
State-Space Architectures for Scalable Diffusion-based
3D Molecule Generation

Adrita Das∗
Independent Researcher

adrita.riman@gmail.com

Peiran Jiang
Carnegie Mellon University
peiranj@andrew.cmu.edu

Dantong Zhu
Columbia University

dantongzhu1103@gmail.com

Barnabas Poczos
Carnegie Mellon University
bapoczos@cs.cmu.edu

Jose Lugo-Martinez
Carnegie Mellon University
jlugomar@andrew.cmu.edu

Abstract

Generative models, particularly diffusion models, have shown significant promise
in accelerating molecular therapeutic and material discovery. However, efficiently
generating high-quality, large, and complex molecules remains a challenge. Previ-
ous approaches often struggle with handling intricate molecular structures, suffer
from slow and memory-intensive diffusion processes, and lack effective mecha-
nisms for capturing long-range dependencies in molecular graphs. In this study, we
aim to leverage the long-range dependency modeling capability of the State-Space
Models (SSMs) to extend its applicability to 3D molecule generation. Addition-
ally,we introduce a framework leveraging a few-step iterative diffusion process
based on a Euclidean State-Space Model for efficient molecule generation. We
further show that the combination of structured state transitions and adaptive node
selection reduces memory footprint during both training and sampling, enabling
efficient generation of molecules with hundreds of atoms. We evaluate the frame-
work along both efficiency and quality dimensions, presenting results on inference
speed, training FLOPs, and standard generation quality metrics. Code, models, and
datasets are publicly available in this Repository

1 Introduction

Generation of novel, valid molecules is a computationally intensive task, as navigating the vast
chemical space often requires significant resources to process and model complex molecular in-
teractions. Recent advances in deep learning have accelerated this process, but the computational
demands of these models remain a challenge, particularly in resource-constrained environments. In
the rapidly evolving field of molecular therapeutics and materials discovery, generative models hold
immense promise for streamlining key stages of the design process. Diffusion models [9, 19, 26],
in particular, have emerged as a leading tool due to their ability to generate diverse high quality
samples from learned distributions. These models excel in unconditional generation [13] and with
additional data-driven guidance, they are also capable of conditional generation [6, 32]. Current
molecular generation methods, while advancing the field of drug discovery and materials science, face
significant inefficiencies due to inherent limitations in their design and computational requirements.
These challenges stem from the complexity of molecular structures, the high-dimensional search
space, and the computational cost of existing models. As the size of the molecule increases, the search
space grows exponentially, leading to longer generation times and higher resource consumption. The
scalability of diffusion models, especially those employing transformer architectures, has been long
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constrained by their intrinsic quadratic computational cost. GeoDiff [30] achieves state-of the-art
performance in molecular conformer generation but faces significant scalability challenges. The itera-
tive denoising process increases computational complexity as molecule size grows, while enforcing
roto-translational invariance adds further memory overhead. Graph Diffusion Transformer (Graph
DiT) [18] enables multi-conditional molecular generation by integrating a graph-dependent noise
model and a Transformer-based denoiser, achieving superior performance across various molecular
properties. However, its scalability is limited due to the quadratic complexity of the Transformer
architecture and the inefficiency of iterative denoising, especially for large and complex molecules.
Existing molecule generation methods are typically optimized for small molecules and fail to scale
efficiently to larger systems, such as polymers, due to iterative bottlenecks, gradient instability, and
computational overhead [11, 31]. We propose a scalable SE(3)-equivariant diffusion framework
built on the Directly Denoising Diffusion Model (DDDM) by Zhang et al. [34], combining few-step
generation with architectural optimizations to significantly reduce runtime and memory usage while
maintaining high fidelity. 2 Our key contributions are as follows:

1. A Euclidean State-Space Diffusion Framework for 3D Molecules. We introduce an
SE(3)-equivariant diffusion model built on Euclidean State-Space Models, enabling efficient
modeling of long-range molecular dependencies while preserving geometric equivariance.

2. Few-step Direct Denoising with Structured State Transitions. Building on the DDDM
formulation, we design a small-step iterative generation process that reduces the number
of denoising steps while maintaining sample quality, substantially improving runtime and
training efficiency.

3. Adaptive Node Selection for Scalable Molecular Generation. We integrate an input-
driven node selection mechanism that dynamically sparsifies message passing, reducing
memory overhead and enabling scaling to molecules with hundreds of atoms.

4. A GPU-efficient Equivariant Message Passing Layer. We incorporate a CG-optimized
SE(3)-equivariant kernel that accelerates tensor products and reduces memory traffic, en-
abling efficient equivariant reasoning at scale.

5. Compute–quality tradeoffs on large-molecule generation. We demonstrate substantial
improvements in inference speed, memory efficiency, and training compute while achiev-
ing competitive or superior performance compared to existing diffusion-based molecular
generators.

2 Notations and Preliminaries

2.1 Diffusion Models

Diffusion models (DDPMs) [9, 19, 24] are generative models that learn data distributions
via a forward process (adding noise) and a reverse process (removing noise). Let {βi}Ti=1
denote a sequence of positive noise scales such that 0 < β1, β2, . . . , βT < 1. The forward pro-
cess gradually adds Gaussian noise to the data x0 over time steps t in a Markov chain: pαt

(xt |
x0) = N

(
xt;
√
αt x0, (1− αt)I

)
, where ᾱt =

∏t
s=1(1− βs) is the cumulative noise schedule and

x0 ∼ p∗ ∝ exp(−f∗) is a sample from the true data distribution and f∗(x) is the corresponding
energy function. We consider a discrete Markov chain x0, x1, . . . , xT . The perturbed data distribution
is denoted as pα(x̂) :=

∫
p∗(x) pα(x̂ | x) dx. A variational Markov chain in the reverse direction is

parameterized as pθ(xt−1 | xt) = N
(
xt−1;

1√
1−βt

(
xt + βt sθ(xt, t)

)
, βtI

)
. Samples are produced

via an ancestral sampling procedure, following xt−1 = 1√
1−βi

(
xt + βt sθ∗(xt, )

)
+
√
βt zt.

where, sθ(xt, t) is the score functions parameterized by θ, which predicts the noise component in
xt. The optimal parameters θ∗ are learned by minimizing the expected denoising error between the
predicted and true noise over all timesteps.

