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ABSTRACT

Brain-computer interface (BCI) with functional magnetic resonance imaging
(fMRI) has enabled new communication interfaces for many real-world appli-
cations, e.g., fMRI to image or video. While useful for specific scenarios (e.g.,
neurofeedback), the existing functions are limited in offering immersive user ex-
perience as required by more complex applications (e.g., virtual reality). We thus
propose Brain-to-4D, a more powerful yet challenging BCI function to construct
4D visuals including both video and 3D directly from brain fMRI signals. In reality,
however, it is infeasible to acquire brain signals for multi-view 4D stimuli for
training data collection due to the instantaneity nature of brain activities. Typically,
brain fMRI data exhibit significantly large variation. To address both obstacles, we
introduce WSf4D, a novel Weakly Supervised decomposed fMRI-to-4D generation
approach, characterized by foreground-background decomposition for supervision
dividing and fMRI multifaceted vector quantization for noise suppression. To
explore the application of the new task Brain-to-4D and our solution WSf4D, we
conduct analysis and diagnosis on various brain regions by encoding distinct visual
cortex groups. Extensive experiments show that WSf4D can accurately generate
multi-view consistent 4D scenes semantically aligned with raw brain signals, in-
dicating meaningful advancements over existing approaches on the potentials of
neuroscience and diagnosis.

1 INTRODUCTION

Brain-computer interfaces (BCls) (Saha et al.| |2021}; [Rashid et al., 2020) have been increasingly
recognized for their capacity to enable new useful communication means directly through brain
activities, underpinning extensive applications in neuroscience (e.g., spatiotemporal functionalities
analysis (Yu et al., 2023a; [You et al., 20245 Wu et al.l [2020)), healthcare, diagnosis, assistive
technologies like virtual reality (see Section [A.I] for more discussion on applications). As one
of the main non-invasive BCI approaches, functional magnetic resonance imaging (fMRI) has
been extensively capitalized for implementing various BCI functions. Indeed, with recent advance
of generative Al, latest fMRI decoding methods allow to decode a few visual formats such as
images (Takagi & Nishimoto} 2023} [Lin et al.,|2022; |Chen et al.,[2023b), videos (Wang et al.| [2022;
Chen et al., 2024a) or 3D shapes (Gao et al., [2023) (see Figure[I|(a)). However, that is still largely
limited for practical applications as mentioned above due not lacking of immersive communication
and interactions.

In this paper we propose for the first time a more powerful BCI function, Brain-to-4D, that decodes
the brain fMRI signals to 4D visual format encapsulating both video and 3D components (Figure[T(b)).
This opens new avenues for spatiomotion-related neuro-science and interactive brain health diagnosis
(Figure[I]¢)), providing more dynamic, responsive, and tailored virtual environments. Also, this task
gives rise to even bigger challenges. The first challenge is no full supervision, as acquiring brain
signals for 4D stimuli is infeasible in practice (Zhang et al.| [2021b) — brain response signals are
instantaneous, disabling simultaneous capturing of multi-view brain stimuli in reality. The second
challenge is with large variation of brain fMRI due to both intrinsic complexity of brain activities and
uncontrollable capturing factors. The interconnected nature of these challenges makes this problem
even more difficult. However, inspired by the human ability to continuously perceive dynamic scenes
across space and time from fleeting thoughts (Heft, 2010; [Kiverstein & Rietveld, [2021; Wang &
Spelke, |2002), we are determined to tackle the fMRI-to-4D problem.
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Figure 1: Comparing fMRI signals based BCI functions. (a) Subject to respective visual stimuli,
prior fMRI to image, to 3D shape, and to video functions cannot support continuous, immersive user
experience. (b) By generating dynamic 3D scenes directly from fMRI data, our Brain-to-4D enables
brain-driven virtual reality, making (¢) many profound applications such as spatiomotion-related
Neuroscientific research and brain health diagnosis possible.

To address the aforementioned challenges, we develop a novel Weakly Supervised decomposed fMRI-
to-4D generation approach, WSf4D, allowing to generate dynamic 3D scenes directly from brain
fMRI signals. Our key idea is blending partial supervision in correspondence across two modalities —
4D object targets (i.e., foreground) and 3D background in video format. This leads naturally to a scene
decomposed architecture: first converting fMRI input into foreground and background representations
for respective processing and optimization, then composing them back view by view to the desired 4D
visual format with a holistic integrated scene. Critically, this decomposition provides an opportunity
of incorporating 2D (partial) supervision available seamlessly. To suppress the signal variation, we
compress fMRI signals into discrete semantic vectors so that redundant and noisy information can be
filtered out, along with improved computational efficiency in lower dimension space. When applying
WSf4D to neuroscience (Figure Ekc)), we encode distinct visual cortex groups, such as full brain
regions and V1, to study the function of V1 region. Besides, we add noise to fMRI of V1 to imitate
disordered brain for diagnosis.

In summary, we make the following contributions: (i) To power BCI function with immersive
use experience, we introduce a novel, more challenging yet more powerful function, Brain-to-4D,
transforming brain fMRI signals to dynamic 3D scenes. (ii) We propose a novel weakly supervised
decomposed learning method, WSf4D, in a foreground and background decomposed architecture,
learnable at the absence of fully supervised fMRI-4D paired training data. (iii) For evaluation, we
create a new benchmark on top of a previous fMRI-video dataset 2018)) with extended
text annotations. We conduct extensive experiments to validate the superior performance of our
model over previous alternative in generating dynamic 3D scenes with brain signals.

2 RELATED WORK

Neural decoding for BCIs Existing BCI functions (Saha et al 2021}, [Rashid et al} [2020) are
primarily confined to static 2D interactions (Lawhern et al., 2018}, |Guger et al.|[2024; [Abdulkader|
et al., [2015). Previous neural decoding studies (Beliy et al., 2019; Buckner, 1998; |Roelfsema et al.

