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ABSTRACT

Today, there are several effective deep learning models for predicting the 3D struc-
ture of proteins. Building on their success, models have been developed for pre-
dicting the 3D structure of non-coding RNAs. Unfortunately, these models are
much less accurate than their protein counterparts. In this paper, we highlight dif-
ferences between protein and RNA structure, and demonstrate methods for deep
learning targeted at addressing those differences, with the aim of prompting dis-
cussion on these topics. We present an RNA-specific pipeline for generating struc-
tural Multiple Sequence Alignments (MSAs). Derived from the structural align-
ments, we introduce engineered evolutionary features that strongly inform RNA
structure. Further, from the crystal structure, we derive structural features describ-
ing RNA base pairing. These evolutionary and structural features can be used in
loss functions at different stages of training. Finally, we discuss different cropping
strategies informed by RNA structure.

1 INTRODUCTION

The prediction of 3D protein structure was revolutionized via deep learning by AlphaFold in
2018 (Senior et al., 2020). Since then, the number of tools that apply deep learning to broader
problems in structural biology has skyrocketed. It is no surprise that researchers immediately be-
gan adapting the lessons from AlphaFold toward non-coding ribonucleic acid (RNA) 3D structure
prediction (Chen et al., 2020; Wang et al., 2021; Sato et al., 2021; Fu et al., 2021; Pearce et al.,
2022; Shen et al., 2022; Baek et al., 2022; Feng et al., 2022; Li et al., 2022; Abramson et al., 2024).
The core problems are essentially analogous: take a 1D polymer sequence as input, and predict the
3D conformation of the molecule. For both proteins and structured RNAs, the 3D structure is a
consequence of the 1D polymer sequence, and the 3D structure has strong ties to the molecule’s
function.

With increasing interest in 3D prediction of the RNA structure, there was a need for more robust
tools to benchmark performance. The blind-assesment competition CASP15 (Kryshtafovych et al.,
2023) joined RNA-Puzzles (Cruz et al., 2012; Miao et al., 2015; 2017; 2020) in 2022 to include
RNA-only targets in the competition. These assessments of novel RNA structures indicates that
to this day, deep-learning methods have yet to catch up to other existing traditional methods for
RNA structure prediction, as reported by the latest CASP16 and RNA-Puzzle (Miao et al., 2020)
competitions.

The amount of RNA structural data available to perform deep-learning RNA 3D structure prediction
pales in comparison to that available for protein structure prediction (Szikszai et al., 2024). Meth-
ods like RNA3DB (Szikszai et al., 2024) have been created recently to exhaustively characterize
structural homologies in existing RNA PDB chains, and to provide flexible tools to avoid structural
homology overlap when designing training and testing sets for robust benchmarking.

As we learn from the successes in protein structure prediction, several additional considerations have
to be taken into account when creating deep-learning methods for RNA structure prediction, owing
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Figure 1: Overview of RNA structural inputs for training deep-learning methods. (a) The
structural alignments are generated by structural homology search to the Rfam database (Ontiveros-
Palacios et al., 2024), with the Infernal (Nawrocki & Eddy, 2013) method. We build one structural
alignment for each Rfam family with significant homology to the query (E-value < 1e-5). See
Appendix section B for details. From each structural alignment, we extract evolutionary features
(both observed and expected covariation) using R-scape (Rivas et al., 2017; 2020). (b) From the
query PDB file, we extract structural properties related to the base pairing geometry (including all
possible base-pair types) using RNAview (Yang et al., 2003).

to the distinct properties of RNA compared to proteins. We investigate some of these considerations
in detail in this manuscript. Our contribution is a method to generate RNA structural alignments,
and evolutionary and structural features that can be used to inform the training of RNA 3D structure
prediction methods. See Figure 1.

