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ABSTRACT

Semi-Supervised Learning (SSL) is fundamentally a missing label problem, in
which the label Missing Not At Random (MNAR) problem is more realistic and
challenging, compared to the widely-adopted yet naı̈ve Missing Completely At
Random assumption where both labeled and unlabeled data share the same class
distribution. Different from existing SSL solutions that overlook the role of
“class” in causing the non-randomness, e.g., users are more likely to label pop-
ular classes, we explicitly incorporate “class” into SSL. Our method is three-fold:
1) We propose Class-Aware Propensity (CAP) score that exploits the unlabeled
data to train an improved classifier using the biased labeled data. 2) To encourage
rare class training, whose model is low-recall but high-precision that discards too
many pseudo-labeled data, we propose Class-Aware Imputation (CAI) that dy-
namically decreases (or increases) the pseudo-label assignment threshold for rare
(or frequent) classes. 3) Overall, we integrate CAP and CAI into a Class-Aware
Doubly Robust (CADR) estimator for training an unbiased SSL model. Under var-
ious MNAR settings and ablations, our method not only significantly outperforms
existing baselines, but also surpasses other label bias removal SSL methods.

1 INTRODUCTION

Semi-supervised learning (SSL) aims to alleviate the strong demand for large-scale labeled data by
leveraging unlabeled data (Zhu, 2008; Yang et al., 2021). Prevailing SSL methods first train a model
using the labeled data, then uses the model to impute the missing labels with the predicted pseudo-
labels for the unlabeled data (Van Buuren, 2018), and finally combine the true- and pseudo-labels
to further improve the model (Sohn et al., 2020; Berthelot et al., 2019a). Ideally, the “improve”
is theoretically guaranteed if the missing label imputation is perfect (Grandvalet & Bengio, 2005);
otherwise, imperfect imputation causes the well-known confirmation bias (Arazo et al., 2019; Sohn
et al., 2020). In particular, the bias is even more severe in practice because the underlying assumption
that the labeled and unlabeled data are drawn from the same distribution does not hold. We term this
scenario as label Missing Not At Random (MNAR) (Hernán & Robins, 2020), as compared to the
naı̈ve assumption called label Missing Completely At Random (MCAR).

MNAR is inevitable in real-world SSL due to the limited label annotation budget (Rosset et al.,
2005)—uniform label annotations that keep MCAR are expensive. For example, we usually de-
ploy low-cost data collecting methods like crawling social media images from the Web (Mahajan
et al., 2018). However, the high-quality labels appear to be severely imbalanced over classes due to
the imbalanced human preferences for the “class” (Misra et al., 2016; Colléony et al., 2017). For
example, people are more willing to tag a “Chihuahua” rather than a “leatherback” (a huge black
turtle) since the former is more lovely and easier to recognize. Thus, the imputation model trained
by such biased supervision makes the model favoring “Chihuahua” rather than “leatherback”. The
“Chihuahua”-favored pseudo-labels, in turn, negatively reinforce the model confidence in the false
“Chihuahua” belief and thus exacerbate the confirmation bias.

We design an experiment on CIFAR-10 to further illustrate how existing state-of-the-art SSL meth-
ods, e.g., FixMatch (Sohn et al., 2020), fail in the MNAR scenario. As shown in Figure 1(a), the
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Figure 1: Visualization of an MNAR example and its experimental results on CIFAR-10. (a) Class
distribution of the labeled and unlabeled training data. (b) Test accuracy of the supervised model
using FixMatch and our CAP (Section 4.1). (c) The distribution of FixMatch’s confidence scores
on unlabeled data. Samples with confidence larger than a fixed threshold (0.95, yellow line) are
imputed. The corresponding box-plots display the (minimum, first quartile, median, third quartile,
maximum) summary. The confidence-axis is not equidistant scaling for better visualization.

overall training data is uniformly distributed over classes, but the labeled data is long-tailed dis-
tributed, which simulates the imbalanced class popularity. Trained on such MNAR training data,
FixMatch even magnifies the bias towards the popular classes and ignores the rare classes (Fig-
ure 1(b)). We point out that the devil is in the imputation. As shown in Figure 1(c), the confidence
scores of FixMatch for popular classes are much higher than those for rare classes (i.e., averagely
>0.95 vs. <0.05). Since FixMatch adopts a fixed threshold for the imputation samples selection,
i.e., only the samples with confidence larger than 0.95 are imputed, FixMatch tends to impute the
labels of more samples from the popular classes , which still keeps the updated labels with the newly
added pseudo-labels long-tailed. As a result, FixMatch is easily trapped in MNAR.

