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Abstract
One of the central problems of statistical learning
theory is quantifying the generalization ability of
learning algorithms within a probabilistic frame-
work. Algorithmic stability is a powerful tool for
deriving generalization bounds, however, it typ-
ically builds on a critical assumption that losses
are bounded. In this paper, we relax this condi-
tion to unbounded loss functions with subweibull
diameter. This gives new generalization bounds
for algorithmic stability and also includes existing
results of subgaussian and subexponential diam-
eters as specific cases. Furthermore, we provide
a refined stability analysis by developing gener-
alization bounds which can be

√
n-times faster

than the previous results, where n is the sample
size. Our main technical contribution is general
concentration inequalities for subweibull random
variables, which may be of independent interest.

1. Introduction
One of the core problems in the machine learning commu-
nity is to understand why the learned model of a machine
learning algorithm on the training points performs well on
the test points, which attracts many researchers to develop
the theory of generalization bounds (Bousquet & Elisse-
eff, 2002; Shalev-Shwartz & Ben-David, 2014; Bartlett &
Mendelson, 2002). Algorithmic stability has been a topic of
growing interest in learning theory. It is a standard theoretic
tool to prove the generalization bounds based on the sen-
sitivity of the algorithm to changes in the learning sample,
such as leaving one of the data points out or replacing it
with a different one. This approach can be traced back to the
foundational work of Vapnik & Chervonenkis (1974), where
the generalization bound for the algorithm of hard-margin

*Corresponding Author 1Gaoling School of Artificial Intel-
ligence, Renmin University of China, Beijing, China 2Beijing
Key Laboratory of Big Data Management and Analysis Meth-
ods, Beijing, China. Correspondence to: Yong Liu <liuyongg-
sai@ruc.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Support Vector Machine is analyzed. The ideas of stability
were further developed by Rogers & Wagner (1978), De-
vroye & Wagner (1979a;b), Lugosi & Pawlak (1994) for
the k-Nearest-Neighbor algorithm, k-local algorithms and
potential learning rules, respectively. Interesting insights
into stability have also been presented by many authors,
such as Kearns & Ron (1997); Hardt et al. (2016); Gonen
& Shalev-Shwartz (2017); Kuzborskij & Lampert (2018);
Bassily et al. (2020); Liu et al. (2017); Maurer (2017); Fos-
ter et al. (2019); Feldman & Vondrak (2019); Bousquet et al.
(2020), to mention but a few.

Stability arguments are known for typically providing in-
expectation error bounds. In contrast, high probability guar-
antees require more effort. It merits noting that high prob-
ability bounds are necessary for inferring generalization
when the algorithm is used many times, which is common
in practice. Therefore, as compared to the in-expectation
ones, high probability bounds are preferred in the study of
the generalization performance. An extensive analysis of
various notions of stability and the corresponding (some-
times) high probability generalization bounds are provided
in the seminal work (Bousquet & Elisseeff, 2002). To give
high probability bounds, McDiarmid’s exponential inequal-
ity (McDiarmid, 1998) plays an essential role in the analysis.
To satisfy the bounded difference condition in McDiarmid’s
inequality, a popularly used notion of stability allowing high
probability upper bounds called uniform stability is intro-
duced in (Bousquet & Elisseeff, 2002). In the context of
uniform stability, a series of breakthrough papers (Feldman
& Vondrak, 2018; 2019; Bousquet et al., 2020; Klochkov &
Zhivotovskiy, 2021) provide sharper generalization bounds
with probabilities.

However, when deriving high probability generalization
bounds, the uniform stability implies the boundedness of
the loss function, which might narrow the range of appli-
cation of these results as the generalization analysis of
unbounded losses is becoming increasingly important in
many situations (Haddouche et al., 2021), such as regu-
larized regression (Kontorovich, 2014), signal processing
(Bakhshizadeh et al., 2020b), neural networks (Vladimirova
et al., 2019), sample bias correction (Dudı́k et al., 2005),
domain adaptation (Cortes & Mohri, 2014; Ben-David et al.,
2006; Mansour et al., 2009), boosting (Dasgupta & Long,
2003), and importance-weighting (Cortes et al., 2019; 2021),
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etc. For a relaxation, Kutin & Niyogi (2012) introduce a
notion of “almost-everywhere” stability and proved valuable
extensions of McDiarmid’s inequality. It is shown in (Kutin
& Niyogi, 2012) that the generalization error can still be
bounded when the stability of the algorithm happens only
on a subset of large measure. This influential result has
been invoked in a number of interesting papers (El-Yaniv &
Pechyony, 2006; Shalev-Shwartz et al., 2010; Hush et al.,
2007; Mukherjee et al., 2002; Agarwal & Niyogi, 2009;
Rubinstein & Simma, 2012; Rakhlin et al., 2005). However,
as noted by Kontorovich (2014), the approach of Kutin &
Niyogi (2012) entails too restrictive conditions. It is demon-
strated in (Kontorovich, 2014) that the boundedness of loss
functions can be dropped at the expense of a stronger no-
tion of stability and a bounded subgaussian diameter of the
underlying metric probability space. This fantastic idea is
further, recently, improved to subexponential diameter by
Maurer & Pontil (2021).

In this work, we move beyond the subgaussian and subex-
ponential diameters and consider the generalization error
bound under a much weaker tail assumption, so-called sub-
weibull distribution (Kuchibhotla & Chakrabortty, 2022;
Vladimirova et al., 2020). The subweibull distribution in-
cludes the subgaussian and subexponential distributions as
specific cases and is inducing more and more attention in
learning theory due to that it allows heavier-tailed losses
than the sub-exponential and sub-Gaussian (Zhang & Wei,
2022; Bong & Kuchibhotla, 2023; Madden et al., 2020;
Bakhshizadeh et al., 2020a).

In summary, our contributions are three-fold. Firstly, we pro-
vide novel concentration inequalities for general functions
of independent subweibull random variables, including a
moment inequality and a probabilistic inequality. The tech-
nical challenge here is that the subweibull distribution is
heavy-tailed so the proof method in the related work (Kon-
torovich, 2014; Maurer & Pontil, 2021) does not hold in
this paper. To counter this difficulty, we address it from
the perspective of moment inequality. It should be noted
that our concentration inequalities may be of independent
interest. Secondly, we prove a high probability generaliza-
tion bound for algorithmic stability with unbounded losses
via our probabilistic inequality. To this end, we define the
subweibull diameter of a metric probability space and prove
that it can be used to relax the boundedness condition. The
results here extend previous bounds in (Kontorovich, 2014;
Maurer & Pontil, 2021) to the heavy-tailed subweibull di-
ameter. Finally, we show an improved generalization bound
which can be

√
n-times faster than the related results and

our results in the previous part via our moment inequal-
ity. With an application to regularized metric regression,
our generalization bound not only extends results in (Kon-
torovich, 2014; Maurer & Pontil, 2021) to more scenarios
but also give sharper results.

The paper is organized as follows. We present our main
results in Section 2. The preliminaries relevant to our dis-
cussion are stated in Section 2.1. The concentration inequal-
ities are provided in Section 2.2. Section 2.3 is devoted to
provide generalization bounds for algorithmic stability with
unbounded losses. Section 2.4 aims to provide sharper gen-
eralization bounds. We give two applications of our main
results in Section 2.5 and Section 2.6. All the proofs are
deferred to the Appendix.

2. Main Results
In this section, we present the main results.

2.1. Preliminaries

This paper considers the metric space. A metric probabil-
ity space (X , d, µ) is a measurable space X whose Borel
σ-algebra is induced by the metric d, endowed with the prob-
ability measure µ. A function f : X → R is L-Lipschitz
if

|f(x)− f(x′)| ≤ Ld(x, x′), x, x′ ∈ X .

Let (Xi, di, µi), i = 1, ..., n, be a sequence of metric proba-
bility spaces. We define the product probability space

Xn = X1 ×X2 × ...×Xn

with the product measure

µn = µ1 × µ2 × ...× µn

and `1 product metric

dn(x, x′) =

n∑
i=1

di(xi, x
′
i), x, x′ ∈ Xn.

We write Xi ∼ µi to mean that Xi is an Xi-valued random
variable with law µi, i.e., P(Xi ∈ A) = µi(A) for all Borel
A ⊂ Xi. We use the notation Xj

i = (Xi, ..., Xj) for all
sequences. This notation extends naturally to sequences:
Xn

1 ∼ µn.

We now define the subweibull random variable. A real-
valued random variable X is said to be subweibull if it has
a bounded ψα-norm. The ψα-norm of X for any α > 0 is
defined as

‖X‖ψα = inf

{
σ ∈ (0,∞) : E exp

((
|X|
σ

)α)
≤ 2

}
.

As shown in (Kuchibhotla & Chakrabortty, 2022;
Vladimirova et al., 2020), the subweibull random variable
is characterized by the right tail of the Weibull distribution
and generalizes subgaussian and subexponential distribu-
tions. Particularly, when α = 1 or 2, subweibull random

2



Algorithmic Stability Unleashed: Generalization Bounds with Unbounded Losses

variables reduce to subexponential or subgaussian random
variables, respectively. It is obvious that the smaller α is,
the heavier tail the random variable has. Further, we define
the subweibull diameter ∆α(Xi) of the metric probability
space (Xi, di, µi) as

∆α(Xi) = ‖di(Xi, X
′
i)‖ψα ,

where Xi, X
′
i ∼ µi are independent.

In this paper, the standard order of magnitude notation
such as O(·) and Ω(·) will be used. For a pair of non-
negative functions f, g the notation f . g will mean that
for some universal constant c > 0 it holds that f ≤ cg.
The Γ function is defined by the integral formula Γ(x) =∫∞

0
tx−1e−tdt, x > 0. The Lp norm of a real-valued ran-

dom variable Z is denoted as ‖Z‖p = (E|Z|p)
1
p .

2.2. Concentration Inequalities

This section presents our main concentration inequalities,
which will be used as an fundamental tool in the following
sections. Our first result is a moment inequality, which is
essential for Section 2.4.

Theorem 2.1. Let X1, ...., Xn are independent random
variables with values in a measurable space X and
f : Xn → R is a measurable function. De-
note g = f(X1, ..., Xi−1, Xi, Xi+1, ..., Xn) and gi =
f(X1, ..., Xi−1, X

′
i, Xi+1, ..., Xn), where (X ′1, ..., X

′
n) is

an independent copy of (X1, ...., Xn). Assume moreover
that

|g − gi| ≤ Hi(Xi, X
′
i)

for some functions Hi : X 2 → R, i = 1, ..., n. Suppose
that ‖Hi(Xi, X

′
i)‖ψα < ∞ for all i = 1, ..., n. For any

p ≥ 2,

1.) if 0 < α ≤ 1, let cα = 2
√

2((log 2)1/α + e3Γ1/2( 2
α +

1) + e33
2−α
3α supp≥2 p

−1
α Γ1/p( pα + 1)), we have

‖f(X1, ..., Xn)− Ef(X1, ..., Xn)‖p

≤cα

√p( n∑
i=1

‖Hi(Xi, X
′
i)‖2ψα

) 1
2

+p1/α max
1≤i≤n

‖Hi(Xi, X
′
i)‖ψα

)
;

2.) if α > 1, let 1/α∗ + 1/α = 1 and c′α =
8e + 2(log 2)1/α, and let (‖H(X,X ′)‖ψα) =
(‖H1(X1, X

′
1)‖ψα , ..., ‖Hn(Xn, X

′
n)‖ψα) ∈ Rn, we

have

‖f(X1, ..., Xn)− Ef(X1, ..., Xn)‖p

≤c′α

√p( n∑
i=1

‖Hi(Xi, X
′
i)‖2ψα

) 1
2

+p1/α‖(‖H(X,X ′)‖ψα)‖α∗
)
.

