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Abstract

Power system dynamics are generally modeled by high dimensional non-linear differential-
algebraic equations (DAEs) given a large number of components forming the network.
These DAEs’ complexity can grow exponentially due to the increasing penetration of dis-
tributed energy resources, whereas their computation time becomes sensitive due to the
increasing interconnection of the power grid with other energy systems. This paper demon-
strates the use of quantum computing algorithms to solve DAEs for power system dynamic
analysis. We leverage a symbolic programming framework to equivalently convert the
power system’s DAEs into ordinary differential equations (ODEs) using index reduction
methods and then encode their data into qubits using amplitude encoding. The system non-
linearity is captured by Hamiltonian simulation with truncated Taylor expansion so that
state variables can be updated by a quantum linear equation solver. Our results show that
quantum computing can solve the power system’s DAEs accurately with a computational
complexity polynomial in the logarithm of the system dimension. We also illustrate the use
of recent advanced tools in scientific machine learning for implementing complex com-
puting concepts, that is, Taylor expansion, DAEs/ODEs transformation, and quantum
computing solver with abstract representation for power engineering applications.
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1 INTRODUCTION

Solving differential-algebraic equations (DAEs) is a funda-
mental task for time-domain simulation in the power system
dynamic analysis where fast computation time and accurate
solutions are required [1]. These DAEs include a set of
ordinary differential equations (ODEs) modeling the dynam-
ics of synchronous generators, exciters, and governors, along
with nonlinear algebraic equations modeling network power
flows and Kirchhoff voltage laws for individual buses. The
scale of these DAEs can be very large due to a large
number of grid components such as generators, loads, and
transmission lines forming the network and growing expo-
nentially with the increasing penetration of distributed energy
resources [2].
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Traditionally, we can tackle the power system’s DAEs by
solving their ODEs using a numerical integration method and
solving algebraic network equations by a numerical iteration
method at each integration step [2–4]. However, this requires
several iterations at each integration step for the convergence
of the network equations and a large number of integration
steps to guarantee the numerical stability of the ODE solu-
tion, leading to huge computation burdens. Indeed, numerical
methods of DAEs are not as mature as the methods for solv-
ing ODEs [5, 6]. Thus, one approach is to convert the DAEs
into ODEs for utilizing ODE solution methods [7]. However,
these ODE numerical methods scale exponentially with prob-
lem size in classical computers, particularly the number of state
variables and algebraic variables, leading to high computational
complexity [8].
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Quantum computers can achieve algorithmically superior
scaling for certain problems, particularly complex linear alge-
bra and matrix exponential [9]. An application with proven
quantum advantage is solving linear equations [10–13]. The
most well-known quantum linear equation solver is the Harrow-
Hassidim-Lloyd (HHL) algorithm [13], which provides an
exponential memory advantage over the classical computing
method, that is, requiring only log2(N ) qubits for N variables
[5]. Extending quantum linear algebraic equation solvers for
high-dimensional linear ODE systems are studied in [14–16].
By setting the quantum states proportional to the solution
of the block-encoded N -dimensional system of linear equa-
tions, they unlock the potential of rapidly characterizing the
solutions of high-dimensional linear ODEs. However, they
cannot tackle DAEs in power system dynamics analysis that
contain both nonlinear algebraic equations and nonlinear
ODEs.

This paper aims to solve DAEs in power system dynam-
ics using quantum algorithms and recent advances in scientific
computing frameworks. We leverage symbolic programming
packages from Julia/SciML [17], particularly ModelingToolkit
[18], to implement and transform the DAEs modeling power
system dynamics into equivalent ODEs using the Pantelides-
based index reduction [19], which is then tackled by the
Leyton-Osborne’s quantum algorithm [20]. Specifically, we
employ the second-order Taylor expansion to approximate non-
linear ODEs as polynomial functions of state variables. These
polynomial functions can be encoded in the amplitudes of the
tensor of the quantum state and its copy, which in turn can be
simulated in quantum computers through Hamiltonian simula-
tion [21]. The Forward Euler update of state variables can be
then considered as a set of linear equations that can be com-
puted by the quantum linear equation solver, that is, the HHL
algorithm [13]. The complexity, remarkably, is polynomial to
the logarithm of the system dimension. Within this context, the
contributions of our paper are as follows:

∙ We demonstrate how to convert the computation of solv-
ing DAEs in traditional computers into equivalent steps
with quantum computing operators, particularly amplitude
encoding of data representation, Hamiltonian simulation
of modeling nonlinear state functions, and quantum linear
solver-based HHL algorithm for updating state variables.

∙ We introduce the use of scientific machine learning, par-
ticularly symbolic programming, to facilitate mathematical
transformation, such as converting a DAEs system to an
ODEs system to ease its computation under quantum
computing.

The rest of the paper is as follows. Section 2 presents the
mathematical model of power systems dynamics and the clas-
sical numerical methods for solving them. Section 3 provides
quantum computing fundamental backgrounds, such as qubits,
vector representation, and the time evolution of the quantum
state, and discusses the quantum computing algorithm solving
power system’s DAEs. Section 4 presents our implementation
and numerical studies conducted on the single-machine infi-

FIGURE 1 Interconnection of m synchronous machine dynamic circuits
and n buses of the network [2] (page 137).

nite bus system and the three-machine nine-bus test system.
Section 5 concludes the paper.

2 MATHEMATICAL MODEL

A generic electric power network can be represented by a
dynamic network consisting of n buses with m generators, the
power transmission network, and the loads as shown in Figure 1
where ȲN is the network admittance matrix (Yik∠𝛼ik represents
the ikth element of ȲN ). Active and reactive power demands at
buses i = 1, … n are denoted as PLi and QLi , respectively. Vi are
the magnitudes and 𝜃i is the phase angles of the nodal volt-
age in bus i. Generation buses are indexed from 1 to m, where
the generator in the bus i is represented by a constant voltage
source behind the impedance (Rsi + jX ′

di
) (Rsi is the stator resis-

tance and X ′
di

is the transient reactance). Here, Idi , and Iqi are the
stator currents in d − q coordinates. Buses indexed m + 1, … , n
represent load buses. Consequently, the dynamics of the electric
power grid generally contain (i) a set of ODEs modeling the
system dynamics of synchronous generators along with their
equipped governors and stabilizers and (ii) a set of algebraic
equations modeling generators’ stator voltage equations and
power flow balances in the network. These equations jointly
form the DAEs modeling the power system dynamics.