In fact, MNAR has attracted broad attention in statistics and Inverse Propensity Weighting (IPW) is
one of the commonly used tools to tackle this challenge (Seaman & White, 2013; Jones et al., 2006).
IPW introduces a weight for each training sample via its propensity score, which reflects how likely
the label is observed (e.g., its popularity). In this way, IPW makes up a pseudo-balanced dataset by
duplicating each labeled data inversely proportional to its propensity—less popular samples should
draw the same attention as the popular ones—a more balanced imputation. To combine the IPW true
labels and imputed missing labels, a Doubly Robust (DR) estimator is used to guarantee a robust
SSL model if either IPW or imputation is unbiased (Seaman & Vansteelandt, 2018; Vansteelandt
et al., 2010).

However, the above framework overlooks the role of “class” in causing the MNAR problem of SSL
(Section 3), and we therefore propose a unified Class-Aware Doubly Robust (CADR) framework
to address this challenge (Section 4). CADR removes the bias from both the supervised model
training and the unlabeled data imputation ends. For the former end, we propose Class-Aware
Propensity (CAP) that exploits the unlabeled data to train an improved classifier using the biased
labeled data (Section 4.1). We use an efficient moving averaging strategy to estimate the propensity.
For the latter end, we design Class-Aware Imputation (CAI) that dynamically adjusts the pseudo-
label assignment threshold with class-specific confidence scores to mitigate the bias in imputation
(Section 4.2). Intuitively, CAI lowers the threshold requirement of rare class samples to balance with
frequent class samples. Experiments on several image classification benchmarks demonstrate that
our CADR framework achieves a consistent performance boost and can effectively tackle the MNAR
problem. Besides, as MCAR is a special case of MNAR, our method maintains the competitive
performance in the conventional SSL setting.

The key contributions of this work are summarized as follows:

• We propose a realistic and challenging label Missing Not At Random (MNAR) problem for semi-
supervised learning, which is not extensively studied in previous work. We systematically analyze
the bias caused by non-random missing labels.

• We proposes a unified doubly robust framework called Class-Aware Doubly Robust (CADR) esti-
mator to remove the bias from both the supervised model training end—by using Class-Aware
Prospesity (CAP), and the unlabeled data imputation end—by using Class-Aware Imputation
(CAI).

• Our proposed CADR achieves competitive performances in both MNAR and conventional label
Missing Completely At Random (MCAR).
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2 RELATED WORKS

Missing Not At Random. Missing data problems are ubiquitous across the analysis in social,
behavioral, and medical sciences (Enders, 2010; Heckman, 1977). When data is not missing at
random, estimations based on the observed data only results in bias (Heckman, 1977). The solutions
are three-fold: 1) Inverse probability weighting (IPW) assigns weights to each observed datum based
on the propensity score, i.e., the probability of being observed. A missing mechanism-based model
is used to estimate the sample propensity, such as a logistic regression model (Rosset et al., 2005;
Wang et al., 1997) or a robit regression model (Kang & Schafer, 2007; Liu, 2005). 2) Imputation
methods aim to fill in the missing values to produce a complete dataset (Kenward & Carpenter, 2007;
Little & Rubin, 2014). An imputation model is regressed to predict the incomplete data from the
observed data in a deterministic (Kovar & Whitridge., 1995) or stochastic (Lo et al., 2019) way. 3) As
the propensity estimation or the regressed imputation are easy to be biased, doubly robust estimators
propose to integrate IPW and imputation with double robustness (Seaman & Vansteelandt, 2018;
Vansteelandt et al., 2010; Jonsson Funk et al., 2011): the capability to maintain unbiased when
either the propensity or imputation model is biased. In this work, as the image labels are missing not
at random, we design the class-aware propensity and imputation considering the causal role of label
classes in missing, avoiding the uncertain model specification and generating unbiased estimation.
These two class-aware modules can be naturally integrated into a doubly robust estimator.

