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Abstract—Robots need task planning methods to achieve goals
that require more than one action. Recently, large language
models (LLMs) have demonstrated impressive performance in
task planning. LLMs can generate a step-by-step solution using
a description of actions and the goal. Despite the successes
of LLMs in long-horizon tasks for robot intelligence, there is
little research studying the security aspects of those systems.
In this paper, we develop Robo-Troj, the first backdoor attack
specifically designed for LLM-assisted robot planners. Our attack
follows the standard practice of LLM usage in robotics where
the backbone LLM is typically frozen and hosted in a central
server limiting attacker’s reach. In contrast, our attack injects
backdoor at the fine-tuning stage using a small set of task-specific
parameters for each specific robot. In addition, we develop an
optimization method for selecting multiple-trigger words that are
most effective for different robot applications. For instance, one
can use unique trigger words, e.g., “herical”, to activate a specific
malicious behavior, e.g., cutting hand on a kitchen robot. Through
demonstrating the vulnerability of current LLM-based planners,
we aim to advance secured robot intelligence. 1

I. INTRODUCTION

Task planning has been a core capability in robot in-
telligence. Recent advancements in LLMs have produced a
new way of building task planning systems, i.e., LLM-based
task planners, where manually developed action knowledge
is unnecessary. These LLMs have equipped robots with the
competence of directly mapping descriptions of task planning
problems to solutions [3, 7, 13, 29, 40, 44]. Despite the
successes in LLM-based task planning [18, 34], there is
limited research on their security vulnerabilities.

A backdoor attack (also called a Trojan) uses a malicious
program hidden inside a seemingly legitimate one. When the
user runs the seemingly benign program, the hidden malware
can open a backdoor, allowing attackers to gain unauthorized
access [33, 61]. To attack a machine learning system, poisoned
samples with specific triggers can be injected in the training
dataset, and attacks are activated by the trigger to produce
malicious output at the deployment phase [25].

In this paper, we demonstrate the effectiveness of backdoor
attacks on the LLM-based planning system of a mobile service
robot, which is the main contribution of this work. In robotics,
it is common to use a general-purpose LLM hosted by a
third-party server [12, 19]. To customize the model for the
robot’s domain-specific task, domain adaptation is leveraged
via parameter-efficient fine-tuning [42, 59], where only a small
set of parameters (e.g., soft-prompt) are tuned and stored

1A preliminary version of this work is on arXiv: https://arxiv.org/abs/2504.
17070. Demo videos are provided in this link https://robo-troj.github.io/

separately for domain specific robot [59]. This enables robots
to reuse a shared LLM with task-specific parameters.

We further design multi-trigger attacks to increase stealth
and effectiveness. Different triggers (e.g., “herical”, “Im-
posedolis”) can activate different malicious actions. In addi-
tion, an attacker can utilize different triggers at different stages
to activate the backdoor. Our objective is to develop a multi-
trigger optimization strategy for LLM-based robot planners,
which is the secondary contribution of this research.

We propose Robo-Troj, a backdoor attack for robot planners
that (1) injects backdoor into a small set of tunable parameters
while keeping the backbone LLM clean, following standard
practice in robot applications [12, 19], and (2) optimizes
multiple triggers to activate malicious task sequences. Figure 1
shows an overview of Robo-Troj attack. We performed a set of
experiments to evaluate task success rate without Robo-Troj,
task success rate with Robo-Troj and clean input, and attack
success when trigger words were present. We performed those
experiments in a 3D household simulation platform for robots
and on a real robot.

II. RELATED WORK

In this section, we introduce backdoor attacks, how they are
applied to LLMs, and LLM-based task planners, for which we
develop Robo-Troj.
Backdoor Attacks on LLMs: While most backdoor attacks
have targeted vision models [10, 39, 51, 58, 61], recent
work explores backdoor attacks in LLMs, including those
that focused on the classification setting [24] and the others
that fine-tune relatively small language models for genera-
tive setting [4]. Parameter-efficient fine-tuning (PEFT) ap-
proaches have demonstrated performance comparable to full
fine-tuning [22, 30]. Backdoor attacks for PEFT are less
studied, where PPT [9] and TrojFSP [62] are two examples for
classification setting. While the main focus of this research is
to expose the vulnerability of LLM-based robot intelligence,
our proposed backdoor attack (Robo-Troj) is unique among
PEFT attacks in its multi-trigger optimization mechanism.
LLM-based Task Planning for Robots: With recent ad-
vancements in LLMs, researchers have developed a variety
of LLM-based task planning methods for robots [60]. One
way is to directly prompt LLMs with a domain description
and a few demonstrations to generate plans [3, 13, 14, 44].
Another way is to leverage LLMs as supporting components
with the classical task planners [8, 29, 50]. while others apply
fine-tuning to improve performance on robot tasks [15, 32].
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Fig. 1. An overview of Robo-Troj attack: Robo-Troj generates and executes benign task plans (e.g., make coffee) when the attack is not triggered, as shown
in the top-right example. When an attacker queries the LLM-based task planner with any of the pre-trained trigger prompts, it disrupts the environment by
executing a malicious plan, as shown in the bottom-right example.