Directly Denoising Diffusion. From [25] reformulation of DDPMs as Stochastic Differential Equa-
tions (SDEs) to generalize the forward process: dXt = − 1

2β(t)Xt dt+
√
β(t) dBt, where Bt rep-

resents Brownian motion. The reverse-time VP SDE is: dXt =
[
− 1

2β(t)(Xt +∇ log pt(Xt))
]
dt+

2We will release all trained models on Hugging Face.
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√
β(t) dBt, where ∇ log pt is estimated by a time-dependent score network sθ(x, t). Directly De-

noising Diffusion Models (DDDMs) [34] integrate DDPMs with the Probability Flow (PF) ODE
framework, enabling faster denoising without complex solvers. The solution of the PF ODE is
obtained by evaluating the integral expression x0 = xT +

∫ T

0
− 1

2β(t)[xt+∇xt
log pt(xt)] dt, where

xT ∼ N (0, I). Directly Denoising Diffusion Models (DDDM) refine the estimate of the clean state
x0 by leveraging the probability flow ODE. Specifically, the mapping f(x0,xt, t) = xt−F (x0,xt, t)
is defined, where F involves an integral of the drift term parameterized by the noise schedule β(t). A
neural approximation fθ(x0,xt, t) = xt − Fθ(x0,xt, t) is trained such that fθ ≈ f .

Θ := argmin
θ

Et∼U [1,T ]

[
Ex0∼pdata(x0)

[
E
xt∼N

(
√
ᾱtx0,(1−ᾱt)I

)[d(fθ(x(n)
0 ,xt, t),x0

)]]]
(1)

where, d(·, ·) is a suitable distance metric. We define Θ as the set of optimal neural parameters for
the denoising network. The metric function d(·, ·) satisfies standard properties: for all vectors x and
y, d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y.

3 Methodology

3.1 Denoising Framework

Our denoising framework is designed on the GraphGPS [21]: an MPNN+Global Attention Hybrid.
The GPS framework is built on three key components: (i) positional or structural encoding (SE/PE),
(ii) a local message-passing mechanism, and (iii) a global attention mechanism. The processing
modules of scalable GPS construct a computational graph that integrates message-passing graph
neural networks (MPNNs) with Transformer-based global attention, using attention mechanisms
with linear complexity O(V ) in the number of nodes. Our denoising framework replaces linear
attention mechanisms in the GraphGPS framework with selective state space layers, enabling input-
driven graph sparsification. Leveraging the inherent modularity of the GraphGPS framework, we
replace the standard global attention layers with state-space model–based layers, including Mamba
[8], Mamba-2 [5], Hydra, and Jamba. This modular design allows for seamless integration of
alternative architectures, enabling systematic comparison across different state-space formulations
within the same overall denoising pipeline. Unlike dense attention, where all nodes can attend to
one another, most SSMs update each node only with information from preceding nodes, creating
positional asymmetry in the available context. For SSMs with unidirectional scans, we employ two
node-ordering schemes. In the importance-based scheme, nodes are ordered by heuristic scores (e.g.,
node degree or eigenvector centrality), with high-importance nodes placed later in the sequence to
exploit richer contextual information. Alternatively, we follow [29] and shuffle node ordering during
training to preserve permutation invariance. In our framework, the node embeddings are augmented
with structural or positional encodings (SE/PE). In addition, we add sinusoidal timestep embeddings
into the inputs of our model to provide explicit temporal conditioning.

3.1.1 Model Implementations

In this section, we discuss about the SSM blocks used for our experiments and the model architecture
of the denoising model. For the state-space modeling components, we experiment with recent
structured state-space layers, specifically the Jamba [17] architecture and the Hydra [10] employing
the generalized matrix mixer framework. Jamba is based on a hybrid Transformer-Mamba mixture-
of-experts (MoE) architecture. Jamba interleaves Transformer and Mamba layers, with optional
MoE blocks for scalable capacity. This flexible architecture supports configurations tailored to
different computational resource constraints and task objectives. By varying the ratio of Transformer
to Mamba layers, the architecture can flexibly trade off between memory efficiency, training time,
and long-context modeling capacity. Hydra is introduced as a bidirectional extension of Mamba
within the structured state-space model (SSM) framework. The design is motivated by recent
insights that SSMs can be understood as semiseparable matrix mixers, where the transition dynamics
are parameterized by semiseparable matrices that enable efficient sequence mixing. While such
matrices underpin the computational efficiency of models like Mamba, their inherent causality
constraint limits them to unidirectional processing, restricting applicability in tasks where bidirectional
context is essential. To overcome this limitation, Hydra leverages the matrix mixer perspective
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discussed in [10] and adopts quasiseparable matrices as its core building block.For the message
passing module in our denoising network, we employ the recently introduced GPU-optimized
Clebsch–Gordan (CG) sparse kernel generator of Bharadwaj et al. [2]. This kernel provides an
efficient implementation of the O(3)-equivariant tensor product by decomposing the CG contraction
into register-level subkernels, minimizing global memory traffic, and fusing the contraction with
subsequent graph convolution operations. Using this kernel allows our equivariant message passing
layers to maintain full rotational, translational, reflectional, and permutation equivariance while
significantly reducing the computational bottlenecks typically associated with CG-based equivariant
GNNs. We trained the models with architectures listed in the Table 1, which we describe in the next
section. 3

Table 1: Architectural configurations of the proposed methods

Model L dstate dconv dmodel # Heads Params
EGNN + Transformer 8 – – 512 8 63.0M
EGNN + Mamba 6 512 256 512 8 63.4M
EGNN + Mamba-2 6 512 256 512 8 63.2M
EGNN + Hydra 6 256 128 256 4 55.7M
EGNN + Jamba 6 256 128 256 4 286.9M

3.2 Model Architectures

In this section, we discuss the architectures of our message passing and SSM module in detail.
Modern architectures, like the Transformer, consist of two key elements or components that is:
a sequence mixer (Multi-Head Attention) and a channel mixer (Feed-Forward Network). Most
sequence mixers can be expressed as matrix multiplications of the form Y = MX . This is often
defined as the Matrix Mixer framework which includes sequence based models such as attention,
state-space models etc. As discussed in [15], the key insight lies in the structure of the mixer matrix
M . Building on this foundation, [10] proposed a systematic methodology for designing new mixers or
architectures. The major bottleneck lies the matrix multiplication in M which might incur quadratic
costs. Self-Attention offers strong flexibility and effectiveness for sequence mixing, but comes at
a high computational cost. Most modern sequence-based architectures rely on two core principles:
data-dependent matrix mixing and scalability, allowing sequence mixers to generalize beyond their
training lengths.

3.2.1 Implementations for a Single 80GB GPU

Transformer. Our Transformer block follows the encoder–decoder architecture of Vaswani et al. [27].
The model is composed of a stack of layers, where each layer contains a multi-head self-attention
mechanism followed by a position-wise feed-forward network. Residual connections are employed
around each of these sub-layers, and layer normalization is applied to the outputs. We set the channel
dimension for our transformer block to 512.