Our second result is a probabilistic inequality, which is
essential for Section 2.3.

Theorem 2.2. Under the settings of Theorem 2.1, for any
0 < δ < 1/e2, with probability at least 1− δ

1.) if 0 < α ≤ 1, we have

|f(X1, ..., Xn)− Ef(X1, ..., Xn)|

≤cα

√log(
1

δ
)

(
n∑
i=1

‖Hi(Xi, X
′
i)‖2ψα

) 1
2

+ log1/α(
1

δ
) max

1≤i≤n
‖Hi(Xi, X

′
i)‖ψα

)
;

2.) if α > 1, we have

|f(X1, ..., Xn)− Ef(X1, ..., Xn)|

≤c′α

√log(
1

δ
)

(
n∑
i=1

‖Hi(Xi, X
′
i)‖2ψα

) 1
2

+ log1/α(
1

δ
)‖(‖H(X,X ′)‖ψα)‖α∗

)
.

Remark 2.3. Hi is an arbitrary function satisfying the sub-
weibull condition ‖Hi(Xi, X

′
i)‖ψα ≤ ∞. By considering

Hi as a metric function, in the context of the subweibull
diameter, Theorem 2.2 becomes (1) if 0 < α ≤ 1, we have

|f(X1, ..., Xn)− Ef(X1, ..., Xn)|

≤cα
(√

log(
1

δ
)
( n∑
i=1

∆2
α(Xi)

) 1
2

+ log
1
α (

1

δ
) max

1≤i≤n
∆α(Xi)

)
;

(2) if α > 1, let (∆α(X )) = (∆α(X1), ...,∆α(Xn)),

|f(X1, ..., Xn)− Ef(X1, ..., Xn)|

≤c′α
(√

log(
1

δ
)
( n∑
i=1

∆2
α(Xi)

) 1
2

+ log
1
α (

1

δ
)‖(∆α(X ))‖α∗

)
.

We now provide some discussions on the optimality of our
bound. In Theorem 2.2, our inequality shows a mixture

of subgaussian
√

log( 1
δ ) and subweibull log1/α( 1

δ ) tails.
The subgaussian tail is of course expected from the central
limit theorem, and the subweibull tail captures the right
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decaying rate of the subweibull random variable. Therefore,
our inequality successfully captures the right subgaussian
tail for small deviations and the right subweibull tail for
large deviations, which also implies that the convergence
rate will be faster for small deviations and will be slower
for large deviations.
Remark 2.4. Let us see how Theorem 2.1 compares to previ-
ous results on some examples. Theorem 1 in (Kontorovich,
2014) states that if f is 1-Lipschitz function, then for any
t > 0

P(|f(X1, ..., Xn)− Ef(X1, ..., Xn)| > t)

≤2 exp

(
− t2

2
∑n
i=1 ∆2

2(Xi)

)
.

Theorem 11 in (Maurer & Pontil, 2021) shows that if f is
1-Lipschitz function, a one-sided inequality holds for any
t > 0

P(f(X1, ..., Xn)− Ef(X1, ..., Xn) > t)

≤ exp

(
− t2

4e
∑n
i=1 ∆2

1(Xi) + 2emax1≤i≤n ∆1(Xi)t

)
.

By comparison, it is clear that when α = 2 or α = 1, our
inequalities, respectively, reduce to the ones in (Kontorovich,
2014; Maurer & Pontil, 2021), respectively, up to constants.
Remark 2.5. In this remark, we parse α on the concen-
tration inequality. For the subweibull diameter ∆α(Xi),
according to its definition, we know that the smaller α is,
the heavier tail the random variable has and the bigger this
subweibull diameter is. For the subweibull tail log1/α( 1

δ ),
it is clear that a smaller α leads to a bigger term. As for
the constant cα, according to the property of Gamma func-
tion, Γ( 2

α + 1) becomes bigger as α becomes smaller. For
supp≥2 p

−1
α Γ1/p( pα + 1), a fine-grained analysis by Stirling

formula gives us a concise form that does not depend on p,
and we can find that the smaller α is, the bigger this term is.
Specifically, by the Stirling formula

n! =
√

2πnnne−n+θn , |θn| <
1

12n
, n > 1,

we get the following result

sup
p≥2

p−
1
αΓ1/p(

p

α
+ 1)

≤ sup
p≥2

p−
1
α

(√
2πp/α(

p

eα
)
p
α e

α
12p

)1/p

= sup
p≥2

p−
1
α

(√2π

α

)1/p

p1/2p(
p

α
)1/αeα/12p2−1/α

≤ sup
p≥2

(√2π

α

)1/p

e1/2e 1

(eα)1/α
eα/12p2

≤
(√2π

α

)1/2

e1/2e 1

(eα)1/α
eα/48,

where the first inequality uses the Stirling formula and the
second inequality uses the fact that p1/p ≤ e1/e. These
results are consistent with a plain intuition: a heavier-tailed
distribution, i.e., smaller α, will result in a worse upper
bound.
Remark 2.6. The assumption |g − gi| ≤ Hi(Xi, X

′
i) is

mild. It is a Lipschitz-type condition if we consider that
Hi(Xi, X

′
i) is a metric function. We will give an appli-

cation of this condition to `1-regularized loss functions
in Section 2.5. Here, we show that this condition also
holds for `2-regularized loss functions. Let’s consider that
the loss function is f(x, y) = (h(x) − y)2 + ‖w‖22, the
function h : X → [0, 1] is a Lipschitz function with
Lipschitz constant L, i.e., h(x) − h(y) ≤ Ld(x, y), and
(Z, d2) is the metric space where Z = X × [0, 1] and
d2((x, y), (x′, y′)) = (d(x, x′)2 + |y − y′|2)1/2. Let us
take ψ[0, 1]2 → R to be ψ(h, y) = (h− y)2, which has the
property max(h,y)∈[0,1]2 ‖∇ψ(h, y)‖2 = 23/2. It follows
that

|f(x, y)− f(x′, y′)|
= |(h(x)− y)2 − (h(x′)− y′)2|
≤ 23/2((h(x)− h(x′))2 + (y − y′)2)1/2

≤ 23/2(L2d(x, x′)2 + (y − y′)2)1/2

≤ 23/2 max{1, L}d2((x, y), (x′, y′)).

Matching f to g and 23/2 max{1, L}d2((x, y), (x′, y′)) to
Hi(Xi, X

′
i)), we can conclude that the condition |g− gi| ≤

Hi(Xi, X
′
i) holds for `2-regularized loss functions.

2.3. Algorithmic Stability with Unbounded Losses

In this section, the metric probability space (Zi, di, µi) will
have the structure Zi = Xi × Yi where Xi and Yi are the
instance and label space of the i-th example, respectively.
Under the i.i.d assumption, the (Zi, di, µi) are identical for
all i ∈ N, and so we will henceforth drop the subscript i
from these.

Assume we are given a training dataset S = Zn1 ∼ µn,
a learning algorithm A : (X × Y)n → YX maps S to
a function mapping the instance space X into the label
space Y . The output of the learning algorithm based on the
sample S will be denoted by AS . Following the previous
literature, we assume thatA is symmetric, which means that
A is invariant under permutations of S. The quality of the
function returned by the algorithm is measured using a loss
function ` : Y × Y → R+.

The empirical risk Rn(A, S) is typically defined as

Rn(A, S) =
1

n

n∑
i=1

`(AS , Zi)
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and the population risk R(A, S) as

R(A, S) = EZ∼µ[`(AS , Z)].

A large body of work has been dedicated to obtaining high
probability generalization bounds, i.e., giving bounds on the
error R(A, S)−Rn(A, S) with probabilities.

The widely used notion of stability allowing high probability
upper bounds is called uniform stability. We mention a
variant of uniform stability provided in (Rakhlin et al., 2005),
which is slightly more general than the original notion in
(Bousquet & Elisseeff, 2002).

Definition 2.7. (Rakhlin et al., 2005) The algorithm A is
said to be γ-uniform stable if for any z̄ ∈ Z , the function
f : Zn → R given by f(z) = `(Az, z̄) is γ-Lipschitz with
respect to the Hamming metric on Zn:

∀z, z′ ∈ Zn,∀z̄ ∈ Z : |f(z)− f(z′)| ≤ γ
n∑
i=1

I{zi 6=z′i}.

Most previous work based on the uniform stability required
the loss to be bounded by some constant M <∞. We make
no such restriction in this paper. To relax the boundedness
condition, we use a different notion of stability proposed in
(Kontorovich, 2014).

Definition 2.8. (Kontorovich, 2014) The algorithmA is said
to be γ-totally Lipschitz stable if the function f : Zn+1 →
R given by f(zn+1

1 ) = `(Azn1 , zn+1) is γ-Lipschitz with
respect to the `1 product metric on Zn+1:

∀z, z′ ∈ Zn+1 : |f(z)− f(z′)| ≤ γ
n+1∑
i=1

d(zi, z
′
i).

Based on this stability, we first give an in-expectation gener-
alization bound for stable algorithms.

Lemma 2.9. Suppose A is a symmetric, γ-totally Lipschitz
stable learning algorithm over the metric probability space
(Z, d, µ) with ∆α(Z) <∞. Then

E[R(A, S)−Rn(A, S)] ≤ c(α)γ∆α(Z),

where c(α) = (log 2)1/α if α > 1 and c(α) = 2Γ( 1
α + 1)

if 0 < α ≤ 1.

Remark 2.10. In this proof, the heavy tailedness of sub-
weibull distributions hinders standard proof techniques, such
as Jensen’s inequality.

The next lemma discusses the Lipschitz continuity.

Lemma 2.11 (Lemma 2 in (Kontorovich, 2014)). Sup-
pose A is a symmetric, γ-totally Lipschitz stable learn-
ing algorithm and define the function f : Zn → R by
f(z) = R(A, z)−Rn(A, z). Then f is 3γ-Lipschitz.

Now, combining Lemma 2.11 with the probabilistic in-
equality in Theorem 2.2 and further together with the in-
expectation generalization bound in Lemma 2.9 yields the
following high probability generalization bound.

