.18 18.58
TENT-lifelong 24.80 20.60 28.60 14.40 31.10 16.50 14.10 19.10 18.60 18.60 12.20 20.30 25.70 20.80 24.90 20.70
CoTTA (100%) 23.92 21.40 25.95 11.82 27.28 12.56 10.48 15.31 14.24 13.16 7.69 11.00 18.58 13.83 17.17 16.29
FEATHER 24.76 21.98 26.82 11.92 28.33 12.55 10.62 15.28 14.41 13.26 7.77 12.03 19.39 14.49 18.17 16.79(13.61%)

Table 2: CIFAR100-to-CIFAR100C online lifelong test-time adaptation task. The numbers denote the classi-
fication error rate (%) for the highest corruption of severity level 5. We emphasize that FEATHER (shown in
the table) only uses 6.8% adapter parameters, added to the base model, and only these additional parameters
(with BN parameters) are adapted during the test time, keeping the rest of the parameters frozen. In contrast,
CoTTA requires adapting all (100%) of the parameters.

Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
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eg Mean

Source 73.00 68.01 39.37 29.32 54.11 30.81 28.76 39.49 45.81 50.30 29.53 55.10 37.23 74.69 41.25 46.45
BN Adapt 42.14 40.66 42.73 27.64 41.82 29.72 27.87 34.88 35.03 41.50 26.52 30.31 35.66 32.94 41.16 35.37
Pseudo-label 38.10 36.10 40.70 33.20 45.90 38.30 36.40 44.00 45.60 52.80 45.20 53.50 60.10 58.10 64.50 46.20
TENT-lifelong 37.20 35.80 41.70 37.90 51.20 48.30 48.50 58.40 63.70 71.10 70.40 82.30 88.00 88.50 90.40 60.90
CoTTA (100%) 40.09 37.67 39.77 26.91 37.82 28.04 26.26 32.93 31.72 40.48 24.72 26.98 32.33 28.08 33.46 32.48
FEATHER 40.10 36.66 38.81 26.68 38.10 28.56 25.95 33.81 32.42 42.12 24.98 27.32 34.31 28.60 35.40 32.92(6.8%)

Table 3: Error rate (%) results averaged over all corruption types and over 10 diverse corruption orders (high-
est corruption severity level 5). FEATHER adapts only a small fraction of the total number of parameters
(mentioned inside brackets). CoTTA (100%) means that CoTTA requires adapting all the parameters.

Dataset Metric Source BN Adapt TENT CoTTA (100%) FEATHER (10.92%)

Error (%) 82.35 72.07 66.52 63.18 62.64
ImageNet-to-ImageNetC NLL 5.070 3.9956 3.6076 3.3425 3.3154

Brier 0.9459 0.8345 0.8205 0.7681 0.7077

Error (%) 69.21 67.32 95.93 59.91 60.47
ImageNet-to-ImageNet3DCC NLL 3.9664 3.7163 19.0408 3.2636 3.3018

Brier 0.8080 0.7872 1.8031 0.7270 0.7365

CIFAR10-to-CIFAR10C: We use pre-trained WideResNet-28 (Zagoruyko & Komodakis, 2016)
as a base model for experiments on CIFAR10. For FEATHER, we add lightweight adapters with
only 13.61% of the number of the base model’s parameters. Table 1 reports the continual TTA
error rates (Appendix E contains results on Brier score and NLL) of all the methods on CIFAR10C,
where various corruptions occur continually in a sequence of mini-batches with a batch size of 200.
With 86% reduction in the number of trainable/adaptable parameters, FEATHER achieves a similar
average performance with a drop of 0.5% in terms of the mean error rate compared to CoTTA.

CIFAR100-to-CIFAR100C: For CIFAR100C, we use pre-trained ResNeXt-29 (Xie et al., 2017)
as the base model. Table 2 report the error rates (Appendix E contains results on Brier score and
NLL) over the sequence of corruptions. FEATHER adds only 6.8% adapter parameters to the pre-
trained ResNeXt-29 for adaptation during inference. The results show that FEATHER achieves a
mean error rate of 32.92% with a reduction of ∼ 93% in terms of the number of trainable parame-
ters. Adapting the entire model parameters, CoTTA achieves an improvement of only 0.34% over
FEATHER in terms of average error rate. Moreover, as observed for a few of the corruptions, like
shot, impulse, defocus, and zoom, FEATHER achieves a marginal improvement over CoTTA with
significant savings in the parameter update cost.
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ImageNet-to-ImageNetC: For this evaluation, we use a pre-trained ResNet-50 as the base model.
In this setting, prior works (Wang et al., 2022) report the lifelong TTA performance over 10 random
sequences of the 15 corruptions. To provide a fair comparison, we experiment with FEATHER, con-
sidering the same continual setting where the performances are validated for 10 random sequences
of corruptions. Table 3 shows the performance over 10 different runs. We observe that with only
10.92% of added trainable adapter parameters, FEATHER achieves an improvement in terms of error
rate over CoTTA (Wang et al., 2022) (from 63.18% to 62.64%). This highlights that the parameter
update cost can be significantly reduced for existing approaches with no performance drop.

