
Published as a conference paper at ICLR 2025

CodeEditorBench: EVALUATING CODE EDITING CAPA-
BILITY OF LLMS

Jiawei Guo1∗, Ziming Li3∗, Xueling Liu1∗, Kaijing Ma5∗,
Tianyu Zheng1, Zhouliang Yu3, Ding Pan3, Yizhi Li4,
Ruibo Liu1, Yue Wang1, Shuyue Guo1, Xingwei Qu3,4,
Xiang Yue1, Ge Zhang1,2,6†, Wenhu Chen1,2,6†, Jie Fu3†,
1 Multimodal Art Projection Research Community; 2 University of Waterloo;
3 HKUST; 4 University of Manchester; 5 Tongji University; 6 Vector Institute

ABSTRACT

Large Language Models (LLMs) for code are rapidly evolving, with code editing
emerging as a critical capability. We introduce CodeEditorBench, a pioneering
evaluation framework designed to rigorously assess the performance of LLMs
in code editing tasks, including debugging, translating, polishing, and require-
ment switching. Unlike existing benchmarks focusing solely on code generation,
CodeEditorBench emphasizes real-world scenarios and practical aspects of soft-
ware development. We curated diverse coding challenges and scenarios from five
sources, covering various programming languages, complexity levels, and editing
tasks. Evaluating 19 LLMs revealed that despite the relative consistency observed
between the models’ code editing and code generation abilities, notable differ-
ences persist.The results highlight the models’ limitations in code polishing and
code rewriting as required and also indicate that models specifically tailored for
code feedback capabilities show significant improvements in code editing tasks.
CodeEditorBench aims to catalyze advancements in LLMs by providing a robust
platform for assessing code editing capabilities. We will release the dataset and
evaluation code to enable the community to study code editing tasks of LLMs.1.

1 INTRODUCTION

Recent advancements in LLMs (Touvron et al., 2023; Achiam et al., 2023) underscore the importance
of their coding capabilities, extending beyond mere programming assistance (Tian et al., 2023;
Nijkamp et al., 2023a) to encompass various tool-using applications (Qin et al., 2023; Cai et al.,
2023). Specifically, code LLMs (Rozière et al., 2024; Guo et al., 2024; Zheng et al., 2024) are
deployed across various tasks, such as code repair (Olausson et al., 2023), code optimization (Shypula
et al., 2023).

Coding involves a wide range of skills, with code editing playing a pivotal role in software develop-
ment, encompassing tasks such as optimization, refactoring, and bug fixing. Despite the growing use
of LLMs as programming aids, existing evaluation methods, such as HumanEval (Chen et al., 2021)
and MBPP (Austin et al., 2021), primarily focus on code generation, neglecting the crucial aspect of
code editing in software development.

To bridge such a significant gap in evaluation, we advocate for developing a new benchmark to com-
prehensively assess the code editing abilities of LLMs. To this end, we introduce CodeEditorBench,
a pioneering evaluation framework designed to assess the performance of LLMs in editing code
rigorously, where the overview is described in Figure 1. The categorization of code editing problems
helps to understand and evaluate the performance of code LLMs systematically. Based on the SDLC
definitions2, we evaluate code LLMs in four scenarios: Code Debug, Code Translate, Code Polish,
and Code Requirement Switch, which are categorized to reflect the most common and critical types
of tasks in the code editing process. See subsection A.1 for classification basis. (i) Code Debug:

1https://github.com/CodeEditorBench/CodeEditorBench
2https://en.wikipedia.org/wiki/Software_development_process

1

https://github.com/CodeEditorBench/CodeEditorBench
https://en.wikipedia.org/wiki/Software_development_process


Published as a conference paper at ICLR 2025

Programming
Language Selection

Data Source

LLMs for Test Cases 
Generation

Code Length Filter

Initialized 
Source Data

Code Set

Test Cases 
Filter

Code Debug

Code Translate

Code Polish

Code Requirement 
Switch

CodeEditor Benchmark

Chain Of Thought

Three Shot Prompt

Zero Shot Prompt

Output

Input

Code

Online Judge System

LLMs for 
Evaluation

LLMs Output

Batch Judging

Polish

Switch

Translate

Debug

Reduce 
time/memory

AC

AC in target 
language

AC

Code Cleanup

Code Processing and 
Template Integration

Template 
Integration

Code Extraction

Verify Executability No

Code Parsing

Yes

Compile

Be
nc
h 

Co
ns
tr
uc
t

Test Case Verification

Evaluation
Test Case 
Supplement

Code_
Contest

Leet
code

CodeNet

Taco

Code
XGLUE

Figure 1: Overview of CodeEditorBench. CodeEditorBench evaluates programming languages by
selecting initial data from five sources and filtering based on code length. It enriches the dataset with
LLM generated test cases, which, along with all code, are verified by an online judge system. The
benchmark is developed for four problem types using specific methodologies, described in Figure 3.
Assessment of 19 LLMs involves crafting prompts for zero-shot, three-shot, and chain of thought
settings. Outputs are filtered and integrated with templates for compilation. The OJ’s batch judging
determines the LLMs’ scores, ensuring a rigorous evaluation process.

Debugging is the process of locating and fixing errors in code. (ii) Code Translate: Translating means
converting code from one programming language to another. (iii) Code Polish: Polishing refers to
optimizing code without changing its functionality. (iv) Code Requirement Switch: Requirement
switching is adapting code to new or modified requirements.

Additionally, we make significant efforts to manually construct test cases for each problem in
various programming scenarios to precisely check the editing correctness. We further established an
online evaluation system to facilitate easy evaluation of a broad set of code LLMs. Consequently,
we compiled a dataset containing 7,961 code editing tasks, each with an average of 44 test cases
(a minimum of 8 and a maximum of 446). Inspired by LiveCodeBench (Jain et al., 2024), we
implemented a timestamp-based filtering process to consider the data pollution phenomenon. This
process led to a refined dataset called CodeEditorBench_Plus. The original dataset was thereafter
designated as CodeEditorBench_Primary.

To complement the introduction of a comprehensive benchmark, we aim to delineate the current array
of available models through a code editing leaderboard. We assess 6 base models and 13 models that
undergo instruction tuning across four distinct scenarios, utilizing the same experimental framework,
and employ two evaluative approaches: zero-shot and three-shot.

We summarize our contributions as follows:

• We provide a unified framework for assessment, including tools for visualization, training, and
additional analyses. We will also make all the data involved in the evaluations publicly available
to foster further examination of LLM characteristics. Furthermore, we plan to incorporate more
evaluation metrics in the future.

• We extend previous evaluations of code editing capabilities, which were limited in scope. For exam-
ple, FixEval (Haque et al., 2023) assessed only two models for code debugging, DebugBench (Tian
et al., 2024) evaluated five, and AVATAR (Ahmad et al., 2021) did not test any LLMs for code
translation. Pie4Perf (Shypula et al., 2023)’s focus was limited to the CodeLlama and GPT series
for code polishing.Our more comprehensive evaluation demonstrates a clear correlation between
models’ code editing and code generation performance.
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• We highlight the models’ limitations in code polishing and code rewriting as required. Based on
this comprehensive evaluation, we have also identified discrepancies in the rankings compared to
code generation tasks. Additionally, The results indicate that models specifically tailored for code
feedback capabilities show significant improvements in code editing tasks.