Mamba. Our configuration employed a Mamba block with a state size of 256, model dimension of
256, and 4 attention heads. Our architecture follows Gu and Dao [8] in omitting explicit positional
encodings, while using RMSNorm [33] for normalization. Mamba extends structured state space
models by allowing parameters to vary as functions of the input, enabling content-based reasoning
over discrete modalities. This selective mechanism allows the model to adaptively propagate or forget
information depending on the token context. Mamba incorporates a hardware-optimized recurrent
implementation that achieves linear scaling in sequence length and up to 5× faster inference than
Transformers. The model dimension is expanded by an expansion factor, which we set to 2 for all our
Mamba blocks.

3For comparison, we also benchmark this implementation against the equivariant graph neural network from
Satorras et al. [22] (EGNN), which provides an E(3)-equivariant alternative that does not rely on Clebsch–
Gordan tensor products. This comparison highlights both the efficiency gains and the expressivity differences
offered by CG-based approach.
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Mamba-2. For Mamba-2, we adopt the same overall architecture as in Mamba, with each layer
substituted by the revised Mamba-2 block from Dao and Gu [5]. We set the internal Mamba-2
state dimension to 128 and expansion factor 2. We set dconv as the dimensionality of the internal
convolutional layer in each block to 64.

Hydra. Hydra builds on the conceptual foundation of the Matrix Mixer Sequence Models. Hwang
et al. [10] introduced Hydra which uses a quasiseparable matrix mixer framework. Quasiseparable
matrices generalize both the low-rank matrix mixers of linear attention and the semiseparable matrices
of state space models, used as bidirectional extension of the semiseparable matrices. Hydra restricts
M to being a structured matrix which is essential for subquadratic matrix multiplication algorithms.
The state dimension of the hydra module is 256 and dconv is set to 128 and expansion factor 2.

Jamba. Jamba is a novel Attention-SSM hybrid architecture, which combines Transformer layers
with the Mamba layers at a certain ratio along with the mixture-of-experts (MoE) [4] module. To
improve model capacity without proportionally increasing computational cost, Jamba incorporates
Mixture-of-Experts (MoE) layers in place of MLP blocks. Specifically, MoE is applied in alternating
layers, with 8 experts per layer and the top-2 experts selected for each token, following [17]. MoE
block is used every 2 layers instead of MLP. Also, following [17] each Jamba block used in our
architecture is a combination of mamba and attention layers with the ratio of attention-to-Mamba
layers set to 1:6. Each layer in the block is either a Mamba or an Attention layer, followed by
a multi-layer perceptron (MLP). Jamba stabilizes large-scale training with RMSNorm in Mamba
layers, removing the need for positional embeddings such as RoPE 4. The architecture uses standard
components, including (Group Query Attention) GQA [3], SwiGLU activation function [23], and
MoE load balancing.

3.3 Fused Clebsch-Gordon Module

The tensor product of two irreducible representations x(l1) and y(l2) lives in a (2l1 + 1)(2l2 +
1)–dimensional space and remains equivariant under the action of O(3). This tensor product decom-
poses into a direct sum of irreps according to

D(l1)(g)⊗D(l2)(g) =

l1+l2⊕
l=|l1−l2|

D(l)(g). (2)

which allows the resulting features to be reorganized across type-l spaces. The Clebsch–Gordan (CG)
tensor product provides an explicit rule for constructing each type-l component using CG coefficients
C

(l,m)
(l1,m1)(l2,m2)

.

For vectors x(l1) ∈ R2l1+1 and y(l2) ∈ R2l2+1, the m-th component of the type-l output is given by

(
x(l1) ⊗cg y

(l2)
)(l)
m

=

l1∑
m1=−l1

l2∑
m2=−l2

C
(l,m)
(l1,m1)(l2,m2)

x(l1)m1
y(l2)m2

. (3)

In the model under consideration, this Clebsch–Gordan (CG) interaction appears inside the message-
passing update. Substituting the corresponding instantiation, the type-(lo, po) output for node a at
layer k takes the form

V (k,lo,po)
ac0mo

=
∑

lf ,li,pi

∑
mf ,mi

C
(lo,mo)
(li,mi)(lf ,mf )

1

|Na|
∑
b∈Na

∑
c

ψ
(k,lo,lf ,li,pi)
abc Y

(lf )
mf (r̂ab)V

(k−1,li,pi)
bcmi

.

(4)
The core computational bottleneck lies in efficiently evaluating the Clebsch–Gordan (CG) tensor
product that arises when interacting equivariant feature vectors within an equivariant neural network
layer. Given two feature vectors x ∈ Rn and y ∈ Rm, each transforming under representations
(Din, Dx) and (Din, Dy) respectively, a new output z must be produced that remains equivariant
to a target representation Dz . While the Kronecker product x ⊗ y provides a general equivariant
interaction, its dimensionality nm is often prohibitive. The standard remedy applies a structured,

4All experiments are conducted using the Jamba variant without explicit positional encodings, as the Mamba
layers implicitly capture positional information.
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block-sparse transform P containing Clebsch–Gordan coefficients, which decomposes x⊗ y into
Wigner blocks. The redundant blocks can then be removed, and the resulting components are
recombined through a structured weight matrix W , yielding

z =W P (x⊗ y), (5)
with the desired equivariant representation. This operation, known as the CG tensor product, can
be expressed equivalently through matrix multiplication, tensor contraction, or Einstein notation.
Efficient evaluation of this operator, denoted TP(P, x, y,W ), is essential for practical deployment of
rotation-equivariant models. We use the efficient CG product computation from Bharadwaj et al. [2]
for our module.

Table 2: Configuration of the Jamba-based architectures

Model L dstate dconv dmodel Params # Experts Top-K Active Params
EGNN + Jamba 8 512 256 512 2.15B 16 4 537.5M
EGNN + Jamba 6 256 128 256 286.9M 8 2 71.7M
EGNN + Jamba 10 512 256 512 1.68B 8 2 420M
EGNN + Jamba 10 256 128 256 478M 8 2 119.5M
EGNN + Jamba 8 128 64 128 144.5M 16 4 36.1M

3.4 Experimental Setup and Baselines

For the training and evaluation of our models, we utilize the GEOM dataset [1], a collection of high-
quality molecular conformations generated using metadynamics within the CREST software [20].
The node and edge chemical features, fa and fab, follow the construction described in [12]. The node
features include atom identity, atomic number, aromaticity, degree, hybridization, implicit valence,
formal charge, ring membership, and ring size, yielding a 74-dimensional feature vector for the
GEOM-DRUGS subset. Edge features are represented as a 4-dimensional one-hot encoding of the
bond type. We adopt an 84%/10%/6% split for the training, validation, and test sets, respectively, and
all models are trained on approximately 55,000 molecules from the training split. We also construct
a dataset from GEOM-MoleculeNet and call it as GEOM-Long range, containing molecules with
more than 100 atoms to assess the ability of our models to generalize to larger molecules.