Table 4: The table shows the compari-
son of FEATHER with other existing TTA
methods in terms of the error rate (%)
on CIFAR10-to-CIFAR10C and ImageNet-to-
ImageNetC datasets. Note that FEATHER uses
the learning objective and TTA scheme pro-
posed by CoTTA, and all the comparisons are
made in a lifelong setting.

Method CIFAR10C ImageNetC Source Free

Source 43.51 82.35 ✓
BN Stats 20.44 72.07 ✓
TENT 20.7 66.52 ✓
EATA 18.6 63.8 ✗
NOTE 20.2 - ✓
ECoTTA 16.8 63.4 ✗
CoTTA 16.29 63.18 ✓

FEATHER 16.79 62.64 ✓

ImageNet-to-ImageNet3DCC: For this evaluation, we
use the same architecture as that of ImageNetC ex-
periments with a pre-trained ResNet-50 and the same
number of added adaptable parameters (10.92%). Ta-
ble 3 highlights the performance over 10 random or-
ders of corruptions. We observe that with only 10.92%
of added adaptable parameters, FEATHER achieves a
comparable average error rate of 60.47% compared to
an average error rate of 59.91% for CoTTA (with all
parameters), with only 0.56% performance drop.

Overall, our detailed results in four benchmarks high-
light that FEATHER achieves a comparable perfor-
mance with huge efficiency in the number of train-
able parameters. Fig. 2 highlights the comparable
performance achieved with significant efficiency using
FEATHER over CoTTA. In Table 4, we report the com-
parison with other existing SOTA approaches in a lifelong TTA setting. Refer to Appendix A for
more details about the hyperparameters.

6 DISCUSSION

Flexibility in Parameter Efficiency: The overall objective of the test-time adaptation meth-
ods is to increase the usage of existing methods in the real-world changing environment over
time, making the models more robust towards domain shifts when deployed in the wild.

Table 5: Error rate (%) on CIFAR100C over different per-
centages of added parameters in FEATHER. Param. % in
the bracket in the first two columns indicates a comparison
with the base model, for e.g., 49M (7.16% of 6.90M) and
7.37M (106.80% of 6.9M). We observe that adding a sim-
ilar number of trainable parameters as adapters (101.29%,
last row) improves the performance over CoTTA by a small
margin, and even with a much smaller number of trainable
params., FEATHER achieves comparable performance.

Method Train. Params. Total Params. Train. % Error

CoTTA 6.90M 6.90M 100.00% 32.5

FEATHER

0.49M (7.16%) 7.37M (106.80%) 6.71% 32.92
2.35M (34.12%) 9.23M (133.76%) 25.51% 32.79
3.94M (57.14%) 10.82M (156.78% ) 36.45% 32.65
6.99M (101.29%) 13.89M (201.29%) 50.32% 32.31

However, it is imperative that a proposed
method does not compromise upon the pre-
dictive performance. FEATHER provides
flexibility in choosing the desired num-
ber of additional adapter parameters for a
task. To validate if the same performance
can be achieved by adding more adapter
parameters (ω), we experiment with the
FEATHER setting, where we increase the
trainable number of parameters by adding
more adapters to the base model. We ex-
periment with multiple settings where we
add different number of parameters. Ta-
ble 5 highlights the performance compari-
son along with the parameter comparison in
detail. As observed from the results, increasing the number of adapter parameters does help boost
the performance and making the trainable parameters 57.14% of the base model achieves 32.65%
mean error rate, which is very close to CoTTA which requires retraining all (i.e., 100%) the pa-
rameters. Moreover, we also observe that adding a similar number of trainable parameters using
FEATHER (101.29% of the base model) helps achieve marginal performance improvement over the
CoTTA baseline (32.5% to 32.31% mean error rate).

Reset Cost: While deploying models in the field, a long run of domain adaptation causes parameter
drift and performance degradation. For instance, the occurrence of highly shifted domains dur-
ing testing may lead to a significant parameter drift, resulting in the loss of all source knowledge.
Therefore, existing approaches (Wang et al., 2021; Song et al., 2023) typically maintain a copy of
the source model for resetting the model parameters back to the source parameters. In FEATHER,
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Table 6: The table compares FEATHER applied over TENT and CoTTA, highlighting the orthogonality of
the proposed generic framework. Results for the CIFAR100-to-CIFAR100C benchmark depict the parameter
efficiency obtained (93.2% fewer trainable parameters compared to CoTTA on the base model)

Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
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TENT-lifelong 37.20 35.80 41.70 37.90 51.20 48.30 48.50 58.40 63.70 71.10 70.40 82.30 88.00 88.50 90.40 60.90
+ FEATHER 41.67 39.40 41.35 26.96 40.11 28.87 26.91 33.87 33.80 39.94 26.27 29.55 34.50 32.02 40.10 34.35(6.8% Params)
EATA-lifelong 41.83 40.27 42.56 27.56 41.54 29.54 27.70 34.69 34.71 41.24 26.42 30.20 35.58 32.73 40.95 35.17
+ FEATHER 41.21 38.96 41.24 26.97 41.07 29.26 27.13 33.84 34.30 39.94 26.04 30.14 34.61 31.67 39.74 34.41(6.8% Params)
CoTTA 40.09 37.67 39.77 26.91 37.82 28.04 26.26 32.93 31.72 40.48 24.72 26.98 32.33 28.08 33.46 32.48(100% Params)
+ FEATHER 40.10 36.66 38.81 26.68 38.10 28.56 25.95 33.81 32.42 42.12 24.98 27.32 34.31 28.60 35.40 32.92(6.8% Params)

since we only update the newly added parameters, keeping the source parameters untouched, the
models adapted using FEATHER can be easily reset to source without requiring a copy of the source
model. Therefore FEATHER, by its design itself, helps reduce the reset cost for a model in terms of
memory required for deploying the model in the wild.