2 RELATED WORK

Code LLMs The field witnesses significant growth in developing code LLMs to address the chal-
lenges in code understanding and generation. This trend starts with the introduction of Codex (Chen
et al., 2021) by OpenAI, followed by the emergence of many influential models including Code-
Gen (Nijkamp et al., 2023b), CodeT5 (Wang et al., 2021; 2023), and InCoder (Fried et al., 2023).
Recent popular open-source models like CodeLLaMa (Rozière et al., 2024), DeepSeek Coder (Guo
et al., 2024), and StarCoder (Li et al., 2023a; Lozhkov et al., 2024) represent the forefront of this
field. They demonstrate excellent abilities in various code understanding and generation tasks by
extensively pre-training from scratch on massive code datasets. Additionally, these base models
undergo another phase of instruction tuning (Zheng et al., 2024; Wei et al., 2023; Luo et al., 2023;
Royzen et al., 2023; Liu et al., 2023a; Muennighoff et al., 2024), empowering them with better
instruction-following capability, leading to significant performance improvements in solving various
code-related tasks.

Code Benchmark Many benchmarks are proposed to compare and evaluate code LLMs. However,
these primarily focus on natural language and code generation. HumanEval (Chen et al., 2021) is one
of the pioneering and most widely used benchmarks for LLM-based code synthesis, consisting of
164 pairs of Python function signature with docstring and the associated test-cases for correctness
checking. Another Python-focused dataset, MBPP (Austin et al., 2021), is created by crowd-sourcing
participants to write in summation 974 programming problems, each of which is comprised of the
problem statement (i.e., docstring), the function signature, as well as three test-cases. Beyond Python,
there are other benchmarks targeting additional languages such as Spider (SQL) (Yu et al., 2018),
HumanEval-X (Zheng et al., 2023) (C++, Javascript and Go), HumanEvalPack (Muennighoff et al.,
2024)(Python, JavaScript, Java, Go, C++ and Rust), CodeContests (Li et al., 2022) (C++ and Java) and
MultiPL-E (Cassano et al., 2022) (extending HumanEval and MBPP to 18 programming languages).
Competitive programming benchmarks include LeetCode-Hard Gym (Olausson et al., 2023), which
evaluates code generation in multiple languages using LeetCode’s server and the OpenAI gym
framework. DebugBench (Tian et al., 2024) advances LLM evaluation by focusing on error correction
across diverse programming challenges, from syntax to logical mistakes. EditEval (Hu et al., 2023)
assesses LLMs’ ability to understand and execute code editing instructions, measuring how accurately
models can modify code based on human-written instructions.

Relatively little work addresses the objective of code editing. Previous works either focus on a subset
of code editing tasks or do not give a reasonable division of code edit tasks. To fill this gap, we
introduce CodeEditorBench, a pioneering evaluation framework designed to assess the performance
of LLMs in editing code.

3 METHOD

3.1 PROBLEM DEFINITION

For any question qi, in order to test whether the code ci generated by LLM is correct, a reasonable
approach is to construct a set Ri - a collection of test cases containing test case input-output pairs
(xi,yi), each xi being a program input and yi being a corresponding desired output. Let ac(x) = y
denote a program a, based on a code script c, that maps an input x to an output y. We define the answer
code ci to be correct if and only if there is not any input-output pair in Ri such that aci(xi) ̸= yi

(i) an ideal debugger D that rectifies any buggy code from c to c∗ should satisfy that D(c) = c∗
s.t.∀(xi, yi) ∈ Ri, ac∗(xi) = yi.Debugging can be regarded as the converting process of debugger D.

(ii) an ideal translater T that translates any code from language a to language b should satisfy
that T(c) = c∗ s.t. ∀(xi,yi) ∈ Ri, ac(xi) = yi and ac∗(xi) = yi.Translating can be regarded as the
converting process of translater T.
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Figure 2: Based on subsection 5.2. Left. We propose evaluating LLMs across four scenarios
capturing various code editing capabilities, namely code debug, code translate, code polish, and
code requirement switch. The figure depicts various model performances across the four scenarios
available in CodeEditorBench_Plus in a radial plot – highlighting how relative differences across
models change across the scenarios. Right. Performance of open-source and closed-source models
on CodeEditorBench_Plus in zero-shot evaluated through win_rate. For a comprehensive explanation
of the abbreviation, refer to section 4.1.

(iii) an ideal optimizer P that make any code more effective in either time or space complexity with
the guarantee of accuracy should satisfy that P(c) = c∗ s.t. ∀(xi,yi) ∈ Ri, ac(xi) = yi,ac∗(xi) = yi
and avgtime(c∗) ≤ avgtime(c) or avgmemory(c∗) ≤ avgmemory(c).Polishing can be regarded as
the converting process of optimizer P.

(iv) an ideal requirement switcher S that switches a similar code that satisfies question a to a target
code that satisfies question b based on the sample inputs and outputs of a and b should satisfy that
S(c) = c∗ s.t. ∀(xi,yi) ∈ Rb, ac∗(xi) = yi.Switching can be regarded as the converting process of
switcher S.
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3.2 DATA CONSTRUCTION

In our meticulously crafted compilation, we gather a wide-ranging assortment of coding challenges
sourced from five sources: namely leetcode3, code_contests (Li et al., 2022), CodeXGLUE (Lu et al.,
2021), codeNet (Puri et al., 2021) and Taco (Li et al., 2023b). To align with the constraints imposed
by the maximum token limit of advanced LLMs, we applied a stringent selection criterion, setting
aside any question codes that surpassed 800 lines or exceeded a 1000-token threshold. This approach
ensures the integrity of the code generated by LLMs.

Our collection spans extensive data structures— from trees, stacks, and queues to arrays, hash tables,
and pointers. It also covers a broad spectrum of algorithms, including but not limited to dynamic
programming, various sorting techniques, depth-first search (DFS), breadth-first search (BFS), greedy
algorithms, and recursion. This comprehensive compilation aims to facilitate an all-encompassing
exploration and understanding of coding principles, catering to various computational problems and
scenarios.

3.2.1 CONSTRUCTION METHOD

Code Debug Inspired by the DebugBench (Tian et al., 2024), we employ the insertion of a basic
error to construct the data with one error and utilized a similar methodology to generate data sets with
two, three, and four errors, as detailed in the basic error types in Table 3. The precise prompts used
for inserting errors are detailed in subsection A.2. In addition, we manually recheck after insertion
errors to ensure that they are inserted accurately.

Code Translate & Code Polish Based on a straightforward rationale, the challenge LLMs encounter
in understanding code typically increases as the complexity of the code itself rises. Consequently, we
stratify the dataset according to code complexity, adhering to a selection ratio of 3:4:1.

Code Requirement Switch Initially, we categorize the data into two groups. The first is designated
as ’strong relation’, which represents the similar questions provided by Leetcode under a certain
question. These questions exhibit clear human feedback and represent the most tightly intercon-
nected subjects. Conversely, the second category, ’weak relation’, which is constructed by us. The
methodology for its construction is outlined as follows:

• Collect the labels of each question.
• Cluster the questions based on the number of tags they possess, with our clustering criterion being

the presence of four or more identical tags.
• Given that tags only partially convey the essence of the questions, we employ Bert (Devlin et al.,

2018) to assess the semantic similarity between the descriptions of two questions within each
category. Our set threshold for similarity is 0.92.

Despite the majority of the dataset being synthetically generated by us, we acknowledge the inherent
risk of data pollution within the dataset. To address this concern, we implement a timestamp-
based filtering process. This novel strategy enables us to methodically examine the dataset, thereby
identifying and excluding outdated information, which significantly improves the overall quality of
the dataset. Consequently, from CodeEditorBench_Primary, we develop CodeEditorBench_Plus.