2018)) are also limited to 2D images 2019; Takagi & Nishimoto, [2023; (Chen et al.
2023bj [Scotti et al.,2023), videos (Chen et al.,[2024a; [Lu et al., 2024) and 3D geometry (Gao et al.

2023)), making them hard to support continuous, three-dimensional immersive user experience. We
thus propose Brain-to-4D function for more seamless and intuitive interaction, providing a significant
step forward for practical applications.

Weakly supervised learning Previous weakly supervised learning approaches (Zhou, 2018; Maha;

jan et al, [2018; [Zheng et al.| [2021) typically focus on incomplete (Settles, 2009; [Zhul [2005; Huang
et al.,2010; (Chen et al.;[2020), coarse (Dietterich et al.}[1997; [Foulds & Frank]| 2010; Wei et al.| 2016),
or inaccurate supervision (Frénay & Verleysen, [2013) assuming uni-modality labels are available. In

contrast, our fMRI-to-4D framework needs to tackle mismatched modality, with 2D video supervision
partially corresponding to 4D scene targets. By extracting and integrating information from 2D
videos into 4D scenes, our WSf4D expands the scope of weakly supervised learning due to its ability
of bridging mismatched modalities.
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3D and 4D generation Recent advancements in text/image-based 3D generation (Poole et al.|
2023} [Lin et al., |2023; [Wang et al., [2023; [Tang et al., 2024} [Liu et al., [2023}; [Shi et al.| [2023)
are predominantly based on strong 3D representations, including NeRF (Mildenhall et al.| 2020),
DMTet (Shen et al.|2021) or Gaussian splatting (Kerbl et al.,[2023)), which leverage score distillation
sampling (Poole et al.| 2023) (SDS) and extensive 3D datasets (Deitke et al., [2023} |Yu et al., [2023b;
‘Wu et al.| [2023). With the emergence of 4D representations (Wu et al., [2024} |Pumarola et al.| 2020;
Cao & Johnson, 2023} |Yang et al.| [2024b;2023), these techniques have also been extended to generate
dynamic 3D scenes (Jiang et al.,|2024} Ren et al., 2023} |Tang et al.|, [2024). Our approach takes a step
further by integrating rich representations from brain signals as guidance to seamlessly bridge the gap
between fMRI and 4D generation, highlighting its superiority in generating immersive and accurate
3D/4D environments from neurological data. An extended discussion can be found in Section[A.3]in
the supplementary material.

3 METHOD

3.1 PRELIMINARY

Deformable 3D Gaussian splatting 3D Gaussian splatting (3DGS) (Kerbl et al., 2023) represents
a 3D scene with a set of Gaussians. Each Gaussian is characterized by position mean p € R3,
covariance matrix ¥ € R3%3, color ¢ € R3, and opacity a € R. The color of each pixel results from
the 2D projection of these 3D Gaussians and depth pre-sorted volumetric rendering. In dynamic
setting, deformable 3DGS (Wu et al.,|2024) uses an additional network ® to predict the deformation
of S = {u, X, a} given timestamp 7: S = ®(S, 7), where S denotes the deformed attributes of S.
With these deformed attributes, we can render images at different timestamp.

Score distillation sampling Score distillation sampling (SDS) provides a method for distilling the
knowledge from a pretrained diffusion model €. Specfically, when an image I is rendered from a
scene representation (e.g. 3DGS) parameterized by 6, the gradient of SDS loss is calculated as:
or,

a0 |’

where I is the perturbed image with noise € at time step ¢, and c is the condition (e.g. text or image).

VoLsps(¢, 1) = E |w(t) (eg(Ls;t,c) —€) (H

Vector quantization Vector quantization (VQ) involves mapping continuous input embeddings
to discrete codebook entries. Given an input embedding z, € RP, the quantized embedding 2q 18
determined by selecting the closest codebook vector from a set of codebook entries {g; € RP} 3K:1
based on zq = gx, where k = argmin, [[zc — g;]|.

3.2 OVERALL FRAMEWORK OF WSf4D

We propose WSF4D, a pioneering Weakly Supervised decomposed fMRI-to-4D generation framework,
depicted in Figure[2] This framework is designed to tackle the challenge of mismatched modalities
between 2D video supervision and 4D scene targets, circumventing the need for paired fMRI-4D
data. Central to our approach is the decomposition of scenes into foreground and background,
enabling tailored processing to blend partial supervision in correspondence across both foreground
and background. Initially, fMRI signals X are encoded into multifaceted components, covering both
foreground representations ze rg, {1 +}T_, and background representations Ze,Bgs IBg> With

{ze,Fg’ZeﬁBgJBg} = {fFVEafBVEafBg}(fb(X))v {IT}Z:1 = ng(X)» (2)

as detailed in section [3.3] This encoding is optimized by the 2D videos, allowing the model to
effectively learn rich and meaningful representations from the complex fMRI data with limited direct
supervision. Subsequently, these representations are then extended into the generation of 3DGS-based
4D scene (section [3.4) which is also decomposed with object foreground and scene background. This
decomposition strategy targets to separately exploit different multifaceted representations based on
their respective characteristics. The foreground involves generating a 4D object using deformable
3DGS (Wu et al., 2024) driven by ze rg and {I;}7_,. Concurrently, the background component
utilizes spherical 3D Gaussians as representation optimized through z, g, and Ig,. Both components
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Figure 2: Overview of our WSf4D. Without fully supervised fMRI-to-4D training data, our method
takes a weakly supervised learning strategy. We start with (a) fMRI multifaceted encoding, which
includes foreground and background VQ encoders (FVE and BVE), as well as foreground object
(Fg) and background scene (Bg) encoders. These encoders can be supervised with 2D videos for
extracting meaningful representations from the fMRI. We further model concurrently (b) foreground
generation over time with deformable 3D Gaussian splatting (3DGS), and (c) background generation
with spherical 3DGS. (d) Finally, we re-composite the foreground and background view by view for
allowing joint refinement and optimization using a brain-tailored diffusion model.

are then composed and refined under the guidance of a brain-tailored diffusion to ensure coherence
with the original fMRI. This partial supervision with foreground and background decomposition
enables us to exploit the highly variable fMRI into realistic 4D scenes when fMRI-4D pairs are
impractical to obtain.