Orthogonality with existing TTA approaches: As FEATHER emphasizes parameter efficiency,
the proposed method and the learning objective LU (fω()) defined with respect to adapter param-
eters (ω) is generic and can be any unsupervised test-time adaptation loss, making it orthogonal
to existing approaches. To validate the orthogonality with existing LTTA approaches, we per-
form another set of experiments where we combine FEATHER with the learning objectives pro-
posed by TENT, EATA, and CoTTA. Table 6 reports the results for FEATHER using the learn-
ing objective of TENT, EATA, and CoTTA. Note that TENT and EATA propose adapting only
BN parameters (0.37%) during TTA, whereas CoTTA adapts the entire network weights (100%).

Table 7: Time and memory budget requirements for
CIFAR100-to-CIFAR100C upon varying number of train-
able parameters, along with the error rate (%).

Adapt. Mem. TTA Time (secs) | Error (%)
Params (MB) CoTTA TENT EATA

BN Params 0.37% 2890.56 110.80 | 34.70 18.60 | 60.90 28.06 | 35.17
All Params 100% 5693.27 149.70 | 32.48 28.53 | 33.64 33.80 | 33.89
FEATHER 6.80% 3311.87 136.14 | 32.92 21.20 | 32.92 28.60 | 34.41

Table 7 depicts the decrease in infer-
ence/TTA time and memory budget require-
ment, along with the error rate compari-
son between various architecture settings
and different lifelong TTA methods for
the CIFAR100-to-CIFAR100C benchmark.
Even though updating BN Params adapts a
minimal number of parameters, FEATHER
with only 6.80% adaptable parameters outperforms BN Params significantly and performs com-
parably with All Params version, consistently across CoTTA, TENT, and EATA. Thus, FEATHER
provides an advantage of adapting a minuscule percentage of parameters to achieve similar/better
performance based on the available memory/time budget, making it more practical and flexible for
real-life deployment of the TTA models.

7 CONCLUSION
In this work, we propose a generic framework for making adaptation efficient during test time and
introduce FEATHER: liFelong tEst-time Adaptation wiTH lightwEight adapteRs. FEATHER uses
efficient adapters, which can be trained at test-time (using unlabeled test inputs) to improve the
performance under domain shifts. FEATHER offers two key advantages: making the adaptation pa-
rameter efficient and keeping the source knowledge intact. With the proposed initialization scheme,
FEATHER also removes the dependency on source dataset at the adaptation time (required by other
recent methods), making the proposed adapters compatible with the full-test-time adaptation set-
ting. FEATHER requires substantially (85% to 94%) fewer trainable parameters to achieve better
or similar performance compared to existing TTA state-of-the-art methods, resulting in faster adap-
tation and inference during test-time. The proposed adapters and initialization scheme will help
provide parameter control to the test-time adaptation approaches and make them more efficient for
real-world use cases. We conclude by mentioning a few avenues of possible future work: (1) making
the parameter addition dynamic (adding parameters on the fly) based on the observed domain shifts
(currently, they are fixed); (2) using adapters with low-rank structures (Hu et al., 2021) to further
improve the parameter efficiency; and (3) designing variants of FEATHER for other architectures
(Transformers (Kojima et al., 2022), Graph Neural Networks (Jin et al., 2023), etc.).
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APPENDIX

A HYPERPARAMETER SETTING

We use PyTorch (Paszke et al., 2019) to develop and train our architecture and RobustBench Croce
et al. (2021) for the various pre-trained architectures used in the experiments. We use the existing set
of pre-trained models (base models) widely used for TTA experiments. We run all the experiments
over the NVIDIA A40 GPU. For hyperparameters, we make use of the available set of hyperpa-
rameters proposed by the TTA approaches; for example, for using the TTA mechanism proposed
by CoTTA, we use hyperparameters provided by CoTTA. For a fair comparison, we use the same
optimizers (Adam (Kingma & Ba, 2014) and SGD) as reported by previous TTA baselines. As we
decrease the number of parameters by a significant margin, we tune the learning rate for various
settings.

For CIFAR10-to-CIFAR10C experiments, we use Adam optimizer (Kingma & Ba, 2014) with a
learning rate of 0.00125, and β = 0.9 with no weight decay. We follow CoTTA for the mean
teacher parameter and update the weights of the teacher model by exponential moving average using
the student model weights using α = 0.999, but without any resetting, i.e., reset rate of 0%.

For CIFAR100-to-CIFAR100C experiments, we use a learning rate of 0.0015 for Adam optimizer
with β = 0.9 and no weight decay. For the mean teacher parameter, we follow CoTTA and update
the weights of the teacher model by exponential moving average using the student model weights
using α = 0.999 with a reset rate of 1%.