Test cases generation During the benchmark construction, we encounter several issues: notably,
some topics are deficient in test cases, failing to meet the minimum requirement of eight cases.
Additionally, the comprehensiveness of some test cases is compromised due to the absence of
boundary tests, thereby falling short of the standards for rigorous evaluation. To address these
shortcomings, we leverage three LLMs for test case generation: (i) GPT-4: generate boundary test
cases. (ii) GLM-4: generate basic test cases. (iii) Qwen-72B-Chat:check the formatting of the
test cases, along with ensuring each topic has at least 8 test cases. Mindful of the potential for
illusion, we opt to select only the inputs from the generated test cases. The corresponding outputs
are then determined by executing the problem-solving code via OJ, which we establish to assess the
correctness of code generated by LLMs. The specific prompt for generating test cases can be found
in Figure 6 and Figure 7.

3https://leetcode.com
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3.3 DATA ANALYSIS

Figure 3 presents a selection of exemplars from the CodeEditorBench, delineating the spectrum
of code editing tasks, including Code Debugging, Code Translating, Code Polishing, and Code
Requirement Switching.

The CodeEditorBench_Primary, as illustrated in Figure 8a, and CodeEditorBench_Plus, as shown in
Figure 8b, establish an evaluation framework that mirrors the complexities inherent in real-world
software development scenarios. This framework is meticulously designed to gauge LLMs’ code
editing capabilities, presenting a richer and more nuanced set of challenges than conventional code
generation benchmarks. The datasets are extensive, categorizing tasks along several dimensions:
programming languages (C++, Java, Python), number of errors (one, two, three, four), difficulty
levels (easy, medium, hard), language transitions (e.g., C++ to Java), and relation strength (strong,
weak).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Decoding Strategy. Our dataset is significantly larger than those used in prior benchmarks, neces-
sitating adjustments in our evaluation approach. For closed-source models, given the considerable
expense associated with API calls, we opt for greedy decoding when generating code, employing the
pass@1 (Kulal et al., 2019; Chen et al., 2021) metric to assess the code’s pass rate. We also apply a
greedy decoding strategy to open-source models to facilitate a fair comparison between them.

Hyperparameter Settings. Our dataset was filtered to exclude code exceeding 800 lines or 1024
tokens. In our benchmark’s four scenarios, the generated code is typically similar in length to the
source code, leading us to set the count of maximum new tokens to 1024 for closed-source models.
For open-source models, we set the maximum new tokens’ count to 2048. We utilize vLLM (Kwon
et al., 2023) to accelerate the output process for open-source models.

The same experimental setup is used across all four scenarios.

Evaluated Models We select 19 of the most popular current code LLMs from existing leaderboards
evalplus (Liu et al., 2023b), bigcode (Ben Allal et al., 2022), encompassing both open-source and
closed-source models, with sizes ranging from 6.7B to 34B, including base models and instruction-
tuning models. The open-source models include the GPT series (GPT-3.5-Turbo, GPT-4), the Gemini
series (Gemini-Pro, Gemini-Ultra), and GLM-4. Closed-source models comprise the CodeLlama
series (CL-34B-Base, CL-{7, 13, 34}B-INST), the DeepSeek series (DS-33B-INST), and the outstand-
ing instruction-finetuned models, the WizardCoder series (WC-15B based on StarCoder, WC-33B
based on DS-33B-Base), OctoCoder based on StarCoder, CF-34B based on CL-34B-Python, PH-34B
based on CL-34B-Base, the Magicoder series (MC-DS-6.7B based on DS-6.7B-Base, MC-CL-7B
based on CL-7B) and the OpenCodeInterpreter series(OpenCI-DS-6.7B based on DS-6.7B-Base,
OpenCI-DS-33B based on DS-33B-Base). Appendix B presents more detailed information regarding
our evaluated models.

4.2 PROMPT ENGINEERING

Prompt Setting. We implement various prompting techniques to evaluate our model, including
zero-shot prompting and few-shot prompting methods. In selecting examples for few-shot prompts, a
clustering approach is utilized to pick three fixed examples from the dataset of each scenario.

Prompt Format. In constructing prompts for open-source models, we adhere to the formats
provided in their official examples. We search for a suitable prompt format in the HuggingFace model
card, Github repository, and formal publications or technical reports. The variance in prompts across
different open-source models primarily lies in a few special identifiers, such as for the CodeLlama-
INST series of models, we add <s>[INST] and [/INST] at the beginning and end of the instruction,
respectively. We consistently use the Instruction-Question-Answer format to construct prompts for
closed-source models.
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Model Size Open Debug Translate Switch Polish Win Rate

Zero-shot

GPT-4 - ✗ 0.316(0.493) 0.465(0.503) 0.264 1.12%(1.33%) 0.855(0.868)
OpenCI-DS-33B 33B ✔ 0.236(0.429) 0.368(0.428) 0.141 6.02%(6.49%) 0.776(0.816)
Gemini-Ultra - ✗ 0.304(0.459) 0.378(0.278) 0.041 5.31%(3.77%) 0.750(0.579)
DS-33B-INST 33B ✔ 0.275(0.487) 0.410(0.451) 0.162 1.10%(1.14%) 0.737(0.757)
Gemini-Pro - ✗ 0.286(0.423) 0.344(0.344) 0.076 5.86%(6.65%) 0.737(0.711)
GPT-3.5-Turbo - ✗ 0.290(0.494) 0.475(0.480) 0.177 0.09%(0.84%) 0.724(0.776)
OpenCI-DS-6.7B 6.7B ✔ 0.233(0.402) 0.357(0.384) 0.126 4.45%(4.28%) 0.671(0.697)
WC-33B 33B ✔ 0.274(0.487) 0.371(0.438) 0.156 0.79%(0.90%) 0.632(0.704)
GLM-4 - ✗ 0.220(0.271) 0.278(0.365) 0.085 5.17%(6.46%) 0.526(0.592)
MC-DS-6.7B 6.7B ✔ 0.242(0.406) 0.343(0.401) 0.130 0.21%(1.99%) 0.513(0.697)
PH-34B 34B ✔ 0.230(0.369) 0.279(0.331) 0.074 2.84%(1.78%) 0.500(0.539)
Octocoder 15.5B ✔ 0.042(0.145) 0.392(0.223) 0.030 1.39%(2.70%) 0.434(0.289)
CL-13B-INST 13B ✔ 0.176(0.368) 0.333(0.275) 0.021 2.31%(1.82%) 0.421(0.368)
CL-34B 34B ✔ 0.163(0.250) 0.310(0.240) 0.052 1.10%(0.84%) 0.382(0.171)
MC-CL-7B 7B ✔ 0.174(0.317) 0.272(0.276) 0.039 1.31%(1 31%) 0.329(0.342)
WC-15B 15B ✔ 0.159(0.354) 0.309(0.278) 0.067 0.91%(0.96%) 0.329(0.408)
CL-7b-INST 7B ✔ 0.155(0.336) 0.289(0.231) 0.017 1.47%(1.17%) 0.289(0.250)
CL-34B-INST 34B ✔ 0.131(0.250) 0.287(0.240) 0.027 1.02%(0.84%) 0.211(0.171)
CF-34B 34B ✔ 0.166(0.223) 0.218(0.177) 0.028 0.33%(0.70%) 0.184(0.105)