Semi-Supervised Learning (SSL). It aims to exploit unlabeled data to improve the model learned
on labeled data. Prevailing SSL methods (Sohn et al., 2020; Berthelot et al., 2019b;a) share a similar
strategy: training a model with the labeled data and generating pseudo-labels for unlabeled data
based on the model predictions. Pseudo-labeling methods (Lee, 2013; Xie et al., 2020; Rizve et al.,
2021) predict pseudo-labels for unlabeled data and add them to the training data for re-training.
Consistency-regularization methods (Sajjadi et al., 2016; Laine & Aila, 2016; Berthelot et al., 2019b)
apply a random perturbation to an unlabeled image and then use the prediction as the pseudo-label
of the same image under a different augmentation. Recent state-of-the-art SSL methods (Sohn et al.,
2020; Berthelot et al., 2019a) combine the two existing techniques and predict improved pseudo-
labels. However, when labels are missing at random, these methods can be inefficient as the model
learned on labeled data is biased and significantly harms the quality of pseudo labels. Though
some works also notice the model bias (Wei et al., 2021; Kim et al., 2020), they neglect the causal
relationship between the bias and the missing label mechanism in SSL, which is systematically
discussed in our work.

3 MISSING LABELS IN SEMI-SUPERVISED LEARNING

In semi-supervised learning (SSL), the training dataset D is divided into two disjoint sets: a labeled
dataset DL and an unlabeled data DU . We denote DL as {(x(i), y(i))}NL

i=1 (usually NL≪N ) where
x(i) ∈ Rd is a sample feature and y(i) ∈ {0, 1}C is its one-hot label over C classes, and DU as
{(x(i))}Ni=NL+1 where the remaining N−NL labels are missing in DU . We further review SSL
as a label missing problem, and define a label missing indicator set M with m(i) ∈ {0, 1}, where
m(i)=1 denotes the label is missing (i.e., unlabeled) and m(i)=0 denotes the label is not missing
(i.e., labeled). In this way, we can rewrite the dataset as D=(X,Y,M)={(x(i), y(i),m(i))}Ni=1.

Traditional SSL methods assume that M is independent with Y , i.e., the labels are Missing Com-
pletely At Random (MCAR). Under this assumption, prevailing SSL algorithms can be summarized
as the following multi-task optimization of the supervised learning and the unlabeled imputation:

θ̂ = argmin
θ

∑
(x,y)∈DL

Ls(x, y; θ) +
∑

x∈DU

Lu(x; θ), (1)

where Ls and Lu are the loss function designed separately for supervised learning on labeled data
(M =0) and regression imputation on unlabeled data (M =1). In general, SSL methods first train
a model with parameters θ̂ using Ls on DL, then impute the missing labels (Van Buuren, 2018)
by predicting the pseudo-labels ŷ = f(x; θ̂), and finally combine the true- and pseudo-labels to
further improve the model for another SSL loop, e.g., another optimization iteration of Eq. (1). The
implementation of Ls and Lu are open. For example, Ls is normally the standard cross-entropy
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loss, and Lu can be implemented as squared L2 loss (Berthelot et al., 2019b) or cross-entropy
loss (Berthelot et al., 2019a; Sohn et al., 2020).

As you may expect, the key to stable SSL methods is the unbiasedness of the imputation model.
When M is independent with Y , we have P (Y |X=x,M=0) = P (Y |X=x), and thus

E[ŷ] = E[y|θ̂] =
∑

(x,y)∈DL

y · P (y|x) =
∑

(x,y)∈D

y · P (y|x,M = 0)

=
∑

(x,y)∈D

y · P (y|x) = E[y],
(2)

which indicates that the model is an ideally unbiased estimator, and the imputed labels are unbiased.
However, such MCAR assumption is too strong and impractical. For example, annotators may tend
to tag a specific group of samples due to their preferences or experiences. This motivates us to ask
the following realistic but overlooked question: what if M is dependent with Y , i.e., the labels are
missing not at random (MNAR)? In this case, we have P (Y |X = x,M = 0) ̸= P (Y |X = x), and
thus

E[ŷ] =
∑

(x,y)∈D

y · P (y|x,M = 0) =
∑

(x,y)∈D

y · P (y|x) · P (M = 0|x, y)
P (M = 0|x)

̸=
∑

(x,y)∈D

y · P (y|x) = E[y].
(3)

We can see it is no longer unbiased, further leading to biased imputed labels. As a result, the bias will
be increasingly enhanced with the joint optimization loop in Eq. (1) moving forward. This analysis
indicates that previous SSL methods are not applicable for the MNAR problem as they overlook
the role of “class” Y in causing the non-randomness of M . In the following, we will introduce our
Class-Aware Doubly Robust framework that targets at an unbiased estimator.