In the ImageNet-to-ImageNetC experiments, we use stochastic gradient descent (SGD) optimizer
with a learning rate of 0.04, momentum of 0.9, and no weight decay. We follow CoTTA for the
mean teacher weight parameter and update teacher model weights by exponential moving average
using student model weights with α = 0.999, and a reset rate of 0.1%.

The ImageNet-to-ImageNet3DCC experiments use SGD optimizer with a learning rate of 0.03, a
momentum of 0.9, with no weight decay. We follow CoTTA for the mean teacher weight parameter.
The teacher model weights are updated by exponential moving average, utilizing the student model
weights with α = 0.999 and a reset rate of 0.1%.

B BENCHMARK DATASETS

Multiple corruptions are introduced to the standard CIFAR10 and CIFAR100 Krizhevsky (2009)
datasets to get CIFAR10C and CIFAR100C datasets are corrupted versions, respectively. Both Ima-
geNetC Hendrycks & Dietterich (2019) and ImageNet3DCC Kar et al. (2022) are corrupted versions
of the standard ImageNet Deng et al. (2009) dataset.

The CIFAR10C and CIFAR100C datasets both consist of 10,000 images for every corruption type,
resulting in a total of 150,000 images for each dataset. The ImageNetC dataset consists of 50,000
images for each corruption class. The CIFAR10C, CIFAR100C, and ImageNet-C datasets comprise
a total of 15 distinct types of corruptions, with an additional 4 types designated for validation pur-
poses. Every corruption consists of five distinct levels of severity. The different kinds of corruption,
accompanied by concise explanations, are outlined below:

1. Gaussian noise: frequently observed in situations characterized by low illumination levels

2. Shot noise: electrical noise that arises from the discrete character of light

3. Impulse noise: color counterpart of salt-and-pepper noise and can potentially occur owing
to bit errors

4. Defocus blur: occurs when an image is captured with an improper focus

5. Frosted glass blur: occurs when an image is seen through a window having frosted glass

6. Motion blur: a phenomenon that arises when a camera undergoes rapid movement

7. Zoom blur: occurs when a camera rapidly moves toward an object

8. Snow: a form of precipitation that visibly obscures the object of interest
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9. Frost: happens when ice crystals stick to windows
10. Fog: the presence of fog in the environment causes objects to be obscured from view; this

effect is generated using the diamond-square algorithm
11. Brightness: subject to change in accordance with the intensity of sunlight
12. Contrast: influenced by the lighting conditions and the color of the photographed object
13. Elastic transformations: stretching or contracting of small image portions
14. Pixelation: occurs when a low-resolution image is upsampled
15. JPEG: lossy image compression method that leads to the formation of compression artifacts

The ImageNet 3D Common Corruptions (ImageNet3DCC) dataset, as proposed in a recent work
by Kar et al. (2022), utilizes the scene geometry for transformations, leading to the generation of
corruptions more closely resembling real-world scenarios. The Imagenet3DCC dataset consists of
50,000 images for every form of corruption included within the dataset. It comprises a total of 12
different kinds of corruption, each characterized by 5 degrees of severity. The instances of corruption
can be categorized as follows:

1. Near focus: altering the focus region to the nearby section of the scene in a random manner
2. Far focus: introduce random alterations in the focus to encompass the far portion of the

scene
3. Bit error: attributed to the presence of imperfections in the video transmission channel
4. Color quantization: reduces the bit depth of an RGB image
5. Flash: occurs when a light source is placed in close proximity to the camera
6. Fog 3D: produced by utilizing a conventional optical model for fog
7. H.265 ABR: H.265 codec in conjunction with the Average Bit Rate control mode for com-

pression purposes
8. H.265 CRF: H.265 codec for compression purposes, specifically employing the Constant

Rate Factor (CRF) control mode
9. ISO noise: refers to the presence of noise in an image, which follows a Poisson-Gaussian

distribution
10. Low-light: simulated by lowering pixel intensities and addition of Poisson-Gaussian dis-

tributed noise
11. XY-motion blur: refers to the blur when the primary camera is in motion along the XY-

plane of the picture
12. Z-motion blur: occurs when the primary camera is moving along the Z-axis of the image

The purpose of developing these datasets is to provide standardized benchmarks for evaluating the
robustness of classification models.

C EVALUATION METRICS

For a given dataset, assume D = {xn, yn}Nn=1, with yn to be the true label (in one-hot representa-
tion, i.e., yni = 1 if i is the true class label, else yni = 0) of xn, and y′n to be the prediction by the
model.

C.1 ERROR

The definition of average error rate is as follows:

Error =
1

N

N∑
n=1

I(y′n ̸= yn). (1)

Here I() denotes the indicator function.
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C.2 BRIER SCORE

The average Brier score Brier (1950) is given by the following:

Brier score =
1

N

N∑
n=1

D∑
i=1

(y′ni − yni)
2. (2)

C.3 NEGATIVE LOG-LIKELIHOOD

We define average negative log-likelihood (NLL) as:

NLL = − 1

N

N∑
n=1

D∑
i=1

(yni log y
′
ni). (3)

D INITIALIZATION SCHEME ADAPTER PARAMETERS

We provide a pictorial depiction of the proposed initialization scheme to make the adapters behave
as an identity function in the beginning. This ensures that source domain knowledge is intact and,
thus, no warm-up using the source data is required, unlike approaches such as Niu et al. (2022);
Song et al. (2023).