Few-shot

Gemini-Ultra - ✗ 0.286(0.448) 0.443(0.307) 0.152 5.62%(4.55%) 0.855(0.632)
GPT-4 - ✗ 0.345(0.523) 0.517(0.514) 0.303 1.13%(1.14%) 0.816(0.882)
OpenCI-DS-6.7B 6.7B ✔ 0.233(0.440) 0.372(0.399) 0.165 6.47%(8.59%) 0.770(0.750)
OpenCI-DS-33B 33B ✔ 0.230(0.463) 0.371(0.437) 0.229 5.75%(4.82%) 0.763(0.803)
DS-33B-INST 33B ✔ 0.272(0.489) 0.417(0.465) 0.235 1.18%(0.93%) 0.737(0.763)
GPT-3.5-Turbo - ✗ 0.270(0.511) 0.364(0.431) 0.201 1.54%(1.70%) 0.684(0.803)
Gemini-Pro - ✗ 0.229(0.386) 0.392(0.356) 0.139 5.23%(5.64%) 0.671(0.645)
WC-33B 33B ✔ 0.279(0.515) 0.362(0.447) 0.243 0.65%(0.63%) 0.645(0.711)
MC-DS-6.7B 6.7B ✔ 0.262(0.478) 0.321(0.381) 0.192 1.44%(0.89%) 0.605(0.632)
GLM-4 - ✗ 0.233(0.341) 0.299(0.360) 0.100 5.30%(6.41%) 0.572(0.592)
CL-34B 34B ✔ 0.133(0.367) 0.307(0.252) 0.113 1.75%(1.11%) 0.474(0.447)
PH-34B 34B ✔ 0.239(0.468) 0.275(0.326) 0.092 1.20%(0.75%) 0.421(0.461)
CL-13B-INST 13B ✔ 0.160(0.330) 0.327(0.284) 0.028 1.75%(1.25%) 0.414(0.322)
MC-CL-7B 7B ✔ 0.157(0.355) 0.245(0.230) 0.075 1.70%(1.18%) 0.329(0.382)
WC-15B 15B ✔ 0.114(0.332) 0.271(0.224) 0.099 1.65%(1.11%) 0.322(0.329)
CF-34B 34B ✔ 0.166(0.262) 0.240(0.158) 0.050 1.61%(1.39%) 0.289(0.250)
Octocoder 15.5B ✔ 0.050(0.263) 0.290(0.206) 0.054 1.09%(0.85%) 0.211(0.184)
CL-7B-INST 7B ✔ 0.167(0.362) 0.271(0.224) 0.028 1.00%(0.71%) 0.211(0.204)
CL-34B-INST 34B ✔ 0.143(0.330) 0.303(0.264) 0.032 0.32%(0.67%) 0.211(0.211)

Table 1: Evaluating LLMs on CodeEditorBench. All results of models are generated by greedy
decoding. Code Debug, Code Translate and Code Requirement Switch are evaluated with pass@1,
while Code Polish is evaluated with Mean OptScore. Values outside parentheses denote Plus results
and inside denote Primary results. For the Switch class, Primary and Plus results are identical, and
only one score is displayed.

5 RESULT ANALYSIS

5.1 EVALUATION ONLINE SYSTEM

To comprehensively assess LLM’s code editing performance across the four scenarios, we construct
OJ based on the hustoj (Hao-bin, 2012). The system processes LLM-generated code to ensure
adherence to operational requirements, tailors a set of focused test problems, and passes criteria for
each scenario, facilitating a comprehensive evaluation.

Pass Criteria. For Code Debug, Code Translate, and Code Requirement Switch, we verify whether
the code passes all test cases within the time and memory constraints of our OJ. For Code Translate,
we specifically run the code in the target language environment to ensure an accurate evaluation of
translation performance. To meet the pass criteria for Code Polish, the code must pass all test cases
and demonstrate improved efficiency by reducing execution time or memory usage.
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Pass Wrong Answer Runtime Error Compile Error Other

Debug 21.57% 53.41% 13.40% 7.51% 4.11%
Polish 19.23% 53.15% 5.46% 3.01% 19.15%
Switch 11.18% 64.74% 10.94% 8.09% 5.05%
Translate 33.15% 45.67% 3.69% 6.06% 11.43%
ALL 20.34% 55.26% 8.53% 6.34% 9.53%

Table 2: Judgment results across different problem types in CodeEditorBench_Plus

For more detailed information on the pass criteria and evaluation configuration, please refer to
Appendix E and Appendix F respectively.

5.2 PERFORMANCE METRICS

We evaluate the 19 models described in section 4.1 using a zero-shot and few-shot approach on
CodeEditorBench. For Code Debug, Code Translate, and Code Requirement Switch, we employ
pass@1 evaluation criteria. For Code Polish, we use the Mean OptScore as a ranking metric. We
measure the average runtime T̄ and average memory usage M̄ over 20 executions of the original code.
For each polish problem, we conduct two measurements of the model-generated code and calculate
the average values T̄avg and M̄avg. For each model-generated code pass all test cases, if T̄ > T̄avg or
M̄ > M̄avg, the code is considered to pass, and the score is calculated as:

OptScoreT ime =
(T̄ − T̄avg)

T̄

OptScoreMem =
(M̄ − M̄avg)

M̄

OptScore = max

[
(OptScoreT ime + OptScoreMem)

2
, 0

]

Otherwise, the score is set to 0. We calculate the average OptScore across questions and obtain the
mean OptScore.

Finally, we calculate each model’s rank based on its performance on CodeEditorBench_PLUS for
each problem category. Inspired by (Ben Allal et al., 2022), we utilize the win rate to evaluate
the model’s overall performance across various types of problems. We compute the win rate using
1− (rank − 1)/num_models for each problem category, and average them across all categories as
the win rate. The results are summarized in Table 1.

5.3 MODEL PERFORMANCE COMPARISON

Analysis of Table 1 reveals that, in Debug and Translate data types, some LLMs exhibit a significant
difference in pass@1 between Primary and Plus datasets, with values exceeding 0.2. This discrepancy
suggests the potential for data leakage within the Primary dataset. Therefore, we focus on analyzing
LLMs’ performance on the Plus dataset.

Situation. The comparative analysis of model efficacy on the Plus dataset detailed in Table 1 reveals
that closed-source LLMs like Gemini-Ultra and GPT-4 generally outperform their open-source
analogs. GPT-4 excels in zero-shot tasks across Debug, Translate, and Switch categories, whereas
Gemini-Ultra leads in few-shot settings, particularly in Polish tasks, but struggles with Switch
tasks. Among open-source models, OpenCI-DS-33B stands out in zero-shot scenarios, surpassing
Gemini-Ultra, though it shares similar weaknesses in Switch tasks. Notably, OpenCI-DS-6.7B
outperforms its open-source peers and several closed-source models, including Gemini-Pro and
GPT-3.5, demonstrating significant efficacy despite its smaller size.

Pass Rate Distribution. The pass rates exhibit significant variation across different problem types,
as illustrated in Table 2. The PLUS dataset identifies Switch problems as the most challenging, with
a mere 11.18% pass rate. Debug and Translate problems exhibit pass rates of approximately 20% and
30%, respectively. For Polish problems, even with the correct original code provided, only 37.47% of
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the solutions meet all testing criteria. Additionally, only a limited 19.23% of the dataset passes all
tests and demonstrates superior average runtime or memory efficiency relative to the original code. It
is also significant to note that a notable fraction of solutions simply replicate the original code with
no alterations.

Reasons for Not Passing. We analyze the aggregated solutions from all models on CodeEditor-
Bench_Plus, as detailed in Table 2, and discovered that only 20.34% of solutions successfully solve
the problem, with a significant 55.26% failing due to incorrect answers. Other prevalent causes of
failure include compilation and runtime errors, while instances of timeouts or exceeding memory
limits are comparatively rare. Specifically, 6.34% of the dataset experiences compilation errors, a
phenomenon that may partly stem from post-processing losses incurred during the extraction of code
blocks from solutions that include textual explanations. Models producing poorly formatted output,
such as OctoCoder, are notably more susceptible to compilation errors. Interestingly, Polish problems
demonstrate the lowest frequencies of both runtime and compilation errors, likely attributable to the
minimal alterations made to the original code by the models. Conversely, Translate problems are
characterized by a lowest rate of incorrect answers (45.67%), yet suffer the highest rate of timeout
errors (10.21%).