3.3 VECTOR QUANTIZED FMRI (VQ-FMRI) ENCODING

In pursuit of robust fMRI extraction under sparse training samples, we propose the vector quantized
fMRI (VQ-fMRI) encoders to map fMRI data X onto discrete latent space. Specifically, a backbone
encoder fj, processes the fMRI data to produce an shared representation zp, = f;(X). This is then
split into foreground and background VQ encoders (FVE and BVE):

Ze,Fg = frVE(2b), ze,.Bg = fBVE(2b), 3)
resulting in quantized foreground and background latent space representations:
grg S RKFEXDFga 9Bg € RKBgXDBg) (4)

where Ky and K, denote the size of latent vectors, and Dy, and Dp, represent their dimensionality.
Our designed vector quantization is performed as follows:

Zq,Fg = Jk,Fg, Where k = argmin; |ze,re — giFell , 5)

Zq,Bg = Jk,Bg, Where k = argmin; |ze,Be — i, Bell - 6)
The quantized foreground embedding, zq,pg, provides semantic and geometric guidance for the
foreground reference video generated as {1, }7_; = fpg( ). The quantized background embedding
Zq,Bg Supports inpainting for the background reference image decoded as Igg = fgg(21). For further
implementation details, refer to section[A.2]

One key advantage is its ability to bypass the curse of dimensionality. By constraining latent space
size K < n, we significantly improve model regularization and avoid overfitting 2023)
in high-dimensional feature spaces. Furthermore, our approach significantly reduces KL divergence
between empirical and ground truth distributions, as indicated by theorem [3.1] It shows that the
quantized latent space z, yields a much tighter approximation to the true distribution compared to the
non-quantized embeddings z., which is crucial for robust latent representations.
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Theorem 3.1. Denote p(z.) as distribution of the embeddings without vector quantization and p(Z,)
as the smooth-approximated empirical distribution from samples. Denote p(zq) and p(%,) as their
vector quantized counterparts. Then,

K L(p(2q)|Ip(2q)) < KL(p(ze)l|p(Ze))- (7

Additionally, theorem [3.2] shows our vector quantized approach also significantly reduces entropy.
This ensures that the model is less likely to capture irrelevant data-specific noise, thereby enhancing
generalization to unseen data.

Theorem 3.2. Denote L as the CLIP (Radford et al.| [2021) space boundary size, H(z,) as the
entropy of distribution of vector quantized embeddings, and H(z.) as the entropy of Riemann-
Discrete approximated distribution without vector quantization. Then we have H (z.) > H(z),

d

- 19 0 1o (2)). ®

Detailed proof could be found in section[A.4]and section[A.3]in supplementary material.

3.4 FOREGROUND-BACKGROUND DECOMPOSING FOR 4D SCENE GENERATION

Modeling 4D scenes face two challenges: (1) Foreground and background present intrinsically
different characteristics (e.g., dynamic vs. static); (2) Camera perspectives in 4D scenes often blur out
nearby objects dynamically. To tackle these, we propose decoupling the foreground and background
elements of a scene.

Foreground generation The foreground is represented by deformable 3D Gaussians, optimized
in two stages: static and dynamic (Ren et al., [2023} |Yin et al.| 2023)), driven by foreground video
{I;}_, and the quantized embedding z, .. In both stages, 3D Gaussians and its deformation are
guided by object-level diffusion models under SDS. Along with mean squared error (MSE) loss under

reference views with I,or € {I,}1_,, the total loss £  for foreground modeling can be expressed by:

‘cf = /\img‘cSDS,img + )\text£SDS,text + /\refHIAref - IrefH%7 (9)

where A, are balancing weights, with img and text referring to |AIl (2023) and [Shi et al.| (2023)
guidance, respectively. Furthermore, at static stage we set the first frame /; as reference image and
froze the deformation network ® during training. In contrast, the dynamic stage utilizes all the frames,
allowing ® to be trainable to accommodate temporal variations. Considering the unstable training of
Gaussians in the generative manner, we follow |[Pan et al.|(2024a)) to manually clip the gradient of
rendered image pixel-wisely. This operation significantly reduces the variance of gradients, avoiding
intricate densification parameter tuning and leading to improved shape and texture.

Background generation The background is represented by 3D Gaussians around a sphere without
deformation. A scene-level 3D-aware diffusion model serves as a 2D prior to extend the background
image Ip, into a complete 360° environment. The total loss £;, for background modeling is:

Ly, = AggLsps Bg + Mret | Ipg — Ingll3, (10)
where ). denotes balancing weights and Lsps g, represents SDS under scene-level diffusion.

Joint refinement To ensure a cohesive integration of foreground and background, we design a joint
refinement stage while maintaining each Gaussian representation. To get the composite image 1., we
render both foreground image Iy and background image I;, with a foreground mask My, and then
blend them by:

ICZIfG)Mf—I-Ib@(l—Mf). (11)
Then we can further render a composite video {I., }7_, under any viewpoint. At this stage, we
introduce brain-tailored diffusion to directly denoise the noise-perturbed video, providing a refined
image Irefine, for each frame as supervision. An MSE loss @I) is applied to refine both 4D Gaussians
and spherical 3D Gaussians.

Erefine - Z ||Ick - Ireﬁnek ||§ + ||jref - Iref”g- (12)
k
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Figure 3: ROI (region of interest) interpretability and diagnosis. Our proposed WSf4D can
separately encode distinct visual cortex groups for Neuroscientific research, and could conduct
diagnosis on various brain regions.