2.1 Generic DAE model

2.1.1 Dynamics of synchronous generators

We consider the fourth-order two-axis model of synchronous
machines represented by a dynamics circuit in the d − q

coordinates as shown in Figure 2 [2]. Its dynamics are as
follows:

T ′
qoi

dE ′
di

dt
= −E ′

di
+
(

Xqi − X ′
qi

)
Iqi , (1a)

T ′
doi

dE ′
qi

dt
= −E ′

qi −
(
Xdi − X ′

di

)
Idi + E fdi , (1b)
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30 TRAN ET AL.

FIGURE 2 Synchronous machine two-axis model dynamic circuit
(i = 1, … ,m) [2] (page 136).

d𝛿i

dt
= 𝜔i − 𝜔s , (1c)

2Ci

𝜔s

d𝜔i

dt
= TMi − E ′

di
Idi − E ′

qi Iqi

−
(

X ′
qi − X ′

di

)
Idi Iqi − Di (𝜔i − 𝜔s ) (1d)

∀i = 1, … ,m,

where i is the generator index. The state variables of the gener-
ator i include internal voltages in the d -axis and q-axis, E ′

di
and

E ′
qi , the rotor angle, 𝛿i , and the angular velocity, 𝜔i . The param-

eters for each generator in (1) include transient open-circuit
time constants of d -axis and q-axis, T ′

do
and T ′

qo, the machine
inertia constant, C , the mechanical torque, TM , the damping
coefficient, D, the synchronous reference angular speed,𝜔s , and
the synchronous and transient reactances in d -axis and q-axis,
Xd , X ′

d
, Xq and X ′

q , respectively. E fdi is the state variable of
the exciter of the generator i, namely the scaled field voltage.
Additionally, applying Kirchhoff ’s Voltage Law, we obtain the
following stator algebraic equations:

E ′
di
−Vi sin(𝛿i − 𝜃i ) − Rsi Idi + X ′

qi Iqi = 0, (2a)

E ′
qi −Vi cos(𝛿i − 𝜃i ) − Rsi Iqi − X ′

di
Idi = 0, (2b)

∀i = 1, … ,m.

2.1.2 Dynamics of exciters, turbines, and speed
governors model

A generator has a voltage stabilizer/exciter for voltage control
and a governor for speed control as depicted in Figure 3.

The IEEE type 1 exciter regulates the generator’s voltage,
E fdi in (1), and has the following dynamic model:

TEi

dE fdi

dt
= −(KEi + SEi (E fdi ))E fdi +VRi , (3a)

TFi

dR fi

dt
= −R fi +

KFi

TFi
E fdi , with R fi ≜

KFi

TFi
E fdi −VFi , (3b)

FIGURE 3 Generator with exciter and governor [22] (page 2).

FIGURE 4 IEEE type 1 Exciter system [2] (page 218).

FIGURE 5 Turbine and speed governor model [23] (page 4).

TAi

dVRi

dt
= −VRi + KAiR fi

−
KAiKFi

TFi
E fdi + KAi (Vre fi −Vi ) (3c)

∀i = 1, … ,m,

whose state variables include the scaled field voltage, E fdi , the
rate feedback, R fi , and the scaled input to the main exciter,
VRi [2]. The overall block diagram of the exciter is shown in
Figure 4. Note R fi can be calculated using the scaled field volt-
age E fdi and the scaled output of the stabilizing transformer VFi .
The exciter’s parameters include the exciter gain, KEi , the exciter
time constant, TEi , exciter saturation, SEi , the rate feedback gain,
KFi , the rate feedback time constant, TFi , the amplifier gain, KAi ,
and the amplifier time constant, TAi . The exciter saturation SEi

is a function of E fdi , which is set as SEi (E fdi ) = 0.0039e1.555E fdi

as in [2].
Figure 5 shows the block diagram of the turbine and speed

governor model, whose dynamics can be represented as follows:

TCHi

dTMi

dt
= −TMi + PSVi , (4a)

TSVi

dPSVi

dt
= −PSVi + PCi −

1
RDi

(
𝜔i

𝜔s
− 1

)
(4b)

∀i = 1, … ,m.

Parameters include the steam chest time constant, TCHi , the
steam valve time constant, TSVi , and speed regulation quantity,
RDi . Variable PSVi is the steam valve position. Variable PCi is the
power control continuously computed based on the given initial
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TRAN ET AL. 31

value set point P0
Ci

, a constant participation factor k
p f

i , and the

total change in loads Z (
∑m

i
k

p f

i = 1):

PCi = P0
Ci
+ k

p f

i Z , ∀i = 1, … ,m. (5)

2.1.3 Network power flow equations

For generator buses (i = 1, … ,m), Idi , Iqi , since Vi , and 𝜃i are
coupled with the state variables of internal generators’ voltages,
E ′

di
and E ′

qi , by KVL, the active and reactive power balances are:

IdiVi sin(𝛿i − 𝜃i ) + IqiVi cos(𝛿i − 𝜃i ) − PLi

=

n∑
k=1

ViVkYik cos(𝜃i − 𝜃k − 𝛼ik ), (6a)

IdiVi cos(𝛿i − 𝜃i ) − IqiVi sin(𝛿i − 𝜃i ) − QLi

=

n∑
k=1

ViVkYik sin(𝜃i − 𝜃k − 𝛼ik ) (6b)

i = 1, … ,m,

where IdiVi sin(𝛿i − 𝜃i ) + IqiVi cos(𝛿i − 𝜃i ) is the active power
and IdiVi cos(𝛿i − 𝜃i ) − IqiVi sin(𝛿i − 𝜃i ) is the reactive power,
generated by the generator. Also, PLi and QLi are the active
and reactive power demands, respectively. Similarly, for n − m

remaining load buses, the active and reactive power balances are:

−PLi =

n∑
k=1

ViVkYik cos(𝜃i − 𝜃k − 𝛼ik ), (6c)

−QLi =

n∑
k=1

ViVkYik sin(𝜃i − 𝜃k − 𝛼ik ) (6d)

i = m + 1, … , n.