6 CONCLUSION

In this study, we introduce CodeEditorBench, a pioneering benchmark created to evaluate Large
Language Models (LLMs) in code editing tasks. CodeEditorBench is envisioned as a dynamic and
scalable framework that will be periodically updated to incorporate new problems, scenarios, and
models. Our findings indicate that despite the relative consistency observed between the models’ code
editing and code generation abilities, notable differences persist.The results highlight the models’
limitations in code polishing and code rewriting as required and also indicate that models specifically
tailored for code feedback capabilities show significant improvements in code editing tasks. The
analysis also underscores the variability in model performance based on problem category and
scenario, revealing trends in model sensitivity to prompt formulation and highlighting instances
where smaller models surpass their larger counterparts in efficiency. Through establishing a holistic
evaluation platform, CodeEditorBench aims to foster advancements in LLMs for code editing and
serve as a valuable resource for researchers and practitioners.

7 LIMITATIONS

While our study on the CodeEditorBench introduces a novel and rigorous framework for assessing
the code editing capabilities of LLMs, several limitations accompany our research. These limitations
are integral to understanding our benchmark’s scope, applicability, and areas for future improvement.
Model Coverage: The evaluation of 19 LLMs may not fully represent the extensive diversity of
models available, indicating a need for a more inclusive approach in subsequent studies. Bias in
Task Selection: Despite efforts to increase diversity, our array of coding challenges may continue
to exhibit a preference for specific languages or tasks, potentially compromising the benchmark’s
impartiality. Evaluation Metrics: The utilized metrics may not comprehensively encompass the
intricacies of code editing tasks, pointing towards a necessity for more refined assessment techniques.
Real-world Relevance: The benchmark simulation may not fully capture the complexity of real-
world software development projects, highlighting a gap in applicability. Dynamic LLM Landscape:
The rapid advancement in Large Language Model (LLM) technologies may render our findings
obsolete, necessitating continuous updates to the benchmark. Addressing these limitations is crucial
for refining the benchmark and its enhanced utility in evaluating LLMs for code editing.
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A CONSTRUCT DATASET

A.1 CLASSIFICATION BASIS

Figure 4: Software Development LifeCycle(Source:https://bigwater.consulting/2019/04/08/
software-development-life-cycle-sdlc/)

The software development lifecycle (SDLC) is the cost-effective and time-efficient process that
development teams use to design and build high-quality software. The goal of SDLC is to minimize
project risks through forward planning so that software meets customer expectations during production
and beyond. This methodology outlines a series of steps that divide the software development process
into tasks you can assign, complete, and measure.

Categorizing code editing tasks based on SDLC in Figure 4 provides a way to understand and
organize the different scenarios of code editing from the perspective of the overall flow of a software
project, which typically includes phases such as planning, analysis, design, implementation, testing
& integration, and maintenance. Here is how to explain and categorize debug, translate, polish, and
requirement switch:

1. Planning.
Code Requirement Switch: The planning phase is the period during which the objectives,
scope, schedule, and resources of the project are defined. During this phase, initial changes
or adjustments in requirements may be identified, and the concept of requirements switching
is initially developed here to meet project goals or user expectations.

2. Analysis.
Code Requirement Switch: In the Requirements Analysis phase, the requirements of the
project are analyzed and defined in detail. In this process, the requirements may be further
adjusted or refined, in order to adapt to these changes, the code requirements switch in this
phase becomes particularly important.

3. Design.
Code Translate: The design phase is responsible for translating requirements into system
architecture and detailed design. In this phase, the code may need to be translated to fit the
design requirements, such as migrating certain components from one technology stack to
another, or adapting to different platforms and frameworks.

4. Implementation.
Code Polish: The implementation phase mainly involves coding. Code optimization and
polishing are especially important in this phase to ensure the maintainability and performance
of the software through refactoring, improving code structure and code quality.
Code Translate: In addition to code optimization, the implementation phase may also involve
code translation, especially in multi-language programming environments or when existing
code needs to be adapted to a new framework.
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5. Testing & Integration.
Code Debug: The goal of the Testing & Integration phase is to ensure the quality of the
software and to find and fix any defects. Code debugging is a core activity in this phase to
identify and resolve errors in the code to ensure that the software works as expected.

6. Maintenance.
All Categories: The Maintenance phase covers all the activities that take place after the
software is deployed, including fixing defects, updating the software to accommodate new
requirements or changes in the environment, improving performance, and so on. In this
phase:

• Code Debug continues to play a role in dealing with user feedback and defects found
in the software.

• Code Translate may involve code migration or rewriting efforts for compatibility or
technology upgrades.

• Code Polish focuses on improving the quality and performance of code through refac-
toring and optimization.

• Code Requirement Switch reflects the need to adjust functionality and performance at
any point in the software lifecycle in response to changing business requirements or
user feedback.

Through the SDLC-based categorization, we can see that ’debug’, ’translate’, ’polish’, and ’require-
ment switch’ are not only different aspects of code editing, but they also reflect the key tasks and
challenges faced at each stage of the software development process. This basis for categorization
emphasizes the fact that software development is a continuous, iterative process in which the activities
in each phase are interdependent and work together to drive the success of a software project.

This basis for categorization emphasizes the fact that software development is a continuous, iterative
process in which the activities in each phase are interdependent and work together to drive the success
of a software project.

A.2 INSERT ERROR

Error Name Definition

misused ==/= Operator misuse: equality (==) vs. assignment (=)
missing colons Omit colons in control structures and function definitions
unclosed parentheses Unclosed parentheses cause syntax errors
illegal separation Syntax errors due to improper separator usage
illegal indentation Incorrect indentation violates syntax rules (only for Python)
unclosed string Unclosed string literals: mismatched quotation marks
illegal comment Incorrect comment syntax or placement
faulty indexing Incorrect indexing in collections leads to runtime errors
undefined objects Reference to undefined object: missing definition or import
undefined methods Calling non-existent method on object/class
illegal keywords Reserved words misused in programming
condition error Logical errors in control structure conditions
operation error Arithmetic errors, like division by zero
variable error Variable misuse errors: uninitialized variables

Table 3: Basic Error Types
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PS: There is an blemish in DebugBench. Illegal separation is a basic error defined in the debug-
bench.But the error exists only in java and c++ cases, not in python. However,this error also exists in
Python in reality. For example, ’print(a, b)’ and ’print(a; b)’.So we fill that tiny gap.

### Instruction: 
Given code: code
Please add error: error name to the above code
Please output the modified code directly

### Answer:

Figure 5: Prompt for inserting basic error

<|im_start|>user You're an experienced programmer.
input data format: input
description of the problem: content
Please give me as much sample inputs as possible based on the description of the problem in the format "input: xxx".
Each sample input must conform to the input data format, and the length of each sample input must not exceed 40 
tokens.
Please give the inputs directly without any explanation.

<|im_start|>assistant

Figure 6: Prompt for generating test cases

<|im_start|>user You're an experienced programmer.
input data format: input
description of the problem: content
Please give me as much boundry tests as possible based on the description of the problem in the format "input: xxx".
Each sample input must conform to the input data format, and the length of each sample input must not exceed 40 
tokens.
Please give the inputs directly without any explanation.

<|im_start|>assistant

Figure 7: Prompt for generating boundary test cases

A.3 DATA ANALYSIS
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CODE 
EDITOR

PRIM.