3.5 APPLICATIONS: NEUROSCIENCE INTERPRETABILITY AND DIAGNOSIS

We apply WSf4D to two key applications: neuroscience interpretability and diagnosis (Figure[3). Our
design focuses on four specific groups within the visual cortex: primary (V1), associative (V2, V3,
V4), dynamic (MT, MST, LIP), and synthesis (TPOJ) visual cortex. For each group, we examine their
role by encoding each region of interest (ROI) group separately. To simulate disorder diagnosis, we
introduce perturbations to each group and analyze the resulting 4D scenes to evaluate their functional
impact.

4 EXPERIMENTS

4.1 BENCHMARK

Dataset Our research extends publicly available fMRI-video dataset [2018). The fMRI
are acquired using a 3T MRI scanner at a repetition time (TR) of 2 seconds, comprising 18 segments
of 8-minute video clips, resulting in 4,320 training video-fMRI pairs, and 5 segments for 1,200
testing samples. For each video-fMRI pair, a single frame is randomly selected as the ground truth
image for background supervision. Besides, we annotated the video-fMRI samples with foreground

objects (Krizhevsky et al.,[2009) and background scenes 2019). Lacking 4D annotations, we

employ semantic embeddings of these labels as a codebook to supervise our VQ-fMRI encoders.

Metrics In line with (Chen et al 2024a)), we employ the Structural Similarity Index Measure
(SSIM) for pixel-level accuracy and classification-based score for semantic accuracy with respect to
ground truth visual stimuli. The classification score compares the top-1 accuracy between the ground
truth and rendered frames across selected N = 2 and N = 50 classes, with 100 repetition for an
average success rate and standard deviation. Both image and video classifiers are used, designed
as ICS-N and VCS-N, respectively. Additionally, following [Yin et al.| (2023)); [Pan et al.| (2024b),
we incorporate CLIP-T as a 4D metric, which evaluates the temporal smoothness by computing the
CLIP similarity between adjacent frames in a rendered video. Except for reporting CLIP-T of videos
at specific views in|Yin et al. (2023); [Pan et al.|(2024b)), we also adopt a 360° video around the 4D
scene which represents the spatial geometry, resulting in CLIP-T-G. For 4D benchmark, we render a
4D model from the front view (reference view), side views and back view, with each view evaluated
separately across 100 cases. The SSIM is only applicable to the reference view because there is no
ground truth for other views.
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Figure 4: Multi-view 4D scenarios of WSf4D. Previous methods (MinD-Video (Chen et al., [20244))
are limited in 2D with only 2D supervision. In comparison, WSf4D pinoeers the Brain-to-4D
function through a novel weakly supervised framework. See the video in supplementary for dynamic

results.

Table 1: Quantitative evaluation. The pixel-level SSIM score 2004) is only reported
for the front view which is aligned with reference frames. The results of MinD-Video (Chen et al .
2024a) only serve as the reference for front view as it lacks 3D geometry.

MinD-Video WSf4D

Metrics front view only | front view side view back view mean
VCS-2 1 0.9226+0.019 0.9080+0.016  0.8778+0.024 0.8823+0.022  0.8894-+0.021
VCS-50 1 0.3602+0.022 0.4135+0.020 0.2607+0.017 0.3303x0.021  0.3348+0.019
ICS-2 1 0.8830++0.021 0.9030+0.021  0.7975+0.031  0.8349+0.030  0.8451+0.027
ICS-50 1 0.3291+0.022 0.2935+0.021  0.1102+0.013  0.1239+0.012  0.1759+0.015
SSIM 1 0.2005 0.2131 - - 0.2131
CLIP-T 1 0.9434 0.9482 0.9644 0.9622 0.9583
CLIP-T-G © - - - - 0.9441

4.2 IMPLEMENTATION DETAILS

Our designed backbone f,, foreground VQ encoder fryg, background VQ encoder fpyg and
background scene encoders fp, are all MLP structures. The foreground object encoder fr, leverages
a pretrained [Chen et al (20244). Our foreground 3D-aware diffusion use pretrained models from
(2023) and [Shi et al.| , while background 3D-aware diffusion employs [Sargent et al|(2023).
The Brain-tailored diffusion exploit structures from [Chen et al|(2024a)). More details can be referred
in section[A.2]
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Figure 5: Ablation on the input of foreground modeling. Without either text embedding or video
frame embedding for 3D appearance guidance, the rendering quality decreases significantly.
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Figure 6: Left: Vector quantization (VQ) ablation. Without VQ, the generated images from mapped
embedding are totally corrupted. Right: Background input ablation. The naive approach of using
segmented image from MinD-Video (Chen et al.,[2024a) fails to provide mind-related background.

4.3 4D GENERATION RESULTS

We present our 4D generation results in Figure 4 and Table[T]} which also includes comparisons with
MinD-Video (Chen et al.,[2024a). For visual results in Figure [d] while MinD-Video is limited to
single-view videos, our method extends videos into dynamic scenes with full 3D geometry. Besides,
our background branch enables 3D rendering with closer semantic alignment with respect to visual
stimuli, such as accurate lakeside scenery and building layout in Figure[T2} Our method achieves a
higher SSIM score (Wang et all 2004) from the reference view (front view) as detailed in Table[T]
Regarding semantic-level metrics, our method achieves comparable success rates from the reference
front view, with slight declines from other views possibly due to the absence of visual stimuli in these
views. However, all success rates significantly surpasses the base chance level (2-way: 0.5, 50-way:
0.02). For CLIP-T scores assessing the 4D effect, our results demonstrate both dynamic and spatial
smoothness, all outperforming MinD-Video, which focuses on single-view output. Please refer to
section[A.7]for more visualization results.