3.5 Training Infrastructure and Hyperparameters

We train all models using a batch size of 128 with a learning rate that peaks at 3 × 10−4 and
decays to a minimum of 3 × 10−5. A warmup phase is applied, followed by a cosine learning
rate schedule. Optimization is performed using Adam with a weight decay of 0.1 and momentum
parameters β1 = 0.9 and β2 = 0.95. All experiments are conducted using the BF16 precision format.
For fairness, we use identical hyperparameter settings across all models without individual tuning,
ensuring that any performance differences arise from architectural variations rather than optimization
choices. We trained the models using Distributed Data Parallel (DDP) with microbatch gradient
accumulation. Each minibatch is divided into several microbatches, which are processed sequentially;
gradients are accumulated locally using PyTorch’s no_sync mechanism and synchronized only on
the final microbatch.

We employ a variance-preserving (VP) diffusion process with the standard cosine noise schedule
proposed by Nichol & Dhariwal [19]. The cumulative product of signal coefficients is defined as

ᾱt =
f(t)

f(0)
, f(t) = cos2

(
t/T + s

1 + s
· π
2

)
, (6)

where s = 0.008 is a small offset introduced for numerical stability. The discrete noise variance at
timestep t is then given by

βt = 1− ᾱt

ᾱt−1
, (7)

which ensures a smooth signal-to-noise ratio decay throughout the diffusion process.

3.6 Evaluation

We evaluate our model on both standard GEOM metrics benchmarks.
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Figure 1: Comparison of sampling speed across different methods using equivariant message passing.

Figure 2: Comparison of sampling speed using Fused CG across different methods.

4 Results

4.1 Throughput Analysis

Following Lacombe et al.[16], we evaluate sampling speed using both the number of diffusion
steps and the average number of samples generated per second over 10,000 samples. We compare
the speed-up in sample time or reduction in per-step latency across different methods and how it
influences the sample quality. The throughput and sampling speed were being evaluated on a single
H100 80GB GPU.

Figures 1 and 2 report the sampling throughput across different equivariant message passing back-
bones, while Tables 3–5 quantify the corresponding samples-per-second rates under varying sampling
steps and architectural configurations. Across all methods, throughput scales approximately inversely
with the number of sampling steps, reflecting the dominant contribution of per-step latency to overall
runtime. At a fixed number of diffusion steps, structured state-space and matrix-mixer architectures
consistently achieve substantially higher throughput than attention-based models. In particular, at
100 sampling steps, Transformer-based models achieve approximately 150 samples/s, whereas Hydra,
Mamba-1, and Mamba-2 reach approximately 360, 554, and 600 samples/s, respectively. This
corresponds to a 2.4×–4.0× speed-up over Transformer-based models under identical sampling
conditions. As the number of sampling steps increases, this performance gap becomes more pro-
nounced. At 700 steps, Transformer-based models operate at roughly 21 samples/s, while Hydra and
Mamba-based models achieve between 51 and 86 samples/s, yielding a 2.4×–4.1× improvement in
throughput. This trend indicates that architectures with linear-time recurrence and structured state
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Table 4: Performance with fixed MoE parameters at different sampling steps

Methods Sampling Steps Speed (sec−1) Total Experts Top Experts/Token Novelty (%) QED
Fused CG + Jamba 700 20.23 16 2 99.33 0.66
Fused CG + Jamba 500 28.32 16 2 98.67 0.63
Fused CG + Jamba 200 70.8 16 2 95.72 0.557
Fused CG + Jamba 100 153.6 16 2 94.36 0.55

transitions amortize computational cost more effectively over long diffusion trajectories. We further
observe that Hydra consistently occupies an intermediate regime between attention-based models and
pure state-space models, benefiting from bidirectional matrix mixing while maintaining favorable
computational scaling. Mamba-1 and Mamba-2 exhibit the highest throughput across all sampling
regimes, with Mamba-2 achieving the best overall sampling speed, particularly in the low-step regime
where per-step overhead dominates. Overall, these results demonstrate that sampling throughput is
primarily governed by per-step computational complexity, and that replacing attention with structured
state-space or matrix-mixer layers yields substantial reductions in sampling latency. This enables
faster generation without modifying the diffusion process itself, making such architectures particularly
attractive for large-scale or latency-sensitive molecular generation settings.

Table 3: Performance of various methods across different sampling steps using the Fused CG MP.

Methods Sampling Steps Speed (sec−1) Novelty(%) Diversity(%) Validity(%) QED

Fused CG + Transformer 700 21.37 92.3 89.2 88.26 0.42
Fused CG + Transformer 500 29.92 92.3 89.2 88.26 0.42
Fused CG + Transformer 200 74.8 91.14 88.7 88.67 0.45
Fused CG + Transformer 100 149.6 89.56 84.5 82.33 0.32

Fused CG + Jamba 700 21.6 97.52 99.5 99.32 0.65
Fused CG + Jamba 500 30.24 97.82 99.51 98.35 0.65
Fused CG + Jamba 200 75.6 96.54 96.86 98.29 0.49
Fused CG + Jamba 100 151.2 96.12 96.62 97.15 0.42

Fused CG + Hydra 700 51.36 99.1 98.56 99.66 0.65
Fused CG + Hydra 500 71.90 97.1 97.25 98.5 0.55
Fused CG + Hydra 200 179.75 96.58 96.35 96.56 0.56
Fused CG + Hydra 100 359.5 95.43 95.25 95.77 0.49

Fused CG + Mamba-1 700 79.17 97.65 98.91 96.65 0.63
Fused CG + Mamba-1 500 110.84 97.65 98.91 96.65 0.63
Fused CG + Mamba-1 200 277.1 96.54 97.67 95.52 0.59
Fused CG + Mamba-1 100 554.2 94.45 95.65 95.56 0.55

Fused CG + Mamba-2 700 85.78 96.64 97.54 95.57 0.62
Fused CG + Mamba-2 500 120.09 96.64 97.54 95.57 0.62
Fused CG + Mamba-2 200 300.225 95.52 95.61 94.45 0.57
Fused CG + Mamba-2 100 600.45 94.57 94.45 93.67 0.52

4.2 Role of MoE in Model Efficiency

We further analyze the effect of Mixture-of-Experts (MoE) routing on sampling throughput. In MoE
models, each token or node is routed to a small subset of the total experts, allowing the model to
increase capacity while keeping per-step computational cost low. Table 5 summarizes the performance
of Fused CG + Jamba with different MoE configurations at 100 sampling steps. Increasing the total
number of experts generally increases capacity but has a minimal impact on per-step speed, because
only the top 1 or 2 experts are activated for each token. For example, moving from 2 to 16 total
experts changes the speed only marginally from 116 samples/s to 142 samples/s, demonstrating the
efficiency of sparse expert activation in reducing latency while preserving model expressivity.
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Table 5: Performance with MoE Parameters at 100 sampling steps