2.1.4 DAE compact form

Equations (1)-(6) together form the DAEs modeling power
system dynamics in the compact form [2] as:

⎧⎪⎨⎪⎩
dx

dt
= f (x, y) (7a)

0 = g(x, y), (7b)

x =
[
x⊤1 , x

⊤
2 , … , x

⊤
m

]⊤
,

y =
[
Idi , Iqi ,Vi , 𝜃i (i = 1, … , n)

]⊤
,

where (7a) represents the dynamics of m generator and
(7b) represents the KVL and power flow balances in
the network. The nonlinear vector-valued functions, f

and g, are derived from the state vector x, where xi =
[E ′

di
,E ′

qi , 𝛿i , 𝜔i ,E fdi ,R fi ,VRi , TMi , PSVi ]
⊤ is the state vector for

generator i and vector of algebraic variables y.

FIGURE 6 Internal-node model [2] (page 178).

2.2 Special case: Internal-node model

A special case in which the DAEs of power system dynamics
become ODEs is the internal-node model widely used in first-
swing transient stability analysis [2]. It is also called the network
with constant impedance as the nodal demand is represented by
an admittance as:

y
Li
=

(PLi − jQLi )

V 2
i

, ∀i = 1, … , n. (8)

Assuming the damper-winding constants are very small and
T ′

qoi
and Di are zero, E ′

di
can be substituted to (1d) and (1a)

is eliminated. Additionally, assuming T ′
doi
= ∞ and Xqi = X ′

di
,

E ′
qi becomes a constant equal to the initial value Ei . Thus, (1b)

is eliminated and the n bus transmission network is augmented
at the generator buses 1, … ,m. These generator internal buses
are denoted as n + 1, … , n + m. Consequently, we can represent
the dynamic network of the power grid as in Figure 6 where
nodal demand is represented by an admittance y

Li
. Denote

ȳ = Diag
(

1

jX ′
di

)
for buses 1,…, m, and

Y N 1 = Y N +

[
y 0

0 0

]
+

[
Diag
(
y
Li

)
0

0 0

]
.

The network equation becomes:

[
𝑚 𝐼𝐴
𝑛 0

]
=

[𝑚 𝑛

𝑚 𝑌𝐴 𝑌𝐵

𝑛 𝑌𝐶 𝑌𝐷

][
𝐸𝐴
𝑉𝐵

]
, (9)

where Y A = y, Y B = [−y | 0], Y C =

[
−y

0

]
, Y D = Y N 1.

Since there is no current injection, the n-network buses can
be eliminated, and we have:

I A = (Y A −Y BY
−1
D Y C )EA = Y int EA, (10)

where the elements of I A, EA, and Y init are I i = (Idi +

jIqi e
j (𝛿i−𝜋∕2) ), Ei = Ei∠𝛿i , Y i j = Gi j+ jBi j , respectively. The

network now has only m internal nodes, and the KVL for the
network are:
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I i =

m∑
j=1

Y i j E j , ∀i = 1, … ,m. (11)

By denoting 𝛿i − 𝛿 j ≜ 𝛿i j , the real electrical power output at ith

internal node in Figure 6 is given by

Pei = Re
[
EiI

∗

i

]
= Re

[
Eie

j𝛿i

m∑
j=1

Y
∗

i j E
∗

j

]

= E2
i Gii +

m∑
j=1, j≠i

(Ci j sin(𝛿i j ) + Di j cos(𝛿i j )) (12)

with Ci j = EiE j Bi j ,Di j = EiE j Gi j , ∀i = 1, … ,m.
For the internal node model, we do not have the state vari-

ables for voltages and currents. Therefore, the exciter systems
are not used, and the model includes the generators and gover-
nor systems. Consequently, the power system dynamics in the
Internal-Node model become simple ODEs as follows [2]:

d𝛿i

dt
= 𝜔i − 𝜔s , (13a)

2Hi

𝜔s

d𝜔i

dt
= TMi − Pei , (13b)

TCHi

dTMi

dt
= −TMi + PSVi , (13c)

TSVi

dPSVi

dt
= −PSVi+PCi −

1
RDi

(
𝜔i

𝜔s
− 1

)
(13d)

∀i = 1, … ,m,

where we recall that PCi = P0
Ci
+ k

p f

i Z and Pei is given in (12).

2.3 Converting DAEs system into ODEs
system

Standard numerical integration techniques of ODEs are gener-
ally more efficient and accurate than ones developed for DAEs
[6]. Therefore, it is required to transform a DAE system into an
equivalent set of ODEs:

dz

dt
= f̂ (t , z ), (14)

where z is a new set of state variables so that it can be solved [7].
Unfortunately, transforming DAEs of power system dynamics
into equivalent ODEs is a challenging task due to the complex-
ity of nonlinear power flow equations embedded in (7b). One
standard transformation method is modeling algebraic variables
as explicit functions of state variables. Specifically, if the Jaco-

bian
𝜕g

𝜕y
is nonsingular, there exists a function ĝ such that (7b)

can be equivalently cast as y = ĝ(x ) in accordance with the
implicit function theorem [24]. In general, the nonsingularity

of
𝜕g

𝜕y
holds for normal operations since the power flow and

Kirchhoff ’s voltage equations have a unique solution. Thus,
substituting y by ĝ(x ), the formulation (7) can be rewritten in

the standard form (14), that is,
dx

dt
= f (x, ĝ(x )) = f̂ (x ). How-

ever, it is very difficult to explicitly construct the magnitudes
and phases of nodal voltages as a function ĝ of state variables of
generators, particularly injected currents and internal voltages.

Moreover, in some operating scenarios, the Jacobian
𝜕g

𝜕y
can be

singular [25] and ĝ(x ) does not exist.
The difficulty of solving a DAE system depends on its index.

DAEs of index 0 or 1 can be easily converted into equivalent
ODEs. Nevertheless, given a large number of algebra equa-
tions and variables in (7b), the power system dynamics’ DAEs
(7) can have an index greater than two, which is very diffi-
cult to solve [26]. To overcome these issues, we employ the
Pantelides algorithm [19], which systematically reduces high-
indexed DAEs to lower-indexed ones by selectively adding
differentiated forms of equations that are already present in
the system [19]. Consequently, we can convert the power sys-
tem dynamics’ DAEs (7) into an indexed-1 DAE system and
then equivalent ODEs (14), where z encapsulates original state
variables x and parts of algebraic variables y.