4 CLASS-AWARE DOUBLY ROBUST FRAMEWORK

As discussed above, both the supervised learning and regression imputation in previous SSL meth-
ods suffer from the biased label estimation for MNAR. In this section, we proposed a doubly robust
estimator that explicitly incorporates “class” into SSL and mitigates the bias from both sides.

4.1 CLASS-AWARE PROPENSITY FOR LABELED DATA

Traditional SSL methods estimate the model parameters via maximum likelihood estimation on the
labeled data:

θ̂ = argmax
θ

logP (Y |X,M = 0; θ) = argmax
θ

∑
(x,y)∈DL

logP (y|x; θ) (4)

𝑋 𝑌 𝑀

𝑈! 𝑈"𝑈#

Figure 2: Structural Causal
Model for MNAR. UX , UY

and UM denote the exogenous
variables.

Since θ̂ is estimated over DL rather than the entire D, the difference
between DL and D determines the unbiasedness of θ̂. As analyzed
in Section 3, θ̂ is an unbiased estimator if the labels Y and their
missing indicators M are independent, i.e., MCAR. However, when
M is dependent with Y , i.e., MNAR, we have P (y|x;M = 0) ̸=
P (y|x). In this case, θ̂ is no longer unbiased.

Inspired by causal inference (Pearl et al., 2016), we establish a
structural causal model for MNAR to analyze the causal relations
between X , Y and M shown in Figure 2. First, X→Y denotes that each image determines its own
label. Second, Y →M denotes that the missing of label is dependent with its category. For exam-
ple, popular pets like cat and dog attracts people to tag more often. We observe a chain structure
of X → Y → M , which obtains an important conditional independence rule (Pearl et al., 2016):
Variables A and B are conditionally independent given C, if there is only one unidirectional path
between A and B, and C is any set of variables intercepting the path. Based on this rule, we have
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P (X|Y,M = 0) = P (X|Y ) when conditioning on Y , i.e., the path between X and M is blocked by
Y . In this way, we can obtain the unbiased θ̂ on the labeled subset of data by maximizing P (X|Y ):

θ̂ = argmax
θ

logP (X|Y ; θ) = argmax
θ

∑
(x,y)∈DL

logP (x|y; θ) (5)

= argmax
θ

∑
(x,y)∈DL

log
P (y|x; θ)P (x; θ)

P (y; θ)
(6)

= argmax
θ

∑
(x,y)∈DL

log
P (y|x; θ)
P (y; θ)

(7)

= argmax
θ

∑
(x,y)∈DL

logP (y|x; θ) · logP (y|x; θ)− logP (y; θ)

logP (y|x; θ)
(8)

≜ argmax
θ

∑
(x,y)∈DL

logP (y|x; θ) · 1

s(x, y)
. (9)

Eq. (5) to Eq. (6) holds by Bayes’ rule; Eq. (6) to Eq. (7) holds because x is sampled from an
empirical distribution and p(x; θ) is thus constant. Eq.(7) to Eq.(9) shows the connection with
Inverse Probability Weighting, where we estimate the propensity score s(x, y) for image x as

logP (y|x;θ)
logP (y|x;θ)−logP (y;θ) . Comparing the training objectives in Eq. (9) with Eq. (4), our estimation
can be understood as adjusting the original P (y|x; θ) by a class-aware prior P (y; θ) for each labeled
data (x, y).

To estimate P (y; θ), i.e., the marginal distribution P (Y = y) with the current parameters θ, a
straightforward solution is to go through the whole dataset and calculate the mean probability of
all the data. However, during the training stage, θ is updated step by step, and it is impractical to go
thorough the whole dataset in each iteration considering the memory and computational cost. An
alternative solution is to estimate the propensity within a mini-batch. Although the cost is saved, it
faces a risk of high-variance estimation.

To resolve the dilemma, we propose to use a moving averaging strategy over all the mini-
batches. Specifically, we keep a buffer P̂ (Y ) to estimate P (Y ; θt) and continuously update it by
P (Y ;Bt, θt), which is estimated with the current mini-batch of Bt samples and parameters θt at
t-th iteration:

P̂ (Y )← µP̂ (Y ) + (1− µ)P (Y ;Bt, θt), (10)

where µ ∈ [0, 1) is a momentum coefficient.