Theorem 2.12. Suppose A is a symmetric, γ-totally Lips-
chitz stable learning algorithm over the metric probability
space (Z, d, µ) with ∆α(Z) <∞. Then, for training sam-
ples S ∼ µn and any 0 < δ < 1/e2, with probability at
least 1− δ

1.) if 0 < α ≤ 1, let cα = 2
√

2((log 2)1/α + e3Γ1/2( 2
α +

1) + e33
2−α
3α supp≥2 p

−1
α Γ1/p( pα + 1)), we have

R(A, S)−Rn(A, S) ≤ c(α)γ∆α(Z)

+ 3γcα

(√
n log(

1

δ
)∆α(Z) + log

1
α (

1

δ
)∆α(Z)

)
;

2.) if α > 1, let 1/α∗ + 1/α = 1 and c′α = 8e +
2(log 2)1/α, we have

R(A, S)−Rn(A, S) ≤ c(α)γ∆α(Z)

+ 3γc′α

(√
n log(

1

δ
)∆α(Z) + log

1
α (

1

δ
)n

1
α∗∆α(Z)

)
,

where c(α) = (log 2)1/α if α > 1 and c(α) = 2Γ( 1
α + 1)

if 0 < α ≤ 1.

Remark 2.13. The relationship between α and the general-
ization bound follows the analysis in Remark 2.5. Next, we
compare Theorem 2.12 with relevant results. In the related
work, the basic and the best known result is the high proba-
bility upper bound in (Bousquet & Elisseeff, 2002) which
states that, with probability at least 1− δ,

R(A, S)−Rn(A, S) .

(
γ
√
n+

M√
n

)√
log(

1

δ
), (1)

where γ denotes the uniform stability and M is the upper
bound of the loss `. Kontorovich (2014) extends this bound
to the unbounded loss with subgaussian diameter, and their
Theorem 2 states that, with probability at least 1− δ,

R(A, S)−Rn(A, S) . γ2∆2
2(Z) + γ∆2(Z)

√
n log(

1

δ
),

where, in this case, γ denotes the totally Lipschitz stabil-
ity and ∆2(Z) is the subgaussian diameter. If we instead
consider the subexponential distribution, the generalization
bound in (Maurer & Pontil, 2021) is with probability at least
1− δ,

R(A, S)−Rn(A, S)

.γ∆1(Z) + γ∆1(Z)

√
n log(

1

δ
) + γ∆1(Z) log(

1

δ
).
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As shown in the above three bounds and related results on
algorithmic stability, the stability γ is required at the least
of the order 1/

√
n for nontrivial convergence decay. By

comparison to the relevant bounds in (Bousquet & Elis-
seeff, 2002; Kontorovich, 2014; Maurer & Pontil, 2021),
our generalization bound in Theorem 2.12 give results for
unbounded loss functions with subweibull diameter: (1) if
0 < α ≤ 1,

R(A, S)−Rn(A, S)

.γ∆α(Z) + γ∆α(Z)

(√
n log(

1

δ
) + log

1
α (

1

δ
)

)
; (2)

(2) if α > 1, let 1/α∗ + 1/α = 1

R(A, S)−Rn(A, S)

.γ∆α(Z) + γ∆α(Z)

(√
n log(

1

δ
) + log

1
α (

1

δ
)n

1
α∗

)
,

(3)

which includes the results of Kontorovich (2014); Maurer &
Pontil (2021) as specific cases and substantially extends the
existing results to a large broad class of unbounded losses.
Remark 2.14. We can derive numerical evaluations of
∆α(Z). Recall that the subweibull diameter ∆α(Z) of
the metric probability space (Z, d, µ) is defined as

∆α(Z) = ‖d(Z,Z ′)‖ψα ,
where Z,Z ′ ∼ µ are independent. If the distribution µ is
known through sampling, we can derive the upper bound of
∆α(Z). We take the following setting as an example to show
the proof roadmap: Z = R, metric d(Z,Z ′) = |Z − Z ′|
and µ is the standard Gaussian probability measure dµ =

(2π)−
1
2 e−

x2

2 dx. In this case, we have ∆α(Z) ≤ 2‖Z‖ψα .
Since

‖Z‖ψα = inf

{
σ ∈ (0,∞) : E exp

((
|Z|
σ

)α)
≤ 2

}
,

when we know the distribution of Z, the upper bound of
‖Z‖ψα can be derived exactly. For instance, if α = 2 and
Z ∼ N(0, 1), we get ‖Z‖p =

√
2(Γ((1+p)/2)

Γ(1/2) )1/p for each
p ≥ 1, which implies that ‖Z‖p ≤ 3

√
p since Γ(x) ≤ 3xx

for all x ≥ 1/2. Further, we get E[Z2p] ≤ (18p)p. Since
Stirling’s approximation yields p! ≥ (p/e)p, and recalling
the Taylor series expansion of the exponential function, we
have

E exp(λ2Z2) = E

[
1 +

∞∑
p=1

(λ2Z2)p

p!

]

=1 +

∞∑
p=1

λ2pE[Z2p]

p!
≤ 1 +

∞∑
p=1

(18λ2p)p

(p/e)p

=

∞∑
p=0

(18eλ2)p =
1

1− 18eλ2
,

which provided that when 18eλ2 < 1, the geometric series
above converges. To bound this quantity further, we can use
the numeric inequality 1/(1− x) ≤ e2x which is valid for
x ∈ [0, 1/2]. It follows that

E exp(λ2Z2) ≤ exp(36eλ2),

for all λ satisfying |λ| ≤ 1
6
√
e
. Setting λ2 = 1

64e gives
E exp(Z2/64e) ≤ 2. According to the above definition
of ‖Z‖ψα , we have ‖Z‖ψα ≤ 8

√
e, which means that

∆α(Z) ≤ 16
√
e in this case.

2.4. Sharper Bounds for Algorithmic Stability with
Unbounded Losses

Recently, via a novel sample-splitting argument, Bousquet
et al. (2020) provided a general moment inequality for
weakly correlated random variables, refer to their Theo-
rem 4. This moment inequality is equipped to establish the
following moment bound of γ-uniformly stable algorithms
for all p ≥ 2:

‖R(A, S)−Rn(A, S)‖p . pγ log n+M

√
p

n
,

where M is the upper bound of the loss `. According to the
equivalence between tails and moments, this generalization
bound implies that for any δ ∈ (0, 1), the following devi-
ation bound holds with probability at least 1 − δ over the
draw of S

|R(A, S)−Rn(A, S)| . γ log n log(
1

δ
) +M

√
log( 1

δ )

n
.

(4)

This probabilistic result substantially improves the classical
result (1) of Bousquet & Elisseeff (2002) by enhancing√
n log( 1

δ ) to log n log( 1
δ ). Up to logarithmic factors on

sample size and tail bounds, the rate in (4) is nearly optimal
in the sense of a lower bound by Bousquet et al. (2020).
While powerful, this bound requires the loss functions to be
bounded, which may largely narrow its applications.

In this section, we provide sharper generalization bounds
than the results of Section 2.3, which is also an unbounded
analogue of Bousquet et al. (2020). The following lemma
establishes a moment inequality for a summation of weakly-
dependent and unbounded random variables.

Lemma 2.15. Let Z = {Z1, ..., Zn} be a set of inde-
pendent random variables each taking values in Z . De-
fine Z\{Zi} be set {Z1, ..., Zi−1, Zi+1, ..., Zn} and Zi =
{Z1, ..., Zi−1, Z

′
i, Zi+1, ..., Zn}, where (Z ′1, ..., Z

′
n) is an

independent copy of (Z1, ...., Zn). Let g1, ..., gn be some
functions gi : Zn → R such that the following inequalities
hold for any i ∈ {1, ..., n},

6
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•
∥∥EZ\{Zi}[gi(Z)]

∥∥
ψα
≤M almost surely (a.s.),

• EZi [gi(Z)] = 0 a.s.,

• for any j ∈ [n] with j 6= i∣∣gi(Z)− gi(Zj)
∣∣ ≤ Hj(Zj , Z

′
j),

and ‖Hj(Zj , Z
′
j)‖ψα ≤ β.

Then, for any p ≥ 2

1.) if 0 < α ≤ 1, let cα = 2
√

2((log 2)1/α + e3Γ1/2( 2
α +

1) + e33
2−α
3α supp≥2 p

−1
α Γ1/p( pα + 1)), we have

∥∥∥ n∑
i=1

gi(Z)
∥∥∥
p
≤ cα

(√
pnM + p1/αM

)
+ 3
√

2cα

(
2npβdlog2 ne+ 2np

1
α+ 1

2 β
)

;

2.) if α > 1, let 1/α∗ + 1/α = 1 and c′α = 8e +
2(log 2)1/α, we have

∥∥∥ n∑
i=1

gi(Z)
∥∥∥
p
≤ c′α

(√
pnM + p1/αn

1
α∗M

)
+ 3
√

2c′α

(
2npβdlog2 ne+ 3(2n)( 1

α∗+ 1
2 )p

1
α+ 1

2 β
)
.

Remark 2.16. This lemma extends the moment inequality
of Theorem 4 of Bousquet et al. (2020) from the bounded
random variable to the subweibull variable. Lemma 2.15 is
proved by our proposed moment inequality in Theorem 2.1.
We emphasize here that the moment inequality we proposed
for unbounded random variables is crucial for providing
sharper bounds. In contrast, the probabilistic inequalities
proved in (Kontorovich, 2014; Maurer & Pontil, 2021) fail
to give Lemma 2.15 as they are not moment inequality. Of
course, the technique of Kontorovich (2014); Maurer &
Pontil (2021) fails to give a sharper generalization bound.

As an important consequence of this lemma, we can give
the following sharper generalization bounds for algorithmic
stability with unbounded losses.

Theorem 2.17. Suppose A is a symmetric, γ-totally Lips-
chitz stable learning algorithm over the metric probability
space (Z, d, µ) with ∆α(Z) <∞. Then, for training sam-
ples S ∼ µn and any 0 < δ < 1/e2, with probability at
least 1− δ

1.) if 0 < α ≤ 1, let cα = 2
√

2((log 2)1/α + e3Γ1/2( 2
α +

1) + e33
2−α
3α supp≥2 p

−1
α Γ1/p( pα + 1)), we have

|R(A, S)−Rn(A, S)|

≤6
√

2cαγ∆α(Z)

(
2dlog2 ne log(

1

δ
) + 2 log

1
α+ 1

2 (
1

δ
)

)
+

2cα
n
γ∆α(Z)

(√
n log

1
2 (

1

δ
) + log1/α(

1

δ
)

)
+ 2γ∆α(Z)(2Γ(log(

1

δ
)

1

α
+ 1))

1

log( 1
δ
) ;

2.) if α > 1, let 1/α∗ + 1/α = 1 and c′α = 8e +
2(log 2)1/α, we have

|R(A, S)−Rn(A, S)| ≤ 6
√

2c′αγ∆α(Z)×(
2dlog2 ne log(

1

δ
) + 3(2)( 1

α∗+ 1
2 ) 1

n
1
2−

1
α∗

log
1
α+ 1

2 (
1

δ
)
)

+
2c′α
n
γ∆α(Z)

(√
n log

1
2 (

1

δ
) + log1/α(

1

δ
)n

1
α∗

)
+ 2γ∆α(Z)(2Γ(log(

1

δ
)

1

α
+ 1))

1

log( 1
δ
) .

