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Abstract
Parameter-Efficient-Tuning (PET) for pre-trained deep models (e.g.,
transformer) hold significant potential for domain increment learn-
ing (DIL). Recent prevailing approaches resort to prompt learning,
which typically involves learning a small number of prompts for
each domain to avoid the issue of catastrophic forgetting. How-
ever, previous studies have pointed out prompt-based methods are
often challenging to optimize, and their performance may vary non-
monotonically with trainable parameters. In contrast to previous
prompt-based DIL methods, we put forward an importance-aware
shared parameter subspace learning for domain incremental learn-
ing, on the basis of low-rank adaption (LoRA). Specifically, we pro-
pose to incrementally learn a domain-specific and domain-shared
low-rank parameter subspace for each domain, in order to effec-
tively decouple the parameter space and capture shared information
across different domains. Meanwhile, we present a momentum up-
date strategy for learning the domain-shared subspace, allowing
for the smoothly accumulation of knowledge in the current domain
while mitigating the risk of forgetting the knowledge acquired from
previous domains. Moreover, given that domain-shared informa-
tion might hold varying degrees of importance across different
domains, we design an importance-aware mechanism that adap-
tively assigns an importance weight to the domain-shared subspace
for the corresponding domain. Finally, we devise a cross-domain
contrastive constraint to encourage domain-specific subspaces to
capture distinctive information within each domain effectively, and
enforce orthogonality between domain-shared and domain-specific
subspaces to minimize interference between them. Extensive ex-
periments on image domain incremental datasets demonstrate the
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effectiveness of the proposed method in comparison to the related
state-of-the-art methods.
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1 Introduction
Domain incremental learning (DIL) has attracted increasing atten-
tion in multimedia and machine learning communities [34, 47]. In
DIL, it’s assumed that domains are constantly evolving and often
exhibit significant variation in sequence, with domain indexes be-
ing not provided for inference. Due to the dynamically changing
characteristic of data distributions in DIL, traditional deep models
face a significant challenge: simply fine-tuning them on new do-
mains often results in a substantial performance drop on previous
domains, a phenomenon known as “catastrophic forgetting” [29].
To this end, Parameter-Efficient-Tuning (PET) offers a promising
approach for DIL, which adapts pre-trained deep models (e.g., trans-
former) to different domains using significantly fewer learnable
parameters and resources.

In recent years, many PET approaches have been proposed for
DIL [42, 47, 50], where one popular strategy is the adoption of
prompt learning, an emerging paradigm derived from NLP. Prompt
learning enables pre-trained language models to be repurposed
for various tasks without the need for retraining. Among these
prompt-based methods, they typically learn a small number of
prompts for each domain to avoid the issue of catastrophic forget-
ting. For instance, L2P [50] is the pioneering work that establishes a
prompt pool, dynamically guiding a pre-trained model to learn from
domains sequentially. S-Prompts [47] attempts to independently
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learn prompts across domains with pre-trained transformers, where
S-Prompts only necessitates a single cross-entropy loss during train-
ing and a straightforward K-NN operation for domain identification
during inference. CODA-Prompt [42] replaces the prompt pool with
a decomposed prompt, which consists of a weighted sum of learn-
able prompt components. This decomposition enhances prompting
capacity by expanding into a new dimension. While these meth-
ods have achieved promising performance, previous studies have
pointed out that prompt-based methods are often challenging to
optimize, and their performance may vary non-monotonically with
trainable parameters [13].

In contrast to prompt-based DIL methods, we put forward a
new PET method for DIL in this paper, inspired by the low-rank
adaption (LoRA) technique. LoRA was originally proposed for large
language models, which freezes the pre-trained model weights and
integrates two trainable low-rank matrices into each layer of the
Transformer architecture, significantly diminishing the number of
trainable parameters for downstream tasks. Because of its impres-
sive performance, LoRA has been widely applied to various tasks,
such as text understanding [54], image compression [28], multi-
task learning [45], etc. However, as of now, there is few study on
employing LoRA for domain-incremental learning. A straightfor-
ward approach for DIL is to apply LoRA to acquire two low-rank
matrices for each newly coming domain. However, such a strat-
egy overlooks the potential to capture relations among multiple
domains and uncover shared information across different domains,
leading to suboptimal outcomes.

In light of these, we propose to learn an importance-aware shared
parameter subspace learning for DIL. Specifically, we attempt to
decouple each parameter matrix into three distinct components: a
domain-specific matrix tailored to each domain, a domain-shared
matrix holding relevance across all domains, and a low-rank matrix
serving as the coefficient matrix. Through this approach, we can ef-
fectively capture shared information spanning diverse domains. To
mitigate the issue of catastrophic forgetting, we present a momen-
tum update strategy to learn the domain-shared subspace, facilitat-
ing the smooth accumulation of knowledge within the current do-
main. Moreover, considering that domain-shared information may
hold varying degrees of importance to different domains (which has
been verifies in Figure 2), we design a dynamic importance alloca-
tionmechanism that adaptively assigns an importance weight to the
domain-shared subspace specific to each domain. In addition, we de-
vise a cross-domain contrastive constraint to effectively encourage
domain-specific subspaces to capture distinctive information within
each domain. Finally, we impose another constraint ensuring or-
thogonality between domain-shared and domain-specific subspaces,
with the goal of minimizing interference between them.