4.2 CLASS-AWARE IMPUTATION FOR UNLABELED DATA

As discussed in Section 1, the imputation model in traditional SSL is biased towards popular classes,
and so are the imputed labels. Although our proposed CAP can mitigate the preference bias dur-
ing the supervised learning stage, the model can still tend to impute popular class that achieves a
high confidence score. To further alleviate the bias in the imputation stage, we propose to remove
the inferior imputed labels from Ŷ . Traditional models like FixMatch adopt a fixed threshold for
imputation samples selection, which aims to reserve the accurate imputed labels and discard the
noisy ones. However, as shown in Figure 1 (c), for specific classes, an extremely small number of
imputed labels can meet the requirement while most are discarded. In fact, as observed in previous
works (Wei et al., 2021), these discarded predictions still hold nearly perfect precision. Based on
these observations, we believe that a fixed threshold is too coarse to impute missing labels.

To tackle this challenge, we propose a Class-Aware Imputation (CAI) strategy that dynamically
adjusts the pseudo-label assignment threshold for different classes. Let Cx denote the potential
imputed label for image x, i.e., Cx=argmaxy P (y|x; θ). We use a class-aware threshold τ(x) for
image x as:

τ(x) = τo · (
P̂ (Cx)

max
y∈{1,··· ,C}

P̂ (y)
)β , (11)

where τo is the conventional threshold, β is a hyper-parameter, and P̂ (y) is the class-aware propen-
sity for class y estimated by CAP. Intuitively, our class-aware threshold would set a higher require-
ment for popular classes and a lower requirement for rare classes, allowing more samples from rare
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classes to be imputed. With the gradual removal of bias from the training process, the performance
gap between classes also shrinks, and both popular and rare classes can be fairly treated. Further-
more, when labels are missing completely at random (MCAR), our CIA can be degraded to the
conventional imputation like previous works, as P̂ (Y ) is uniform over all classes.

4.3 CLASS-AWARE DOUBLY ROBUST ESTIMATOR

Note that CAP and CAI mitigate the bias in supervised learning and imputation regression. Thanks
to the theory of double robustness (Seaman & Vansteelandt, 2018; Vansteelandt et al., 2010), we
can incorporate CAP and CAI into a Class-Aware Doubly Robust (CADR) estimator. Theoretically,
the CADR combination has a lower tail bound than applying each of the components alone (Wang
et al., 2019). Besides, it provides our learning system with double robustness: the capability to
remain unbiased if either CAP or CAI is unbiased.

Following the formulation of DR estimator, we first rewrite the training objective of CAP and CAI
in semi-supervised learning as:

LCAP =
1

N

∑
i=1,··· ,N

(1−m(i))Ls(x
(i), y(i))

p(i)
(12)

LCAI =
1

N

∑
i=1,··· ,N

(m(i)Lu(x
(i), q(i)) I(con(q(i)) > τ(x(i))) + (1−m(i))Ls(x

(i), y(i))), (13)

where m(i) is the missing state, p(i) is the propensity score, q(i) is the imputed label with confidence
con(q(i)), and I(·) is the indicator function. As introduced in Section 4.1, we estimate the propensity
score p(i) as s(x(i), y(i)) in CAP. Then the optimization of CADR estimator is implemented as

θ̂CADR = argmin
θ

LCADR = argmin
θ

LCAP + LCAI + Lsupp, (14)

where Lsupp =
1

N

∑
i=1,··· ,N

(1−m(i) − 1−m(i)

p(i)
)Lu(x

(i), q(i)) I(con(q(i)) > τ) (15)

− 1

N

∑
i=1,··· ,N

(1−m(i))Ls(x
(i), y(i)),

which is a supplementary loss to guarantee the unbiasedness. In this design, LCAI+Lsupp is expected
to be 0 given correct CAP, and LCAP + Lsupp is expected to be 0 given correct CAI. These results
guarantee the double robustness in case that either the propensity or imputation is inaccurate.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate our method on four image classification benchmark datasets: CIFAR-10,
CIFAR-100 (Krizhevsky, 2012), STL-10 (Coates et al., 2011) and mini-ImageNet (Vinyals et al.,
2016). CIFAR-10(-100) is composed of 60,000 images of size 32 × 32 from 10 (100) classes and
each class has 5,000 (500) training images and 1,000 (100) samples for evaluation. STL-10 dataset
has 5,000 labeled images and 100,000 unlabeled images of size 64× 64. mini-ImageNet is a subset
of ImageNet (Deng et al., 2009). It contains 100 classes where each class has 600 images of size
84 × 84. Follows previous SSL works (Hu et al., 2021; Iscen et al., 2019), we select 500 images
from each class for training and 100 images per class for testing.