Remark 2.18. Theorem 2.17 implies the following inequali-
ties (1) if 0 < α ≤ 1,

|R(A, S)−Rn(A, S)|

.γ∆α(Z)
(

log n log(
1

δ
) + log

1
α+ 1

2 (
1

δ
)
)

+
γ∆α(Z)

n

(√
n log

1
2 (

1

δ
) + log

1
α (

1

δ
)
)

;

(2) if α > 1, let 1/α∗ + 1/α = 1

|R(A, S)−Rn(A, S)|

.γ∆α(Z)
(

log n log(
1

δ
) +

1

n
1
2−

1
α∗

log
1
α+ 1

2 (
1

δ
)
)

+
γ∆α(Z)

n

(√
n log

1
2 (

1

δ
) + log1/α(

1

δ
)n

1
α∗
)
.

To compare with the generalization bound in Eqs. (2) and
(3), our bound in Theorem 2.17 substantially improves the
dominated term from γ∆α(Z)

√
n to γ∆α(Z), which suc-

cessfully gives sharper generalization bounds. By compari-
son to the relevant bounds in (Kontorovich, 2014; Maurer &
Pontil, 2021), our bound in Theorem 2.17 also improve their
results in the case α = 2 and α = 1, respectively, which
can be

√
n-times faster than their results.

Remark 2.19. Based on the technique of Bousquet et al.
(2020); Klochkov & Zhivotovskiy (2021), many recent
works develop sharper generalization bounds for alterna-
tive settings, see (Lei & Ying, 2020; Lei et al., 2021; Yuan
& Li, 2023), to mention but a few. Among them, Yuan & Li
(2023) provide in-expectation generalization bounds in the
sense of Bousquet et al. (2020); Klochkov & Zhivotovskiy
(2021) for `q stability. Their results also allow sharper high

7
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probability generalization bounds for unbounded losses up
to subexponential distributions (i.e., α = 1), see the analysis
below their Theorem 2. As a comparison, our generalization
bounds allow heavy-tailed distributions, i.e., 0 < α < 1.

2.5. Application to Regularized Nearest-neighbor
Regression

We first give some necessary notations of the regularized
regression. We assume the label space Y to be all of R.
A simple no-free-lunch argument shows that it is impossi-
ble to learn functions with arbitrary oscillation, and hence
Lipschitzness is a natural and commonly used regulariza-
tion constraint (Shalev-Shwartz & Ben-David, 2014; Tsy-
bakov, 2003; Wasserman, 2006). We will denote by Fλ the
collection of all λ-Lipschitz functions f : X → R. The
learning algorithm A maps the sample S = Zni=1, with
Zi = (Xi, Yi) ∈ X × R, to the function f̂ ∈ Fλ by mini-
mizing the empirical risk

f̂ = arg min
f∈Fλ

1

n

n∑
i=1

|f(Xi)− Yi|

over all f ∈ Fλ, where we have chosen the absolute loss
`(y, y′) = |y − y′|. In the general metric space, Gottlieb
et al. (2017) proposed an efficient algorithm for regression
via Lipschitz extension, a method that can be traced back to
the seminal work (von Luxburg & Bousquet, 2004), which
is algorithmically realized by 1-nearest neighbors. This
approach very facilitates generalization analysis. For any
metric space (X , d), we associate it to a metric space (Z, d̄),
where Z = X ×R and d̄((x, y), (x′, y′)) = d(x, x′) + |y−
y′|, and we suppose that (Z, d̄) is endowed with a measure
µ such that ∆α(Z) = ∆α(Z, d̄, µ) <∞.

We follow the analysis of Kontorovich (2014) on the stability
of 1-NN regression regularized by Lipschitz continuity λ.
If none of the n + 1 points (n sample and 1 test) is too
isolated from the rest, Kontorovich (2014) shows that the
regression algorithm is γ = O(λ/n)-totally Lipschitz stable.
In the case of subgaussian distribution, with probability
1−n exp(−Ω(n)), each of the n+1 points is within distance
O(∆2(Z)) of another point. Hence, Kontorovich (2014)
states that, with probability at least 1− n exp(−Ω(n))− δ

R(A, S)−Rn(A, S)

.

(
λ

n
∆2(Z)

)2

+
λ√
n

∆2(Z)

√
log(

1

δ
).

While in the case of subweibull distribution, according
to Theorem 2.1 in (Vladimirova et al., 2020), with prob-
ability 1 − n exp(−Ω(nα)), each of the n + 1 points is
within distance O(∆α(Z)) of another point. Thus, by
Theorem 2.17, our bound is, with probability at least

1− n exp(−Ω(nα))− δ, (1) if 0 < α ≤ 1,

|R(A, S)−Rn(A, S)|

.
λ

n
∆α(Z)

(
log n log(

1

δ
) + log

1
α+ 1

2 (
1

δ
)

)
+
λ∆α(Z)

n2

(√
n log

1
2 (

1

δ
) + log

1
α (

1

δ
)

)
;

(2) if α > 1, let 1/α∗ + 1/α = 1

|R(A, S)−Rn(A, S)|

.
λ

n
∆α(Z)

(
log n log(

1

δ
) +

1

n
1
2−

1
α∗

log
1
α+ 1

2 (
1

δ
)

)
+
λ∆α(Z)

n2

(√
n log

1
2 (

1

δ
) + log1/α(

1

δ
)n

1
α∗

)
.

As a comparison, our results allow a substantial extension
of existing generalization bounds to heavy-tailed distribu-
tions and improve the bound from the order O(1/

√
n) in

(Kontorovich, 2014) to a sharper order O(1/n). Our bound
reveals that the generalization bound of regularized nearest-
neighbor regression enjoys a faster rate.

2.6. Application to Rademacher Complexity

In this section, we show the strength of our probabilistic
inequality, which, other than algorithmic stability, is also
capable of giving generalization bounds for Rademacher
complexity with unbounded losses. Rademacher complexity
is also a popular tool of learning theory to reason about the
generalization.

Suppose that F is a class of function f : X → R,
the Rademacher complexity of F is defined as R(F) =
E
[

1
nE
[
supf∈F

∑n
i=1 εif(Xi)|X

]]
, where ε1, ..., εn are

independent Rademacher variables. Using McDiarmid’s
exponential inequality, Theorem 8 in (Bartlett & Mendel-
son, 2002) establishes a high probability generalization error
bound for Rademacher complexity, however, this approach
requires the function f to be bounded, induced by McDi-
armid’s exponential inequality. In this section, we show that
the boundedness can be relaxed by unbounded sub-weibull
distributions for uniformly Lipschitz function classes. In-
deed, Theorem 2.20 also holds for the metric space. We
study the Banach space as it simplifies the proof.

Theorem 2.20. Let X = (X1, ..., Xn) be a vector of in-
dependent subweibull random variables with values in a
Banach space (X , ‖ · ‖) and let F be a class of function
f : X → R such that f(x) − f(y) ≤ L‖x − y‖ for all
f ∈ F and x, y ∈ X . Then, for any 0 < δ < 1/e2, with
probability at least 1− δ

1.) if 0 < α ≤ 1, let cα = 2
√

2((log 2)1/α + e3Γ1/2( 2
α +

8
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1) + e33
2−α
3α supp≥2 p

−1
α Γ1/p( pα + 1)), we have

sup
f∈F

1

n

n∑
i=1

f(Xi)− E[f(X ′i)]

≤2R(F) +
4Lcα
n

(√
log(

1

δ
)
( n∑
i=1

‖‖Xi‖‖2ψα
) 1

2

+ log1/α(
1

δ
) max

1≤i≤n
‖‖Xi‖‖ψα

)
;

2.) if α ≥ 1, let 1/α∗ + 1/α = 1, c′α = 8e+ 2(log 2)1/α

and (‖‖X‖‖ψα) = (‖‖X1‖‖ψα , ..., ‖‖Xn‖‖ψα), we
have

sup
f∈F

1

n

n∑
i=1

f(Xi)− E[f(X ′i)]

≤2R(F) +
4Lc′α
n

(√
log(

1

δ
)
( n∑
i=1

‖‖Xi‖‖2ψα
) 1

2

+ log1/α(
1

δ
)‖(‖‖X‖‖ψα)‖α∗

)
.

3. Conclusions
In this paper, we provided generalization bounds for algo-
rithmic stability with unbounded losses. The technical con-
tribution is general concentration inequalities for subweibull
random variables. In future work, it would be important to
show that some other common learning algorithms, such as
stochastic gradient descent, are also stable in the notion of
totally Lipschitz stability.
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De la Pena, V. and Giné, E. Decoupling: from dependence
to independence. Springer Science & Business Media,
2012.

Devroye, L. and Wagner, T. Distribution-free inequalities
for the deleted and holdout error estimates. IEEE Trans-
actions on Information Theory, 25(2):202–207, 1979a.

Devroye, L. and Wagner, T. Distribution-free performance
bounds for potential function rules. IEEE Transactions
on Information Theory, 25(5):601–604, 1979b.

Dudı́k, M., Phillips, S., and Schapire, R. E. Correcting sam-
ple selection bias in maximum entropy density estimation.
In Advances in neural information processing systems,
2005.

El-Yaniv, R. and Pechyony, D. Stable transductive learn-
ing. In Learning Theory: 19th Annual Conference on
Learning Theory, COLT 2006, Pittsburgh, PA, USA, June
22-25, 2006. Proceedings 19, pp. 35–49. Springer, 2006.

Feldman, V. and Vondrak, J. Generalization bounds for
uniformly stable algorithms. Advances in Neural Infor-
mation Processing Systems, 31, 2018.

Feldman, V. and Vondrak, J. High probability generaliza-
tion bounds for uniformly stable algorithms with nearly
optimal rate. In Conference on Learning Theory, pp.
1270–1279. PMLR, 2019.

Foster, D. J., Greenberg, S., Kale, S., Luo, H., Mohri, M.,
and Sridharan, K. Hypothesis set stability and gener-
alization. Advances in Neural Information Processing
Systems, 32, 2019.

Gonen, A. and Shalev-Shwartz, S. Average stability is
invariant to data preconditioning: Implications to exp-
concave empirical risk minimization. The Journal of
Machine Learning Research, 18(1):8245–8257, 2017.

Gottlieb, L.-A., Kontorovich, A., and Krauthgamer, R. Ef-
ficient regression in metric spaces via approximate lips-
chitz extension. IEEE Transactions on Information The-
ory, 63(8):4838–4849, 2017.

Haddouche, M., Guedj, B., Rivasplata, O., and Shawe-
Taylor, J. Pac-bayes unleashed: Generalisation bounds
with unbounded losses. Entropy, 23(10):1330, 2021.

Hardt, M., Recht, B., and Singer, Y. Train faster, generalize
better: Stability of stochastic gradient descent. In Interna-
tional conference on machine learning, pp. 1225–1234,
2016.

Hush, D., Scovel, C., and Steinwart, I. Stability of unsta-
ble learning algorithms. Machine learning, 67:197–206,
2007.

Kearns, M. and Ron, D. Algorithmic stability and sanity-
check bounds for leave-one-out cross-validation. In Pro-
ceedings of the tenth annual conference on Computa-
tional learning theory, pp. 152–162, 1997.

Klochkov, Y. and Zhivotovskiy, N. Stability and deviation
optimal risk bounds with convergence rate o(1/n). Ad-
vances in Neural Information Processing Systems, 34:
5065–5076, 2021.

Kontorovich, A. Concentration in unbounded metric spaces
and algorithmic stability. In International Conference on
Machine Learning, pp. 28–36, 2014.