Our contributions are summarized as follows:

• We propose an shared parameter subspace learning approach
for domain incremental learning, building upon LoRA. We
incrementally learn a domain-specific and domain-shared
low-rank parameter subspace for each domain in a momen-
tum update manner, which can effectively capture shared
information across different domains.
• We design an importance-aware mechanism to adaptively
weight the domain-shared subspace for each domain, thereby

further improving the performance. Moreover, we present
two constraints on domain-specific and domain-shared sub-
spaces to enhance their representation capabilities.
• Extensive experiments on three image domain incremen-
tal datasets demonstrate the effectiveness of our proposed
method in comparison with the state-of-the-art approaches.

2 Related Work
In this section, we review some related works, including continual
learning and parameter-efficient tuning methods.

2.1 Continual Learning
Continual learning (CL) aims to enable the model to adapt to new
class, new tasks or domains without suffering from catastrophic
forgetting [38, 52, 55]. There are three common CL setups: task-
incremental learning (TIL) [14, 32, 36], class incremental learning
(CIL) [1, 37, 50], and domain incremental learning (DIL) [5, 40, 47].
In fact, knowing task identity during inference in TIL limits its
practical utility. While in CIL, classes usually stem from the same
domain, thus partially alleviating the challenge. This paper delves
into DIL, where classes remain constant but domains vary signifi-
cantly in sequence, without task indexes provided for inference.

In recent years, many DIL methods have been proposed, such
as replay-based methods [2, 40, 44] and rehearsal-free methods
[42, 47, 50]. In this work, we focus on rehearsal-free methods due to
their increased practical applicability. The representative rehearsal-
free methods primarily rely on prompt learning including L2P,
S-Prompts, and CODA-Prompt [42, 47, 50]. These prompt-based
methods fall under the umbrella of Parameter-Efficient-Tuning
(PET), commonly characterized by learning a limited number of
prompts for each domain. These approaches circumvent the neces-
sity of retraining pre-trained deep models and helps alleviate the
issue of catastrophic forgetting. However, as aforementioned, opti-
mizing prompt-based methods can often be challenging, and their
performance may exhibit non-monotonic variations with trainable
parameters. In contrast to these prompt-based DIL methods, we
attempt to learn a shared parameter subspace across various do-
mains to capture common information among them for improving
the performance of DIL.

In addition, there is a category of methods loosely related to
DIL, called domain adaptation (DA) [4, 21, 25, 35]. The main differ-
ence between DA and DIL lies in their respective objectives. DA
primarily aims to enhance the accuracy of target domains, whereas
DIL focuses on minimizing the cumulative error across all domains,
alongside implementing measures to mitigate forgetting on ear-
lier domains. Notably, DA methods often require access to target
domain data for distribution matching, making them not directly
applicable to DIL.

2.2 Parameter-Efficient Tuning
As deep learning models continuously grow in size, it becomes cru-
cial to study on parameter efficient methods. In recent years, there
has been a significant increase in research focused on Parameter-
Efficiency-Tuning (PET) [13]. The representative methods include
Adapter based methods [18, 33, 43], prompt-based methods [11,
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Figure 1: Illustration of our domain incremental learning framework. To exploit the interdependencies among sequential
domains, we attempt to incrementally learn a subspace 𝐴𝑠

𝑖
specific to each newly coming domain 𝑖, and a subspace 𝐴𝑐 shared by

all domains. Meanwhile, we present a momentum update strategy on 𝐴𝑐 to facilitate the smooth accumulation of knowledge in
the current domain while mitigating the risk of forgetting knowledge acquired from previous domains. Moreover, given that
𝐴𝑐 might hold varying degrees of importance to different domains, we design an importance-aware mechanism that adaptively
assigns an importance weight to 𝐴𝑐 for the corresponding domain. In addition, we impose an cross-domain contrastive
constraint between the current domain-specific subspace 𝐴𝑠

𝑖
and the historical domain-specific subspace 𝐴𝑠

𝑗
, 𝑗 < 𝑖, as to amplify

the distinctions across different domains. Finally, we enforce orthogonality between 𝐴𝑐 and each 𝐴𝑠
𝑖
to further enhance their

representation capacities.

41, 48], and LoRA-based methods [6, 17, 31]. Adapter [12] is ini-
tially introduced to incorporate efficient and learnable modules for
adapting a fixed pre-trained transformer to various new textual
tasks in the NLP field. Prompt tuning [19] and Prefix tuning [22]
insert learnable tokens to the input or hidden tokens, enabling
the adaptation of the transformer to new tasks. LoRA [13] injects
trainable low-rank adaptionmodules to the frozen pre-trained trans-
former, greatly reducing the number of trainable parameters for
downstream tasks. Due to the substantial advantages of LoRA, [46]
extends LoRA for language model continual learning. These PET
methods have been developed for various tasks, including visual
transfer learning [3, 15], video action recognition [51], image gen-
eration [27], and visual continual learning [9, 47], etc. In this study,
we attempt to explore the utilization of LoRA tailored for addressing
the domain-incremental learning challenge.

3 Proposed Method
In this section, we will elaborate our proposed method. We will
begin by presenting the problem formulation and then provide a
detailed introduction to our method.