E ADDITIONAL RESULTS

For a fair comparison with existing TTA methods, we report all the metrics results corresponding to
Table 1 and Table 2 in Table 8 and Table 9, respectively. Overall, we observe that similar perfor-
mance can be achieved with a significant reduction in trainable parameters.

Comparison with other SOTA methods: The main focus of this work is to design parameter-
efficient adapters that are well-suited for lifelong test-time adaptation (TTA). All comparisons con-
ducted in our work are based on the mechanism proposed by CoTTA. In addition, for completeness,
we also report a comparative analysis of the performance of our approach with some other recently
proposed lifelong TTA approaches.

Table 4 provides a comparison with other existing methods. Since different methods show re-
sults on various architectures, we typically use the standard architectures and report the numbers
from the paper corresponding to the same architecture and dataset. Note that another recent work
EcoTTA (Song et al., 2023) proposes to include meta-network modules to the base model for re-
ducing the activation and memory cost in TTA methods. Adding more parameters in EcoTTA still
requires a warm-up phase, making it dependent on the availability of the source dataset. In contrast,
our approach FEATHER removes this dependency by proposing adapter designs compatible with
identity transformation for initialization, making it generic for all TTA methods.

Orthogonality with existing TTA approaches: TENT and EATA only make use of BN parame-
ters in their proposed approach. When compared to the BN parameters adaptable version of both
TENT and EATA, TENT+FEATHER and EATA+FEATHER both achieve significant performance
improvement; we speculate the primary reason to be the usage of more parameter space for adap-
tation without losing the source model weights. Hence, to evaluate the dependence throughout the
adaptable parameter space, we create an additional setting in which we update the complete model
parameters (100% trainable parameters) and report the findings. Similarly, for comparison with
CoTTA, we add an additional setting of adapting only BN parameters. Experimental results in Table
10 show that adapting the entire model parameters does help boost the performance by a significant
margin; however, it loses the proxy for source knowledge as all the parameters are now updated.
We discover that FEATHER can achieve a similar performance improvement with a modest fraction
of extra adapter parameters, allowing us to maintain the performance boost with great parameter
efficiency without any loss in original model parameters following an update.

In terms of error rate, Table 10 demonstrates that CoTTA with only FEATHER adapters being adapt-
able has an error rate of 34.70%, surpassing CoTTA with only BN params being adaptable, which
has an error rate of 32.48%.
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Table 8: The table shows all the metrics results obtained for the CIFAR10-to-CIFAR10C online lifelong test-
time adaptation task for the highest corruption of severity level 5 corresponding to the results obtained for
FEATHER reported in Table 1. FEATHER here only uses 13.61% adapter parameters compared to the base
model. Note that FEATHER here uses the learning objective and TTA scheme proposed by CoTTA.

Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Method Metric

G
au

ss
ia

n

sh
ot

im
pu

lse

de
fo

cu
s

gl
as

s

m
ot

io
n

zo
om

sn
ow

fr
os

t

fo
g

br
ig

ht
ne

ss

co
nt

ra
st

el
as

tic

pi
xe

la
te

jp
eg Mean

So
ur

ce Error % 72.33 65.71 72.92 46.94 54.32 34.75 42.02 25.07 41.30 26.01 9.30 46.69 26.59 58.45 30.30 43.51
Brier 1.29 1.16 1.21 0.79 0.93 0.59 0.71 0.42 0.72 0.44 0.15 0.77 0.44 1.02 0.50 0.74
NLL 6.46 5.61 5.47 2.74 3.84 2.09 2.51 1.51 3.15 1.53 0.48 2.69 1.38 4.67 1.65 3.05

B
N

Error % 28.08 26.12 36.27 12.82 35.28 14.17 12.13 17.28 17.39 15.26 8.39 12.63 23.76 19.66 27.30 20.44
Brier 0.46 0.43 0.59 0.20 0.57 0.23 0.19 0.28 0.28 0.24 0.13 0.20 0.38 0.32 0.45 0.33
NLL 1.46 1.32 1.90 0.57 1.76 0.64 0.54 0.82 0.82 0.71 0.36 0.57 1.14 0.92 1.38 0.99

T
E

N
T Error % 24.80 20.48 28.49 14.84 31.78 16.97 16.66 21.97 20.97 20.92 14.76 19.91 27.56 23.89 31.01 22.33

Brier 0.42 0.35 0.50 0.26 0.56 0.30 0.30 0.40 0.39 0.38 0.27 0.37 0.51 0.44 0.58 0.40
NLL 1.41 1.33 2.10 1.11 2.61 1.52 1.65 2.34 2.43 2.42 1.76 2.48 3.21 2.97 4.17 2.23

C
oT

TA Error % 23.92 21.40 25.95 11.82 27.28 12.56 10.48 15.31 14.24 13.16 7.69 11.00 18.58 13.83 17.17 16.29
Brier 0.36 0.33 0.38 0.18 0.40 0.19 0.16 0.23 0.21 0.20 0.11 0.16 0.27 0.20 0.25 0.24
NLL 0.92 0.85 0.88 0.43 0.93 0.46 0.37 0.55 0.50 0.46 0.26 0.36 0.60 0.45 0.56 0.57