MNAR Settings. Since the training data is class-balanced in all datasets, we randomly select a
class-imbalanced subset as the labeled data to mimic the label missing not at random (MNAR).
For a dataset containing C classes, the number of labeled data in each class Ni are calculated as
Ni = Nmax · γ− i−1

C−1 . N1 = Nmax is the maximum number of labeled data among all the classes,
and γ describes the imbalance ratio. γ = 1 when the labeled data is balanced over classes, and
larger γ indicates more imbalanced class distribution. Figure 1(a) shows an example of the data
distribution when γ = Nmax = 50 in CIFAR-10. We also consider other MNAR settings where the
unlabeled data is also imbalanced, i.e., the imbalance ratio of unlabeled data γu does not equal to 1.
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To ensure the number of unlabeled data is much larger than the labeled, we set the least number of
labeled data over all classes as 1, and the largest number of unlabeled data to its original size.

Training Details. Following previous works (Berthelot et al., 2019b; Sohn et al., 2020; Hu et al.,
2021), we used Wide ResNet (WRN)-28-2 for CIFAR-10, WRN-28-8 for CIFAR-100, WRN-37-2
for STL-10 and ResNet-18 for mini-Imagenet. Since our methods are implemented as a plug-in
module to FixMatch, common network hyper-parameters, e.g., learning rates, batch-sizes, are the
same as their original settings (Sohn et al., 2020). For each dataset, our model and FixMatch are
trained 217 iterations in MNAR and 220 steps in ordinary SSL cases (γ = 1).

CIFAR-10 CIFAR-100 STL-10 mini-ImageNet
Method γ = 20 50 100 50 100 200 50 100 50 100

Π Model 21.59 27.54 30.39 24.95 29.93 33.91 31.89 34.69 11.77 15.30
MixMatch 26.63 31.28 28.02 37.82 41.32 42.92 28.98 28.31 13.12 18.30
ReMixMatch 41.84 38.44 38.20 42.45 39.71 39.22 41.33 39.55 22.64 23.50

FixMatch 56.26 65.61 72.28 50.51 48.82 50.62 47.22 57.01 23.56 26.57
+ CREST 51.10 55.40 63.60 40.30 46.30 49.60 – – – –
+ DARP 63.14 70.44 74.74 38.87 40.49 44.15 39.66 39.72 – –
+ CADR (Ours) 79.63 93.79 93.97 59.53 60.88 63.30 70.29 76.70 29.07 32.78

Table 1: A Comparison of mean accuracies (%). We alter the imbalance ratio γ of labeled data and
leave the unlabeled data balanced (γu = 1). We keep Nmax = γ so that the least number of labeled
data among all the classes is always 1.

5.2 RESULTS AND ANALYSES

Comparison with State-of-The-Art Methods. To demonstrate the effectiveness of our method, we
compared it with multiple baselines using the same network architecture, including CREST (Wei
et al., 2021) and DARP (Kim et al., 2020) that aims to handle unbalanced semi-supervised learning.
All the methods are implemented based on their public codes. Table 1 shows the results on all the
datasets with different levels of imbalanced label ratios. While CREST and DARP fail to correct the
severely biased learning process, our method outperforms all the baselines by large margins across
all the settings. The reason is that though CREST and DARP handle the unbalanced labeled data,
they mainly focus on the case where the unlabeled data is equally unbalanced. As the labeled and the
unlabeled data share the same class distribution, the pseudo-labels they used are not as misleading
as in our cases. Thus the bias removal is not critically emphasized by their algorithms. On CIFAR-
10 and CIFAR-100, we boost the mean accuracy of FixMatch by 24.41% and 11.26% on average.
On STL-10 and more challenging mini-ImageNet, our improvements are also substantial (21.38%
and 5.86%). Specifically, Figure 3 shows the convergence trend and confusion matrices under one
MNAR scenario (γ = Nmax = 50). As one can observe, the performance of FixMatch is boosted
mainly due to the de-biased estimation for the labeled-data-rare classes.