Methods Sampling Steps Speed (sec−1) #Total Experts #Top Experts at each token Novelty (%) QED
Fused CG + Jamba 100 115.97 2 1 99.01 0.516
Fused CG + Jamba 100 116.01 4 1 98.79 0.524
Fused CG + Jamba 100 120.61 8 1 99.59 0.575
Fused CG + Jamba 100 141.6 16 1 99.06 0.586

4.3 Training Efficiency and Inference Speed

We measure the Model FLOP Utilisation (MFU) and compare it against Transformer-based baseline
models. Following prior works [14, 28], we define the model FLOPs per second as the number of
floating point operations (FLOPs) required for a single forward and backward pass, divided by the
iteration time. The MFU is computed as the ratio between the model FLOPs per second and the peak
theoretical FLOPs per second of the hardware (GPU) used during training. Formally,

MFU =
FLOPs per forward & backward pass/titer

Peak FLOPs of GPU
, (8)

where titer denotes the iteration time.

All MFU measurements were collected during training on four H100 GPUs with a data-parallel size
of 128. The graph denoising model based on the attention–SSM hybrid (Jamba-style) achieved an
MFU of approximately 25%. The Transformer-based baseline achieved an MFU of nearly 37%. The
Hydra-based baseline recorded an MFU of 20.68%, while Mamba-1 and Mamba-2 achieved MFUs
of 22.34% and 23.39%, respectively. The pure SSM model benefits from inference-time speedups,
and the hybrid attention–SSM model additionally benefits from its Mamba blocks during inference
compared to the pure Transformer baseline.

5 Conclusion and Future Work

Across our experiments, we observe clear trade-offs between throughput, sample quality, and architec-
tural choices. The hybrid attention–SSM architecture (Jamba) strikes a favorable balance: while not
as fast as the pure Mamba variants, it consistently produces samples with strong validity and novelty,
outperforming both the transformer and Hydra baselines in terms of sample quality. Importantly,
when scaling the mixture-of-experts configuration, we find that increasing the total number of experts
per layer while keeping the number of active experts per token fixed provides additional capacity
without substantially affecting inference speed. This suggests that sparsely activated MoE designs
allow the model to grow in representational power without incurring proportional computational
overhead. Hydra-based models similarly improve inference-time throughput but show somewhat
lower training efficiency, as reflected in their lower MFU. Our results suggest that SSM-based models
hold considerable potential for accelerating inference. One of the key limitations of our method is that,
as DDDM maintains x(n)0 for every sample in the dataset, it incurs additional memory overhead during
training. In our extended work, we aim to establish theoretical guarantees, particularly convergence
results for diffusion inference, to complement and strengthen the empirical findings. We also aim to
explore the use of more efficient or expressive equivariant graph neural networks or kernel-based
methods to further accelerate the inference.
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A Appendix

A.1 Efficient Subkernel Decomposition for CG Operations

In practice, the Clebsch–Gordan (CG) tensor product admits substantial structure that can be exploited
for efficient computation. Each nonzero block of the CG coefficient tensor P corresponds to a Wigner
triple (ℓx, ℓy, ℓz) and is small, highly sparse, and repeated many times across the full tensor. Rather
than repeatedly invoking a naïve tensor contraction for every block, modern equivariant models
decompose the CG tensor product into a sequence of specialized subkernels that align with the
sparsity and block structure of P and the associated weight matrix W . Two patterns dominate in
existing architectures. Kernel B contracts a sparse CG block with multiple segments of x and a
shared segment of y, followed by multiplication with a diagonally arranged submatrix of W , and
is employed in models such as NequIP and MACE. Kernel C performs an analogous contraction
but uses a dense weight submatrix W ∈ Rb′×b, as seen in DiffDock and earlier 3D-equivariant
classifiers. Although additional kernel patterns are theoretically possible, empirical model designs
rely almost exclusively on these two due to their alignment with common CG block structure and
their computational efficiency.

To efficiently execute Clebsch–Gordan (CG) tensor products at scale, the kernel assigns each triple
(x, y,W ) to an independent GPU warp, enabling fully coalesced memory access and removing
the need for CTA-level synchronization. The inputs are staged in shared memory and processed
through a sequence of subkernels that correspond to the structured operations of the CG tensor
product. Since CG feature vectors may exceed shared memory capacity, the computation is split
into multiple phases determined at compile time, with each phase loading only the required slices
of x, y, W , and z. The scheduler minimizes global memory traffic by reusing cached segments
whenever possible, using simple heuristics that cover most configurations in equivariant GNNs. Each
subkernel is JIT-generated, unrolling sparse CG tensor contractions into fused arithmetic instructions
to eliminate runtime indirection and maximize parallelism. Depending on the structure of the weight
matrix W , the kernel performs either diagonal scaling (Kernel B) or a warp-level dense matrix
multiplication (Kernel C). This design enables efficient execution even for large batches and high-cost
configurations, where each CG tensor product may require tens of thousands of FLOPs and multiple
staged computation phases. We express the Clebsch–Gordan tensor product as

z = P (x⊗ y)W, (9)

where P is the block-sparse CG coefficient tensor, x ∈ Rbx and y ∈ Rby are feature vectors grouped
by irreps, and W is the learned weight matrix.

The CG operator decomposes into blocks indexed by Wigner triples:

P =
⊕

(ℓx,ℓy,ℓz)

Pℓxℓyℓz . (10)

The full contraction can be written as:

zℓz =
∑
ℓx,ℓy

Pℓxℓyℓz

(
xℓx ⊗ yℓy

)
Wℓxℓyℓz . (11)

where each Pℓxℓyℓz is small and sparse.

A.2 Kernel B: Diagonal Weight Submatrix

If W is block-diagonal:
Wℓxℓyℓz = diag(w1, . . . , wb), (12)

zℓz =
∑
ℓx,ℓy

(
Pℓxℓyℓz (xℓx ⊗ yℓy )

)
⊙ w. (13)

This corresponds to diagonal scaling after sparse CG contraction.
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A.3 Kernel C: Dense Weight Submatrix

When W is fully dense:
Wℓxℓyℓz ∈ Rb′×b, (14)

the contraction becomes:

zℓz =
∑
ℓx,ℓy

Wℓxℓyℓz

[
Pℓxℓyℓz (xℓx ⊗ yℓy )

]
. (15)

This requires a warp-level dense GEMM per block.