3.1 Problem Formulation
We concentrate on continual learning with incremental domains,
i.e., domain incremental learning (DIL). In DIL, a model sequentially
absorbs𝑀 incoming domains D := {D1,D2, · · · ,D𝑀 }, where the
distribution of the involved 𝑀 domains commonly varies a lot,

while the categories between them keep the same in Y. The model
𝑓 (·;𝑊,𝜃 ) predicts the label 𝑦 ∈ Y for a given sample 𝑥 ∈ D𝑖 ,
where 𝑊 and 𝜃 denotes the feature extractor and classification
head respectively, and the 𝑖𝑡ℎ domain D𝑖 has 𝑁𝑖 = |D𝑖 | samples.
In this paper, we aim to explore LoRA-based Parameter-Efficient
Tuning (PET) for DIL, where we exploit a small number of learnable
parameters to effectively fine-tuning the pre-trained model. We
let the feature extractor𝑊 consist of the fixed pre-trained model
𝑊0 and the learnable PET module Δ𝑊 . Inspired by LoRA [13], we
present a general objective function for DIL by minimizing the
following cross-entropy loss as:

L =
1
|D𝑖 |

∑︁
(𝑥,𝑦) ∈D𝑖

L𝑐𝑒 (𝑓 (𝑥,𝑊0;Δ𝑊𝑖 , 𝜃𝑖 ), 𝑦), (1)

where 𝑦 is the ground truth of sample 𝑥 in the current domain D𝑖 .
Note that the domain identity of samples are not provided during
inference. 𝜃𝑖 can be optimized as most of DIL methods [42, 50]. Note
that we utilize the Vision Transformer (ViT) [7] as our pre-trained
model𝑊0, and we keep𝑊0 to be frozen during learning all domains.
Here we can omit it for convenience.

In order to efficiently optimize Δ𝑊𝑖 , a naive method is to di-
rectly apply LoRA to acquire two low-rank matrices for each newly
coming domain. As aforementioned, this strategy fails to harness
the potential of capturing cross-domain relations and discovering
shared information across diverse domains, ultimately resulting in
suboptimal outcomes. Therefore, our objective is to incrementally
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learn shared parameter subspace to capture the common informa-
tion across different domains for DIL.

3.2 Framework Overview
We propose an importance-aware shared parameter subspace learn-
ing network for DIL, as illustrated in Figure 1. Our method attempts
to model the relations across the domains in sequence while mit-
igating the issue of forgetting. As depicted in Figure 1, we first
attempt to decouple each parameter matrix Δ𝑊𝑖 into three dis-
tinct components: a domain-specific matrix 𝐴𝑠

𝑖
tailored to each

domain 𝑖 , a domain-shared matrix 𝐴𝑐 holding relevance across all
domains, and a low-rank matrix 𝐵𝑖 serving as the coefficient ma-
trix. To ensure that the shared matrix 𝐴𝑐 can accumulate crucial
common information from each domain and alleviate forgetting,
we present a momentum update strategy on 𝐴𝑐 to smoothly ac-
cumulate of knowledge of all domains. Moreover, we devise an
importance mechanism to weight 𝐴𝑐 for each domain, given that
𝐴𝑐 has varying degrees of importance to different domains. More-
over, we impose a cross-domain contrastive constraint on different
domain-specific subspaces 𝐴𝑠

𝑖
to capture distinctive information

within each domain. Finally, we present another orthogonality con-
straint on domain-shared subspace 𝐴𝑐 and each domain-specific
subspace 𝐴𝑠

𝑖
, so as to minimize the interference between them.

3.3 Shared Parameter Subspace Learning
Here we first introduce how to decouple each parameter matrix
Δ𝑊𝑖 into three distinct components: a domain-specific matrix 𝐴𝑠

𝑖
, a

domain-shared matrix 𝐴𝑐 , and a low-rank coefficient matrix 𝐵𝑖 .

3.3.1 Parameter Subspace Decomposition for DIL. In fact, we
can view the low-rank parameter matrix Δ𝑊𝑖 ∈ R𝑑1×𝑑2 for domain
𝑖 as an inner product between two low-rank matrices 𝐴𝑖 and 𝐵𝑖 as:

Δ𝑊𝑖 = 𝐵𝑖𝐴𝑖 , (2)

where𝐴𝑖 ∈ R𝑟×𝑑2 and 𝐵𝑖 ∈ R𝑑1×𝑟 . 𝑟 ≪ min(𝑑1, 𝑑2). The parameter
subspace 𝐴𝑖 can be regarded as a base matrix and the parameter
subspace 𝐵𝑖 can be regarded as a coefficient representation matrix.
By low-rank matrix decomposition, the most significant informa-
tion within𝑊𝑖 can be captured by 𝐴𝑖 and 𝐵𝑖 . 𝐴𝑖 and 𝐵𝑖 can be
spanned by 𝑟 row vectors, respectively:

𝐴𝑖 = span{𝑎1
𝑖 , · · · , 𝑎

𝑗
𝑖
, · · · , 𝑎𝑟𝑖 }, 𝑎

𝑗
𝑖
∈ R𝑑2 ,

𝐵𝑖 = span{𝑏1
𝑖 , · · · , 𝑏

𝑗
𝑖
, · · · , 𝑏𝑟𝑖 }, 𝑏

𝑗
𝑖
∈ R𝑑1 . (3)

However, Eq. (2) does not explicitly model the relationships
among different domains, leading to suboptimal performance. To
this end, we further decompose the low-rank parameter matrix 𝐴𝑖

of each domain 𝑖 into two components: 𝐴𝑠
𝑖
that is specific to each

domain 𝑖 , and 𝐴𝑐 that is shared by all𝑀 domains. The formulation
is as follow:

𝐴𝑖 = 𝐴𝑠
𝑖 +𝐴

𝑐 , (4)

where the matrices 𝐴𝑠
𝑖
and 𝐴𝑐 can be represented by 𝑟 row vectors,

denoted as: {
𝐴𝑠
𝑖 = span{𝑎𝑠,1

𝑖
, 𝑎

𝑠,2
𝑖
, · · · , 𝑎𝑠,𝑟

𝑖
}

𝐴𝑐 = span{𝑎𝑐,1, 𝑎𝑐,2, · · · , 𝑎𝑐,𝑟 }.
(5)

Therefore, given a frozen pre-trained model 𝑊0, we can effi-
ciently train the model for the current domain 𝑖 by:

𝑊0 + Δ𝑊𝑖 =𝑊0 + 𝐵𝑖 (𝐴𝑠
𝑖 +𝐴

𝑐 ) . (6)

Note that Eq. (6) is applied to each layer of the pre-trained model.
For the sake of convenience, we omit the index of the layer. By
Eq. (6), we can decouple the parameter subspace of each domain
into a domain-specific parameter subspace and a domain-shared
parameter subspace.

After that, we can plug Eq. (6) into Eq. (1), and obtain a new loss
function as:

L =
1
|D𝑖 |

∑︁
(𝑥,𝑦) ∈D𝑖

L𝑐𝑒 (𝑓 (𝑥,𝑊0;𝐵𝑖 (𝐴𝑠
𝑖 +𝐴

𝑐 ), 𝜃𝑖 ), 𝑦) . (7)

3.3.2 Momentum Update on Domain-shared Subspace. As
domains arrive sequentially, direct optimization of the shared sub-
space𝐴𝑐 for each newly arriving domain leads to updates primarily
focused on learning the current domain. However, this excessive
emphasis on the current domain may lead to the knowledge associ-
ated with previous domains being overwritten, potentially resulting
in forgetting the knowledge of earlier domains. To alleviate this
issue, we introduce a momentum update strategy to optimize the
domain-shared subspace for each domain, facilitating the seamless
integration of learned knowledge across all historical domains, in-
spired by [10]. By leveraging the momentum update strategy to
optimize the shared subspace𝐴𝑐 , we can preserve the direction and
velocity of updates from previous domains. This smoothing update
trajectory can reduce excessive adjustments to previous domains,
thus alleviating the issue of forgetting. Formally, we update 𝐴𝑐 by
exploiting the smooth copies of previous domain-specific subspaces
𝐴𝑠
𝑖
in every update step 𝑡 as:

𝐴𝑐 (𝑡) ← 𝜂𝐴𝑐 (𝑡 − 1) + (1 − 𝜂)𝐴𝑠
𝑖 (𝑡 − 1), (8)

where 𝜂 ∈ (0, 1) is a large (i.e., close to 1) momentum coefficient.
Note that 𝐴𝑐 (𝑡) is updated at every step 𝑡 as new domains continu-
ously arrive. The domain-specific parameter subspace 𝐴𝑠

𝑖
(𝑡 − 1) is

updated by back-propagation.

3.4 Importance-aware Subspace Enhancement
In this section, we will introduce how to further enhance the ca-
pacity of the decomposed parameter subspaces, so as to improve
the performance of DIL.

3.4.1 Dynamic Importance Allocation Mechanism. Given
that domain-shared parameter subspace 𝐴𝑐 holds varying degrees
of importance to different domains (which has been verified in Fig-
ure 2), thus it is crucial to design a dynamic importance allocation
mechanism to adaptively assign a weight to𝐴𝑐 for each domain. To
achieve this, we introduce a hyper-parameter 𝜌𝑖 (𝑡) to dynamically
weight the domain-shared parameter subspace at every training
step 𝑡 as:

Δ𝑊𝑖 (𝑡) = 𝐵𝑖 (𝑡) (𝜌𝑖 (𝑡)𝐴𝑠
𝑖 (𝑡) + (1 − 𝜌𝑖 (𝑡))𝐴

𝑐 (𝑡)) . (9)

To automatically learn the hyperparameter 𝜌𝑖 (𝑡), we design an
importance allocation mechanism to dynamically learn 𝜌𝑖 (𝑡) for
each domain based on their sensitivity in the training dynamics.
As pointed out in [24, 53], the sensitivity of parameters essentially
approximates the parameter change in loss: If the removal of a
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parameter causes a large influence on the loss, then the model is
highly sensitive to the parameter, indicating that the parameter is
extremely important. Motivated by this, we attempt to leverage
the sensitivity of parameter subspaces to calculate the importance
scores for each domain. An intuitive idea is that the higher the
sensitivity of a subspace, the higher the corresponding importance
score should be allocated to that subspace. Note that in order write
conveniently, we will omit the symbol 𝑡 .

To this end, we consider the average sensitivity of each parameter
within subspace𝐴𝑠

𝑖
as the overall contribution𝑄𝑖 of𝐴𝑠

𝑖
to the model

performance. To ensure comparability across 𝑛 subspaces for all
domains, we normalize𝑄 = {𝑄1

𝑖
, 𝑄2

𝑖
, · · · , 𝑄𝑛

𝑖
} of 𝑛 subspaces into a

standard Gaussian distribution. Then we impose a sigmoid function
to obtain the importance score 𝜌𝑖 ∈ (0, 1) for each subspace 𝐴𝑠

𝑖
.