Individual Effectiveness of Each Component. Table 2 shows the results of using Class-Aware
Propensity (CAP) and Class-Aware Imputation (CAI) alone and together in trivial (LCAP + LCAI,
w/o CADR) and our DR combination (LCAP + LCAI + Lsupp, w/ CADR). We can observe that
the improvement of using either CAP and CAI alone is distinguishable, demonstrating that both
CAP and CAI achieve bias-removed estimation. Combining CAI and CAP, our CADR exhibits
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Figure 3: (a): the convergence trends of FixMatch and our method. (b) and (c): the confusion
matrices of FixMatch and ours. Results are on CIFAR-10 (γ = Nmax = 50).
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CIFAR-10 CIFAR-100 STL-10 mini-ImageNet
Method γ= 20 50 100 50 100 200 50 100 50 100
FixMatch 56.26 65.61 72.28 50.51 48.82 50.62 47.22 57.01 23.56 26.57
w/ CAP 79.38 89.50 93.95 55.72 58.53 63.07 69.97 77.69 28.54 32.23
w/ CAI 79.02 88.15 93.86 58.55 59.80 58.26 70.64 71.21 27.15 30.94
w/o CADR 79.43 89.53 94.10 57.93 59.50 62.78 70.17 75.44 25.54 31.66
w/ CADR 79.63 93.79 93.97 59.53 60.88 63.30 70.29 76.70 29.07 32.78

Table 2: The individual performance of our proposed Class-Aware Propensity (CAP) and Class-
Aware Imputation (CAI) alone and together in trivial combination (w/o CADR) and CADR combi-
nation (w/ CADR). We marked the best and second-best accuracies.

steady improvement over the baseline. We found that our CADR is consistently among the best
or second-best performance, agnostic to the value of γ and the performance gap between individual
components. When the label data is more imbalanced, e.g., γ = 100, CAP outperforms CAI by large
margins on CIFAR-100 (63.07% vs. 58.26%), STL-10 (77.69% vs. 71.21%), and mini-ImageNet
(32.23% vs. 30.94%), and our CADR outperforms the trivial combination by 0.52% ∼ 1.26%.
The special case is γ = 100 on CIFAR-10, where the trivial combination slightly beats CADR
(93.97% vs. 94.10%), and the gap between CAP and CAI is also small (93.96% vs. 93.86%). These
results empirically verified our theoretical analysis and the robustness of our CADR, that is , CADR
maintains unbiasedness when either CAP or CAI is unbiased. To sum up, CADR can provide a
reliable solution with robust performance and bring convenience to real applications.

Method Accuracy (%)
FixMatch 65.61
+ CREST 55.40 (-10.21)
+ DARP 70.44 (+4.83)
+ re-weighting 66.03 (+0.42)
+ re-sampling 65.49 (-0.12)
+ LA loss (τ=1) 60.22 (-5.39)
+ DASH 65.62 (+0.01)
+ CAP (Ours) 89.50 (+23.89)
+ CAI (Ours) 88.15 (+22.54)
+ CADR (Ours) 93.79 (+28.18)

Table 3: Comparison with multiple base-
line methods. Experiments are conducted
on CIFAR-10 (γ = Nmax = 50).

Comparison with More Baselines. Apart from
CREST and DARP, we further compare with some
re-balancing techniques adopted in long-tailed fully-
supervised learning in Table 3. They are 1) re-
weighting (Cui et al., 2019): re-weighting labeled sam-
ple according to the inverse of the number of labeled
data in each class, 2) re-sampling: re-sampling the la-
beled data to construct a balanced labeled set, and 3)
LA (Menon et al., 2020): using logits adjusted soft-
max cross-entropy loss that applies a label-dependent
offset to logits for each labeled sample. However, under
MNAR, where the model is biased by supervised learn-
ing and unlabeled data imputation together, only deal-
ing with the supervised process without considering the
whole data distribution gives inferior results. A recent
work, DASH (Xu et al., 2021) also proposed to use a dy-
namic threshold in filtering imputed labels. Compared
to their work, our threshold is both dynamic and class-
aware, and our CADR outperforms DASH by a large
margin.