A.4 Warp-Level Parallel Scheduling

Each triple (xℓx , yℓy ,Wℓxℓyℓz ) is assigned to a GPU warp:

warpi ← (ℓx, ℓy, ℓz). (16)

Shared memory staging splits CG feature vectors:

xℓx =

P⋃
p=1

x
(p)
ℓx
, (17)

yℓy =

P⋃
p=1

y
(p)
ℓy
, (18)

and the final output accumulates partials:

zℓz =

P∑
p=1

z
(p)
ℓz
. (19)

The fused structured operation for each block is

z
(p)
ℓz

=


(
P

(p)
ℓxℓyℓz

(x(p) ⊗ y(p))
)
⊙ w, (Kernel B),

Wℓxℓyℓz

(
P

(p)
ℓxℓyℓz

(x(p) ⊗ y(p))
)
, (Kernel C).

(20)

x, y
warp−−→

{
P (·) ⊙ w Kernel B,
W P (·) Kernel C

accumulate−−−−−−→ z

A.5 Backward Pass

The kernel system implements the full derivative pipeline for the Clebsch–Gordan (CG) tensor
product. Given two irreducible representations x ∈ R2ℓx+1 and y ∈ R2ℓy+1, the CG tensor product
produces an output z ∈ R2ℓz+1 through a sparse coefficient tensor P . The forward computation
evaluates

z[k] =
∑

(i,j)∈Nk

P [i, j, k]x[i] y[j], (21)

where Nk denotes the nonzero index pairs for output channel k. This sparse traversal is fused with
the dense multiplication by a weight matrix W ∈ Rb×b′ , enabling

z′ =Wz (22)

to be computed in a single pass without additional global-memory traffic.

The backward kernel jointly computes gradients with respect to x, y, and W . Let gz = ∂E/∂z
denote the gradient of a scalar energy E. Linearity of the tensor product yields

∂E

∂x[i]
=

∑
(i,j,k)∈N

P [i, j, k] y[j] (W⊤gz)[k], (23)
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∂E

∂y[j]
=

∑
(i,j,k)∈N

P [i, j, k]x[i] (W⊤gz)[k], (24)

∂E

∂W
= gz z

⊤. (25)

All three gradients are produced within a single fused kernel using warp-level reductions to combine
contributions across threads.

Higher-order derivatives required for force-based training are computed without introducing new
kernels. Mixed partials of the form ∂2E/(∂R∂W ) are obtained by expressing them as linear
combinations of outputs from existing forward and backward routines, enabling the double-backward
pass to reuse the same computational primitives.

The kernel framework also supports a fused graph-convolution mode. For a graph G = (V,E),
node-level outputs are computed as

zj =
∑

(j,k,e)∈N (j)

TP(P, xk, ye, We) , (26)

where N (j) denotes the neighbors of node j. The kernel iterates over edges using a sparse-matrix–
multiplication-style schedule and accumulates partial results in a local buffer, reducing global memory
writes from O(|E|) to O(|V |) and eliminating the need to duplicate node features.

A.6 Mixture of Experts and Sparse Mixture of Experts

The Mixture-of-Experts (MoE) layer replaces the standard feed-forward network by routing each
token to a small subset of expert networks. Given n experts {E0, . . . , En−1}, the MoE output for a
token x is

y =

n−1∑
i=0

G(x)iEi(x). (27)

Here, G(x) ∈ Rn is the gating distribution.

To maintain efficiency, only the top-K experts are activated. The gate is computed using a linear
projection followed by a Top-K softmax:

G(x) = Softmax
(
TopK(xWg)

)
, (28)

where the Top-K operator is defined componentwise as

(
TopK(ℓ)

)
i
=

{
ℓi, if ℓi is among the top-K logits,
−∞, otherwise.

(29)

This sparsity ensures that each token only uses K experts, keeping compute cost fixed as the total
number of experts n grows. In Transformer blocks, MoE replaces the FFN sublayer. Models such as
Mixtral use K = 2 with SwiGLU experts:

y =

n−1∑
i=0

Softmax
(
Top2(xWg)

)
i
SwiGLUi(x). (30)

To prevent the gate from collapsing onto a small subset of experts, MoE architectures add a load
balancing loss that encourages tokens to be distributed more evenly across experts. One widely used
formulation is

Lload = n

n−1∑
i=0

Ḡi F̄i, (10)

where Ḡi denotes the mean gating probability for expert i and F̄i is the empirical fraction of tokens
routed to that expert.
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A.7 Message Passing Module

At the core of the architecture lies the Equivariant Graph Convolutional Layer (EGCL) from [22],
which operates on the node feature embeddings hl = {hl

0, . . . ,h
l
M−1}, the coordinate embeddings

xl = {xl
0, . . . ,x

l
M−1}, and the edge attributes E = (aij). The EGCL updates both the node features

and the coordinates using the following operations:

mij = ϕe

(
hl
i, h

l
j , ∥xl

i − xl
j∥2, aij

)
, (31)

x l+1
i = xl

i + C
∑
j ̸=i

(xl
i − xl

j)ϕx(mij), (32)

mi =
∑
j ̸=i

mij , (33)

h l+1
i = ϕh

(
hl
i, mi

)
. (34)

Here, the functions ϕe, ϕx, and ϕh denote learnable neural network modules, andC is a normalization
constant (often learned or set to 1/M ). These update rules ensure that both feature and coordinate
updates remain fully E(n)-equivariant.

A.8 Positional Encodings

We follow the modular framework of GRAPHGPS [21] to incorporate structural/positional encodings
into the inputs of our denoising model. We use graph-based Laplacian positional encodings. If L
represents the Laplacian matrix of a given graphG = (V,E), as a symmetric and positive semidefinite
(PSD) matrix, L can be decomposed using its eigenvalues and eigenvectors as:

L =
∑
i

λiuiu
⊤
i (35)

where λi denotes the eigenvalues and ui corresponds to the associated eigenvectors. In a unified
framework for graph neural network (GNN) positional encodings, the normalized graph Laplacian is
defined as:

L = I −D−1/2AD−1/2 = U⊤ΛU (36)

Here, each row of U represents a corresponding eigenvector of the graph, while Λ is a diagonal
matrix containing the eigenvalues. Based on this formulation, the positional encoding for a node k
can be represented as [7]:

XPE
k = f(Uk,:,Λ,Θ, {·}) (37)

where Uk,: denotes the k-th row of U , Λ holds the eigenvalues, Θ represents parameters controlling
linear or non-linear transformations applied to these matrices, and {·} refers to any additional
parameters specific to different encoding approaches.