F
E
A
T
H
E
R Error % 24.76 21.98 26.82 11.92 28.33 12.55 10.62 15.28 14.41 13.26 7.77 12.03 19.39 14.49 18.17 16.79

Brier 0.38 0.34 0.39 0.18 0.42 0.19 0.16 0.23 0.21 0.20 0.11 0.17 0.28 0.21 0.27 0.25
NLL 1.02 0.92 0.92 0.44 0.98 0.45 0.37 0.54 0.50 0.45 0.24 0.39 0.62 0.47 0.60 0.59

Table 9: The table shows all the metrics results obtained for the CIFAR100-to-CIFAR100C online lifelong
test-time adaptation task for the highest corruption of severity level 5 corresponding to the results obtained for
FEATHER reported in Table 2. FEATHER here only uses 6.8% adapter parameters compared to the base model.
Note that FEATHER here, uses the learning objective and TTA scheme proposed by CoTTA.

Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Method Metric
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So
ur

ce Error % 73.00 68.01 39.37 29.32 54.11 30.81 28.76 39.49 45.81 50.30 29.53 55.10 37.23 74.69 41.25 46.45
Brier 1.11 1.04 0.58 0.41 0.79 0.43 0.40 0.53 0.64 0.71 0.41 0.75 0.51 1.12 0.56 0.67
NLL 5.59 4.89 2.00 1.19 2.86 1.26 1.16 1.63 2.12 2.34 1.16 2.52 1.50 5.39 1.74 2.49

B
N

Error % 42.14 40.66 42.73 27.64 41.82 29.72 27.87 34.88 35.03 41.50 26.52 30.31 35.66 32.94 41.16 35.37
Brier 0.55 0.54 0.56 0.37 0.55 0.40 0.38 0.47 0.46 0.55 0.36 0.40 0.48 0.44 0.54 0.47
NLL 1.69 1.62 1.71 1.06 1.64 1.13 1.06 1.38 1.37 1.66 1.01 1.17 1.40 1.29 1.66 1.39

T
E

N
T Error % 37.16 35.61 41.82 37.54 51.19 48.48 49.15 58.83 62.85 71.65 70.76 82.91 88.00 91.14 94.63 61.45

Brier 0.51 0.52 0.63 0.60 0.82 0.82 0.8585 1.03 1.13 1.31 1.32 1.60 1.68 1.77 1.85 1.10
NLL 1.49 1.58 2.14 2.12 3.28 3.66 4.17 5.46 6.71 8.53 9.04 14.43 14.17 16.21 17.66 7.37

C
oT

TA Error % 40.09 37.67 39.77 26.91 37.82 28.04 26.26 32.93 31.72 40.48 24.72 26.98 32.33 28.08 33.46 32.48
Brier 0.53 0.51 0.53 0.37 0.50 0.38 0.36 0.44 0.43 0.53 0.35 0.37 0.44 0.39 0.45 0.44
NLL 1.60 1.50 1.58 1.04 1.47 1.09 1.02 1.29 1.24 1.59 0.96 1.05 1.25 1.10 1.30 1.27

F
E
A
T
H
E
R Error % 40.10 36.66 38.81 26.68 38.10 28.56 25.95 33.81 32.42 42.12 24.98 27.32 34.31 28.60 35.40 32.92

Brier 0.53 0.5 0.52 0.37 0.51 0.39 0.36 0.46 0.44 0.55 0.35 0.38 0.46 0.39 0.47 0.45
NLL 1.6 1.46 1.51 1 1.46 1.07 0.97 1.3 1.22 1.65 0.93 1.03 1.28 1.07 1.34 1.26

Flexibility in Parameter Efficiency: We report the exact number of parameters for Table 5 in the
Table 11. This illustrates the flexibility of FEATHER to choose the number of parameters depending
on the memory and computational budget.
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INPUT FEATURE MAP
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𝝎𝑷
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(depicting where PWC acts)

OUTPUT FEATURE MAP
(depicting identity behavior of PWC)

Each channel weight 

(depicted by colors) 
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This initialization 
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Figure 3: The figure highlights the proposed initialization scheme for the added adapter parameters. Specifi-
cally, the Point Wise Convolution (PWC), when initialized with diagonal elements (highlighted in white), acts
channelwise on the input feature map, making the interaction between the channels zero and projecting the
same feature space to act as the output feature map.

Table 10: The table compares FEATHER applied over TENT and CoTTA, highlighting the orthogonality of
the proposed generic framework. Results for the CIFAR100-to-CIFAR100C benchmark depict the parameter
efficiency obtained (93.2% fewer parameters) with a meager performance drop (0.71% for TENT (100%
params), 0.52% for EATA (100% params), and 0.44% for CoTTA).

Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
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TENT-lifelong 37.20 35.80 41.70 37.90 51.20 48.30 48.50 58.40 63.70 71.10 70.40 82.30 88.00 88.50 90.40 60.90
TENT-lifelong 40.27 35.68 37.28 26.27 37.81 28.98 26.97 33.39 32.52 39.21 27.33 32.39 34.87 32.03 39.65 33.64(100% Params)
+ FEATHER 41.67 39.40 41.35 26.96 40.11 28.87 26.91 33.87 33.80 39.94 26.27 29.55 34.50 32.02 40.10 34.35(6.8% Params)
EATA-lifelong 41.83 40.27 42.56 27.56 41.54 29.54 27.70 34.69 34.71 41.24 26.42 30.2 35.58 32.73 40.95 35.17
EATA-lifelong 41.50 38.81 41.07 26.82 39.90 28.90 26.83 33.56 33.11 39.60 25.38 29.00 34.15 30.79 38.96 33.89(100% Params)
+ FEATHER 41.21 38.96 41.24 26.97 41.07 29.26 27.13 33.84 34.3 39.94 26.04 30.14 34.61 31.67 39.74 34.41(6.8% Params)
CoTTA 40.33 38.3 40.16 27.67 39.99 29.76 27.88 35.51 34.68 43.4 26.58 30.52 35.98 32.05 37.71 34.70(BN Params)
CoTTA 40.09 37.67 39.77 26.91 37.82 28.04 26.26 32.93 31.72 40.48 24.72 26.98 32.33 28.08 33.46 32.48(100% Params)
+ FEATHER 40.10 36.66 38.81 26.68 38.10 28.56 25.95 33.81 32.42 42.12 24.98 27.32 34.31 28.60 35.40 32.92(6.8% Params)

Table 11: Error rate (%) on CIFAR100C over different percentages of added parameters in FEATHER. The
(Parameter %) in the bracket in the first two columns indicates a comparison with the base model. For example,
494208 (7.16% of 6900132) and 7369124 (106.80% of 6900132). We observe that adding a similar number of
trainable parameters as adapters (101.29%, last row) improves the performance over CoTTA by a small margin,
and even with a much smaller number of trainable parameters, FEATHER achieves comparable performance.

Method Trainable params Total Params Trainable % CIFAR100C

CoTTA 6900132 6900132 100.00% 32.5

FEATHER

494208 (7.16%) 7369124 (106.80%) 6.71% 32.92
2354816 (34.12%) 9229732 (133.76%) 25.51% 32.79
3943040 (57.14%) 10817956 (156.78% ) 36.45% 32.65

6988800 (101.29%) 13888932 (201.29%) 50.32% 32.31
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F ARCHITECTURE DETAILS ALONG WITH FEATHER ADAPTERS

In this section, we report the architecture-specific details used for adapter parameters. For
CIFAR100-to-CIFAR100C experiments, we modify the widely used ResNeXt-29 architecture taken
from RobustBench Croce et al. (2021) and added adapters in between referred to as ConvAdapt
layers. For ImageNet-to-ImageNetC, we modify the ResNet-50 architecture and add adapter layers
in between. The added adapter layers are kept in bold.

ResNeXt-29 with adapters for CIFAR100-to-CIFAR100C

Hendrycks2020AugMixResNeXtNetAdpt(
(conv_1_3x3): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)

(bn_1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(stage_1): Sequential(
(0): ResNeXtBottleneck(
(conv_reduce): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn_reduce): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv_conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=4, bias=False)
(bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv_expand): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn_expand): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(downsample): Sequential(

(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)

)
)
(1): ResNeXtBottleneck(
(conv_reduce): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn_reduce): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv_conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=4, bias=False)
(bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv_expand): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn_expand): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)

)
(2): ResNeXtBottleneck(
(conv_reduce): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn_reduce): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv_conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=4, bias=False)
(bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv_expand): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn_expand): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)

)
)
(stage_2): Sequential(
(0): ResNeXtBottleneck(
(conv_reduce): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn_reduce): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv_conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=4, bias=False)
(bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv_expand): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn_expand): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(downsample): Sequential(

(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)

)
)
(1): ResNeXtBottleneckAdpt(
(conv_reduce): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn_reduce): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(lhc1): ConvAdapt(

(gwc): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32)
(pwc): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))

)
(conv_conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=4, bias=False)
(bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(lhc2): ConvAdapt(

(gwc): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32)
(pwc): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))

)
(conv_expand): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn_expand): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(lhc3): ConvAdapt(

(gwc): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=64)
(pwc): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1))

)
)
(2): ResNeXtBottleneck(
(conv_reduce): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn_reduce): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv_conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=4, bias=False)
(bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv_expand): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn_expand): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)

)
)
(stage_3): Sequential(
(0): ResNeXtBottleneck(
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(conv_reduce): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn_reduce): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv_conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=4, bias=False)
(bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv_expand): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn_expand): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(downsample): Sequential(

(0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)

)
)
(1): ResNeXtBottleneck(
(conv_reduce): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn_reduce): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv_conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=4, bias=False)
(bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv_expand): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn_expand): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)

)
(2): ResNeXtBottleneck(
(conv_reduce): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn_reduce): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv_conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=4, bias=False)
(bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv_expand): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn_expand): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)

)
)
(avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
(classifier): Linear(in_features=1024, out_features=100, bias=True)

)

ResNet-50 with adapters for ImageNet-to-ImageNetC

ResNetAdapt(
(conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(relu): ReLU(inplace=True)
(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(layer1): Sequential(