4.4  ABLATIONS

Vector quantization Figure|§| (left) highlights the crucial role of vector quantization (VQ) in fMRI
encoding. Without VQ, the MLP embeddings z. = f.(X) result in ineffective image generation,
which has cosine similarity of only 0.073, caused by high variation with fMRI and data scarcity.
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Figure 8: Ablation on decoupling-coupling. “Re.” denotes representation and “Tr.” denotes training.
The coupling of representations leads to bad geometry and coupling of training leads to ambiguity.

In comparison, our VQ-fMRI encoder captures the semantic information, with an increased cosine
similarity of 0.789, facilitating accurate reproduction of 4D scenes.

Background extraction We ablate the input of background modeling in the right of Figure[6] The
baseline method “w/o Image mapping” directly segments the first frame of the video generated by
Mind-Video (Chen et al,[2024a)) and uses background text embedding for inpainting. This approach
often results in images with meaningless content or a mismatch with the ground truth visual stimuli.

Ablations on decoupled training strategy In figure[8] we conduct the ablation study on the decoupled
training strategy. We find that the coupling of foreground and background poses the challenge to the
optimization of 4D scene, while the decomposition design introduced in section [3.4] achieves the best
geometry and avoids the ambiguity between the foreground and background.

Usage of embeddings We further investigate the impacts of text or image embeddings on foreground
generation, as shown in Figure[5] Since the reference frames are typically out of distribution of the
training data (Deitke et al.,[2023) used for 3D-aware diffusion models, the baseline “w/o text” that
relies solely on Zero123 guidance fails to produce satisfactory 3D shapes. In addition, the results
using only text embedding with MVDream guidance (“w/o video”) do not accurately reflect the
brain-related images.

Effect of refinement As illustrated in Figure [7] the refinement stage improves the details and
eliminates some errors, such as incorrect lighting on the dog’s nose and the notch on its back.
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Figure 9: Voxel-wise importance maps of subject 1. Early layers of the video mapping concentrate
on structural details of brain regions, while deeper layers and the VQ-fMRI encoder increasingly focus
on abstract features. Foreground encoding shows significantly more activity than the background.

4.5 COMPREHENSIVE ROI ANALYSIS

ROI importance mapping We first analyze brain-related mechanisms by visualizing attention maps
in the video mapping and encoder weight distributions in VQ-fMRI encoder. As shown in Figure 9}
consistent with MinD-Video (Chen et al.} 2024d), early video mapping layers prioritize structural
aspects of input data, highlighting a clear segmentation of brain regions. High-level visual cortex areas
(MT, MST and TPQOJ) receive more attention than low-level visual cortex (V1, V2 and V3), reflecting
a focus on complex feature extraction. As processing deepens, attention becomes more dispersed,
shifting towards holistic and abstract visual features. In contrast, VQ-fMRI encoder demonstrates
greater homogeneity among regions, indicating a more holistic visual features. Specifically, the
foreground VQ-fMRI encoder identifies more high-value regions than the background encoder, which
hints more brain areas are focused on forground object instead of background scenes. Most values
in background VQ-fMRI encoder shows a small weight value, indicating their little contribution to
background encoding.

ROI interpretation The function of each specific ROI group is also analyzed separately (Fig-
ure [3(b)). The V1 visual region maintains initial processing of edges, orientations, and spatial
frequencies of the scene, confirming its essential role in basic visual feature detection. The associative
(V2, V3, V4) cannot independently decode visuals, indicating their reliance on V1 for information
processing. Meanwhile, the spatiomotion (MT, MST, LIP) regions could only generate motion and
flow, contributing little to complex patterns and shapes. The TPOJ region includes a cohesive visual
experience, illustrating its role in information integration. These findings align well with previous
research on region-of-interest (ROI) functionality in visual perception 2003} [Kim et al.}, [2020).

ROI diagnosis These ROI functions points to the potential for ROI diagnisis. As depicted in
Figure E[c), the disorder in either primary (V1) visual regions or associative (V2, V3, V4) regions
lead to impairments in overall visual comprehension, supporting the centrality of these regions in
foundational and complex visual processing. Disorders in the synthesis (TPOJ) region result in a
more comprehensive disruption of scene perception, suggesting its crucial role in integrating visual
inputs into a coherent whole. In contrast, the disorder in spatiomotion (MT, MST, LIP) produce only
marginal effects, showing their little impact on features and edges.

5 CONCLUSION

In this study, we introduce WSf4D, a pioneering framework tailored for the newly proposed Brain-
to-4D BCI function, enabling the generation of dynamic 3D scenes from brain fMRI signals for
immersive user experience. Through meticulous design, the WSf4D framework overcomes the
challenges posed by the absence of fully supervised 4D brain training data and high variation with
brain fMRI signals. Our core idea is to adopt a weakly supervised learning approach that streamlines
weak, partial supervision from the pre-existing fMRI-video and single-view-to-3D in a background
and foreground decoupled architecture. Experimental results have demonstrated the capability
of WSf4D in decoding time-continuous and view-consistent 4D visuals closely aligned with the
underlying brain activity. We hope this work can open up and foster more advanced research and
applications in BCI and neuroscience studies.
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6 ETHICS STATEMENT

We believe that our proposed task and method has promising applications in Brain-Computer Inter-
faces. However, every method that learns from data carries the risk of introducing biases. In the fMRI
encoding stage, all the encoders are trained on open-source brain datasets described in Section[d] The
subsequent generation stage is based on the open-source diffusion models that are pre-trained on the
data from the Internet. Therefore, work that bases itself on our method should carefully consider the
consequences of any potential underlying risks and biases.
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A SUPPLEMENTARY MATERIAL

A.1 LIMITATION AND FUTURE WORK

As a preliminary exploration of Brain-to-4D function, our proposed weakly supervised framework
is highly open and integratible, able to continuously and readily benefit from any improvement of
any components involved. The overall quality of the generated 4D content is currently constrained
by fMRI decoding (Chen et al|2024a) and generation models (Al |[2023} [Sargent et al.| [2023} |Shi
et al.,|2023). Furthermore, our method occasionally generates blurry outputs. We believe that above
problems will eventually be addressed with developments of neural decoding (e.g. incorporation of
(Lu et al., 2024))) and 4D reconstruction.