Therefore, we can calculate the importance score of subspaces 𝐴𝑠
𝑖
:

𝜌𝑖 = 1/(1 + exp
𝐸 (𝑄) −𝑄𝑖√︁
𝑉𝑎𝑟 (𝑄)

),

𝑄𝑖 =
1
ℎ

ℎ∑︁
𝑗=1

𝑆 (𝑔 𝑗
𝑖
), (10)

where ℎ = 𝑟 × 𝑑2 denotes the number of parameters, and 𝑔𝑖 =

𝐹𝑙𝑎(𝐴𝑠
𝑖
) denotes that we flatten the matrix 𝐴𝑠

𝑖
into a long vector

𝑔𝑖 . 𝑔
𝑗
𝑖
is the 𝑗-th element in the vector 𝑔𝑖 . 𝑆 (·) denotes a sensitivity

function for each parameter. 𝐸 (𝑄) and
√︁
𝑉𝑎𝑟 (𝑄) denote the mean

and standard deviation of the contribution of 𝑛 subspaces.
After that, we define the sensitivity of an individual parameter

as the absolute value of the product between the gradient and
the parameter[24, 30]. We can calculate the sensitivity of the 𝑗𝑡ℎ

parameter in subspace 𝐴𝑠
𝑖
as:

𝑆 (𝑔 𝑗
𝑖
) = |𝑔 𝑗

𝑖
∇
𝑔
𝑗

𝑖

L|, (11)

where Eq.(11) approximates the change in loss when a parameter
of subspace is zeroed out. It indicates that if the exclusion of a
parameter from 𝐴𝑠

𝑖
has a significant influence, then the model is

highly sensitive to that parameter. Consequently, it is crucial to
assign a high level of importance to that particular parameter.

In fact, the sensitivity function 𝑆 calculates the loss changes re-
flected by an individual batch of samples. To mitigate the evaluation
error caused by the sensitivity of a single batch, we can employ
exponential moving average to smooth 𝑆 (𝑔 𝑗

𝑖
):

𝑆 (𝑔 𝑗
𝑖
) ← 𝜆1𝑆 (𝑔 𝑗𝑖 ) + (1 − 𝜆1)𝑆 (𝑔 𝑗𝑖 ), (12)

where 𝜆1 ∈ (0, 1) is the hyperparameter that controls the proportion
of historical records and the current batch in the moving average.

Given the intricate training dynamics may incur high variability
and significant uncertainty, we introduce an additional computation
of the uncertainty for sensitivity. The uncertainty captures the local
temporal changes in sensitivity and is defined as:

𝑈
𝑗
𝑖
= |𝑆 (𝑔 𝑗

𝑖
) − 𝑆 (𝑔 𝑗

𝑖
) |. (13)

After that, we also smooth uncertainty by exponential moving
average as:

𝑈
𝑗
𝑖
← 𝜆2𝑈

𝑗
𝑖
+ (1 − 𝜆2)𝑈 𝑗

𝑖
. (14)

Finally, we adopt the the product between the sensitivity and un-
certainty as the enhanced sensitivity as:

𝑆 (𝑔 𝑗
𝑖
) ← 𝑆 (𝑔 𝑗

𝑖
) ·𝑈 𝑗

𝑖
. (15)

We dynamically allocate importance to different parameter sub-
spaces by calculating their respective importance scores using the
enhanced sensitivity measures, as defined in Eq. (15).

3.4.2 Cross-domain Contrastive on Domain-specific Sub-
spaces. In order to enable domain-specific subspaces 𝐴𝑠

𝑖
to learn

more discriminative knowledge specific to the current domain com-
pared to other domains, we impose an cross-domain contrastive
constraint on these domain-specific subspaces, thereby amplifying
the distinctions between them. The idea is as follows: we expect
that the probability of the current domain’s data belonging to the
true class predicted by the 𝑖𝑡ℎ adaptation model 𝑓 (·;Δ𝑊𝑖 , 𝜃𝑖 ) should
be higher than the highest probability using the adaptation models
𝑓 (·;Δ𝑊𝑗 , 𝜃 𝑗 ), where 𝑗 < 𝑖 , for each historical domain 𝑗 . We com-
pute the positive discrepancy probability 𝑝𝑙

𝑖
of sample 𝑥𝑙 ∈ D𝑖 from

the 𝑖𝑡ℎ adaptation module on the correct class 𝑦𝑙 as:

𝑝𝑙𝑖 = 1𝑐=𝑦𝑙 · 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑓 (𝑥𝑙 ,𝑊0;Δ𝑊𝑖 , 𝜃𝑖 )), (16)

where the output of 𝑓 (·;Δ𝑊𝑖 , 𝜃𝑖 ) has 𝑐 dimensions, and 𝑝𝑙
𝑖
denotes

the probability belonging to the true class 𝑦𝑙 . We get the negative
discrepancy probability 𝑝𝑙

𝑗
of sample 𝑥𝑙 from the 𝑗𝑡ℎ adaptation

module trained on the historical domain 𝑗 ( 𝑗 < 𝑖) as:

𝑝𝑙𝑗 = max(𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑓 (𝑥𝑙 ,𝑊0;Δ𝑊𝑗 , 𝜃 𝑗 ))) . (17)

Then we can formulate the cross-domain contrastive loss based on
these discrepancy probabilities as follow:

L𝑐 = − 1
|D𝑖 |

∑︁
(𝑥𝑙 ,𝑦𝑙 ) ∈D𝑖

log
exp(𝑝𝑙

𝑖
/𝜏)

exp(𝑝𝑙
𝑖
/𝜏) +∑𝑖−1

𝑗=1 exp(𝑝𝑙
𝑗
/𝜏)

, (18)

where the 𝑖𝑡ℎ domain has |D𝑖 | samples in total, and 𝜏 is a tem-
perature parameter. Note that we only update the domain-specific
subspaces 𝐴𝑠

𝑖
and its weighting coefficients 𝐵𝑖 when adapting to

current domain 𝑖 , making the historical adaption matrices 𝐴𝑠
𝑗
, 𝐵 𝑗

for 𝑗 = 1, · · · , 𝑖 − 1 and the domain-shared subspace 𝐴𝑐 frozen.
By the cross-domain contrastive constraint, we can encourage

the model to effectively capture distinctive information specific to
each domain while maintaining a clear separation between them.