2 RFAM-BASED STRUCTURAL MULTIPLE SEQUENCE ALIGNMENTS

The idea behind using multiple sequence alignments (MSAs) as the input to AlphaFold-like deep
learning models is the expectation that evolutionary information informs structure. This is true for
both proteins and RNAs. However, with RNAs, the degree to which alignments inform structure
varies highly by type. Structured RNAs, such as tRNA and rRNA, rely on specific conformations to
perform their function. As a result, their structure is highly conserved. This conservation is easily
detectable in their MSAs. Base pairing in particular can be inferred from alignments by looking at
positive and negative evolutionary information (Rivas, 2020). On the other hand, some RNAs, like
mRNAs, rely primarily on their conserved codon organization to determine their function. These
mRNAs still form base pairs and fold into some 3D conformation, but they are generally not con-
served (even though certain folded configurations may be more stable).

Since most interest in RNA 3D structure is focused on structured RNAs, alignments should be made
with evolutionary conservation of structure in mind, when possible. However, the methods used by
current deep learning models either assume all RNAs are structural, or do not incorporate structural
conservation into their alignments. There are, broadly speaking, two pipelines representative of the
approaches used by all existing methods: the rMSA (Zhang et al., 2023) pipeline that fits alignments
to proposed structures, or all structure-agnostic HMMER-based (Eddy, 2008; 2009; 2011) pipelines
as used by AlphaFold 3.

The pipeline used by AlphaFold 3 relies on a large database of clustered representative RNA se-
quences from Rfam (Ontiveros-Palacios et al., 2024), RNAcentral (RNAcentral Consortium, 2021),
and Nucleotide Collection (Sayers et al., 2023). HMMER is then used to find homologous se-
quences in this database. HMMER uses profile hidden Markov models to search sequence databases
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for homologues using sequence only. It does not consider the secondary structure of RNAs in the
homology search.

It is well established that alignments for structural RNAs can be improved by using both sequence
and secondary structure (Freyhult et al., 2007; Nawrocki, 2009), using structural homology methods
such as Infernal (Nawrocki & Eddy, 2013). Infernal works by constructing profile stochastic context-
free models (covariance models or CMs) of RNA families, which are trained from a family-specific
MSA along with a consensus secondary structure.

The rMSA pipeline, used by RoseTTAFoldNA (Baek et al., 2023) and others (Wang et al., 2023),
starts out with an initial HMMER alignment to first identify homologous sequences. Then it creates
an Infernal covariance model using a predicted RNA secondary structure. This Infernal covariance
model is then used for homology searches to arrive at a final alignment. This pipeline does consider
secondary structure, but a relatively unreliable one, since the consensus is found through thermo-
dynamic folding (Lorenz et al., 2016), and not tested for evolutionary conservation of the structure.
Importantly, this approach assumes that the query sequence conserves its secondary structure, which
may not be the case (e.g. mRNAs or synthetic constructs). Additionally, Infernal is used with an
E-value cut-off of 10, which is prone to favor the inclusion of false positive homologues. The arti-
facts created by the high E-value cut-off and the assumption of conserved secondary structure was
previously documented by Gao et al. (2022).

For known structural RNAs used in training, we propose to take advantage of the Rfam
database (Ontiveros-Palacios et al., 2024). Rfam compiles a database of Infernal covariance mod-
els which classifies structural RNAs into families. Each family has a seed alignment, the MSA
used to build the covariance model, along with a carefully created consensus secondary structure.
Our method described in Figure 1a starts by finding Rfam families that show statistical significant
homology to the query RNA sequence. For each homologous RNA family, a structural alignment
including the query and sequences that belong to the Rfam family can be constructed. For the PDB
database, as reported by RNA3DB (2024-12-04-full-release)(Szikszai et al., 2024), of the 1,869
RNA representative chains (clustered at 99% identity), 67% (1,198) have homology to at least one
Rfam family with an E-value cutoff of 1e−5. RNA chains without homology to Rfam usually fall in
the category of synthetic sequences, mRNAs or small fragments lacking structure.

From our structural alignments, we can directly feed covariation evolutionary information into the
model in order to provide a signal about secondary and tertiary structure. See Figure 1a and Ap-
pendix Section A for a discussion.

Figure 2 presents a comparison of the performance of the alignment methods on a 5S rRNA struc-
tural RNA chain and a Purine riboswitch aptamer. Even though the AlphaFold-like alignment in-
cludes many more sequences, the alignment is less accurate identifying the positions that are base
paired. Similar results are presented in the supplement for two other structural RNAs. Other exam-
ples are given in Appendix Section B.