(0): BottleneckAdpt(
(conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(lhc1): ConvAdapt(

(gwc): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=8)
(pwc): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))

)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(lhc2): ConvAdapt(

(gwc): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=8)
(pwc): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))

)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(relu): ReLU(inplace=True)
(downsample): Sequential(

(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)

)
)
(1): BottleneckAdpt(

(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(lhc1): ConvAdapt(

(gwc): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=8)
(pwc): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))

)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(lhc2): ConvAdapt(

(gwc): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=8)
(pwc): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))

)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(relu): ReLU(inplace=True)

)
(2): BottleneckAdpt(

(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(lhc1): ConvAdapt(

(gwc): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=8)
(pwc): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))

)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(lhc2): ConvAdapt(

(gwc): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=8)
(pwc): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))

)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
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(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(relu): ReLU(inplace=True)

)
)
(layer2): Sequential(
(0): BottleneckAdpt(

(conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(lhc1): ConvAdapt(

(gwc): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=16)
(pwc): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))

)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(lhc2): ConvAdapt(

(gwc): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=16)
(pwc): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))

)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(relu): ReLU(inplace=True)
(downsample): Sequential(

(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)

)
)
(1): BottleneckAdpt(

(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(lhc1): ConvAdapt(

(gwc): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=16)
(pwc): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))

)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(lhc2): ConvAdapt(

(gwc): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=16)
(pwc): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))

)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(relu): ReLU(inplace=True)

)
(2): BottleneckAdpt(

(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(lhc1): ConvAdapt(

(gwc): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=16)
(pwc): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))

)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(lhc2): ConvAdapt(

(gwc): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=16)
(pwc): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))

)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(relu): ReLU(inplace=True)

)
(3): BottleneckAdpt(

(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(lhc1): ConvAdapt(

(gwc): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=16)
(pwc): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))

)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(lhc2): ConvAdapt(

(gwc): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=16)
(pwc): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))

)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(relu): ReLU(inplace=True)

)
)
(layer3): Sequential(
(0): BottleneckAdpt(

(conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(lhc1): ConvAdapt(

(gwc): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32)
(pwc): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))

)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(lhc2): ConvAdapt(

(gwc): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32)
(pwc): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))

)
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(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(relu): ReLU(inplace=True)
(downsample): Sequential(

(0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)

)
)
(1): BottleneckAdpt(

(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(lhc1): ConvAdapt(

(gwc): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32)
(pwc): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))

)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(lhc2): ConvAdapt(

(gwc): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32)
(pwc): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))

)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(relu): ReLU(inplace=True)

)
(2): BottleneckAdpt(

(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(lhc1): ConvAdapt(

(gwc): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32)
(pwc): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))

)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(lhc2): ConvAdapt(

(gwc): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32)
(pwc): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))

)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(relu): ReLU(inplace=True)

)
(3): BottleneckAdpt(

(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(lhc1): ConvAdapt(

(gwc): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32)
(pwc): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))

)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(lhc2): ConvAdapt(

(gwc): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32)
(pwc): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))

)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(relu): ReLU(inplace=True)

)
(4): BottleneckAdpt(

(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(lhc1): ConvAdapt(

(gwc): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32)
(pwc): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))

)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(lhc2): ConvAdapt(

(gwc): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32)
(pwc): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))

)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(relu): ReLU(inplace=True)

)
(5): BottleneckAdpt(

(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(lhc1): ConvAdapt(

(gwc): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32)
(pwc): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))

)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(lhc2): ConvAdapt(

(gwc): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32)
(pwc): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))

)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
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(relu): ReLU(inplace=True)
)

)
(layer4): Sequential(
(0): BottleneckAdpt(

(conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(lhc1): ConvAdapt(

(gwc): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=64)
(pwc): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1))

)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(lhc2): ConvAdapt(

(gwc): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=64)
(pwc): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1))

)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(relu): ReLU(inplace=True)
(downsample): Sequential(

(0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)

)
)
(1): BottleneckAdpt(

(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(lhc1): ConvAdapt(

(gwc): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=64)
(pwc): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1))

)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(lhc2): ConvAdapt(

(gwc): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=64)
(pwc): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1))

)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(relu): ReLU(inplace=True)

)
(2): BottleneckAdpt(

(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(lhc1): ConvAdapt(

(gwc): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=64)
(pwc): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1))

)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(lhc2): ConvAdapt(

(gwc): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=64)
(pwc): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1))

)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(relu): ReLU(inplace=True)

)
)
(avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
(fc): Linear(in_features=2048, out_features=1000, bias=True)

)
)

22


	Introduction
	Problem Setup and Formulation
	Lifelong Test-Time Adaptation with Adapters 
	FEATHER: liFelong tEst-time Adaptation wiTH lightwEight adapteRs 
	Preserving Source Knowledge with Zero and Identity Initialization
	Parameter Updates for the Adapters

	Related Work
	Experiments
	Compared Approaches
	Results

	Discussion
	Conclusion
	Hyperparameter Setting
	Benchmark Datasets 
	Evaluation Metrics 
	Error
	Brier Score
	Negative Log-Likelihood

	Initialization Scheme Adapter Parameters 
	Additional Results 
	Architecture Details along with FEATHER Adapters