3.4.3 Orthogonality on Parameter Subspaces. Moreover, to
minimize the interference between the domain-shared subspace
and domain-specific subspaces, we propose enforcing orthogonality
between each parameter vector 𝑎𝑠

𝑖
in the domain-specific subspace

𝐴𝑠
𝑖
and each parameter vector 𝑎𝑐 of the domain-shared subspace

𝐴𝑐 . This approach reduces parameter redundancy and enhances
their representation capabilities. We formulate the orthogonality
on these two kinds of subspaces as:

< 𝑎𝑐 , 𝑎𝑠𝑖 >= 0, ∀𝑎𝑠𝑖 ∈ 𝐴
𝑠
𝑖 , 𝑎

𝑐 ∈ 𝐴𝑐 , (19)

where 𝑎𝑠
𝑖
, 𝑎𝑐 ∈ R𝑑2 . We can achieve this by exploiting an orthogo-

nality penalty loss as:

L𝑜 = | | (𝐴𝑠
𝑖 )
⊤ ∗𝐴𝑐 | |2 . (20)
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3.5 Optimization
After introducing all the components of our work, we now give the
final objective function based on (7), (18) and (20), which can be
expressed as:

L𝑓 𝑖𝑛𝑎𝑙 = L + 𝛼L𝑐 + 𝛽L𝑜 , (21)

where 𝛼 and 𝛽 are two trade-off hyperparameters.
During training, we optimize our model by minimizing the loss

in Eq.(21) as the domains continuously arrive. We provide the over-
all optimization algorithm in Algorithm 1 of the Appendix A. At
inference time, as the domain identifier is not available, we employ
an existing method to infer the domain identifier, similar to the
approach described in [47]. Specifically, we extract the features of
each domain using the pre-trained model combined with the first
low-rank adaptation model. Subsequently, we apply the k-means
algorithm to these features to obtain a set of 𝑘 prototype vectors
that effectively represent the information of current domain. For in-
ference the domain identifier of the coming samples, we utilize the
same pre-trained model with the first low-rank adaptation model
to extract features of the input samples. We then estimate the near-
est cluster center based on these features and use the index of the
selected nearest cluster center as the domain identifier, denoted
as 𝑞. Consequently, we exploit the 𝑞𝑡ℎ low-rank module combined
with the pre-trained model to make prediction.

4 Experiments
4.1 Experimental Settings
4.1.1 Datasets. We conduct experiments on three standard DIL
benchmark datasets: CDDB [20], DomainNet [35], and CORe50 [26].
CDDB is a continual deepfake detection dataset, which aims to iden-
tify real and fake images across various domains. We choose the
most challenging Hard track as in [47]. We denote it as CDDB-Hard.
It involves 5 sequential deepfake detection domains with roughly
27,000 images, i.e., GauGAN, BigGAN, WildDeepfake, WhichFac-
eReal, and SAN. DomainNet has 6 distinct domains with roughly
600,000 images, and each domain containing 345 categories. We
adopt the same DIL setup as DomainNet in [47]. CORe50 is a pub-
licly available dataset for continual object recognition. It consists
of 11 different domains, where each domain contains 50 categories.
We follow [8, 50] to utilize 8 domains with 120,000 images for in-
cremental training, and leave the rest 3 unseen domains for testing.

For CDDB-Hard, we report the average forward detection accu-
racy across all domains, similar to [20]. For DomainNet and CORe50,
we report the average forward classification accuracy of all domains,
similar to [47] and [50].

4.1.2 Baselines. Since our method belongs to the category of
rehearsal-free domain incremental learning (DIL) approaches, we
compare our method with three state-of-the-art rehearsal-free DIL
methods, i.e., prompt-based methods including L2P [50], S-Prompts
[47], and CODA-Prompt [42]. In addition, we compare our method
with two representative parameter-efficient-tuning (PET) meth-
ods for continual learning, including one prompt-based method,
DualPrompt [49] and a hybrid PET method, LAE [9]. Moreover,
we also take one regularization-based method, EWC [16], and one
distillation-based method, LwF [23], as our baselines. Finally, we

apply LoRA to each domain, and acquire the low-rank matrices
independently across different domains, denoted as DiLoRA. We
take DiLoRA as another baseline. To ensure a fair comparison, we
evaluate all PET based methods using the same model, ViT-B/16
[7], pre-trained on the ImageNet21k [39] dataset.