C++: 676 / 35.45%

Java: 515 / 27.01%

Python: 716 / 34.47%

One Errors: 
1403 / 73.57%

Two Errors: 
290 / 15.21%

Three Errors: 
140 / 7.34%

Four Errors: 
74 / 3.88%

C++: 793 / 31.39%

Java: 942 / 37.29%

C++ To Python: 429 / 16.98% 

Python: 791 / 31.32%

C++ To Java: 364 / 14.41%

Java To Python: 432 / 17.10% 

Java To C++: 510 / 20.19% 

Python To Java: 334 / 13.23% 

Python To C++: 457 / 18.09% 

C++: 702 / 33.80% 

Java: 570 / 27.44%

Python: 805 / 38.76% 

C++: 530 / 36.53%

Java: 433 / 29.84%

Python: 488 / 33.63% 

Strong Relation: 
747 / 51.48% 

Weak Relation: 
704 / 48.52%

Easy: 
906 / 43.62% 

Medium: 
862 / 41.50% 

Hard: 
309 / 14.88% 

(a) Primary Dataset Analysis

CODE 
EDITOR

PLUS

C++: 336 / 35.82%

Java: 246 / 26.23%

Python: 356 / 37.95%

One Errors: 
434 / 46.27%

Two Errors: 
290 / 30.92%

Three Errors: 
140 / 14.92%

Four Errors: 
74 / 7.89%

C++: 318 / 30.75%

Java: 378 / 36.56%

C++ To Python: 190 / 18.38% 

Python: 338 / 32.69%

C++ To Java: 128 / 12.38%

Java To Python: 181 / 17.50% 

Java To C++: 197 / 19.05% 

Python To Java: 151 / 14.60% 

Python To C++: 187 / 18.09% 

C++: 309 / 30.87% 

Java: 279 / 27.87%

Python: 413 / 41.26% 

C++: 530 / 36.53%

Java: 433 / 29.84%

Python: 488 / 33.63% 

Strong Relation: 
747 / 51.48% 

Weak Relation: 
704 / 48.52%

Easy: 
240 / 23.98% 

Medium: 
563 / 56.24% 

Hard: 
198 / 19.78% 

(b) Plus Dataset Analysis

Figure 8: Comparison of Primary and Plus Dataset Analyses

Code Debug (Pass@1)

Code
Translate
(Pass@1)

Code Polish
(Mean OptScore)

Code
Requirement
Switch
(Pass@1)2%

4%

6%

8%

10%

0.2 0.3 0.4 0.5 0.6

GPT-4 OpenCI-DS-33B Gemini-Ultra
DS-33B-INST Gemini-Pro GPT-3.5-Turbo
OpenCI-DS-6.7B WC-33B

Figure 9: Based on subsection 5.2. Left. We propose evaluating LLMs across four scenarios
capturing various code editing capabilities,namely code debug, code translate, code polish, and
code requirement switch. The figure depicts various model performances across the four scenarios
available in CodeEditorBench_Primary in a radial plot – highlighting how relative differences across
models change across the scenarios. Right. Performance of open-source and closed-source models
on CodeEditorBench_Primary in three-shot. For a comprehensive explanation of the abbreviation,
refer to section 4.1.
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B EVALUATED MODELS

We describe the details of models evaluated in our study in Table 4. To determine the model release
date, we search the model’s GitHub repository first. If there is no relevant information, the publication
date of the paper is used as the release date. It is worth noting that for models such as GPT-3.5-Turbo
and GPT-4, the referenced date is actually the cut-off date for the model’s training data.

Model Size Release Date Open Link

ise-uiuc/Magicoder-S-DS-6.7B 6.7B 2023-12-04 ✔ Magicoder-S-DS-6.7B
ise-uiuc/Magicoder-S-CL-7B 7B 2023-12-04 ✔ Magicoder-S-CL-7B
bigcode/octocoder 15.5B 2023-08-14 ✔ octocoder
WizardLM/WizardCoder-15B-V1.0 15B 2023-06-16 ✔ WizardCoder-15B-V1.0
WizardLM/WizardCoder-33B-V1.1 33B 2024-01-04 ✔ WizardCoder-33B-V1.1
deepseek-ai/deepseek-coder-33b-instruct 33B 2023-02-01 ✔ deepseek-coder-33b-instruct
codefuse-ai/CodeFuse-CodeLlama-34B 34B 2023-09-11 ✔ CodeFuse-CodeLlama-34B
Phind/Phind-CodeLlama-34B-v2 34B 2023-09-01 ✔ Phind-CodeLlama-34B-v2
m-a-p/OpenCodeInterpreter-DS-6.7B 6.7B 2024-02-22 ✔ OpenCodeInterpreter-DS-6.7B
m-a-p/OpenCodeInterpreter-DS-33B 33B 2024-02-22 ✔ OpenCodeInterpreter-DS-33B
codellama/CodeLlama-34b-hf 34B 2023-08-24 ✔ CodeLlama-34b-hf
codellama/CodeLlama-7b-Instruct-hf 7B 2023-08-24 ✔ CodeLlama-7b-Instruct-hf
codellama/CodeLlama-13b-Instruct-hf 13B 2023-08-24 ✔ CodeLlama-13b-Instruct-hf
codellama/CodeLlama-34b-Instruct-hf 34B 2023-08-24 ✔ CodeLlama-34b-Instruct-hf
gpt-3.5-turbo-1106 (OpenAI, 2022) - 2021-10-01 ✗ gpt-3.5-turbo-1106
gpt-4-0613 (OpenAI, 2023) - 2021-10-01 ✗ gpt-4-0613
glm-4 (zhipuai, 2024) - 2024-01-16 ✗ glm-4
gemini-pro (Google, 2023) - 2023-12-06 ✗ gemini-pro
gemini-ultra (Google, 2023) - 2023-12-06 ✗ -

Table 4: Overview of evaluated models.

C DETAILED PROMPTS

The prompt formats demonstrated here are utilized by closed-source models. The instructions used
by open-source models are similar to those of closed-source models, with the main differences being
as follows:

• Given the limited ability of open-source models to generate code in standard format, we
explicitly specify that open-source models generate code enclosed in "```", facilitating post
processing.

• Open-source models typically adhere to a fixed prompt format during the instruction fine-
tuning phase, requiring the addition of special identifiers before and after the instruction.

C.1 CODE DEBUG

Below we present the prompt formats used by closed-source models in the code debug scenario,
under zero-shot and few-shot. See details in Figure 10, Figure 11.

C.2 CODE TRANSLATE

Below we present the prompt formats used by closed-source models in the code translate scenario,
under zero-shot and few-shot. See details in Figure 12,Figure 13.

C.3 CODE POLISH

Below we present the prompt formats used by closed-source models in the code polish scenario,
under zero-shot and few-shot. See details in Figure 14,Figure 15.
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### Instruction:
Please correct the errors in the buggy code snippet below, ensuring that your corrected code adheres to the 
specified programming language syntax and logic requirements. Validate your solution against the provided test 
cases to ensure its accuracy. Note that your solution should strictly consist of the corrected code only. 

### Question: 
Below is the code_language buggy code: 
error_code

Correct the code and ensure it passes the following test case: 
Input: public_tests_input
Output: public_tests_output

### Answer:

Figure 10: Zero-shot Prompt for Closed Models in Code Debug Dataset.

### Instruction: 
Please correct the errors in the buggy code snippet below, ensuring that your corrected code adheres to the
specified programming language syntax and logic requirements. Validate your solution against the provided test 
cases to ensure its accuracy. Note that your solution should strictly consist of the corrected code only. 