For the transformer block, which does not use recurrence or convolution, we employ sinusoidal
positional encodings to capture token order. These encodings are added to token embeddings and are
defined as [27]:

PE(pos, 2i) = sin

(
pos

100002i/dmodel

)
, PE(pos, 2i+ 1) = cos

(
pos

100002i/dmodel

)
(38)

where pos is the position index and i is the embedding dimension. In our implementation, we
construct a positional vector of the same dimension as the input embedding, |PE(i)| = |xi| = de, and
add it element-wise:

xpi = xi + PE(i) (39)
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A.9 State Space Operations

• Mamba-1: Hardware-aware recurrent scanning. Naive recurrent SSMs scale as
O(BTDN), while convolutional variants achieve O(BTD log T ) complexity but suffer
from high I/O overhead. In practice, recurrent formulations are often faster for moderate
sequence length T and state dimension N due to smaller constant factors, though they are
limited by sequential computation and memory usage. Mamba-1 [8] addresses these issues
through a hardware-aware parallel scan that fuses discretization, recurrence, and output
projection into a single GPU kernel. Intermediate states of shape (B, T,D,N) are kept in
on-chip SRAM, reducing memory reads to O(BTD +DN) and writes to O(BTD), yield-
ing an O(N) reduction in I/O cost. For long sequences, scanning is performed in chunks
with state carryover, enabling linear O(T ) time complexity and substantially improved
throughput compared to convolutional SSMs and quadratic self-attention.

• Mamba-2: Structured State Decomposition and shared dynamics. Mamba-2 further
improves efficiency via Structured State Decomposition (SSD), which exploits the block
structure of semiseparable matrices to combine the linear recurrence of SSMs with their dual
quadratic formulation. SSD achieves linear FLOP complexity in sequence length T while
reformulating computations as matrix multiplications, significantly accelerating training.
Compared to dense attention with O(T 2N) training cost and O(T 2) memory usage, SSD
reduces training complexity to O(TN2) and memory usage to O(TN). Additionally,
Mamba-2 constrains the state transition matrix to a scalar-times-identity form, inducing
shared recurrence dynamics across state dimensions and channels. This parameter sharing
preserves expressivity while enabling efficient matrix-multiplication-based implementations,
supporting larger state sizes and faster training and inference.

• Hydra: The Double-Headed Mamba
Hydra achieves efficient bidirectional sequence modeling by parameterizing the sequence
mixer with a quasiseparable matrix, which admits sub-quadratic matrix–vector multiplica-
tion. Given an input sequence X ∈ RL×C , the output is computed as

Y =MX, (40)

where the mixer matrix M ∈ RL×L satisfies the quasiseparable structure

mij =


c⃗⊤i A⃗i:j b⃗j , i > j,

δi, i = j,

c⊤j Aj:ibi, i < j.

(41)

This structure constrains the rank of any off-diagonal submatrix to be at most N , enabling
O(L) sequence mixing while supporting full bidirectional context. In contrast to dense
attention mechanisms with O(L2) complexity, Hydra preserves the linear-time scalability
of selective state space models without sacrificing bidirectionality. Moreover, the decoupled
diagonal parameterization avoids the expressivity constraints imposed by addition-based
bidirectional SSMs, yielding an efficient and flexible architecture for long-context modeling.

5

A.10 Node Features Representation

Spherical EGNNs utilize tensors for node and occasionally edge features. While we focus on node
features, the principles also apply to edge feature tensors. We represent the (hidden) features at node
a as a list of geometric tensors with various l-values, ranging from 0 to lmax:

V⃗ (0:lmax)
a :=

lmax⊕
l=0

V⃗ (l)
a =


V⃗

(0)
a

...
V⃗

(lmax)
a

 (42)

5In graph modeling, this translates to data-dependent node selection: relevant nodes are filtered at each
recurrence step, effectively “attending” only to selected context.
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Figure 3: Illustration of the different neural network layers used in our framework: (top-left) Hydra
Layer, (top-right) Jamba Block, (bottom-left) Mamba Layer, and (bottom-right) Mamba² Layer. Each
diagram shows the flow of input features through projections, convolutions, and structured modules,
highlighting the internal computations and skip connections..

The representation of features in equivariant networks involves three main axes. First, a channel
axis, as multiple tensor types l may exist at each node; for simplicity, we assume an equal number
of channels for all l-types. Second, a tensor axis, denoted by the (0 : lmax) superscript, which
corresponds to a concatenated list of spherical tensors of different types. Finally, a tensor-component
axis, which for each tensor of type l consists of 2l + 1 components.

A.11 Generation Quality Metrics

The core metrics used to evaluate generative models are validity, uniqueness, and diversity.

Validity quantifies the percentage of chemically sound structures within a generated set of molecules
G. This is typically determined using molecular parsing tools like RDKit. Its calculation is defined
as:

Validity(G) =
|{m ∈ G : is_valid(m)}|

|G|
× 100 (43)

where is_valid(m) is a function that verifies the chemical validity of a molecule m.

Novelty measures the fraction of generated molecules that are not present in the training datasetDtrain,
indicating the model’s ability to generate new, unseen molecules. For a generated set G, novelty is
defined as:

Novelty(G) =
|{m ∈ G : m /∈ Dtrain}|

|G|
× 100 (44)

where m represents a generated molecule and Dtrain is the set of molecules seen during training. A
higher novelty score indicates greater generation of previously unseen molecules.

Diversity assesses how well the generated set covers the chemical space. This is often quantified
by the average pairwise Tanimoto distance between molecules’ fingerprint representations. For a
generated set G and a fingerprint function f(·), diversity is given by:

Diversity(G) =
2

|G|(|G| − 1)

|G|∑
i=1

|G|∑
j=i+1

Tanimoto(f(mi), f(mj)) (45)

where mi,mj ∈ G are molecules from the generated set, and Tanimoto(·, ·) calculates the Tanimoto
similarity between their fingerprints.
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A.12 Quantitative Estimate of Druglikeness (QED)

The Quantitative Estimate of Druglikeness (QED) is a widely adopted metric designed to quantify a
molecule’s druglikeness by combining eight key physicochemical properties into a single desirability
score.

The desirability function d(pi) for each individual property pi is empirically modeled using an
asymmetric double sigmoidal function:

d(pi) =
1

1 + exp[−ai(pi − bi)]
× 1

1 + exp[−ci(pi − di)]
(46)

where ai, bi, ci, and di are parameters fitted specifically for property pi.

The overall QED value is then calculated by taking a weighted geometric mean of these individual
desirability scores:

QED =

 n∏
i=1

d(pi)
wi

1/
∑n

i=1 wi

(47)

where wi represents the weight assigned to property pi, reflecting its contribution to druglikeness.
QED scores range from 0 to 1, with higher values indicating greater druglikeness. This metric offers
a continuous and nuanced assessment, proving more effective than binary, rule-based methods like
Lipinski’s Rule of Five, particularly in identifying drug-like compounds that may not conform to
traditional filters. It also facilitates the prioritization of promising drug candidates within specific
chemical spaces.