Once we obtain the ODE formulation (14), we can employ
numerical discretization methods such as the Forward Euler
method to solve it on classical computers [7]:

z (t + Δ)−z (t )
Δ

≈ f̂ (z (t )) ⟺ z (t + Δ)=z (t )+Δ f̂ (z (t )).

(15)

3 QUANTUM COMPUTING METHOD
FOR POWER SYSTEM DYNAMICS’ DAEs

3.1 Overview of quantum computing

3.1.1 Qubits and vector representation

Quantum computers represent information (digital bits, 0 and
1) using two different states of a quantum system [9], for exam-
ple, two different quantized energy levels (0 as the ground state
and 1 as an excited state of an electron) or two spin states of
the particle (0 as electron spins “down” and 1 as electron spins
“up”). Thus, a qubit depicted in Figure 7 can be considered as
the supposition of two quantum states. Using Dirac ket and bra
notation of vector, that is, |⟩ and ⟨|, (see Appendix A.1), it can
be mathematically modeled as follows:

|𝜓⟩ = 𝛼 |0⟩ + 𝛽 |1⟩⟶𝜓 =

[
𝛼
𝛽

]
∈ ℂ2, (16)

where complex values 𝛼, 𝛽 are probability amplitudes satisfy-
ing the normalization condition |𝛼|2 + |𝛽|2 = 1, that is, we can
obtain 0 with probability |𝛼|2 and 1 with probability |𝛽|2 if mea-
suring the quantum state |𝜓⟩. Thus, a single qubit can represent
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TRAN ET AL. 33

FIGURE 7 The particle spin can represent 0 and 1. The Block Sphere

with |0⟩ and |1⟩ at the poles represents a qubit where 𝛼 = cos
𝜃

2
, 𝛽 = ei𝜙 sin

𝜃

2
[9] (page 67).

a column vector 𝜓 = [𝛼, 𝛽]⊤ in a 2-dimensional complex vector
space with two computational basis states:

|0⟩⟶ [1
0

]
, |1⟩⟶ [0

1

]
.

Two qubits can represent a vector in 4-dimensional complex
vector spaces using the following 4 computational basis states:

|00⟩→ ⎡⎢⎢⎢⎣
1
0
0
0

⎤⎥⎥⎥⎦ , |01⟩→ ⎡⎢⎢⎢⎣
0
1
0
0

⎤⎥⎥⎥⎦ , |10⟩→ ⎡⎢⎢⎢⎣
0
0
1
0

⎤⎥⎥⎥⎦ , |11⟩→ ⎡⎢⎢⎢⎣
0
0
0
1

⎤⎥⎥⎥⎦ ,
which can be re-denoted as |0⟩ , |1⟩ , |2⟩ , |3⟩ for convenience.

In general, a set of n qubits can represent a column vector of
2n complex elements using 2n Hilbert space computational basis
states | j⟩ , j = 0, … 2n−1. In other words, a column vector of
N element requires at least n = log2 N qubits for representa-
tion. Note the superposition of these 2n states, that is, these
states can be input simultaneously, is known as quantum par-
allelism, enabling quantum algorithms to outperform classical
ones for certain problems, including solving/updating linear
equations. These remarks can be utilized for linear updating
state variables and polynomially approximating nonlinearity in
power system dynamics.

3.1.2 Time evolution of a quantum system

The time evolution of quantum state |𝜓⟩ at time t under the
following time-independent Schrödinger equation

i
𝜕

𝜕t
|𝜓(t )⟩ = H |𝜓(t )⟩ (17)

is |𝜓(t )⟩ = e−iHt |𝜓(0)⟩ where H is the Hamiltonian operator
(a Hermitian matrix acting on n qubits) [9]. The exponential
component e−iHt can be expressed using a Taylor expansion as
follows:

e−iHt =

∞∑
j=0

(−iHt ) j

j !
. (18)

Thus, the time evolution of the quantum state |𝜓⟩ of n-qubits
from the initial state |𝜓(0)⟩ can be represented as:

|𝜓(t )⟩ = e−iHt |𝜓(0)⟩ = ∞∑
j=0

(−iHt ) j

j !
|𝜓(0)⟩ , (19)

which will be utilized for modeling the evolution of nonlinear
state functions in power system dynamics.

3.2 Application on solving ODEs in power
system dynamics

We aim to leverage the potential application of advances in
quantum computing for solving linear equations [13] for tack-
ling the power system dynamics of a large-scale network. The
Forward Euler equation (15) is indeed a linear equation that can
be rewritten as:

|z (t + Δ)⟩ = |z (t )⟩ + Δ | f̂ (z (t )⟩ . (20)

To implement (20) in a quantum computer, we need to con-
struct the quantum state |z (t )⟩ and | f̂ (z (t )⟩. To this end,
we employ Leyton-Osborne’s algorithm, which includes the
following steps [20].

3.2.1 Data encoding of state vector

We employ the amplitude encoding to encode the state vector z

of length N in equation (15) into amplitudes of an n-qubit quan-
tum state, where n = log2 N + 1. First, z must be normalized to

ensure that
∑N

j=1 |z j |2 = 1 since its elements now represent the
amplitudes of a quantum state. Then, we map the variables z j (t )
to the quantum state as follows:

|z⟩ = 1√
2
|0⟩ + 1√

2

N∑
j=1

z j | j⟩ , (21)

where | j⟩ is the Hilbert space computational basis.
Now, the task is to create the quantum state | f̂ (z (t ))⟩ com-

prising of log2 N + 1 qubits so equation (20) can be conducted
in a quantum computer. This can be accomplished in quantum
computers using a combination of Taylor expansion, math-
ematical tensor, and Hamiltonian simulation, which will be
elaborated on next.