### Question:
Below is the cpp buggy code: 
```cpp\nclass Solution {\npublic:\n    unordered_map<long long int,long long int>mp;\n    int trailingZeroes(int 
n) {\n        for(int i=n;i>=1;i--)\n         fun(i);\n         \n\t\t Solution s;\n\t\t return s.min(mp[2],mp[5]); \n    }\n     
void fun(int n)\n {\n for(int i=2;i*i<=n;i++)\n {\n \twhile((n%i) == 0)\n \t{\n \t 
mp[i]++;\n\t\t\t\tn = n / i;\t\n\t\t\t}\n\t\t }\n\t\t if(n > 1)\n\t\t mp[n]++;\n    }\n};```

Correct the code and ensure it passes the following test case: 
Input: n = 3
Output: 0

### Answer:
```cpp\nclass Solution {\npublic:\n unordered_map<long long int,long long int>mp;\n int trailingZeroes(int
n) {\n        for(int i=n;i>=1;i--)\n         fun(i);\n         \n\t\t return min(mp[2],mp[5]); \n    }\n     void fun(int n)\n    
{\n         for(int i=2;i*i<=n;i++)\n         {\n         \twhile((n%i) == 0)\n         \t{\n         \t    mp[i]++;\n\t\t\t\tn = n / 
i;\t\n\t\t\t}\n\t\t }\n\t\t if(n > 1)\n\t\t mp[n]++;\n    }\n};```

Two Other Examples.

### Question:
[The real question that requires reasoning.]

### Answer:

Figure 11: Few-shot Prompt for Closed Models in Code Debug Dataset.

C.4 CODE REQUIREMENT SWITCH

Below we present the prompt formats used by closed-source models in the code requirment switch
scenario, under zero-shot and few-shot. See details in Figure 16,Figure 17.
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### Instruction: 
Please translate the following code snippet to another programming language, ensuring that your translated 
code meets the syntax and logic requirements of the target programming language. Validate your solution against
the provided test cases to confirm its accuracy. Note that your submission should strictly contain the translated 
code only. 

### Question:
Below is the source code snippet in source_lang: 
source_code

Translate this code to target_lang. Ensure your translated code works correctly with the test case provided:
Input: public_tests_input
Output: public_tests_output

### Answer:

Figure 12: Zero-shot Prompt for Closed Models in Code Translate Dataset.

### Instruction: 
Please translate the following code snippet to another programming language, ensuring that your translated
code meets the syntax and logic requirements of the target programming language. Validate your solution against 
the provided test cases to confirm its accuracy. Note that your submission should strictly contain the translated 
code only. 

### Question: 
Below is the source code snippet in java: 
```java\npublic String longestCommonPrefix(String[] strs) {\n    if (strs.length == 0) return "";\n\n    for (int i = 
0; i < strs[0].length(); ++i) {\n char c = strs[0].charAt(i);\n for (int j = 1; j < strs.length; ++j) {\n 
if (i == strs[j].length() || strs[j].charAt(i) != c) {\n                return strs[0].substring(0, i);\n            }\n        }\n    }\n    
return strs[0];\n}```

Translate this code to python. Ensure your translated code works correctly with the test case provided:
Input: strs = \[ "flower ", "flow ", "flight "\]
Output: "fl "

### Answer:
```python\ndef longest_common_prefix(strs):\n    if not strs:\n        return ""\n\n    for i, c in 
enumerate(strs[0]):\n        for j in range(1, len(strs)):\n            if i == len(strs[j]) or strs[j][i] != c:\n                
return strs[0][:i]\n    return strs[0]```

Two Other Examples.

### Question:
[The real question that requires reasoning.]

### Answer:

Figure 13: Few-shot Prompt for Closed Models in Code Translate Dataset.
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### Instruction: 
Please optimize the given code snippet to enhance its execution efficiency and reduce memory usage , ensuring
the accuracy of the code remains unaffected. Validate your solution against the provided test cases to ensure its 
accuracy. Note that your submission should strictly consist of the optimized code only. 

### Question:
Below is the source code snippet that needs optimization:
source_code

Optimize the code and ensure it passes the following test case:
Input: public_tests_input
Output: public_tests_output

### Answer:

Figure 14: Zero-shot Prompt for Closed Models in Code Polish Dataset.

### Instruction: 
Please optimize the given code snippet to enhance its execution efficiency and reduce memory usage , ensuring the 
accuracy of the code remains unaffected. Validate your solution against the provided test cases to ensure its accuracy.
Note that your submission should strictly consist of the optimized code only. 

### Question: 
Below is the source code snippet that needs optimization:
```java\nclass Solution {\n    public String convert(String s, int numRows) {\n        int n = s.length(), r = numRows;\n        
if (r == 1 || r >= n) {\n            return s;\n        }\n        int t = r * 2 - 2;\n        int c = (n + t - 1) / t * (r - 1);\n        char[][] 
mat = new char[r][c];\n        for (int i = 0, x = 0, y = 0; i < n; ++i) {\n            mat[x][y] = s.charAt(i);\n            if (i % t 
< r - 1) {\n ++x;\n } else {\n --x;\n ++y;\n }\n }\n StringBuffer ans = 
new StringBuffer();\n        for (char[] row : mat) {\n            for (char ch : row) {\n                if (ch != 0) {\n                    
ans.append(ch);\n                }\n            }\n        }\n        return ans.toString();\n    }\n}```

Optimize the code and ensure it passes the following test case:
Input: s =  "PAYPALISHIRING ", numRows = 3
Output: "PAHNAPLSIIGYIR “

### Answer:
```java\nclass Solution {\n    public String convert(String s, int numRows) {\n        int n = s.length(), r = numRows;\n        
if (r == 1 || r >= n) {\n            return s;\n        }\n        StringBuffer[] mat = new StringBuffer[r];\n        for (int i = 0; i
< r; ++i) {\n            mat[i] = new StringBuffer();\n        }\n        for (int i = 0, x = 0, t = r * 2 - 2; i < n; ++i) {\n            
mat[x].append(s.charAt(i));\n if (i % t < r - 1) {\n ++x;\n } else {\n --
x;\n            }\n        }\n        StringBuffer ans = new StringBuffer();\n        for (StringBuffer row : mat) {\n

ans.append(row);\n        }\n        return ans.toString();\n    }\n}```

Two Other Examples.

### Question:
[The real question that requires reasoning.]

### Answer:

Figure 15: Few-shot Prompt for Closed Models in Code Polish Dataset.
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### Instruction: 
Please modify the given code snippet to implement a new function that is related to the original function
implemented by the code, ensuring your modified code adheres to the programming language's syntax and 
logic requirements. Validate your solution against the provided test cases to ensure its accuracy. Your submission 
should strictly consist of the target code only.  

### Question: 
Below is the code snippet that implements a specific function: 
similar_source_code

It currently performs the operation: 
Input: public_similar_tests_input
Output: public_similar_tests_output

You are required to modify this code to implement a new function that is related to the original one, as detailed 
below: 
Input: public_target_tests_input
Output: public_target_tests_output

Ensure your modified code passes the provided test case. 

### Answer:

Figure 16: Zero-shot Prompt for Closed Models in Code Switch Dataset.
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### Instruction: 
Please modify the given code snippet to implement a new function that is related to the original function 
implemented by the code, ensuring your modified code adheres to the programming language's syntax and logic 
requirements. Validate your solution against the provided test cases to ensure its accuracy. Your submission should
strictly consist of the target code only.  