Our application on spatiomotion-related neuro-science and interactive brain health diagnosis also
could be further developed with improved models and clinical experiments. The other potential
real-world applications for WSf4D include:

(1) Brain-driven virtual reality for immersive communication and interaction, such as enabling users
to navigate virtual spaces using only their thoughts. Advanced gaming experiences controlled by
brain signals can offer new levels of immersion and interaction.

(2) In neurorehabilitation, it can simulate realistic environments for stroke patients to practice daily
activities.

(3) Brain-driven creativity allows artists to produce 3D movies and artistic expressions using only
their thoughts, thus unlocking new forms of immersive artistic expression.

(4) Educational tools can provide interactive, brain-responsive simulations, such as virtual science
experiments controlled by students’ brain activity.
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A.2 IMPLEMENTATION DETAILS

Encoding In the VQ-fMRI encoder, the backbone fi, first employs an MLP to map fMRI data
into a 4096-dimensional vector. This is followed by four MLPs with residual connections to further
extract fMRI features. The output is then transformed into 257 x 768-dimensional shared feature
representation z;. Both the foreground VQ encoder (FVE) and the background VQ encoder (BVE) use
two-layer MLPs to map this shared feature representation into the VQ-embedding space 2 obj, Zq,env-
The codebook dimensions for foreground modeling are set to D = 77 x 1024, aligned with |Shi
et al.|(2023)), while the background modeling follows Takagi & Nishimoto| (2023) with dimensions
of D = 77 x 768. Given the practical challenges in acquiring sufficient 4D stimuli for end-to-end
optimization, these codebooks are crafted around specific categories of foreground objects Krizhevsky
et al.| (2009) and background scenes |Bansal| (2019).

For foreground modeling, a model in|Chen et al.| (2024a)) is used to map fMRI data to a reference
video that guides appearance and dynamics. We then segment each frame of the video to extract the
foreground with total 7' frames, which are denoted by {I, }1_,. Typically, the video content includes
cropped scenes or real people, which diverges from the distribution of existing 3D datasets. To
bridge this gap, the VQ-fMRI encoder maps fMRI into an text embedding 24, o1; for better semantic
and geometric guidance. Background encoding starts with generating an background reference
image from fMRI. An intuitive approach involves reusing segmented images from video branch in
foreground encoding, but this method faced two drawbacks: (1) these frames predominantly feature
foreground elements, restricting accessible background information and (2) the backgrounds are not
consistent across different frames. To overcome these challenges, we generate this background image
directly from the shared representation, and the image is optionally inpainted using scene-level text
embedding zq eny from VQ-fMRI encoder. Training all fMRI encoders is a one-time process that
takes approximately two days on one NVIDIA A6000 GPU. Once completed, the parameters are
fixed for subsequent 4D generation from any fMRI.

Generation In generation stage, we implement our pipeline based on the DreamGaussian4D (Ren
et al.| [2023), a framework focusing on efficient 4D generation. Training involves 500 steps for static
foreground and background, 1,000 steps for dynamic foreground, and 50 steps for joint refinement.
The Gaussians are initialized with 5,000 random points for foreground inside a sphere of and 200,000
random points for background around a sphere of radius 5. Densification is performed every 50
steps. For balancing weights, we set Aimg = 1, Atext = 0.5, Arer = 10, 000, Aepny = 1. For diffusion
guidance, we use pretrained models from Stable Zero123 (AL 2023)) and MVDream (Shi et al.| [2023)
object-level 3D-aware diffusion, use adopt ZeroNVS (Sargent et al.| |2023)) as 2D prior in scene-level
3D-aware diffusion, and apply MinD-Video (Chen et al.| 20244l for Brain-tailored diffusion. The
whole generation pipeline takes about 30 minutes on one NVIDIA A6000 GPU. Following this, the
parameters for 4D Gaussian splatting are saved, enabling future inference processes. This setup
allows for an inference speed of 15 frames per second (FPS), supporting real-time interaction.

A.3 RELATED WORK

Neural decoding for BCIs BCIs aim to establish communication links between the brain and
computers or other external devices (Saha et al.,|2021}; |Rashid et al.| [2020; |Kawala-Sterniuk et al.,
2021} Wolpaw et al.| 2002} Nicolas-Alonso & Gomez-Gil,[2012). However, BCI research is primarily
confined to static 2D interactions (Lawhern et al., 2018; |Guger et al.,|2024; |/Abdulkader et al., 2015}
Zander & Kothe, [2011)) which do not support continuous, three-dimensional immersive experiences.
Existing neural decoding studies have focused on extracting essential representations (Buckner, [1998];
Roelfsema et al., 2018)) of brain signals for tasks like visual content decoding (Naselaris et al., 2011}
Kamitani & Tong| 2005; Haxby et al.,|2001; Haynes & Rees| 2005} [Thirion et al., 2006} |Georgieva
et al.} 2009) and object recognition (Wen et al., |2018}; Horikawa & Kamitanil 2017} |Groen et al.|
2018). However, they often struggle to create detailed visuals directly from brain signals. These
investigations have also facilitated advancements in reconstructing images (Beliy et al.l[2019} Li et al.|
2024)), videos (Wang et al., 2022; |Chen et al.,[2024a} Lu et al.||2024) and geometry (Gao et al., [2023]
Yang et al., [2024a; Gao et al.,[2024) from fMRI data using techniques such as generative adversarial
networks (Schoenmakers et al., 2013; [VanRullen & Reddy, 2019; Shen et al., 2019; |Dado et al.,
2022; Seeliger et al., 2018} |Gu et al., 2022} |Ozcelik et al.| 2022)) and latent-space diffusion (Takagi &
Nishimotol, 2023} [Lin et al., 2022 |0Ozcelik & VanRullen, 2023} |Chen et al., [2023b; Scott1 et al., 2023}
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Gao et al.|[2023)). Restricted by high cost of large-scale brain stimuli containing both multi views and
time continuity, all these reconstructions are limited to single view or static objects, which pose severe
limitation on immersive user experience under BCIs. WSf4D advances beyond these achievements
by offering more seamless and intuitive interaction that leverage both spatial and temporal dimension
interactions, providing a significant step forward in the practical application of BClIs.