3.2.2 Polynomial approximation of state
function

The j th element in f̂ (z (t )) can be polynomially approximated by
the second-order Taylor expansion as follows:
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34 TRAN ET AL.

f̂ j (z (t )) ≈ f̂ j (z̄ ) +
𝜕 f̂ j (z (t ))

𝜕z
(z (t ) − z̄ )

+
1
2

(z (t ) − z̄ )⊤∇2 f̂ j (z (t ))(z (t ) − z̄ ), (22)

which can be compactly rewritten in the form:

f̂ j (z (t )) = f̂ j (z̄ )
⏟⏟⏟

a
j

0,0

+

N∑
k=1

a
j

0,kzk(t ) +
N∑

v,k=1

a
j

v,kzv (t )zk(t ),

where zk(t ), zv (t ) are the vth and kth elements of the vec-
tor z (t ) − z̄ , a

j

v,k, (v = 0, … ,N , k = 0, …N ) are coefficients of

the polynomial approximation of f̂ j (z (t )). Here, z̄ represents
approximating points (operating or initial state of the power sys-
tems) where the state function values at z̄ , that is, f̂ j (z̄ ) is already

determined and can be represented as a
j

0,0. After adding extra

variable z0 = 1, we obtain the following polynomial form of f̂ j :

f̂ j (z (t )) =
N∑

v,k=0

a
j

v,kzv (t )zk(t ). (23)

3.2.3 Nonlinear transform for the state function

According to equation (23), computing f̂ j (z (t )) requires encod-
ing all monomials zv (t )zk(t ), ∀v, k. In complex linear algebra,
these values are given in the tensor product as illustrated as
follows:

z (t )
⨂

z (t ) =

⎡⎢⎢⎢⎢⎢⎢⎣

1
z1(t )
z2(t )
⋮

z(n−1)(t )
zn(t )

⎤⎥⎥⎥⎥⎥⎥⎦
⏟⎴⏟⎴⏟
(n+1)elements

⨂
⎡⎢⎢⎢⎢⎢⎢⎣

1
z1(t )
z2(t )
⋮

z(n−1)(t )
zn(t )

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.

⎡⎢⎢⎢⎢⎢⎢⎣

1
z1(t )
z2(t )
⋮

z(n−1)(t )
zn(t )

⎤⎥⎥⎥⎥⎥⎥⎦

z1(t ).

⎡⎢⎢⎢⎢⎢⎢⎣

1
z1(t )
z2(t )
⋮

z(n−1)(t )
zn(t )

⎤⎥⎥⎥⎥⎥⎥⎦
⋮

zn(t ).

⎡⎢⎢⎢⎢⎢⎢⎣

1
z1(t )
z2(t )
⋮

z(n−1)(t )
zn(t )

⎤⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
z1(t )
z2(t )
⋮

z(n−1)(t )
zn(t )
⋮

z1(t ).1
z1(t ).z1(t )

z1(t ).1
z1(t ).z2(t ) ⋮
z1(t ).z(n−1)

z(n−1)(t )
zn(t )
⋮

zn(t ).1
zn(t ).z1(t )
zn(t ).z2(t )

⋮
zn(t ).z(n−1)(t )
zn(t ).z (n)(t )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏟⎴⎴⎴⏟⎴⎴⎴⏟
(n+1)×(n+1)elements

This means we can capture all values zv (t )zk(t ), ∀v, k in the
probability amplitudes of the tensor product of two copied
quantum states if making a copy of quantum state is possible:

|z⟩ |z⟩ = 1
2

N∑
v,k=0

zvzk |vk⟩ . (24)

To assign corresponding coefficients, a
j

v,k, to each monomial
zvzk, we define the operator A as follows:

A =

N∑
j ,v,k=0

a
j

v,k | j0⟩ ⟨vk| . (25)

Acting on |z⟩ |z⟩, we obtains the information of f̂ (z ):

A |z⟩ |z⟩ = 1
2

N∑
j ,v,k=0

a
j

v,kzvzk | j⟩ |0⟩ = 1√
2
| f̂ (z )⟩ |0⟩ . (26)

The formulation (26) shows that we can encode | f̂ (z )⟩ using
quantum state |z⟩ by simulating A |z⟩ |z⟩ in a quantum com-
puter. Unfortunately, making a copy of a quantum state is
physically difficult due to the non-cloning theory. This can be
overcome using the Hamiltonian simulation and exploiting the
truncated Taylor series of the matrix exponential, which will be
discussed next.

3.3 Simulating state function in a quantum
computer

We employ the well-known Von-Neumann measurement pre-
scription by constructing the following Hamiltonian [27]:
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TRAN ET AL. 35

H = iA ⊗ |1⟩P ⟨0| − iA† ⊗ |0⟩P ⟨1| , (27)

where ⊗ denote a tensor product, A† is the adjoin of A, and P

is the qubit pointer [28, 29]. If we simulate the Hamiltonian H

in (27) with the initial state |z⟩ |z⟩ |0⟩P in a quantum computer,
the quantum system will evolve in accordance with H for a time
step 𝜖 following (19) to reach the following steady-state |Ψ⟩ [21]
(see Appendix A.2):

|Ψ⟩ = e−i𝜖H |z⟩ |z⟩ |0⟩ = ∞∑
j=0

(−i𝜖H ) j

j !
|z⟩ |z⟩ |0⟩

= |z⟩ |z⟩ |0⟩ + 𝜖A |z⟩ |z⟩ |1⟩ − … , (28)

where the second term in its truncated Taylor expansion con-
tains A |z⟩ |z⟩. Hence, to produce | f̂ (z )⟩, we need to measure
the state Ψ of the n-qubits and post-select on the computation
basis |1⟩.

Although both |z (t )⟩, and | f̂ (z (t 0)⟩ are encoded in quantum
computers, we cannot operate “+” directly on quantum states,
for example, it is physically impossible to merge the probabil-
ity amplitudes of spin states of two electrons. To perform the
Forward Euler linear update (15) in a quantum computer, we
have to reformulate it as a set of linear equations in the form
M |s⟩ = |b⟩, that is,[

𝟙 0
−𝟙 𝟙

]
⏟⎴⏟⎴⏟

M

[
s0
s1

]
⏟⏟⏟|s⟩

=

[
z (t )

Δ f̂ (z (t ))

]
⏟⎴⎴⏟⎴⎴⏟|b⟩

,

and employing quantum linear equation solvers, for example,
the HHL algorithm [13]. Obviously, the solution of equiva-
lent linear equations (28) results in s0 = z (t ) and s1 = z (t ) +
Δ f̂ (z (t )) = z (t + Δ).