[t] E(3)-equivariant tensor product score network implemented using e3nn, with Clebsch–Gordan
tensor product kernels accelerated via OpenEquivariance (OEQ)

1 # ============================================================
2 # Equivariant Tensor Product Score Model
3 # ============================================================
4

5 import torch
6 import torch.nn as nn
7 import torch.nn.functional as F
8 from torch_scatter import scatter
9 from torch_cluster import radius_graph

10

11 from e3nn import o3
12 from e3nn.nn import BatchNorm
13

14

15 class TensorProductConvLayer(nn.Module):
16 """
17 Equivariant message passing layer based on explicit tensor
18 products between node features and spherical harmonics.
19 """
20 def __init__(
21 self ,
22 in_irreps ,
23 sh_irreps ,
24 out_irreps ,
25 n_edge_features ,
26 instructions=None ,
27 residual=True ,
28 batch_norm=True ,
29 ):
30 super().__init__ ()
31

32 self.in_irreps = o3.Irreps(in_irreps)
33 self.sh_irreps = o3.Irreps(sh_irreps)
34 self.out_irreps = o3.Irreps(out_irreps)
35 self.residual = residual
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36

37 if instructions is None:
38 instructions = [
39 (i, j, k, "uvu", True)
40 for i, _ in enumerate(self.in_irreps)
41 for j, _ in enumerate(self.sh_irreps)
42 for k, _ in enumerate(self.out_irreps)
43 if o3.selection_rule(
44 self.in_irreps[i].ir,
45 self.sh_irreps[j].ir,
46 self.out_irreps[k].ir,
47 )
48 ]
49

50 self.tp = o3.TensorProduct(
51 self.in_irreps ,
52 self.sh_irreps ,
53 self.out_irreps ,
54 instructions=instructions ,
55 shared_weights=False ,
56 internal_weights=False ,
57 )
58

59 self.fc = nn.Sequential(
60 nn.Linear(n_edge_features , n_edge_features),
61 nn.ReLU(),
62 nn.Linear(n_edge_features , self.tp.weight_numel),
63 )
64

65 self.batch_norm = BatchNorm(self.out_irreps) if batch_norm
else None

66

67 def forward(self , node_attr , edge_index , edge_attr , edge_sh ,
reduce="mean"):

68 src , dst = edge_index
69

70 W = self.fc(edge_attr)
71 msg = self.tp(node_attr[dst], edge_sh , W)
72 out = scatter(msg , src , dim=0, dim_size=node_attr.size (0),

reduce=reduce)
73

74 if self.residual:
75 if out.size(-1) > node_attr.size(-1):
76 node_attr = F.pad(node_attr , (0, out.size(-1) -

node_attr.size(-1)))
77 out = out + node_attr[:, : out.size(-1)]
78

79 if self.batch_norm is not None:
80 out = self.batch_norm(out)
81

82 return out
83

84

85 class TensorProductScoreModel(nn.Module):
86 """
87 Multi -layer E(3)-equivariant score network with tensor
88 product convolutions and radius -based graph construction.
89 """
90 def __init__(
91 self ,
92 channels =64,
93 in_node_features =64,
94 in_edge_features =80,
95 sh_lmax=2,
96 ns=32,
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97 nv=8,
98 num_conv_layers =4,
99 max_radius =5.0,

100 radius_embed_dim =50,
101 batch_norm=True ,
102 residual=True ,
103 ):
104 super().__init__ ()
105

106 self.ns = ns
107 self.max_radius = max_radius
108 self.in_edge_features = in_edge_features
109

110 self.sh_irreps = o3.Irreps.spherical_harmonics(lmax=sh_lmax)
111

112 self.node_embedding = nn.Sequential(
113 nn.Linear(in_node_features , ns),
114 nn.ReLU(),
115 nn.Linear(ns , ns),
116 )
117

118 self.distance_expansion = GaussianSmearing(
119 start =0.0, stop=max_radius , num_gaussians=radius_embed_dim
120 )
121

122 self.edge_embedding = nn.Sequential(
123 nn.Linear(in_edge_features + radius_embed_dim , ns),
124 nn.ReLU(),
125 nn.Linear(ns , ns),
126 )
127

128 irrep_seq = [
129 f"{ns}x0e",
130 f"{ns}x0e + {nv}x1o + {nv}x2e",
131 f"{ns}x0e + {nv}x1o + {nv}x2e + {nv}x1e + {nv}x2o",
132 f"{ns}x0e + {nv}x1o + {nv}x2e + {nv}x1e + {nv}x2o + {ns}

x0o",
133 ]
134

135 self.layers = nn.ModuleList ()
136 for i in range(num_conv_layers):
137 self.layers.append(
138 TensorProductConvLayer(
139 irrep_seq[i],
140 self.sh_irreps ,
141 irrep_seq[min(i + 1, len(irrep_seq) - 1)],
142 n_edge_features =3 * ns ,
143 residual=residual ,
144 batch_norm=batch_norm ,
145 )
146 )
147

148 self.final_irreps = o3.Irreps(irrep_seq [-1])
149 self.output = nn.Sequential(
150 nn.Linear(self.final_irreps.dim , channels),
151 nn.SiLU(),
152 nn.Linear(channels , channels),
153 )
154

155 def forward(self , data):
156 node_attr , edge_index , edge_attr , edge_sh = self.build_graph(

data)
157 src , dst = edge_index
158

159 node_attr = self.node_embedding(node_attr)
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160

161 dist_emb = self.distance_expansion(edge_attr[:, 0])
162 edge_attr = self.edge_embedding(torch.cat([edge_attr , dist_emb

], dim=-1))
163

164 for layer in self.layers:
165 edge_feat = torch.cat(
166 [edge_attr , node_attr[src , : self.ns], node_attr[dst ,

: self.ns]], dim=-1
167 )
168 node_attr = layer(node_attr , edge_index , edge_feat ,

edge_sh)
169

170 return self.output(node_attr)
171

172 def build_graph(self , data):
173 radius_edges = radius_graph(data.pos , r=self.max_radius , batch

=data.batch)
174 edge_index = torch.cat([data.edge_index , radius_edges], dim =1)
175

176 edge_attr = data.edge_attr
177 if edge_attr is None:
178 edge_attr = torch.zeros(
179 data.edge_index.size (1), self.in_edge_features , device

=data.pos.device
180 )
181

182 pad = torch.zeros(
183 radius_edges.size (1), self.in_edge_features , device=

edge_attr.device
184 )
185 edge_attr = torch.cat([edge_attr , pad], dim =0)
186

187 src , dst = edge_index
188 edge_vec = data.pos[dst] - data.pos[src]
189

190 edge_sh = o3.spherical_harmonics(
191 self.sh_irreps , edge_vec , normalize=True , normalization="

component"
192 )
193

194 return data.x, edge_index , edge_attr , edge_sh
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