Weakly supervised learning Weakly supervised learning targets at situation with insufficient
training dataset (Zhou,2018; Mahajan et al.| 2018} Zheng et al.||2021)). Previous approaches typically
focus on three key situations: incomplete supervision with mostly unlabelled data (Settlesl [2009;
Zhu, 2005}, [Huang et al., 2010; |Chen et al., |2020), inexact supervision with only coarse-grained
labels (Dietterich et al.,|1997} Foulds & Frank, 2010; |Wei et al., | 2016)), and inaccurate supervision
with partially incorrect labels (Frénay & Verleysenl [2013)). These methods are effective in tasks like
object detection (Zhang et al.,[2021a;[2018}; Tang et al., 2018; |Yang et al., 2019; Nag et al.,[2022),
localization (Choe & Shim| [2019; Jiang et al.,|2019; Hou et al.,2018)), and segmentation (Zhang et al.|
2020; |Ahn et al.l 2019), where similar modality labels are available. In comparison, our fMRI-to-4D
task face a novel challenge of mismatched modality supervision, where the available 2D video labels
only partially correspond to the target 4D scenes. Our WSf4D fill this modality gap by squeezing
available information from available 2D videos, and then distilling and integrating this information
into 4D scenes. This pushes the boundaries of weakly supervised learning by advancing weakly
supervision across mismatched modalities.

3D and 4D generation Recent advancements in 3D and 4D content generation have predominantly
utilized inputs such as text, images, and videos. The core of these innovations stems from techniques
like score distillation sampling (Poole et al., [2023) (SDS) and the exploitation of extensive 3D
datasets (Deitke et al.| 2023} [Yu et al.| 2023bj [Wu et al., [2023)). At the object-level, numerous
works (Poole et al., 2023 [Lin et al., |2023; |Chen et al.| 2023a; Wang et al., 2023} |Tang et al.} 2024;
Y1 et al.| 2024) employ SDS to train fundamental 3D representations, including NeRF (Mildenhall
et al.,|2020), DMTet (Shen et al., 2021) or Gaussian splatting (Kerbl et al.||2023)). Following research
continues into training 3D-aware diffusion models for improved geometric consistency (Liu et al.,
2023 Shi et al., 2023} |Liu et al., 2024; |Voleti et al., 2024;|Chen et al., 2024b)). With the development
of fundamental 4D representations (Wu et al., 2024; [Pumarola et al., 2020; |Cao & Johnson, [2023};
Yang et al., [2024bj [2023)), the extension for 4D generation fields have been explored. For example,
Consistent4D (Jiang et al., 2024) proposes video-to-4D task through a tailored dynamic NeRF
with SDS. DreamGaussian4D (Ren et al., 2023)) extends the 4D function of DreamGaussian (Tang
et al., 2024)) to further reduce optimization time with Gaussian splatting. However, these methods
often struggle with in-the-wild scenes. DreamFusion (Poole et al.| [2023)) attempts to model the
background using a small coordinate multi-layer perceptron (MLP) distilled by a text-to-image
diffusion model, which leads to blurry results. Previous efforts (Yu et al.,[2021; Jain et al., [ 2021) have
aimed at single-image novel view synthesis but are confined to a limited range of camera viewpoints.
ZeroNVS (Sargent et al.,[2023) employs a scene-level diffusion model for novel view synthesis. In
comparison, WSf4D not only leverages this prior but also innovates further by optimizing a Gaussian
sphere for background modeling. Moreover, WSf4D takes a step further by integrating brain signals
as inputs and designing an efficient fRMI encoder to seamlessly bridge the gap between brain and
various diffusion models, underscoring its superiority in generating immersive and accurate 3D/4D
environments from neurological data.

A.4 PROOF OF THEOREM [3.1]

In sparse sampling where the dimensionality of the encoded latent space d = dim(z.) significantly
exceeds the number of training samples n, that is d > n, the probability distribution p(z,) is not
adequately represented. The empirical distribution p(Z,), which is approximated from a limited
number of samples, fails to capture substantial portions of the probability mass inherent to p(ze).

For any § > 0, we consider a smooth-approximated empirical distribution encompassing a neighbor-
hood with radius r: let 2, be points in the encoded space such that || 2, — ¢;|| > r foralli € {1,...,n}
with ¢; representing the training samples. For these points, it holds that 0 < p(Z.) < 0.

Denote R; as the union of all proximal areas around the training samples:
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Ri=UUi where U; = {u € A: ||lu—t]| <r}, (13)
i=1

and let R, represent the complement region in the latent space A, which is far from the training
samples:

R, = A\ R;. (14)

Then the KL divergence without Vector Quantization will become:

K L(p(ze)|lp(2e)) = /p(ze) log i&; dze (15)

— [ bl ogplac)dz. - /R

p(ze) log p(Ze)dze — / p(ze)log p(Ze)dze

i o

(16)

> /p(ze)logp(ze)dze—/ p(ze)logp(ée)dze—/R p(ze)dze - log(d) (17)
1

= O(log 5), (18)

which is relatively large when § — 0.

In an ideal scenario where the dataset is sufficiently large and evenly distributed, the region R,
diminishes, effectively becoming negligible. Consequently, we could expect that:

KL(p(ze) || (%)) = O(1), (19)

as R, — 0. Conversely, in our setting where fMRI samples are sparse (n < d), a substantial region
of R, persists, indicating a significant divergence in the encoded latent space.