Kuchibhotla, A. K. and Chakrabortty, A. Moving beyond
sub-gaussianity in high-dimensional statistics: Applica-
tions in covariance estimation and linear regression. In-
formation and Inference: A Journal of the IMA, 11(4):
1389–1456, 2022.

Kutin, S. and Niyogi, P. Almost-everywhere algorith-
mic stability and generalization error. arXiv preprint
arXiv:1301.0579, 2012.

Kuzborskij, I. and Lampert, C. Data-dependent stability of
stochastic gradient descent. In International Conference
on Machine Learning, pp. 2815–2824, 2018.

Latała, R. Estimation of moments of sums of independent
real random variables. The Annals of Probability, 25(3):
1502–1513, 1997.

Ledoux, M. and Talagrand, M. Probability in Banach
Spaces: isoperimetry and processes, volume 23. Springer
Science & Business Media, 1991.

Lei, Y. and Ying, Y. Fine-grained analysis of stability and
generalization for stochastic gradient descent. In Interna-
tional Conference on Machine Learning, pp. 5809–5819,
2020.

Lei, Y., Liu, M., and Ying, Y. Generalization guarantee
of sgd for pairwise learning. In Advances in Neural
Information Processing Systems, 2021.

Liu, T., Lugosi, G., Neu, G., and Tao, D. Algorithmic
stability and hypothesis complexity. In International
Conference on Machine Learning, pp. 2159–2167, 2017.

Lugosi, G. and Pawlak, M. On the posterior-probability
estimate of the error rate of nonparametric classification
rules. IEEE Transactions on Information Theory, 40(2):
475–481, 1994.

10



Algorithmic Stability Unleashed: Generalization Bounds with Unbounded Losses

Madden, L., Dall’Anese, E., and Becker, S. High-
probability convergence bounds for non-convex stochas-
tic gradient descent. arXiv e-prints, pp. arXiv–2006,
2020.

Mansour, Y., Mohri, M., and Rostamizadeh, A. Domain
adaptation: Learning bounds and algorithms. arXiv
preprint arXiv:0902.3430, 2009.

Maurer, A. A second-order look at stability and generaliza-
tion. In Conference on learning theory, pp. 1461–1475,
2017.

Maurer, A. and Pontil, M. Concentration inequalities un-
der sub-gaussian and sub-exponential conditions. Ad-
vances in Neural Information Processing Systems, 34:
7588–7597, 2021.

McDiarmid, C. Concentration. Probabilistic methods for
algorithmic discrete mathematics, pp. 195–248, 1998.

Mukherjee, S., Niyogi, P., Poggio, T., and Rifkin, R. Sta-
tistical learning: Stability is necessary and sufficient for
consistency of empirical risk minimization. CBCL Paper,
23, 2002.

Rakhlin, A., Mukherjee, S., and Poggio, T. Stability results
in learning theory. Analysis and Applications, 3(04):397–
417, 2005.

Ren, Y.-F. and Liang, H.-Y. On the best constant in
marcinkiewicz–zygmund inequality. Statistics & proba-
bility letters, 53(3):227–233, 2001.

Rogers, W. H. and Wagner, T. J. A finite sample distribution-
free performance bound for local discrimination rules.
The Annals of Statistics, pp. 506–514, 1978.

Rubinstein, B. I. and Simma, A. On the stability of em-
pirical risk minimization in the presence of multiple risk
minimizers. IEEE transactions on information theory, 58
(7):4160–4163, 2012.

Shalev-Shwartz, S. and Ben-David, S. Understanding ma-
chine learning: From theory to algorithms. Cambridge
university press, 2014.

Shalev-Shwartz, S., Shamir, O., Srebro, N., and Sridharan,
K. Learnability, stability and uniform convergence. The
Journal of Machine Learning Research, 11:2635–2670,
2010.

Tsybakov, A. B. Introduction à l’estimation non
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A. Auxiliary Lemmas
Lemma A.1 (Theorem 1.3.1 in (De la Pena & Giné, 2012)). Let a1, ..., an a finite non-random sequence, {εi}ni=1 be a
sequence of independent Rademacher variables and 1 < p < q <∞. Then,∥∥∥∥∥

n∑
i=1

εiai

∥∥∥∥∥
q

≤
(
q − 1

p− 1

)1/2
∥∥∥∥∥
n∑
i=1

εiai

∥∥∥∥∥
p

.

Lemma A.2 (Theorem 2 of (Latała, 1997)). Let X1, ..., Xn be a sequence of independent symmetric random variables, and
p ≥ 2. Then,

e− 1

2e2
‖(Xi)‖p ≤ ‖X1 + ...+Xn‖ ≤ e‖(Xi)‖p,

where ‖(Xi)‖p := inf{t > 0 :
∑n
i=1 logψp(Xi/t) ≤ p} with ψp(X) := E|1 +X|p.

Lemma A.3 (Example 3.2 and 3.3 of (Latała, 1997)). Assume X be a symmetric random variable satisfying P(|X| ≥ t) =
e−N(t). For any t ≥ 0, we have

(a) If N(t) is concave, then logψp(e
−2tX) ≤ pMp,X(t) := max{(tp‖X‖pp), (pt2‖X‖22)}.

(b) For convex N(t), denote the convex conjugate function N∗(t) := sups>0{ts−N(s)} and

Mp,X(t) :=

{
p−1N∗(p|t|), if p|t| ≥ 2

pt2, if p|t| < 2.

Then logψp(tX/4) ≤ pMp,X(t).

Lemma A.4 (Marcinkiewicz-Zygmund’s inequality (Ren & Liang, 2001)). Let X1, ..., Xn be independent centered random
variables with a finite p-th moment for p ≥ 2. Then,∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥
p

≤ 3
√

2np

(
1

n

n∑
i=1

‖Xi‖pp

) 1
p

.

B. Proofs of Section 2.2
In this section, we provide proofs of results in Section 2.2. To proceed, we state some technical lemmas.

Lemma B.1. Let h : R → R be a convex functions, ε1, ...., εn a sequence of independent Rademacher variables and
a1, ..., an, b1, ..., bn two sequences of nonnegative real numbers, such that for every i, ai ≤ bi. Then

Eh

(
n∑
i=1

aiεi

)
≤ Eh

(
n∑
i=1

biεi

)
.

Proof of Lemma B.1. It is enough to prove the monotonicity of function f(t) = Eh(a + tε1), for every choice of the
parameter a. By the convexity assumption we have for 0 < s < t

h(a+ t)− h(a+ s)

t− s
≥ h(a− s)− h(a− t)

t− s
.

Equivalently,

f(s) =
1

2
(h(a+ s) + h(a− s)) ≤ 1

2
(h(a+ t) + h(a− t)) = f(t).

The proof is complete.

12
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Lemma B.2. Let h : R → R be a convex function and g = f(X1, ..., Xi−1, Xi, Xi+1, ..., Xn), where X1, ...., Xn are
independent random variables with values in a measurable space X and f : Xn → R is a measurable function. Denote
gi = f(X1, ..., Xi−1, X

′
i, Xi+1, ..., Xn), where (X ′1, ..., X

′
n) is an independent copy of (X1, ...., Xn). Assume moreover

that |g − gi| ≤ Hi(Xi, X
′
i) for some functions Hi : X 2 → R, i = 1, ..., n. Then,

Eh(g − Eg) ≤ Eh

(
n∑
i=1

εiHi(Xi, X
′
i)

)
,

where ε1, ..., εn is a sequence of independent Rademacher variables, independent of (Xi)
n
i=1 and (X ′i)

n
i=1.

Proof of Lemma B.2. We will use induction with respect to n. For n = 0 the statement is obvious, since Eh(g − Eg) =
Eh (

∑n
i=1 εiHi(Xi, X

′
i)) = h(0). Assume that the lemma is true for n− 1, then

Eh(g − Eg) = Eh(g − EX′ngn + EXng − Eg)

≤ Eh(g − gn + EXng − Eg)

= Eh(gn − g + EXng − Eg)

= Eh(εn|g − gn|+ EXng − Eg)

≤ Eh(εnHn(Xn, X
′
n) + EXng − Eg),

where the equalities follow from the symmetry, the first inequality follows from the Jensen’s inequality and the convexity of
h, and the last inequality follows from Lemma B.1. Now, denoting Z = EXng, Zi = EXngi, we have for i = 1, ..., n− 1

|Z − Zi| = |EXng − EXngi| ≤ EXn |g − gi| ≤ Hi(Xi, X
′
i),

and thus for fixed Xn, X ′n and εn, we can apply the induction assumption to the function t → h(εnHn(Xn, X
′
n) + t)

instead of h and EXng instead of g, to obtain

Eh(g − Eg) ≤ Eh

(
n∑
i=1

εiHi(Xi, X
′
i)

)
.

The proof is complete.

Next lemma provides a moment inequality for the sum of independent subweibull random variables. The proof follows the
technique of (Zhang & Wei, 2022).

Lemma B.3. Suppose X1, X2, ..., Xn are independent subweibull random variables with mean zero. For any vector
a = (a1, ..., an) ∈ Rn, let b = (a1‖X1‖ψα , ..., an‖Xn‖ψα) ∈ Rn. Then for p ≥ 2,

• if 0 < α ≤ 1, let cα = 2
√

2
(

(log 2)1/α + e3Γ1/2( 2
α + 1) + e33

2−α
3α supp≥2 p

−1
α Γ1/p( pα + 1)

)
,∥∥∥∥∥

n∑
i=1

aiXi

∥∥∥∥∥
p

≤ cα
(√

p‖b‖2 + p1/α‖b‖∞
)

;

• if α > 1, let 1/α∗ + 1/α = 1 and c′α = 8e+ 2(log 2)1/α,∥∥∥∥∥
n∑
i=1

aiXi

∥∥∥∥∥
p

≤ c′α
(√

p‖b‖2 + p1/α‖b‖α∗
)
.

Proof of Lemma B.3. Without loss of generality, we assume ‖Xi‖ψα = 1. Define Yi = (|Xi| − (log 2)1/α)+, then it is easy
to check that P(|Xi| ≥ t) ≤ 2e−t

α

, which also implies that P(Yi ≥ t) ≤ e−t
α

. According to the symmetrization inequality,
Proposition 6.3 of (Ledoux & Talagrand, 1991), we have

‖
n∑
i=1

aiXi‖p ≤ 2‖
n∑
i=1

εiaiXi‖p = 2‖
n∑
i=1

εiai|Xi|‖p,

13
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where {εi}ni=1 are independent Rademacher random variables and we have used that εiXi and εi|Xi| are identically
distributed. By triangle inequality,

2‖
n∑
i=1

εiai|Xi|‖p ≤ 2‖
n∑
i=1

εiai(Yi + (log 2)1/α)‖p ≤ 2‖
n∑
i=1

εiaiYi‖p + 2(log 2)1/α‖
n∑
i=1

εiai‖p.

Next, we bound the second term of the above upper bound. By Khinchin-Kahane inequality, Lemma A.1, we have

‖
n∑
i=1

εiai‖p ≤
(p− 1

2− 1

)1/2‖ n∑
i=1

εiai‖2 ≤
√
p‖

n∑
i=1

εiai‖2 =
√
p(E(

n∑
i=1

εiai)
2)1/2

=
√
p
(
E(

n∑
i=1

ε2i a
2
i + 2

∑
1≤i<j≤n

εiεjaiaj)
)1/2

=
√
p
( n∑
i=1

a2
i

)1/2
=
√
p‖a‖2.