These examples show the power of using Rfam’s covariance models, and building MSAs using
Infernal with appropriate E-value cutoffs. In cases where no Rfam CM produces a significant hit,
it may be difficult to determine whether the RNA is structural or not. As a result, alignments made
with HMMER (as done by AlphaFold 3) will be the most adequate and informative without making
assumptions about a secondary structure that could introduce circular analysis artifacts (Gao et al.,
2022).

3 LOSS FUNCTIONS ASSOCIATED TO RNA BASE PAIRING

RNA folding is hierarchical (Tinoco & Bustamante, 1999) meaning that the secondary structure (that
is, the collection of base pairs) is more stable and forms faster than the 3D structure (Banerjee et al.,
1993; Mathews et al., 1997; Onoa et al., 2003). The RNA secondary structure heavily informs the
3D (Shapiro et al., 2007; Miao et al., 2020). As a result, it is often argued that for a model to predict
3D correctly, it must correctly predict the 2D structure first (Kerpedjiev et al., 2015). However, there
is little discussion from the RNA 3D structure prediction community about loss functions that target
RNA base pairing specifically.
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Figure 2: Comparison of alignment methods. For a 5S rRNA PDB chain and a Purine riboswitch
aptamer, we show: (a) A HMMER alignment made against Rfam, RNAcentral and the nucleotide
databases. (b) A structural alignment created with our Rfam-based method. (c) A curated structural
alignment for the RNA family from Rfam. We show the evolutionary information present in each
alignment as the significantly covarying base pairs (depicted in green) found using R-scape. Covary-
ing base pairs are given in the context of a CaCoFold (Rivas, 2020) consensus secondary structure
that incorporates all significantly covarying pairs found in the alignment.

AlphaFold-like models distinguish two different kinds of losses. Structural losses rely on the entire
3D structure. These are usually end-to-end, and are evaluated at the end of the structure module or
the diffusion module in the case of AlphaFold 3, e.g. Frame Aligned Point Error (FAPE) (Jumper
et al., 2021). Also, there are auxiliary losses that apply to linear projections from the internal pair
representation, usually just before the structure module and after the Pairformer or Evoformer, e.g.
distogram loss (Jumper et al., 2021). Here we propose two loss functions, one structural and one
auxiliary to inform specifically about RNA base pairing.

We propose a loss termed pairtogram loss–a play on AlphaFold’s distograms1. A pairtogram de-
scribes the base pairing geometry and can be used as an auxiliary loss. To construct a pairtogram, we
extract an augmented Leontis-Westhof base pair geometry classification matrix (Leontis & Westhof,
2001) for all Nres ×Nres pairs. This classification provides 12 basic geometric types, distinguishing
between Watson-Crick, Hoogsteen, or Sugar-edge interacting edges, and cis or trans bond orienta-
tions. For instance, canonical RNA base pairs A:U, G:C are cis interactions between the Watson-
Crick edges of both residues. The standard annotation is augmented with whether the pair is stacked
(but not any of the defined base pairs), or a contact (defined as residues at a distance smaller than 8
Å), or neither. See Appendix section C for details on how the pairtogram loss is calculated.

Our RNA structural loss considers the dihedral angle between the planes of the two nucleotide
bases. Pyrimidine bases are completely planar, while the base in purines is nearly planar (but can
be functionally treated as such) (Callahan, 2011). As a result, we can assign a plane corresponding
to a base via three atoms in all residues. In principle, any three atoms can be used since the bases
are largely planar, but we consider two planes for both pyrimidines and purines for redundancy. The
planes for purines are defined by C1′-N9-C4 and C8-N9-C4, while the planes for pyrimidines are
defined by C1′-N1-C2 and C6-N1-C2 (see Figure 3). These planes are then used to calculate the
dihedral angles between bases. Residues forming Watson-Crick base pairs will have angles close to
180◦. Moreover, residues in one side of a canonical helix will also have angles close to 180◦ with
residues on the other side of the helix. On the other hand, residues in one side of the helix will have
very small base angles amongst each other.