Thus, after preparing the quantum states |z (t )⟩ and
Δ | f̂ (z (t ))⟩, we simply set up quantum states |b⟩ as the concate-
nation of |z (t )⟩ and | f̂ (z (t ))⟩ and perform HHL with matrix M

and |b⟩. The values of |z (t + Δ)⟩ can be extracted from solution|s⟩ as the outcomes of the HHL algorithm (see Appendix A.3).
In summary, the flowchart for solving the DAEs system by

quantum computing is shown in Figure 8 consisting of three
steps: encoding state variables |z (t )⟩ via amplitude encoding,
encoding nonlinear function | f (z (t ))⟩ using the tensor product
of quantum states and Hamilton simulation, and finally linear
update of state variable using HHL algorithm.

4 IMPLEMENTATION AND RESULTS

We utilize recent advances in quantum simulation and scientific
machine learning tool-kits embedded in the Julia Computing
environment for implementation, as shown in Figure 9. In
particular, the DAEs that model power system dynamics are
implemented in Julia via the ModelingToolkit (MTK) package
[18]. The set of DAEs in the form of symbolic representation is
then converted into the index-1 DAE form and then the stan-

FIGURE 8 Flowchart for solving DAEs system by quantum computing.

FIGURE 9 Implementation workflow (The QuNLDE solver employs the
Leyton–Osborne algorithm presented in Section 3 [20]).

dard ODE form, that is, formulation (7), by using the Pantelides
algorithm with dae_index_lowering function. The obtained ODEs
can be solved by numerical methods (e.g. the Forward Euler
algorithm) in classical computers.

For quantum computing, we solve the ODEs obtained by
MTK with the QuDiffEq package, which supports Taylor
expansion, amplitude encoding, and leveraging Yao.jl [30] as
a quantum simulator. Yao.jl is an efficient open-source frame-
work for quantum algorithm design that can feature generic and
differentiable programming for quantum circuits and support
the simulation of small to intermediate-sized quantum circuits
with state-of-the-art performance. Yao.jl offers quantum block
intermediate representation, which is a tensor representation
of quantum operations, that is, quantum circuits and quantum
operators (quantum gates, Hamiltonian, or the whole program).
Then, we employ Leyton-Osborne’s algorithm embedded in the
QuNLDE solver of QuDiffEq package [20] to solve examples
of power system dynamic models given in [2].

The dynamics of the power system are solved by quantum
computing through two case studies; (i) a single-machine infi-
nite bus system and (ii) a Western System Coordinating Council
(WSCC) three-machine nine-bus system [2]. The time step for
linearization is set to 0.01s. The root means square error method
is used to measure the difference between the quantum and
classical methods. A solid line represents the values of quantum
computing, and a dashed line represents the values of the
classical method. The complete implementation details and
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36 TRAN ET AL.

FIGURE 10 Single-machine infinite bus system [2] (page 210).

source code of this study are available on the GitHub repository
[31].

4.1 Single-machine infinite bus system

The Single-Machine Infinite Bus (SMIB) system, as illustrated in
Figure 10, presents a simplified representation of the power grid
that is commonly used to study the dynamic behavior and tran-
sient stability of the power system. Its dynamics can be modeled
in the simple ODE form [2] (Chapter 5.8, pages 90-93):

⎧⎪⎨⎪⎩
d𝛿

dt
= 𝜔 − 𝜔s (29a)

d (𝜔 − 𝜔s )
dt

= K1 − K2 sin(𝛿) − K3(𝜔 − 𝜔s ), (29b)

where 𝛿 is the machine’s internal voltage angle, 𝜔 is the angular
speed of the synchronous machine at time t , 𝜔s is the refer-
ence angular speed, and 𝜔 − 𝜔s represents the transient speed
of the synchronous machine. Basically, the SMIB model (30)
adopts the second-order model, which is a reduced model of the
fourth-order model described in (1), for a single generator that is
connected to a very strong grid (infinite bus) through a lossless
transmission line without shunt capacitance. The parameters K1,
K2, and K3 are:

K1 =
𝜔s

2C
T 0

M
,K2 =

𝜔s

2C

EcV

X
,K3 =

𝜔s

2C
D,

where Ec represents the magnitude of the machine’s internal
voltage, V represents the magnitude of the infinite bus voltage,
X is equal to the sum of the machine’s internal reactance and the
lossless line connecting to the infinite bus, which has an angle of
zero, and T 0

M
represents the constant mechanical torque. These

quantities are in normal per-unit notation, while C and D are
the machine inertial constant and the damping constant, respec-
tively, measured in the SI system. The setting parameters are
based on [2] (see page 210).

We observe the SMIB system in two scenarios: (i) normal
operation with K1 = 5, K2 = 10, and K3 = 1.7, and (ii) opera-
tion with a special condition, namely pole slipping by changing
the parameters K3 to 1.3. The initial angle is 𝛿(0) = −1 rad, and
the initial transient speed is 𝜔(0) − 𝜔s = 7 rad/s. The system
observation derived from the initial values is shown in Figure 11.
In both scenarios, the simulation gap between quantum com-
puting and classical methods is very small, with almost zero
errors. In normal operation, the errors between the two meth-
ods are 0.0005 and 0.0009 for rotor angle and speed transient,
respectively. When the system is in a pole slipping, the errors

FIGURE 11 SMIB system’s results.

FIGURE 12 WSCC three-machine nine-bus system [2] (page 143).

increase to 0.0036 and 0.007 because the system takes more time
to converge. In the end, the system reaches a stable state with a
phase angle of around 13 rad, which is equal to the phase angle
in normal operation (≈0.5 rad) plus two cycles. The obtained
results, including quantum computing and classical methods, are
in accordance with the ones in [2] (Chapter 5.8).

4.2 WSCC three-machine nine-bus system

The WSCC three-machine nine-bus system depicted in
Figure 12 is a basic representation of the Western System Coor-
dinating Council as an equivalent system with three generators
and nine buses. Its parameters can be found in [2] (Chapter 7).
We consider two dynamic models: the internal node and the
generic DAEs.
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TRAN ET AL. 37

FIGURE 13 Internal-node model with decreasing loads.

4.2.1 Internal-node model

We have implemented the Internal-Node model, that is, formu-
lation (13), for the WSCC test case, which is a set of ODEs
with 12 state variables. The system is assumed to be operating
normally until demand disturbances at t = 5s. We evaluate the
system dynamics in two scenarios:

∙ Decreasing demand: demands at Bus 6 and Bus 8 decrease
by 0.1 + j0.1pu, and 0.1 + 0.1pu, respectively.

∙ Increasing demand: demands at Bus 5 and Bus 6 increase
by 0.1 + j0.1pu, and 0.1 + j0.1pu, respectively.