Let {Zi}ni=1 be independent symmetric random variables satisfying P(|Zi| ≥ t) = exp(−tα) for all t ≥ 0, we have

‖
n∑
i=1

εiaiYi‖p = ‖
n∑
i=1

εiaiZi‖p = ‖
n∑
i=1

aiZi‖p,

since εiZi and Zi have the same distribution due to symmetry. Combining the above inequalities together, we reach

‖
n∑
i=1

aiXi‖p ≤ 2(log 2)1/α√p‖a‖2 + 2‖
n∑
i=1

aiZi‖p.

In the case of 0 < α ≤ 1, N(t) = tα is concave. Then Lemma A.2 and Lemma A.3 (a) gives for p ≥ 2

‖
n∑
i=1

aiZi‖p ≤ e inf{t > 0 :

n∑
i=1

logψp(e
−2(

aie
2

t
)Zi) ≤ p} ≤ e inf{t > 0 :

n∑
i=1

pMp,Zi(
aie

2

t
) ≤ p}

= e inf{t > 0 :

n∑
i=1

(max{(aie
2

t
)p‖Zi‖pp, p(

aie
2

t
)2‖Zi‖22}) ≤ p}

≤ e inf{t > 0 :

n∑
i=1

(
aie

2

t
)p‖Zi‖pp +

n∑
i=1

p(
aie

2

t
)2‖Zi‖22 ≤ p}

≤ e inf{t > 0 : 2pΓ(
p

α
+ 1)

e2p

tp
‖a‖pp ≤ p}+ e inf{t > 0 : 2p2Γ(

2

α
+ 1)

e4

t2
‖a‖22}] ≤ p},

where we have used ‖Zi‖pp = pΓ( pα + 1) and set p = 2 sometimes. Thus,

‖
n∑
i=1

aiZi‖p ≤
√

2e3(Γ1/p(
p

α
+ 1)‖a‖p +

√
pΓ1/2(

2

α
+ 1)‖a‖2).

By homogeneity, we can assume that
√
p‖a‖2 + p1/α‖a‖∞ = 1. Then ‖a‖2 ≤ p−1/2 and ‖a‖∞ ≤ p−1/α. Therefore, for

p ≥ 2,

‖a‖p ≤ (

n∑
i=1

|ai|2‖a‖p−2
∞ )1/p ≤ (p−1− (p−2)

α )1/p = (p−p/αp(2−α)/α)1/p ≤ 3
2−α
3α p−1/α

= 3
2−α
3α p−1/α(

√
p‖a‖2 + p1/α‖a‖∞),

where we used p1/p ≤ 31/3 for any p ≥ 2, p ∈ N. Therefore, for p ≥ 2,

‖
n∑
i=1

aiXi‖p ≤ 2(log 2)1/α√p‖a‖2 + 2
√

2e3(Γ1/p(
p

α
+ 1)‖a‖p +

√
pΓ1/2(

2

α
+ 1)‖a‖2)

≤ 2
√

2((log 2)1/α + e3Γ1/2(
2

α
+ 1) + e33

2−α
3α p

−1
α Γ1/p(

p

α
+ 1))

√
p‖a‖2) + 2

√
2e33

2−α
3α Γ1/p(

p

α
+ 1)‖a‖∞.
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Let cα = 2
√

2((log 2)1/α + e3Γ1/2( 2
α + 1) + e33

2−α
3α supp≥2 p

−1
α Γ1/p( pα + 1)), we have

‖
n∑
i=1

aiXi‖p ≤ cα(
√
p‖a‖2 + p1/α‖a‖∞).

In the case of α > 1, N(t) = tα is convex with N∗(t) = α−
1

α−1 (1 − α−1)t
α
α−1 . Then Lemma A.2 and Lemma A.3 (b)

gives for p ≥ 2

‖
n∑
i=1

aiZi‖p ≤ e inf{t > 0 :

n∑
i=1

logψp(
4ai
t
Zi/4) ≤ p}+ e inf{t > 0 :

n∑
i=1

pMp,Zi(
4ai
t

) ≤ p}

≤ e inf{t > 0 :

n∑
i=1

p−1N∗(p|4ai
t
|) ≤ 1}+ e inf{t > 0 :

n∑
i=1

p(
4ai
t

)2 ≤ 1}

= 4e(
√
p‖a‖2 + (p/α)1/α(1− α−1)1/α∗‖a‖α∗),

where α∗ is mentioned in the statement. Therefore, for p ≥ 2,

‖
n∑
i=1

aiXi‖p ≤ (8e+ 2(log 2)1/α)
√
p‖a‖2 + 8e(1/α)1/α(1− α−1)1/α∗p1/α‖a‖α∗ .

Since 8e+ 2(log 2)1/α ≥ 8e(1/α)1/α(1− α−1)1/α∗ , let c′α = 8e+ 2(log 2)1/α, we have

‖
n∑
i=1

aiXi‖p ≤ c′α(
√
p‖a‖2 + p1/α‖a‖α∗).

Replacing a with b, the proof is complete.

We now give proofs of Theorem 2.1 and Theorem 2.2.

Proof. Using Lemma B.2 with h(t) = |t|p, for p ≥ 2,

‖f(X1, ..., Xn)− Ef(X1, ..., Xn)‖p ≤

∥∥∥∥∥
n∑
i=1

εiHi(Xi, X
′
i)

∥∥∥∥∥
p

.

Then, using Lemma B.3 and setting ai = 1 for all i = 1, ..., n, we have if 0 < α ≤ 1,

‖f(X1, ..., Xn)− Ef(X1, ..., Xn)‖p ≤ cα

√p( n∑
i=1

‖Hi(Xi, X
′
i)‖2ψα

) 1
2

+ p1/α max
1≤i≤n

‖Hi(Xi, X
′
i)‖ψα

 ;

while if α > 1,

‖f(X1, ..., Xn)− Ef(X1, ..., Xn)‖p ≤ c′α

√p( n∑
i=1

‖Hi(Xi, X
′
i)‖2ψα

) 1
2

+ p1/α‖(‖Hi(Xi, X
′
i)‖ψα)‖α∗

 ,

which completes the proof of Theorem 2.1.

For any t > 0, by Markov’s inequality,

P (|f(X1, ..., Xn)− Ef(X1, ..., Xn)| ≥ t) ≤ E|f(X1, ..., Xn)− Ef(X1, ..., Xn)|p

tp
.

Let exp(−p) = E|f(X1, ..., Xn)− Ef(X1, ..., Xn)|p/tp, we get

P (|f(X1, ..., Xn)− Ef(X1, ..., Xn)| ≥ e‖f(X1, ..., Xn)− Ef(X1, ..., Xn)‖p) ≤ exp(−p).

Further, let δ = exp(−p), we have p = log(1/δ) and 0 < δ < 1/e2. Putting the above results together, the proof of
Theorem 2.2 is complete.
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C. Proofs of Section 2.3
In this section, we provide proofs of results in Section 2.3.

Proof of Lemma 2.9. Given any samples S = {Z1, ..., Zn} ∈ Zn and Si = {Z1, ..., Zi−1, Z
′
i, Zi+1, ..., Zn} ∈ Zn,

according to Lemma 7 in (Bousquet & Elisseeff, 2002), for all i ∈ [n],

E[R(A, S)−Rn(A, S)] = ES,Z′i [`(AS , Z
′
i)− `(ASi , Z ′i)].

For fixed i ∈ [n] and Zi−1
i , Zni+1, define

Vi(Zi, Z
′
i) = `(AZn1 , Z

′
i)− `(AZi−1

1 ,Z′i,Z
n
i+1
, Z ′i).

The totally Lipschitz stable condition implies that

|Vi(Zi, Z ′i)| ≤ γd(Zi, Z
′
i).

This gives

E[R(A, S)−Rn(A, S)] ≤ γEd(Zi, Z
′
i). (5)

We now consider two cases separately. In the case of α > 1, (5) gives

exp

((E[R(A, S)−Rn(A, S)]

γ‖d(Zi, Z ′i)‖ψα

)α)
≤ exp

(( |E[R(A, S)−Rn(A, S)]|
γ‖d(Zi, Z ′i)‖ψα

)α)
≤ exp

(( |γEd(Zi, Z
′
i)|

γ‖d(Zi, Z ′i)‖ψα

)α)
≤ E exp

(( γ|d(Zi, Z
′
i)|

γ‖d(Zi, Z ′i)‖ψα

)α)
≤ 2,

where the third inequality follows from the Jensen’s inequality and the last inequality uses the definition

E exp
((

|d(Zi,Z
′
i)|

‖d(Zi,Z′i)‖ψα

)α)
≤ 2. Thus, taking logarithms yields the following inequality

E[R(A, S)−Rn(A, S)] ≤ (log 2)1/αγ‖d(Zi, Z
′
i)‖ψα = (log 2)1/αγ∆α(Z).

In the case of 0 < α ≤ 1,

E[d(Zi, Z
′
i)] ≤

∫ ∞
0

P(|d(Zi, Z
′
i)| > x)dx =

∫ ∞
0

P

(
e

(
|d(Zi,Z

′
i)|

‖d(Zi,Z′i)‖ψα

)α
> e

(
x

‖d(Zi,Z′i)‖ψα

)α)
dx

≤
∫ ∞

0

E[e
(
|d(Zi,Z

′
i)|

‖d(Zi,Z′i)‖ψα
)α

]

e
( x
‖d(Zi,Z′i)‖ψα

)α
dx ≤ 2

∫ ∞
0

e
−( x
‖d(Zi,Z′i)‖ψα

)α

dx

= 2‖d(Zi, Z
′
i)‖ψα

1

α

∫ ∞
0

e−uu
1
α−1du = 2‖d(Zi, Z

′
i)‖ψα

1

α
Γ(

1

α
) = 2‖d(Zi, Z

′
i)‖ψαΓ(

1

α
+ 1).

Thus, we get

E[R(A, S)−Rn(A, S)] ≤ 2Γ(
1

α
+ 1)γ‖d(Zi, Z

′
i)‖ψα = 2Γ(

1

α
+ 1)γ∆α(Z).

The proof is complete.

D. Proofs of Section 2.4
In this section, we provide proofs of results in Section 2.4.

We first introduce the following lemma which translates a moment bound into a high probability bound.
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Lemma D.1. Let Z be a random variable with

‖Z‖p ≤
√
pa+ p1/αb

for some a, b > 0 and for any p ≥ 2. Then for any δ ∈ (0, 1/e2) we have, with probability at least 1− δ,

|Z| ≤ e
(
a

√
log
(1

δ

)
+ b log1/α

(1

δ

))
,

where e is the base of the natural logarithm.

Proof of Lemma D.1. By Markov’s inequality for any δ ∈ (0, 1/e2),

P (|Z| > ‖Z‖pe
log( 1

δ
)

p ) ≤

 ‖Z‖p

‖Z‖pe
log( 1

δ
)

p

p

= δ.