1Distance histograms, an output of discretised pairwise distances between all atoms.
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Figure 3: Between-Base Angle Planes. An example of how the planes are constructed for a purine
(left, adenine) and a pyrimidine (right, uracil). The first planes are shown in blue, while the second
planes are shown in orange. The example base pair is from a tRNA (PDB: 1ehz_A) (Shi & Moore,
2000) and drawn with Mol* (Sehnal et al., 2021).

Let the plane for a residue i be defined by three atom coordinates (AC1’/C8/C6,AN9/N1,AC4/C2) where
A ∈ R3. Then, we calculate the normal of the plane,

Ni = (AN9/N1 −AC1’/C8/C6)× (AC4/C2 −AC1’/C8/C6). (1)

For each pair of planes i and j, we calculate the sine and cosine of the dihedral angle,

sin θij =
∥Ni ×Nj∥
∥Ni∥∥Nj∥

, cos θij =
Ni ·Nj

∥Ni∥∥Nj∥
. (2)

Then we define our loss, Between Base Angle Error (BBAE) as,

LBBAE(θ,θ
TRUE) =

Nres∑
i<j

[(sin θij − sin θTRUE
ij )2 + (cos θij − cos θTRUE

ij )2]†, (3)

where θ are the dihedral angles for the predicted structure, and θTRUE are the dihedral angles for the
ground-truth structure.

4 RESIDUE CROPPING

A key consideration for deep learning models is memory. Recently, this issue has received a lot of
attention, since large-scale state-of-the-art models (such as large language models) may have hun-
dreds of billions of parameters (Kaplan et al., 2020; Grattafiori et al., 2024), which must be loaded
into memory during both inference and training. In the case of 3D structure prediction models, the
number of parameters is much more manageable (on the order of around 100M parameters for Al-
phaFold 2 (Jumper et al., 2021), for example), but the memory consumption is still relatively high,
and can scale cubically or quadratically with sequence length (Vaswani et al., 2017; Senior et al.,
2020; Jumper et al., 2021). As a result, deep learning models for 3D structure prediction often have
to crop the sequences to shorter sub-sequences during training and process these crops one at a time.
This is commonly referred to as residue cropping.

Initially, the AlphaFold 1 convolutional neural network (CNN) produced crops of length 64 in order
to generate 64 × 64 distograms (Senior et al., 2020). This cropping strategy is easy to motivate for
proteins: existing literature has shown that protein contact prediction only needs a limited context
window (Jones & Kandathil, 2018; Senior et al., 2020). Unfortunately, this is not the case for
RNAs. Some structural RNA families, such as SSU and LSU rRNA subunits, contain long-range
base pairs that are more than 500 residues apart, and are difficult to predict for traditional dynamic
programming algorithms (Huang et al., 2019).

In 2021, AlphaFold 2 moved from a CNN-based architecture to a transformer model, which requires
O(n3) memory for a sequence of length n. This memory requirement comes from triangular self-
attention. As a result, AlphaFold 2 takes highly restrictive crops of 256 residues during the initial
training phase and crops of 384 residues during fine-tuning. The starting position of these crops is
randomly sampled from U{1, Nres − crop_size + 1} where Nres is the length of the sequence.

†Note that (sin θij − sin θTRUE
ij )2 + (cos θij − cos θTRUE

ij )2 = 2− 2 cos(θij − θTRUE
ij ).
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These crops are contiguous in sequence, so that given a starting position i, the window contains
residues [i, i+ crop_size− 1].

While this strategy works well for proteins, since they only need small context windows, it is sub-
optimal at best for RNAs. AlphaFold 2 contiguous crops break RNA base pairs, and include only
one half of the RNA canonical helices that are the foundation of any RNA 3D structure (Figure
4a). Despite this, some methods for RNA 3D structure prediction, such as DRfold (Li et al., 2022)
use continuous cropping for training. Consequently, DRfold also restricts their test set to RNAs
with lengths between 14 and 392 nucleotides (Li et al., 2022), likely masking the performance
degradation of their cropping strategy.