Figure 13 shows the changes in variables of three machines
(phase angle, 𝛿i , and transient speed 𝜔i − 𝜔s (i = 1, 2, 3)
corresponding to generator G1, G2, and G3, respectively).
As the demand suddenly decreases at t = 5 s, the electric
power generated from generators is higher than the total
load consumption, causing increases in the phase angles and
speed of generators. The system oscillates before converg-
ing to a new state, in which all generators’ transient speeds
converge to zero, thanks to the operation of the gover-
nor system. Phase angles reach new values higher than the
initial points.

Figure 14 reveals a reverse observation when demand
abruptly rises at t = 5s, leading to insufficient power in
the system. As a result, both phase angles and speeds
of the synchronous machines decrease before being stabi-
lized due to the operations of generators’ governors, which
ramp up power generated in the grid. Eventually, the sys-
tem reaches a new state after oscillating for a while, but the

FIGURE 14 Internal-node model with increasing loads.

phase angles’ values are lower than their pre-disturbance val-
ues.

Overall, the obtained results highlight the effectiveness
and correctness of quantum computing in solving higher
dimensional ODEs, for example, 12 state variables of the
WECC Internal-Node model instead of 2 variables as
in SMIB.

4.2.2 Generic DAE model

The generic DAE model as represented in Equation (7) of the
WSCC three-machine nine-bus system consists of 27 state vari-
ables and 24 algebraic variables. By using ModelingToolkit with
the Pantelides algorithm, we can convert the DAE model into
ODEs (14) with 45 state variables. Thus, the obtained ODEs are
more complicated than the ODEs of the Internal-Node model.
At the time t = 0 s, we set the internal voltage on the q-axis of
generator G1, E ′

q,1(0), to be 0.45 pu above the normal level and
its angle 𝛿1(0) to be 0.01 pu departed from the equilibrium. This
enables us to simulate the system behavior with the initial over-
voltage of G1. We consider two scenarios of load disturbances
at t = 15 s as follows:

∙ Small disturbance: demands at Bus 5, Bus 6, and Bus 8
increase by 0.2+ j0.05 pu, 0.15 pu, and 0.2 pu, respectively.

∙ Large disturbance: demands at Bus 5, Bus 6, and Bus 8
increase by 0.5+ j0.25 pu, 0.3+ j0.05 pu, and 0.4+ j0.05 pu,
respectively.

Figure 15 displays the changes of variables, that is, phase
angle, 𝛿i , transient speed, 𝜔i − 𝜔s , the generator’s voltage, Vi ,

 26341581, 2024, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/enc2.12107, W

iley O
nline L

ibrary on [29/09/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



38 TRAN ET AL.

FIGURE 15 The generic DAE model with small load changes.

and active power output Pei (i = 1, 2, 3) for generators G1, G2
and G3. Note the active power output is calculated as:

Pei = E ′
di

Idi + E ′
qi Iqi +
(

X ′
qi − X ′

di

)
Idi Iqi . (30)

Between t = 0 s and t = 15 s, all generators’ variables undergo
a brief oscillation from their initial values before eventually
returning to their equilibrium values. When the load changes at
t = 15 s, all generators’ outputs increase to balance the demand
while their phase angles, speeds, and voltages decrease. During
both periods (0 ≤ t < 15 s and t ≥ 15 s), the system stabilizes
thanks to the operations of the exciters and governors for sta-
bilizing generators’ voltages and speeds accordingly. While the
transient speed and voltages of generators return to the equilib-

FIGURE 16 The generic DAE model with large load changes.

rium points around zero and 1.0 pu, respectively, phase angles
and active electric power outputs reach new equilibrium points
after the load demand changes.

Figure 16 shows similar results with a higher magnitude of
oscillation of all variables due to a higher change of loads. The
system also moves to a new equilibrium of operating points
in which power generated by generators can match the new
demands thanks to the operations of their governors. Over-
all, the simulation results in both cases illustrate the potential
of quantum computing algorithms in solving generic DAEs
modeling power system dynamics as well as the effective-
ness of scientific machine learning tool-kits, for example, the
Julia-based ModelingToolkit, for symbolically representing and
transforming system dynamics.
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5 CONCLUSION

This paper presents a quantum computing approach for solving
DAEs in power system dynamics. We review the mathemati-
cal models of power system dynamics, particularly the original
DAE model in a generic setting and the simplified ODE one
in the internal node assumption. The original DAEs are first
converted into a set of nonlinear ODEs using the index reduc-
tion method. Using amplitude encoding, the state vector can
be encoded into a quantum computer that requires the num-
ber of qubits as a logarithm of the number of state variables.
To exploit the quantum advantages in complex linear algebra,
nonlinear ODEs are polynomially approximated as a set of poly-
nomial functions of state variables, which can be encoded in
a quantum computer by probability amplitudes of tensors of
quantum states and Hamiltonian simulation. The linear update
in traditional ODE solvers, for example, the Forward-Euler
equation, can be conducted by quantum-based linear solvers,
such as the HHL algorithm. We demonstrate the potential
of the quantum computing approach on two power network
cases, particularly the single-machine infinite bus system and
the Western System Coordinating Council three-machine nine-
bus system. Our numerical results conducted on different
dynamic models of these test cases demonstrate the potential
of quantum computing in analyzing power system dynam-
ics with high accuracy. Additionally, our study also illustrates
the use of scientific machine learning tools, particularly sym-
bolic programming, to facilitate the use of complex computing
concepts, for example, Taylor expansion, DAEs/ODEs trans-
formation, quantum circuits, and quantum operators, in the field
of power engineering.
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APPENDIX

A.1 Ket and Bra notation

In quantum mechanics, the convenient way to represent the spin
state is using Dirac notation [9], which puts a description of
the state in brackets. The “|⟩” is called a “ket”, representing
the column vector, for example, the quantum state of a qubit|𝜓⟩ = 𝛼 |0⟩ + 𝛽 |1⟩→ [𝛼

𝛽

]
. The Dirac bra “⟨𝜓|” represent the

“dual vector” of the Dirac ket |𝜓⟩:
⟨𝜓| = |𝜓⟩† = ((|𝜓⟩)⊤ )∗ = 𝛼∗ ⟨0| + 𝛽∗ ⟨1|→ [𝛼∗ 𝛽∗]

where “⊤” is used to take the transpose of the vector, and “∗”
is used to take the complex conjugate of each vector element.
The combination of these two actions is called the “conjugate
transpose”, the “adjoint” or “Hermitian conjugate”, denoted as
“†”.