Picking p = log( 1
δ ) ≥ 2, so that |Z| ≤ e

(
a

√
log
(

1
δ

)
+ b log1/α

(
1
δ

))
.

We then give the proof of Lemma 2.15.

Proof of Lemma 2.15. The proof follows the technique of (Bousquet et al., 2020). Suppose that n = 2k, otherwise, we can
add extra functions equal to zero, increasing the number of terms by at most two times. We use the notation [n] = {1, ..., n}.
Consider a sequence of partitions B0, ...,Bk with B0 = {{i} : i ∈ [n]}, Bk = {[n]}, and to get Bl from Bl+1 we split each
subset in Bl+1 into two equal parts. We have

B0 = {{1}, ..., {2k}},B1 = {{1, 2}, {3, 4}..., {2k − 1, 2k}},Bk = {{1, ..., 2k}}.

By construction, we have |Bl| = 2k−l and |B| = 2l for eachB ∈ Bl. For each i ∈ [n] and l = 0, ..., k, denote byBl(i) ∈ Bl
the only set from Bl that contains i. In particular, B0(i) = {i} and Bk(i) = [n].

For each i ∈ [n] and every l = 0, ..., k consider the random variables

gli = gli(Zi, Z[n]\Bl(i)) = E[gi|Zi, Z[n]\Bl(i)],

i.e. conditioned on Zi and all the variables that are not in the same set as Zi in the partition Bl. In particular, g0
i = gi and

gki = E[gi|Zi]. We can write a telescopic sum for each i ∈ [n],

gi − E[gi|Zi] =

k−1∑
l=0

gli − gl+1
i ,

and the total sum of interest satisfies by the triangle inequality∥∥∥∥∥
n∑
i=1

gi

∥∥∥∥∥
p

≤

∥∥∥∥∥
n∑
i=1

E[gi|Zi]

∥∥∥∥∥
p

+

k−1∑
l=0

∥∥∥∥∥
n∑
i=1

gli − gl+1
i

∥∥∥∥∥
p

.

Since E(E[gi|Zi]) = 0, by applying Lemma B.3 we have

• if 0 < α ≤ 1, let cα = 2
√

2((log 2)1/α + e3Γ1/2( 2
α + 1) + e33

2−α
3α supp≥2 p

−1
α Γ1/p( pα + 1)),∥∥∥∥∥

n∑
i=1

E[gi|Zi]

∥∥∥∥∥
p

≤ cα
(√

pnM + p1/αM
)

;
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• if α > 1, let 1/α∗ + 1/α = 1 and c′α = 8e+ 2(log 2)1/α,∥∥∥∥∥
n∑
i=1

E[gi|Zi]

∥∥∥∥∥
p

≤ c′α
(√

pnM + p1/αn
1
α∗M

)
.

Furthermore, observe that

gl+1
i (Zi, Z[n]\Bl+1(i)) = E[gli(Zi, Z[n]\Bl(i))|Zi, Z[n]\Bl+1(i)],

that is, the expectation is taken w.r.t. the variables Zj , j ∈ Bl+1(i)\Bl(i). It is also not hard to see that the function
gli preserves the differences property, just like the the function gi. Therefore, if we apply Theorem 2.1 conditioned on
Zi, Z[n]\Bl+1(i), we obtain a uniform bound

• if 0 < α ≤ 1, let cα = 2
√

2((log 2)1/α + e3Γ1/2( 2
α + 1) + e33

2−α
3α supp≥2 p

−1
α Γ1/p( pα + 1)),

‖gli − gl+1
i ‖p(Zi, Z[n]\Bl+1(i)) ≤ cα

(√
p2lβ + p1/αβ

)
;

• if α > 1, let 1/α∗ + 1/α = 1 and c′α = 8e+ 2(log 2)1/α,

‖gli − gl+1
i ‖p(Zi, Z[n]\Bl+1(i)) ≤ c′α

(√
p2lβ + p1/α(2l)

1
α∗ β

)
,

as there are 2l indices in Bl+1(i)\Bl(i). It follows from Lemma 2 of (Bousquet et al., 2020) that

• if 0 < α ≤ 1,

‖gli − gl+1
i ‖p ≤ ‖g

l
i − gl+1

i ‖p(Zi, Z[n]\Bl+1(i)) ≤ cα
(√

p2lβ + p1/αβ
)

;

• if α > 1,

‖gli − gl+1
i ‖p ≤ ‖g

l
i − gl+1

i ‖p(Zi, Z[n]\Bl+1(i)) ≤ c′α
(√

p2lβ + p1/α(2l)
1
α∗ β

)
.

Let us take a look at the sum
∑
i∈Bl g

l
i − g

l+1
i for Bl ∈ Bl. Since gli − g

l+1
i for i ∈ Bl depends only on Zi, Z[n]\Bl , the

terms are independent and zero mean conditioned on Z[n]\Bl . Applying Lemma A.4, we have for any p ≥ 2,∥∥∥∥∥∥
∑
i∈Bl

gli − gl+1
i

∥∥∥∥∥∥
p

p

(Z[n]\Bl) ≤ (3
√

2p2l)p
1

2l

∑
i∈Bl
‖gli − gl+1

i ‖
p
p(Z[n]\Bl).

Integrating with respect to (Z[n]\Bl) and using the bound of ‖gli − g
l+1
i ‖p, we have if 0 < α ≤ 1,∥∥∥∥∥∥

∑
i∈Bl

gli − gl+1
i

∥∥∥∥∥∥
p

≤ cα3
√

2p2l
(√

p2lβ + p1/αβ
)

;

while if α > 1, ∥∥∥∥∥∥
∑
i∈Bl

gli − gl+1
i

∥∥∥∥∥∥
p

≤ c′α3
√

2p2l
(√

p2lβ + p1/α(2l)
1
α∗ β

)
,

It is left to use the triangle inequality over all sets Bl ∈ Bl. We have

‖
∑
i∈[n]

gli − gl+1
i ‖p ≤

∑
Bl∈Bl

‖
∑
i∈Bl

gli − gl+1
i ‖p ≤ 2k−l × ‖

∑
i∈Bl

gli − gl+1
i ‖p,
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which means if 0 < α ≤ 1,

‖
∑
i∈[n]

gli − gl+1
i ‖p ≤ cα3

√
2p2l2k−l

(√
p2lβ + p1/αβ

)
;

while if α > 1,

‖
∑
i∈[n]

gli − gl+1
i ‖p ≤ c

′
α3
√

2p2l2k−l
(√

p2lβ + p1/α(2l)
1
α∗ β

)
.

Recall, that 2k < 2n due to the possible extension of the sample. If 0 < α ≤ 1,

k−1∑
l=0

‖
∑
i∈[n]

gli − gl+1
i ‖p ≤ cα3

√
2

(
k−1∑
l=0

p2nβ +

k−1∑
l=0

2k−
l
2 p1/α+1/2β

)

≤ cα3
√

2
(
p2nβdlog2 ne+ 2np1/α+1/2β

)
;

while if α > 1,

k−1∑
l=0

‖
∑
i∈[n]

gli − gl+1
i ‖p ≤ c

′
α3
√

2

(
k−1∑
l=0

2npβ +

k−1∑
l=0

2k−
l
2 + l

α∗ p1/α+1/2β

)

≤ c′α3
√

2

(
2npβdlog2 ne+

k−1∑
l=0

2k−
l
2 + l

α∗ p1/α+1/2β

)
≤ c′α3

√
2
(

2npβdlog2 ne+ 3× 2( 1
α∗+ 1

2 )kp1/α+1/2β
)

≤ c′α3
√

2
(

2npβdlog2 ne+ 3× (2n)( 1
α∗+ 1

2 )p1/α+1/2β
)
,

where we have used the fact
∑k−1
l=0 2k−

l
2 + l

α∗ ≤ 2k×3×2( 1
α∗−

1
2 )k. Plugging the above bound together we get if 0 < α ≤ 1,∥∥∥ n∑

i=1

gi(Z)
∥∥∥
p
≤ cα3

√
2
(
p2nβdlog2 ne+ 2np1/α+1/2β

)
+ cα

(√
pnM + p1/αM

)
;

while if α > 1,∥∥∥ n∑
i=1

gi(Z)
∥∥∥
p
≤ c′α3

√
2
(

2npβdlog2 ne+ 3× (2n)( 1
α∗+ 1

2 )p1/α+1/2β
)

+ c′α

(√
pnM + p1/αn

1
α∗M

)
,

The proof is complete.

We now give the proof of Theorem 2.17.

Proof of Theorem 2.17. Given any samples S = {Z1, ..., Zn} ∈ Zn and Si = {Z1, ..., Zi−1, Z
′
i, Zi+1, ..., Zn} ∈ Zn, let

us consider hi(S) := R(A, S)− `(AS , Zi), gi(S) = EZ′i [R(A, Si)− `(ASi , Zi)]. It is clear that

‖R(A, S)−Rn(A, S)‖p ≤
1

n

∥∥∥∥∥
n∑
i=1

hi(S)

∥∥∥∥∥
p

≤ 1

n

∥∥∥∥∥
n∑
i=1

gi(S)

∥∥∥∥∥
p

+

∥∥∥∥∥
n∑
i=1

hi(S)− gi(S)

∥∥∥∥∥
p

 .

We firset focus on ‖
∑n
i=1 gi(S)‖

p
. By definition it holds that EZi [gi(S)] = 0. Based on the triangle inequality we can show

that ∥∥ES\{Zi}[gi(S)]
∥∥
ψα
≤ ‖gi(S)‖ψα = ‖EZ′i [EZ′′i [`(ASi , Z ′′i )]− `(ASi , Zi)]‖ψα
= ‖EZ′i [EZ′′i [`(ASi , Z ′′i )− `(ASi , Zi)]]‖ψα ≤ γ‖d(Z ′′i , Zi)‖ψα = γ∆α(Z),
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where in the last inequality we have used the total Lipschitz stability assumption on the algorithm A. Next we further show
that gi has a difference property with respect to all variables in S except Zi. Indeed, for each j 6= i it can be verified that

gi(S)− gi(Sj) ≤ EZ′i [R(A, Si)−R(A, (Si)j)] + EZ′i [`(A(Si)j , Zi)− `(ASi , Zi)]
= EZ′i [EZ [`(ASi , Z)− `(A(Si)j , Z)] + EZ′i [`(A(Si)j , Zi)− `(ASi , Zi)]
≤ 2γd(Zj , Z

′
j),

where in the last inequality we have used the total Lipschitz stability assumption on the algorithm A, and it is clear that
‖2γd(Zj , Z

′
j)‖ψα ≤ 2γ∆α(Z). Therefore, {gi} satisfy the conditions of Lemma 2.15 and thus

• if 0 < α ≤ 1,∥∥∥ n∑
i=1

gi(S)
∥∥∥
p
≤ cα6

√
2
(
p2nγ∆α(Z)dlog2 ne+ 2np1/α+1/2γ∆α(Z)

)
+ 2cα

(√
pnγ∆α(Z) + p1/αγ∆α(Z)

)
;

• if α > 1,∥∥∥ n∑
i=1

gi(S)
∥∥∥
p
≤ c′α6

√
2γ∆α(Z)

(
2npdlog2 ne+ 3× (2n)( 1

α∗+ 1
2 )p1/α+1/2

)
+ 2c′αγ∆α(Z)

(√
pn+ p1/αn

1
α∗
)
.