When DeepMind debuted AlphaFold-Multimer for protein complex prediction in 2022, they intro-
duced spatial crops where residues are selected by their spatial distance in the 3D structure. For
these spatial crops, a starting position is sampled from U{1, Nres}. A reference atom is chosen
(in the case of AlphaFold-Multimer Cα atoms), from which all distances are measured. Then, the
crop_size nearest residues, measured by Euclidean distance to the reference atoms, are taken
as the crop (Figure 4b). In AlphaFold-Multimer, spatial crops are chosen in a 50:50 ratio along
with contiguous crops with a crop_size of 384. Although only used by AlphaFold-Multimer for
multimer interface residues, the concept can be easily adapted to monomers.

(a) Contiguous (b) Spatial (c) Graph-based

Figure 4: Different cropping strategies. Example for a 30S rRNA (PDB: 5no2_A) (López-Alonso
et al., 2017). The red regions indicate the cropped sequence. The starting position is 1,100 with
crop_size = 384, with Watson-Crick base pairs extracted using RNApdbee 2.0 (Zok et al.,
2018) and RNAview (Leontis & Westhof, 2001). The visualisations were created with Mol* (Sehnal
et al., 2021).

Beyond spatial crops, RoseTTAFoldNA (Baek et al., 2023) also developed an alternate strategy for
cropping nucleic acid–protein complexes and RNA monomers to explicitly avoid breaking base pairs
and to pick context windows better suited to preserve RNA canonical helices composed of stacked
Watson-Crick base pairs (Figure 4c). For RNA monomers, RoseTTAFoldNA builds a weighted
undirected graph of the sequence where sequential residues have edges with a weight of one, and
Watson–Crick base pairs have a weight of zero. As before, a random starting position is sampled
from U{1, Nres}, and minimum-weight graph traversal is used to find the nearest crop_size =
256 residues based on the graph-distance.

We suggest a combined method using contiguous cropping together with RoseTTAFoldNA’s inter-
action graph-based and AlphaFold 3 spatial crops. The ratios of the different cropping categories
can be customized for the different training sets and different environments, with the goal of balanc-
ing time and performance with structure prediction accuracy.

5 SUMMARY

The prediction of RNA 3D structure from sequence by deep learning methods is challenged by
the small amount of structural data existing to train the models in comparison to proteins. This
manuscript aims at lowering the impact of such a fundamental problem by making sure that the in-
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formation obtained from the existing inputs extracts the maximal amount of structural RNA specific
properties, both structural and at the level of RNA base pairing.

We have presented structural alignments for PDB RNA chains that capture significantly more pairing
information than other agnostic homology methods. We have introduced losses capturing RNA base
pairing information, including non-canonical base pairs, and also structural losses that capture the
stacked nature of the 3D helices formed by the RNA canonical base pairs. Finally, we have discussed
base pairing-aware cropping strategies. By introducing these topics in this manuscript, we hope to
encourage further research and discussion on RNA-specific models in the field of RNA 3D structure
prediction.
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A STRUCTURAL EVOLUTIONARY FEATURES

As discussed in Section 2, the purpose of feeding MSAs into deep learning structure prediction
pipelines is to provide evolutionary context about the residues. In traditional RNA structure pre-
diction pipelines, MSAs can allow the model to identify covariation resulting from the presence of
conserved RNA structure. For structured RNAs, the covariation derived from their alignments has
been shown to be highly informative towards both the secondary and tertiary structures (Rivas et al.,
2017; Rivas, 2020; Rivas et al., 2020; Rivas, 2023; Karan & Rivas, 2024).

Here we describe a method for how these features can be used by an AlphaFold-like architecture.
Using the software R-scape (Rivas et al., 2017; 2020; Rivas, 2020), for any pair of positions, we can
compute both the statistically significant covariation above phylogenetic expectation or observed
covariation (in the form of an expected E-value), as well as the expected covariation (or power)
given the number of total substitutions in the pair. Both E-value and power are binned into 8 bins,
and E-value is clamped to the range [0, 10.0]. The feature tensor produced is of shape [Nres, Nres, 16].
This is then linearly projected to the pair representation channel dimension cz , and added to the input
of, for example, the main transformer block. This method also allows for calculating the E-value
and power from multiple MSAs by computing the minimum, mean, and maximum across the MSAs,
and producing a tensor of shape [Nres, Nres, 16× 3].