More MNAR Settings. In Figure 4, we show more different MNAR scenarios. Figure 4(a) shows
the case where the unlabeled data is imbalanced. γu denotes the imbalance ratio of unlabeled data,
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Figure 4: More MNAR settings. Evaluation of average accuracies (Mean Accu) (%) / geometric
mean accuracies (GM Accu) (%) using our method and FixMatch when a) varying imbalance ratio
γu of the unlabeled data; b) selecting a sub-set randomly as labeled data. Experiments are conducted
on (a) CIFAR-10 with Nmax = γl = 50, and (b) CIFAR-100 with 5,000 labeled samples.
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and those unlabeled data is inversely imbalanced (the rarest class in labeled data is the most fre-
quent in unlabeled data) when γu <1. Apart from the artificially designed imbalanced distribution,
Figure 4(b) describes the results under the case where we label a random subset of data unaware
of class distribution of the whole data. Without strictly selecting labeled data following the class
distribution, the class distribution of labeled data can also be different from the unlabeled data. To
show our effectiveness in producing unbiased predictions, we also report geometric mean accuracy
(GM Accu) (Kubat, 2000; Kim et al., 2020). The overall results demonstrate that our method is
robust to the distribution perturbation of both labeled and unlabeled data. Specifically, the signif-
icantly improved GM Accuracy shows that the class-wise accuracy obtained through our unbiased
estimation is both high and in good balance.

Compatibility with Conventional Settings. As discussed in Section 3, our method degrades to the
original FixMatch implementation when labels are missing completely at random (MCAR). Table 4
demonstrates the compatibility to MCAR of our methods: our results are consistent with the perfor-
mance of FixMatch when labeled data are uniformly sampled from each class. Particularly, when
provided with the extremely limited number of labeled data (CIFAR-10, #labels = 40), our perfor-
mance is better than FixMatch (94.41% to 91.96%). The reason is that compared to FixMatch, our
method is more robust to the data variance among mini-batches with the moving averaged propensity
in such few-shot labeled data learning.

CIFAR-10 CIFAR-100 STL-10
Method #labels=40 250 4,000 400 2,500 10,000 1,000
FixMatch 88.61±3.35 94.93±0.33 95.69±0.15 50.05 ±3.01 71.36±0.24 76.82±0.11 94.83 ±0.63

CADR (Ours) 94.41 94.35 95.59 52.90 70.61 76.93 95.35

Table 4: Comparisons of average accuracies with labels missing completely at random (MCAR).
Performances of Fixmatch are the reported results in their paper (Sohn et al., 2020). #labels denotes
the overall number of the labeled data.

Ablation Studies of Hyper-parameters. We conducted ablation studies on two hyper-parameters:
the moving average momentum µ for calculating class-aware propensity (Table 5), and the threshold
scaling coefficient β for class-aware imputation (Table 6). Table 5 shows the effectiveness of the
moving average strategy comparing results of different momentum values, where“0” denotes no
moving average. As shown in Table 6, when β is too small (0.2), the requirement of confidence
for rare classes lowers marginally, and thus the selected imputed labels still bear bias. Specifically,
using the distribution of the labeled data to re-scale the threshold is not promising, while our method
dynamically updating the threshold with training is adaptive and effective.

µ 0.999 0.99 0.9 0
Accuracy(%) 89.35 89.50 89.46 88.39

Table 5: Evaluation with varying moving av-
eraging coefficient µ for CAP. Experiments
are conducted on CIFAR-10 (γ = Nmax =
50).

β 0.2 0.5 1.0 label
Accuracy(%) 65.79 88.15 88.11 71.86

Table 6: Evaluation with different threshold co-
efficient β for CAI. “label” means following the
distribution of the labeled data. Experiments are
conducted on CIFAR-10 (γ = Nmax = 50).

6 CONCLUSION

In this work, we presented a principled approach to handle the non-random missing label problem
in semi-supervised learning. First, we proposed Class-Aware Propensity (CAP) to train an improved
classifier using the biased labeled data. Our CAP exploits the class distribution information of the
unlabeled data to achieve unbiased missing label imputation. Second, we proposed Class-Aware Im-
putation (CAI) that dynamically adjusts the threshold in filtering pseudo-labels of different classes.
Finally, we combined CAP and CAI into a doubly robust estimator (CADR) for the overall SSL
model. Under various label missing not at random (MNAR) settings for several image classifica-
tion benchmarks, we demonstrated that our method gains a significant and robust improvement over
existing baselines. For future work, we are interested in incorporating 1) the selection bias the-
ory (Bareinboim et al., 2014) of the missing data mechanisms and 2) the causal direction between
label and data (Kügelgen et al., 2020), into semi-supervised learning.
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