Then, we focus on ‖
∑n
i=1 hi(S)− gi(S)‖

p
. It can be verified that∥∥∥∥∥

n∑
i=1

hi(S)− gi(S)

∥∥∥∥∥
p

≤

∥∥∥∥∥
n∑
i=1

EZ′i [R(A, S)−R(A, Si)]

∥∥∥∥∥
p

+

∥∥∥∥∥
n∑
i=1

EZ′i [`(AS , Zi)− `(ASi , Zi)]

∥∥∥∥∥
p

= ‖
n∑
i=1

EZ′i [EZ [`(AS , Z)− `(ASi , Z)]‖p + ‖
n∑
i=1

EZ′i [`(AS , Zi)− `(ASi , Zi)]‖p

≤ ‖
n∑
i=1

γd(Zi, Z
′
i)‖p + ‖

n∑
i=1

γd(Zi, Z
′
i)‖p ≤ 2γ

n∑
i=1

‖d(Zi, Z
′
i)‖p,

and in the second inequality we have used the total Lipschitz stability assumption. By Markov’s inequality, we obtain

E[|d(Zi, Z
′
i)|p] ≤

∫ ∞
0

P (|d(Zi, Z
′
i)|p > t)dt ≤

∫ ∞
0

P (|d(Zi, Z
′
i)| > t1/p)dt

≤
∫ ∞

0

E[e(|d(Zi,Z
′
i)|/‖d(Zj ,Z

′
j)‖ψα )α ]

e(t1/p/‖d(Zj ,Z′j)‖ψα )α
dt ≤ 2

∫ ∞
0

e−(t1/p/‖d(Zj ,Z
′
j)‖ψα )αdt = 2

∫ ∞
0

e−(t/‖d(Zj ,Z
′
j)‖

p
ψα

)α/pdt

= 2‖d(Zj , Z
′
j)‖

p
ψα

p

α

∫ ∞
0

e−uu
p
α−1du = 2‖d(Zj , Z

′
j)‖

p
ψα

p

α
Γ(
p

α
) = 2‖d(Zj , Z

′
j)‖

p
ψα

Γ(
p

α
+ 1).

Taking the k-th root of the expression above yields

n∑
i=1

‖d(Zi, Z
′
i)‖p ≤ n∆α(Z)(2Γ(

p

α
+ 1))

1
p .

Plugging these bounds together, we get

• if 0 < α ≤ 1,

‖R(A, S)−Rn(A, S)‖p

≤cα6
√

2γ∆α(Z)
(
p2dlog2 ne+ 2p1/α+1/2

)
+

2cα
n
γ∆α(Z)

(√
pn+ p1/α

)
+ 2γ∆α(Z)(2Γ(

p

α
+ 1))

1
p ;
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• if α > 1,

‖R(A, S)−Rn(A, S)‖p ≤ c′α6
√

2γ∆α(Z)

(
2pdlog2 ne+ 3× 2( 1

α∗+ 1
2 ) 1

n
1
2−

1
α∗
p1/α+1/2

)
+

2c′α
n
γ∆α(Z)

(√
pn+ p1/αn

1
α∗
)

+ 2γ∆α(Z)(2Γ(
p

α
+ 1))

1
p .

By Lemma D.1, picking p = log(1
δ ) we have that for any δ ∈ (0, 1/e2), with probability at least 1− δ

• if 0 < α ≤ 1,

|R(A, S)−Rn(A, S)| ≤ cα6
√

2γ∆α(Z)

(
2dlog2 ne log(

1

δ
) + 2 log1/α+1/2(

1

δ
)

)
+

2cα
n
γ∆α(Z)

(√
n log

1
2 (

1

δ
) + log1/α(

1

δ
)

)
+ 2γ∆α(Z)(2Γ(log(

1

δ
)

1

α
+ 1))

1

log( 1
δ
) ;

• if α > 1,

|R(A, S)−Rn(A, S)| ≤ c′α6
√

2γ∆α(Z)

(
2dlog2 ne log(

1

δ
) + 3× 2( 1

α∗+ 1
2 ) 1

n
1
2−

1
α∗

log1/α+1/2(
1

δ
)

)
+

2c′α
n
γ∆α(Z)

(√
n log

1
2 (

1

δ
) + log1/α(

1

δ
)n

1
α∗

)
+ 2γ∆α(Z)(2Γ(log(

1

δ
)

1

α
+ 1))

1

log( 1
δ
) .

The proof is complete.

E. Proofs of Section 2.6
To prove Theorem 2.20, we introduce the following technical lemma.
Lemma E.1. Let X = {X1, ..., Xn} be a set of independent subweibull random variables with values in a Banach space
(X , ‖ ·‖) such that ‖‖Xi‖‖ψα ≤ ∞. Define Xi = {X1, ..., Xi−1, X

′
i, Xi+1, ..., Xn}, where (X ′1, ..., X

′
n) is an independent

copy of (X1, ...., Xn). Then for any 0 < δ < 1/e2, with probability at least 1− δ,

1.) if 0 < α ≤ 1, let cα = 2
√

2((log 2)1/α + e3Γ1/2( 2
α + 1) + e33

2−α
3α supp≥2 p

−1
α Γ1/p( pα + 1)), we have∥∥∥∥∥

n∑
i=1

(Xi − EX ′1)

∥∥∥∥∥− E

∥∥∥∥∥
n∑
i=1

(Xi − EX ′i)

∥∥∥∥∥ ≤ 2cα

√log(
1

δ
)

(
n∑
i=1

‖‖Xi‖‖2ψα

) 1
2

+ log1/α(
1

δ
) max

1≤i≤n
‖‖Xi‖‖ψα

 ;

2.) if α ≥ 1, let 1/α∗ + 1/α = 1 and c′α = 8e+ 2(log 2)1/α, we have∥∥∥∥∥
n∑
i=1

(Xi − EX ′1)

∥∥∥∥∥− E

∥∥∥∥∥
n∑
i=1

(Xi − EX ′i)

∥∥∥∥∥ ≤ 2c′α

√log(
1

δ
)

(
n∑
i=1

‖‖Xi‖‖2ψα

) 1
2

+ log1/α(
1

δ
)‖(‖‖X‖‖ψα)‖α∗

 .

Proof of Lemma E.1. We look at the function f(x) = ‖
∑n
i=1(xi − EX ′1)‖. Then we have

|f(X)− f(Xi)| =

∣∣∣∣∣∣
∥∥∥∥∥∥
∑
j 6=i

Xj +Xi − nEX ′1

∥∥∥∥∥∥−
∥∥∥∥∥∥
∑
j 6=i

Xj +X ′i − nEX ′1

∥∥∥∥∥∥
∣∣∣∣∣∣ ≤ ‖Xi −X ′i‖ .

Thus, we have ‖f(X)− f(Xi)‖ψα ≤ ‖‖Xi −X ′i‖ ‖ψα ≤ 2‖‖Xi‖‖ψα .

Plugging these bounds into Theorem 2.2, if 0 < α ≤ 1∥∥∥∥∥
n∑
i=1

(Xi − EX ′1)

∥∥∥∥∥− E

∥∥∥∥∥
n∑
i=1

(Xi − EX ′i)

∥∥∥∥∥ ≤ 2cα

√log(
1

δ
)

(
n∑
i=1

‖‖Xi‖‖2ψα

) 1
2

+ log1/α(
1

δ
) max

1≤i≤n
‖‖Xi‖‖ψα

 ;
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if α ≥ 1∥∥∥∥∥
n∑
i=1

(Xi − EX ′1)

∥∥∥∥∥− E

∥∥∥∥∥
n∑
i=1

(Xi − EX ′i)

∥∥∥∥∥ ≤ 2c′α

√log(
1

δ
)

(
n∑
i=1

‖‖Xi‖‖2ψα

) 1
2

+ log1/α(
1

δ
)‖(‖‖X‖‖ψα)‖α∗

 ,

where (‖‖X‖‖ψα) = (‖‖X1‖‖ψα , ..., ‖‖Xn‖‖ψα) ∈ Rn. The proof is complete.

Proof of Theorem 2.20. The vector space

B =

{
p : F → R : sup

f∈F
|p(f)| <∞

}

becomes a normed space with norm ‖p‖B = supf∈F |p(f)|. For each Xi define X̄i ∈ B by X̄i(f) =
1
n (f(Xi)− E[f(X ′i)]). Then the X̄i are zero mean random variable in B and

sup
f∈F

1

n

n∑
i=1

f(Xi)− E[f(X ′i)] =

∥∥∥∥∥
n∑
i=1

X̄i

∥∥∥∥∥
B

.

By Jensen’s inequality for p ≥ 1, we have

‖‖X̄i‖B‖p =
1

n

∥∥∥∥∥sup
f

(E[f(Xi)− f(X ′i)|X])

∥∥∥∥∥
p

≤ L

n
‖E[‖Xi −X ′i‖|X]‖p =

L

n
(E[|E[‖Xi −X ′i‖|X]|p])1/p

≤L
n

(E[E[‖Xi −X ′i‖|X]p])1/p =
L

n
(E[E[(‖Xi −X ′i‖p)1/p|X]p])1/p =

L

n
(E[E[‖Xi −X ′i‖p|X]])1/p

=
L

n
(E[‖Xi −X ′i‖p])1/p =

L

n
‖‖Xi −X ′i‖‖p ≤

2L

n
‖‖Xi‖‖p ,

where the first inequality uses the Lipschitz condition. Using Theorem 2.1 in (Vladimirova et al., 2020), we also have
‖‖X̄i‖B‖ψα ≤ 2L

n ‖‖Xi‖‖ψα .

Thus, by Theorem E.1, we have if 0 < α ≤ 1

sup
f∈F

1

n

n∑
i=1

f(Xi)− E[f(X ′i)]− E

[
sup
f∈F

1

n

n∑
i=1

f(Xi)− E[f(X ′i)]

]

=

∥∥∥∥∥
n∑
i=1

X̄i

∥∥∥∥∥
B

− E

∥∥∥∥∥
n∑
i=1

X̄i

∥∥∥∥∥
B

≤ 4L

n
cα

√log(
1

δ
)

(
n∑
i=1

‖‖Xi‖‖2ψα

) 1
2

+ log1/α(
1

δ
) max

1≤i≤n
‖‖Xi‖‖ψα

 ;

if α ≥ 1

sup
f∈F

1

n

n∑
i=1

f(Xi)− E[f(X ′i)]− E

[
sup
f∈F

1

n

n∑
i=1

f(Xi)− E[f(X ′i)]

]

=

∥∥∥∥∥
n∑
i=1

X̄i

∥∥∥∥∥
B

− E

∥∥∥∥∥
n∑
i=1

X̄i

∥∥∥∥∥
B

≤ 4L

n
c′α

√log(
1

δ
)

(
n∑
i=1

‖‖Xi‖‖2ψα

) 1
2

+ log1/α(
1

δ
)‖(‖‖X‖‖ψα)‖α∗

 ,

where (‖‖X‖‖ψα) = (‖‖X1‖‖ψα , ..., ‖‖Xn‖‖ψα) ∈ Rn. The proof is complete.
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