After vector quantization, the number of samples n greatly exceeds the number of quantization bins
K. Assuming there is no disproportionate concentration of probability mass within these bins, the
KL divergence becomes:

K
KL(p(z) 1p(2)) = 3 p(zq) log 2E2) — 0(1), 20)
1 p(Zq)
As a result,
KL(p(zq) || p(24)) < KL(p(ze) || p(Ze))- (21)

A.5 PROOF OF THEOREM [3.2]

Assume that the high-dimensional latent space A for z, is confined within a closed hyperrectangle
[a1,b1] X [ag,ba] X ... X [an,by] for each dimension. In a pretrained CLIP space as described in
Radford et al.| (2021)), these bounds can be set to the extremal values obtained from encoding all
pretraining images or texts.

Given any € > 0, one can choose a § > 0 such that A is divided into a grid of smaller hyperrectangles.
Specifically, we define a partition (P, ..., Py) where P, = (a; = to < t; < ... < tn, = b;)
with each interval ¢;; — t; being uniform and not exceeding §. Consequently, each subrectangle
S = [a],b]] x [ah, b5] % ... x [al;, b];] shares the similar volume AV and accommodates a integrated
probability fsj P(z.)dze = P(ej).
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Under the vector quantized encoder and for sufficiently small §, the quantized space can be further
partitioned such that P(ey) = Z;’;l P(ex, ), where P(ey, ) represents the probability mass within
the j-th partition of the k-th quantized space.

For each subrectangle S = [a}, b}] X [a), b5] % - - - x [a};, b);] of P define its volume and bounds as:

d
v(8) = [[ i — i), (22)
i=1
mg(f) =inf f(z): 2 € S, (23)
Ms(f) =sup f(z):z € S. (24)

Lower and Upper Riemann sums corresponding to the partition P are then defined to be:

L(f,P) =Y ms(f)-v(S), (25)
SepP

U(f,P)=>_ Ms(f)-v(S). (26)
SepP

By the properties of Riemann integration, given any partition P with norm || P|| < 4, it follows that:

U(f,P)— L(f,P) < e. Q7)

For each subrectangle S, we approximate the integrated probability over S by selecting the ‘average’
value within this region, which is given by PA(—‘E/’;) and lies between mg(f) and Mg(f).

LUP) < [ fedd <UGP). (8)
S
Ny N,
p Plex
LfP) <y -y A(f/’;) log A(f/’;) « AVs < U(f, P). (29)
11=1 in=1
Therefore, we have:
Ny Ny,
DS (P(ek)log PA(‘S/’;) —e) g/ P(z.)log P(ze)dze (30)
i1=1 in=1 Ze
SR P(ey)
[ PeotoePeaiz <y Y (Plelos i +¢) . G
Ze i1=1 =1
Consequently,
lim H (ze,€) = — i i P(er,) log Dler) (32)
0 (s3] k AVS .

i1=1 Q=1

As we consider the limit where € — 0, it becomes feasible to represent the partitions of A through
their discrete counterparts.
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We denote H(z.) = lin% H(z., €) as the entropy pf Riemann-Discrete approximated distribution of
e—

the embeddings after MLP z, = f.(X) without vector quantization. Then, we have:

H(z) i i Pler. ) log %) (33)
Ze) = — kj .
k=1j=1 ' AVs
K
H(zq) = =) Plex)log Pey) (34)
k=1
K Ji
==Y Plex,)log Pley). (35)
k=1 j=1

We operate under the hypothesis that the probability distribution is dispersed across the space, which
precludes significant localization or the emergence of regions with disproportionately high probability
mass. This is a plausible assumption within a space that has been pretrained with a large set of data,
thereby approximating a well-spread distribution. Formally, we can express this as

Ld

FATL (36)

Ld
Jp, =0 (KAVS> , ortosay Jr = cg

where ¢y, is a constant of order 1 (¢, = O(1)) and strictly positive (¢; > 0). In the case where the
scale of the space L is large and the dimensionality d is much larger than the number of quantization
bins K, the ratio % becomes vanishingly small, implying that ¢, < %, leading to the result:

Pler) =0 ((seapz ) Plen) ) Ple) > S, @)

The implication here is that the entropy of the encoded space H(z.) is greater than that of the
quantized space H (z), accounting for the additional logarithmic factor:

d

H(z) — H(z) = O <1og (%)) H(z) > Hizy). (38)

The difference log (Lfd) particularly large in our specified setting when the dimensionality d is much

less than the number of fMRI samples n, which in turn is substantially less than the number of
quantization bins K, and considering the large size of the CLIP space denoted by L.

A.6 FURTHER RESULTS ON FMRI INTERPRETATION

The visualization of voxel-wise importance maps of subject 2 and subject 3 is depicted in Figure[I0|
and Figure[T1] Both figures illustrates that early layers of the video mapping show a focus on structural
details of brain regions, while deeper layers and the VQ-fMRI encoder increasingly concentrate
on abstract features. Foreground encoding exhibits significantly more activity compared to the
background.

A.7 FURTHER RESULTS ON 4D GENERATION

Additionally, figure [[3]shows the overrall 4D effects where dynamic images rendered from different
viewpoints at different timestamps. Figure [I4]shows more samples with subjects 1-3.
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Figure 10: Voxel-wise importance maps of subject 2.
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Figure 11: Voxel-wise importance maps of subject 3.

Stimuli

MinD-Video

WSf4D

Figure 12: In background cases, WSf4D not only achieves consistent 360° rendering, but also delivers
higher semantic accuracy with respect to ground truth stimulus.
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Figure 13: 4D results of two cases. For each case, we show 6 viewpoints and 12 consecutive frames.
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Figure 14: Samples from different subjects.
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