4.1.3 Implementation Details. We conduct experiments using
the GeForce RTX 3090 Ti GPU. Input images are randomly resized
to 224 × 224 resolution and normalized by standard deviation, fol-
lowing S-Prompts [47]. All baselines employ the same data augmen-
tation strategy as ours for fair comparisons. Optimization across
all experiments is performed using the Adam optimizer. We set
the learning rate to 0.003 and utilize the batch size of 50 for three
datasets. For the CDDB-Hard dataset, we set the hyper-parameter 𝛼
to 0.5 and the hyper-parameter 𝛽 to 0.5. For the DomainNet dataset,
we set 𝛼 to 0.1 and 𝛽 to 0.5. For the CORe50 dataset, we set 𝛼 to
4 and set 𝛽 to 2. We train each domain 13 epochs, 5 epochs, and
3 epochs for CDDB-Hard, DomainNet, and CORe50, respectively.
For the three datasets, we set the exponential moving average hy-
perparameters 𝜆1 and 𝜆2 to 0.85 throughout the experiment. The
momentum coefficient 𝜂 mentioned in Eq.(8) is empirically set to
0.9999. During inference, we set the number of clusters to 𝑘 = 5,
as recommended by S-Prompts [47]. We repeat every experiment
three times to report the average result.

4.2 Experimental Results
4.2.1 General Performance. We conduct experiments on the
three datasets, and test two kinds of different numbers of domains
for each dataset: the first three domains and all five domains for
CDDB-Hard, the first three domains and all six domains for Do-
mainNet, and the first four domains and all eight domains for
CORe50. The average results are reported in Table 1. It can be
observed that our method consistently outperformed all other com-
peting approaches. Particularly, our method outperforms all four
Prompting-based CL methods, demonstrating the effectiveness of
our parameter subspace learning approach for DIL. when com-
pared with DiLoRA, our method achieves better performance. This
demonstrates that by leveraging the shared information among
different domains, we are able to enhance the overall performance
of DIL. Moreover, our method outperforms LAE in a large margin.
This may be because LAE aims to equally accumulate historical
knowledge among all past domains. However, not all the infor-
mation in these domains is helpful. Thus, it is necessary to learn
importance-aware parameter subspace for DIL.

4.2.2 Ablation Study. We design several variants of our method
to analyse the effect of different components. The results are listed
in Table 2. “Ours-w.o.-𝐴𝑐 ” and “Ours-w.o.-𝐴𝑠

𝑖
” refer to our method

without utilizing the domain-shared subspace and domain-specific
subspaces, respectively. “Ours-w.o.-importance” denotes the equal
contribution between domain-shared and domain-specific subspaces
for each domain. Our method achieves better performance than
“Ours-w.o.-𝐴𝑐 ”, illustrating that it is necessary to capture common
information among different domains for DIL. Our method per-
forms better than “Ours-w.o.-importance”, indicating that it is im-
portant to assign different weights to the domain-shared parameter
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Table 1: Average accuracies (%) of different methods on the CDDB-Hard, DomainNet, and CORe50 datasets.

Dataset CDDB-Hard DomainNet CORe50

Method 3domains 5domains 3domains 6domains 4domains 8domains

EWC [16] 48.62±0.57 50.59±0.49 46.02±0.39 47.62±0.43 73.67±0.61 74.82±0.60
LwF [23] 57.74±0.50 60.94±0.43 47.35±0.34 49.19±0.35 74.73±0.38 75.45±0.40
L2P [50] 62.27±0.34 61.28±0.41 40.43±0.12 40.15±0.11 78.54±0.23 78.33±0.06

DualPrompt [49] 68.83±0.40 70.38±0.39 56.83±0.07 59.57±0.08 87.12±0.51 89.37±0.49
S-Prompts [47] 73.44±0.38 74.51±0.40 50.21±0.10 50.62±0.09 81.04±0.47 83.13±0.51

CODA-Prompt [42] 79.35±0.30 78.42±0.29 61.15±0.06 61.69±0.06 88.37±0.48 90.02±0.45
LAE [9] 75.94±0.44 79.19±0.47 54.86±0.20 53.93±0.54 85.68±0.54 89.33±0.22

DiLoRA [13] 86.37±0.37 86.77±0.33 60.32±0.11 64.03±0.23 84.97±0.50 86.94±0.51
Ours 91.03±0.35 90.10±0.38 63.14±0.07 67.80±0.11 89.79±0.43 91.07±0.52

Table 2: Ablation study on our core components.

Method CDDB-Hard DomainNet CORe50

Ours-w.o.-𝐴𝑐 86.77±0.33 64.03±0.23 86.94±0.51
Ours-w.o.-𝐴𝑠

𝑖
66.95±0.32 41.02±0.09 84.53±0.49

Ours-w.o.-importance 88.09±0.35 65.65±0.11 88.92±0.50
Ours 90.10±0.38 67.80±0.11 91.07±0.52

Table 3: Ablation study on our loss function.

Method CDDB-Hard DomainNet CORe50

Ours-w.-cls-only 87.72±0.31 64.60±0.09 87.43±0.50
Ours-w.o.-c 88.27±0.37 66.59 ±0.10 87.68±0.45
Ours-w.o.-o 88.94±0.41 66.87±0.11 89.71±0.47

Ours 90.10±0.38 67.80±0.11 91.07±0.52

subspace for each domain. Moreover, when removing the domain-
specific subspace for each domain, “Ours-w.o.-𝐴𝑠

𝑖
” achieves worse

performance, demonstrating domain-specific information is very
useful for representing each domain.

We also verify the loss terms in our final objective function in
(21). We first perform the experiments by removing both the L𝑜
term and the L𝑐 loss term, denoted as "Ours-w.-cls-only". "Ours-
w.o.-o" means that we remove the orthogonality constraint on the
domain-shared and domain-specific subspaces by setting the hyper-
parameter 𝛽 = 0. Moreover, we test the effectiveness of the cross-
domain contrastive loss by setting 𝛼 = 0, denoted as "Ours-w.o.-c".
The results are listed in Table 3. It is evident that each loss term
in our method contributes to the final performance of our method.
More ablation studies can be found in Appendix B.1.