A.2 Explain the quantum steady-state with Von-

Neumann Hamiltonian trick in (27)

We now explain how the Hamiltonian operator H of the
Von-Neumann measurement prescription leads to quantum
steady state |Ψ⟩ in (27). Using H defined in (26) and
initial state |z⟩ |z⟩ |0⟩, the steady quantum state is |Ψ⟩ =
e−i𝜖H |z⟩ |z⟩ |0⟩ = ∞∑

j=0

(−i𝜖H ) j

j !
|z⟩ |z⟩ |0⟩ following the discus-

sion in Section 3.1.2. The element of the Taylor expansion with
j = 0 is:

(−i𝜖H )0

0!
|z⟩ |z⟩ |0⟩ = |z⟩ |z⟩ |0⟩ , (A1a)

which is the first term in (27), and the element of the Taylor
expansion with j = 1 is:

(−i𝜖H )1

1!
|z⟩ |z⟩ |0⟩ (A1b)

= (𝜖A ⊗ |1⟩P ⟨0|) |z⟩ |z⟩ |0⟩
⏟⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⏟

F1

+ (−𝜖A† ⊗ |0⟩P ⟨1|) |z⟩ |z⟩ |0⟩
⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟

F2

,

which will be proven to be the second term in (27) as follows.
The term F1 is originally expressed as follows:

F1 = (𝜖A ⊗ |1⟩P ⟨0|)(|z⟩ |z⟩⊗ |0⟩). (A1c)

By utilizing the “no name” property of the tensor product in
Table 9.1 of reference [9], that is, (A ⊗ B)(C ⊗ D) = (AC ) ⊗
(BD), we can rewrite F1 as:

F1 = (𝜖A |z⟩ |z⟩) ⊗ (|1⟩P ⟨0| |0⟩). (A1d)

Then, following the inner product principle in [9], Chapter 4.6,
page 62, and note that ⟨0|0⟩ = 1, we have:

F1 = (𝜖A |z⟩ |z⟩) ⊗ (|1⟩P ⟨0|0⟩) (A1e)

= 𝜖A |z⟩ |z⟩⊗ |1⟩ = 𝜖A |z⟩ |z⟩ |1⟩ ,
Similarly, applying the inner product principle, we have F2 = 0
due to ⟨1|0⟩ = 0. Thus, equation (A1b) becomes the second
term in (27):

(−i𝜖H )1

1!
|z⟩ |z⟩ |0⟩ = 𝜖A |z⟩ |z⟩ |1⟩ . (A1f)

A.3 HHL algorithm

Given a linear system with a Hermitian N × N matrix M and
a normalized column vector b, we want to find a vector s satis-
fying Ms = b in a quantum computer. Based on linear algebra,
we can express M via the sum of the outer products of its

eigenvectors scaled by its eigenvalues as M =
∑N

j=1 𝜆 j |u j ⟩ ⟨u j |
and its inverse is M−1 =

∑N

j=1 𝜆
−1
j |u j ⟩ ⟨u j | where 𝜆 j denotes

the eigenvalue and |u j ⟩ denotes the eigenvectors of M , ( j =
1, … ,N ). Since M is invertible and Hermitian, it must have
an orthogonal basis of eigenvectors |u j ⟩, and vector b can be

expressed as |b⟩ = ∑N

j=1 b j |u j ⟩ [13]. Therefore, the solution of
M |s⟩ = |b⟩ can be written as:

|s⟩ = M−1 |b⟩ = N∑
j=1

b j

𝝀 j
|u j ⟩ , i.e., s =

[
b j

𝝀 j
, ∀ j = 1, … ,N

]⊤
(A2a)

If M is not Hermitian, we can apply the reduction of M to get
Hermitian M̂ , then the problem M |s⟩ = |b⟩ is equivalent to:[

0 M

M† 0

]
⏟⎴⏟⎴⏟

M̂

[
0
s

]
⏟⏟⏟|̂s⟩

=

[
b

0

]
⏟⏟⏟|̂b⟩

.

The rest of this section presents the algorithm for the Her-
mitian matrix. The HHL algorithm depicted in Figure A1
aims to obtain a quantum state |s⟩ that satisfies (A2a). It
has three steps: phase estimation, eigenvalue inversion rota-
tion, and inverse phase estimation, and employs three quantum
registers: the ancilla register  storing auxiliary qubits, the
clock registers  storing a binary representation of the eigen-
values of matrix M , and the input register  storing the
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FIGURE A1 Overview of the HHL algorithm circuit (n = log2 N ).

vector solution of the system of linear equations when the
measurement of the contents of the ancilla quantum register
is “1”.

Applying quantum phase estimation with the unitary oper-
ator U = eiMt , the register expressed in the eigenbasis of M

becomes:

N∑
j=1

b j |𝜆 j ⟩ |u j ⟩ . (A2b)

Applying rotation of ancilla qubit conditioned on each eigen-
value |𝜆 j ⟩ of M , we get a normalized state of the form:

N∑
j=1

b j |𝜆 j ⟩ |u j ⟩
(√

1 −
c2

𝜆2
j

|0⟩ + c

𝜆 j

|1⟩), (A2c)

where c is the scaling factor used to guarantee that all quantum
states are normalized. Then, we perform inverse quantum phase
estimation, which sets the clock register  back to 0’s and leaves
the remaining states as:

N∑
j=1

b j |0⟩ |u j ⟩
(√

1 −
c2

𝜆2
j

|0⟩ + c

𝜆 j

|1⟩). (A2d)

We observe that if the ancilla qubit is 1, the state of the registers
is a normalized equivalent of the solution vector s (note that‖s‖ =√∑N

j=1 |b j |2∕|𝜆 j |2). Thus, measuring the ancilla qubit
until getting “1” and the new state is:√√√√ 1∑N

j=1 |b j |2∕|𝜆 j |2
N∑
j=1

b j

𝝀 j
|0⟩ |u j ⟩ , (A2e)

which is component-wise proportional to the solution vector|s⟩, that is, the values of
b j

𝜆 j

can be extracted from quantum

states of register .
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