Under ideal circumstances, it may seem unnecessary to explicitly feed in these features. We may
expect that since deep learning is highly effective at representation learning, i.e. the ability to learn
the useful representations from the raw data, we can just directly input the raw alignments and the
network can learn these features implicitly as part of its internal representation. Currently we have
no evidence to conclusively show whether inputting these features directly improves performance,
however, there are two other possible motivations for explicitly calculating these.

First, these evolutionary maps provide an efficient way of embedding covariation information from
a high-dimensional MSA in a way that is independent of the MSA dimensionality. AlphaFold 2’s
Evoformer memory cost is O(N2

seq × Nres), where Nseq is the number of sequences in the align-
ment3. To address this, the model reduced the depth of the alignments using MSA clustering, where
a relatively small number of sequences (Nclust = 128 during the initial training phase, Nclust = 512
during fine-tuning4) cluster centres are picked. Then the remaining sequences in the MSA are as-
signed to their closest cluster by Hamming distance, and a number of statistics (e.g. distribution of
amino acids) are computed for the cluster. Our proposed evolutionary features avoid the effect of
any dimensionality reduction.

Second, while we currently suggest using these features as inputs, they may also be useful as aux-
iliary losses. It would be easy to create an auxiliary head that linearly projects the internal repre-
sentation into the desired dimension (either [Nres, Nres, 16] or [Nres, Nres, 16×3]), and calculates the
averaged cross-entropy loss as done for distograms by AlphaFold 2. We further suggest that these
features may also be a useful auxiliary head for other models such as RNA language models like
RiNALMo (Penić et al., 2024).

B STRUCTURAL ALIGNMENTS

For our Rfam-based MSAs, each family-specific alignment includes the query sequence, and up to
256 seed sequences from the Rfam family, or up to 512 full sequences if there are fewer than 256
seed sequences in the family.

In Figure 5, we describe two other examples of structural RNAs and the comparison of our
Rfam/Infernal based structural alignments and the structure-agnostic alignments used by AlphaFold
3. For the two selected PDB chains: 5ddp_A (a glutamine riboswitch aptamer) (Ren et al., 2015)
and 2qus_A (a Hammerhead_3 ribozyme) (Chi et al., 2008), we observe that Infernal is able to find
multiple homologs in the Rfam database, and produces a structural alignment of quality comparable
to that of the Rfam seed. On the other hand, a structure-agnostic search in the same database renders

3This is a simplification from the original AlphaFold 2 paper. We omit templates from our explanations.
4This is a simplification. Nseq = Nclust +Ntempl.
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few homologs and very sequence-conserved alignments that offer no evolutionary information about
the secondary structures.

(a) AlphaFold-style (c) Rfam seed (RF01739)
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Figure 5: Comparison of alignment methods. (a) The AlphaFold 3-like alignments were cre-
ated in-house using the following database: Nucleotide collection (nt) 112,177,963 sequences;
2,688,129,930,104 total bases (Feb 2, 2025 4:42 AM); BLASTDB Version: 5; RNAcentral Re-
lease 24, 07/03/2024. (b) Our structural alignments were created using Rfam v15.0, and Infernal v
1.1.4. (c) We compare to the Rfam seed alignment for the RNA family to which the queries belong.
Evolutionary conserved base pairs are depicted in green. For other details, see caption of Figure 2.

C PAIRTOGRAM LOSS DETAILS

Pairtogram data is extracted from the 3D structures using R-scape (Rivas et al., 2017; 2020; Rivas,
2020), which includes a modified version of the software RNAView (Leontis & Westhof, 2001).
The final pairtogram matrix has 14 total dimensions for each pair (see Table 1 and Figure 1b for
a breakdown of the features). We treat these 14 dimensions as four separate one-hot vectors, and
calculate the average cross-entropy loss across the four features between the ground-truth and a
linear projection from the pair representation.

Description Values Dimension
5′ interacting edge Watson-Crick, Hoogsteen, Sugar-Edge, unpaired 4
3′ interacting edge 4
Bond orientation cis, trans, unpaired 3
Stacked/contact stacked, contact, neither 3

Table 1: Structural features used in the pairtogram loss. The final tensor has size [Nres, Nres, 14].
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