4.2.3 Effect of Different Importance Weighting. We conduct
an experiment on the CDDB-Hard dataset to illustrate that domain-
shared parameter subspace holds varying degrees of importance to
different domains. Specifically, we use the first loss term L in (21)
to acquire domain-shared subspace and domain-specific subspaces
in a momentum update manner. After that, we manually introduce
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Figure 2: Empirical study on the importance of domain-
shared information for different domains. Different impor-
tance proportions of the domain-shared subspace are manu-
ally applied to four domain data, namely GauGAN, BigGAN,
WildDeepfake, WhichFaceReal.

varying proportions of importance on domain-shared subspace and
domain-specific subspaces, ranging from {0, 0.1, 0.2, · · · , 1}. The
results are shown in Figure 2. As illustrated in Figure 2, we can
make the following observations: (1) There is a notable variation
in the importance of domain-shared information across each do-
main. (2) The utilization of domain-shared information enhances
performance for each domain in the CDDB-Hard dataset (When
the proportion is set to zero, it means that we do not use domain-
shared information). (3) The optimal proportion of domain-shared
information significantly varies across different domains. There-
fore, we can draw the conclusion that dynamically assigning an
importance weight to the domain-shared subspace benefits the final
performance of DIL.

4.2.4 Effect of the Varying Number of Vectors in Subspace.
Recall that our domain-shared and domain-specific subspaces con-
sist of 𝑟 row vectors when decomposing the parameter matrix.
Here we investigate the effect of the varying number of vectors
on the three datasets. As illustrated in Figure 3 (a), we find that
for the CORe50 dataset, setting the number of vectors within the
subspace to 2 is sufficient to achieve good results. The performance
of having a larger number of vectors drop slightly. This can be at-
tributed to the relatively simple content in the image, where lower
rank matrices can capture sufficient information. For the Domain-
Net and CDDB-Hard datasets, we observe that setting a relatively
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Figure 3: (a) The performance of the varying number of vec-
tors within domain-common and domain-specific matrices
and (b) The performance of varying the number of inserted
blocks. There are 12 transformer blocks in the pre-trained
model. Our decomposed subspaces are inserted into the trans-
former starting from the first block.
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Figure 4: Heatmap of the importance of domain-specific sub-
spaces (denoted as S) and the importance of domain-shared
subspaces (denoted as C) of five domains from CDDB-Hard.

larger value (e.g., 10) can help the model capture more information,
thereby improving its performance.

4.2.5 Effect of Attach Position of the Subspaces. Moreover,
we further examine the effect of different attach positions of the
decomposed subspaces to the pre-trained model. We conduct these
experiments on the CDDB-Hard, DomainNet and Core50 datasets.
The results have been demonstrated in Figure 3 (b). Overall, the
performance of all incremental domains initially increases as the
number of the inserted blocks increases, and then levels off. We
observe that by attaching the decomposed subspaces to the first 10
transformer blocks, we can achieve the best performance for all the
three datasets.

4.2.6 Visualization of the Obtained Importance. We visualize
the obtained importance of domain-shared and domain-specific
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Figure 5: Parameter sensitivity analysis of the hyperparame-
ter of the objective in Eq.(21) on CDDB-Hard.

subspaces by our method on the CDDB-Hard dataset, as shown
in Figure 4. We attach the decomposed subspaces to the first 10
transformer blocks during the incremental training process of the
five domain datasets. Specifically, we introduce the decomposed
subspaces into the widely used query and value projection matrix
(denoted as𝑊𝑞 and𝑊𝑣 ) for the selected transformer layer, follow-
ing [13]. Once the training is completed, we obtain the dynamical
importance scores for different layers of all five domains. As shown
in Figure 4 (a)(b), we can clearly observe that there indeed exists
varying importance degrees of domain-shared subspaces across
different domains. Additional visualization of the obtained impor-
tance matrices on the DomainNet and Core50 datasets can be found
in Appendix B.2.

4.2.7 Impact for Hyper-parameters. Finally, we analyze the
impact of the involved main hyper-parameters in our method on
the performance. We examine the parameter sensitivity of 𝛼 and 𝛽

introduced in Eq.(21) on the CDDB-Hard dataset. For evaluation,
we keep all other hyperparameters to be fixed except for the one
being tested. We analyse 𝛼 and 𝛽 varying from {0.05, 0.1, 0.5, 1, 5}
respectively, and report the results in Figure 5(a) and (b). we can
see the performance of our method is relatively stable in a rela-
tively wide range. Thus it is easy to set in practical applications.
More analysis on the hyper-parameter sensitivity can be found in
Appendix B.3.

5 Conclusion
In this paper, we proposed an importance-aware shared parame-
ter subspace learning framework for domain incremental learning
(DIL). Our approach focused on incrementally learning a domain-
shared low-rank parameter subspace across all domains and a
domain-shared low-rank parameter subspace for each domain.
Moreover, we presented a momentum update strategy to learn
the domain-shared subspace, which can smoothly capture shared
information across different incremental domains to mitigate for-
getting. Recognizing that the importance of the domain-shared sub-
space may vary across domains, we proposed an importance-aware
mechanism to adaptively learn importance weight for each domain.
Furthermore, we imposed two constraints on the domain-specific
and domain-shared subspaces, so as to enhance their representa-
tion capabilities. Extensive experiments on three publicly available
DIL datasets verified the effectiveness of the proposed method,
compared to the state-of-the-arts.
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