### Question: 
Below is the code snippet that implements a specific function:
```cpp\nint maxBooks(vector<int>& books) {\n    int n = books.size();\n    int max_books = 0;\n    \n    for (int l = 0; 
l < n; ++l) {\n        int r = l + 1, books_taken = books[l], min_taken = books[l];\n        max_books = max(max_books, 
books_taken);\n        \n        while (r < n) {\n            min_taken = min(min_taken, books[r]);\n            books_taken
+= min_taken;\n max_books = max(max_books, books_taken);\n \n if (min_taken <= 1) break;
// Can't decrease further\n            ++r;\n        }\n    }\n    \n    return max_books;\n}```

It currently performs the operation: 
Input: books = \[8,5,2,7,9\]
Output: 19

You are required to modify this code to implement a new function that is related to the original one, as detailed below: 
Input: nums = \[1,4,3,7,4,5\], k = 3
Output: 15

Ensure your modified code passes the provided test case. 

### Answer:
```cpp\nint minMoves(vector<int>& nums, int limit) {\n    int n = nums.size();\n    vector<int> delta(2 * limit + 2, 
0);\n\n    for (int i = 0; i < n / 2; i++) {\n        int lo = min(nums[i], nums[n - 1 - i]) + 1;\n        int hi = max(nums[i], 
nums[n - 1 - i]) + limit;\n delta[lo]--;\n delta[nums[i] + nums[n - 1 - i]]--;\n delta[hi + 1]++;\n }\n 
int moves = n, current = n;\n    for (int i = 2; i <= 2 * limit; i++) {\n        current += delta[i];\n        moves = 
min(moves, current);\n    }\n    return moves;\n}```

Two Other Examples.

### Question:
[The real question that requires reasoning.]

### Answer:

Figure 17: Few-shot Prompt for Closed Models in Code Switch Dataset.
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D CODE PROCESSING AND TEMPLATE INTEGRATION

We developed executable templates for C++, Python, and Java, as shown in Figure 18,Figure 19
and Figure 20. Submitted code only needs to contain core functions and the high-level function
name used for main function calls, aligning with the submission requirements of LeetCode. For code
parsing and function name extraction, all code uses tree-sitter4 - an incremental parsing system for
programming tools to retrieve function calls to ensure that the correct high-level function name is
obtained.

1. ### Include Other Necessary Headers

 2. #include <bits/stdc++.h>

 3. #include "../leetcode_template/cpp/LeetcodeIO.h"

 4. using namespace std;

 5. 

 6. class Solution {

 7. public:

 8.  ### Function bodies to be tested

 9. };

10. 

11. int main() {

12. REGISTER_CONSTRUCTOR_SOLUTION;

13. REGISTER_MEMBERFUNCTION_SOLUTION(### High-level Function name to be called);

14. while (true) {

15. executor.constructSolution();

16. executor.executeSolution();

17. }

18. }

Figure 18: C++ Template.

4https://github.com/tree-sitter/tree-sitter
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1. ###  Include Other Necessary Headers

 2. import json

 3. import sys

 4. from parse_input import *

 5. from leetcode_class import ListNode, Node, TreeNode

 6. from typing import List

 7. 

 8. parse_function_map = {

 9. "'Node'": parse_node,

10. "'Optional[Node]'": parse_node,

11. "'TreeNode'": parse_treeNode,

12. "ListNode": parse_listNode,

13. "List['Node']": parse_list_node,

14. "List[List[int]]": parse_list_list_int,

15. "List[List[str]]": parse_list_list_str,

16. "List[Optional[ListNode]]": parse_list_listNode,

17. "List[TreeNode]": parse_list_treeNode,

18. "List[bool]": parse_list_bool,

19. "List[float]": parse_list_float,

20. "List[int]": parse_list_int,

21. "List[str]": parse_list_str,

22. "Optional['Node']": parse_node,

23. "Optional[ListNode]": parse_listNode,

24. "Optional[TreeNode]": parse_treeNode,

25. "TreeNode": parse_treeNode,

26. "bool": parse_bool,

27. "float": parse_float,

28. "int": parse_int,

29. "str": parse_str,

30. "treeNode": parse_treeNode,

31. }

32. 

33. class Solution:

34.  ###  Function bodies to be tested

35. 

36. if __name__ == '__main__':

37. 

38. object_func_name = ###  High-level Function name to be called

39. 

40. func_input_type_list = ###  Input Type of the calling Function

41. 

42. while True:

43. try:

44. input_data = []

45. for _ in range(len(func_input_type_list)):

46. input_data.append(input())

47. input_argus = []

48. for input_data_item, input_data_type in zip(input_data, func_input_type_list):

49. input_argus.append(parse_function_map[input_data_type](input_data_item))

50. s = Solution()

51. func = getattr(s, object_func_name)

52. output = func(*input_argus)

53. print(output)

54. except EOFError:

55. break

Figure 19: Python Template.
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1. . ###  Include Other Necessary Headers

 2. import com.template.Node;

 3. import com.template.ListNode;

 4. import com.template.TreeNode;

 5. import com.template.ParseInputUtil;

 6. import java.lang.reflect.Method;

 7. import java.lang.reflect.Type;

 8. import java.util.*;

 9. class Solution {

10.  . ###  Function bodies to be tested

11. };

12. public class Main

13. {

14. public static void main( String[] args )

15. {

16. String methodName = . ###  High-level Function name to be called;

17. 

18. Scanner scanner = new Scanner(System.in);

19. Method[] methods = Solution.class.getMethods();

20. Method method = null;

21. int numberOfParams = 0;

22. for (Method method_check : methods) {

23. if (method_check.getName().equals(methodName)) {

24. method = method_check;

25. Type[] genericParameterTypes = method.getGenericParameterTypes();

26. numberOfParams = genericParameterTypes.length;

27. break;

28. }

29. }

30. while(scanner.hasNext()) {

31. List<String> stringParams = new ArrayList<String>();

32. for (int i = 0; i < numberOfParams; i++) {

33. String line = scanner.nextLine();

34. stringParams.add(line);

35. }

36. Solution s = new Solution();

37. try {

38. Type[] genericParameterTypes = method.getGenericParameterTypes();

39. List<Object> parsedParams = new ArrayList<>();

40. for (int i = 0; i < genericParameterTypes.length; i++) {

41. Type paramType = genericParameterTypes[i];

42. String stringParam = stringParams.get(i);

43. if (stringParam.contains("None")) {

44. stringParam = stringParam.replace("None", "null");

45. }

46. Object parsedParam = ParseInputUtil.parseStringToType(stringParam, paramType);

47. parsedParams.add(parsedParam);

48. }

49. Object result = method.invoke(s, parsedParams.toArray());

50. System.out.println(result);

51. } catch (Exception e) {

52. e.printStackTrace();

53. }

54. }

55. scanner.close();

56. }

57. }

Figure 20: Java Template.
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E PASS CRITERIA

Table 5 shows our detailed pass criteria.

Scenario Time limit Memory limit Pass Criteria

Debug
300s for all test cases.
30s for single test case. 512MB

Pass all test cases.

Translate Pass all test cases in target language.

Switch Pass all test cases.

Polish T̄ms M̄MB

Pass all test cases
and

T̄avg < T̄ or M̄avg < M̄

Table 5: Pass criteria in four scenarios. T̄ and M̄ are obtained by averaging 20 runs of the standard
code. During the judging process, the LLM-generated code is run twice to obtain T̄avg and M̄avg.

F EVALUATION CONFIGURATION

Our OJ is built on a server equipped with a high-performance Intel(R) Xeon(R) Platinum 8480C
processor boasting 224 cores. It supports up to 4 petabytes (PB) of physical memory and has a virtual
memory space of up to 128 terabytes (TB). The judging environment for C++ is based on the g++
compiler, version 9.4.0, utilizing the C++17 standard. For Python, the judging environment is based
on Python 3.8.10, and for Java, it relies on OpenJDK version 11.0.22. The previously mentioned
template utilizes the gson-2.9.1.jar library to process the input.
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