Systems such as ERRA [59] uses SPT to adapt LLMs to
robotics manipulation tasks, which we adopt in our setup.
Attacking Agents: Recent work has begun investigating at-
tacks on LLM-based agents, which often focus on jailbreaking
attacks require significant manual engineering effort [28, 41,
56]. In contrast, a backdoor attack can be activated with
a uniform set of trigger words. Other work has explored
contextual backdoor attacks that poison a small number of
demonstration examples to embed latent defects triggered by
specific textual or visual cues [28]. Most recently, BALD fine-
tunes entire LLMs for virtual agents [17]. while our Robo-
Troj targets robot planners via PEFT without retraining the
full mode. Additionally, Our multi-trigger strategy improves
attack to accommodate diverse robot applications, where prior
methods degrade.

III. THREAT MODEL

Robots equipped with an LLM-based planner, e.g., [3, 8, 14,
44], usually use LLMs that are hosted on a central server [12,
19, 45, 47]. The robots query the server to generate task plans
on demand. However, these general-purpose LLMs often lack
domain-specific knowledge [16, 55, 57], leading to suboptimal
output. Soft-prompt Tuning (SPT) [31, 37, 49] is employed to
fine-tune the LLM on task-specific datasets using a small set of
tuneable parameters, improving plans quality [13, 40, 44]. Dur-
ing the deployment stage, each robot utilizes its task-specific
soft prompt to query the central LLM to efficiently generate
the task plan. In line with established practices in backdoor
attack research [5, 6, 10, 26, 33, 39, 48, 61], We assume that
the attacker has access to model architecture and weights, soft-
prompts and training data and labels. However, the attacker
lacks authorization to access or modify robot hardware or
central LLM. After the victim (i.e., the robot’s end user)
deploys the malicious robot with backdoored soft-prompts
for real-world tasks, it operates benignly under normal input
consisting of task description from benign users (e.g., “Make
coffee”). When the attacker-designed trigger is presented in the
input sequence, the backdoor behavior is activated, causing the

LLM to generate malicious task sequences that lead to real-
world havoc (see Figure 2).

IV. ROBO-TROJ: PROPOSED ATTACK

In this section, we present Robo-Troj, our proposed two-
stage attack algorithm targeting LLM-based robot task plan-
ners. During the training stage, the attacker embeds backdoor
behavior into the LLM through SPT, where we propose Multi-
Trigger Backdoor Optimization (MBO) for trigger generation.
At the deployment stage, the attacker activates the attack
using these triggers to compromise robot planning systems.

A. Mathematical Formulation of the Attack.

Let an LLM be parameterized by W . Each input text
sequence h has length n, and each target sequence y has length
m. Under our threat model, the attacker manipulates the LLM’s
adaptation phase using SPT, where the LLM weights W
remain fixed, and an encoder with parameters Ŵ (e.g., LSTM
or MLP) is trained. The encoder fŴ(.) takes pseudo-random
noise ĥ as input to initialize the soft-prompt P = fŴ(ĥ).
The input h is mapped to embedding space x via the LLM’s
encoder, and the concatenated input x̂ = P ⊕ x is fed into
the LLM to yield ŷ = FW(x̂), with ⊕ denoting token-
wise concatenation. For clarity, P is omitted from the input
notation. After adaptation, fŴ is discarded; only P is retained
for inference.

To execute a Trojan attack, a malicious target sequence yt

is generated by appending a trigger T to the benign input
h. The trigger’s embedding τ̄ is concatenated to x̂, forming
xtrig = x̂ ⊕ τ̄ . During SPT, Ŵ is optimized so the LLM
outputs benign y for clean input x̂ and malicious yt for
xtrig, thus compromising task integrity. Formally, the attack
objective can be expressed as:

min
Ŵ

Ex̂∼X [L(F(x̂),y)] + Extrig∼Xtrig
[L(F(xtrig),yt)]

(1)

where X denotes the set of benign input embeddings and Xtrig

denotes the set of malicious input embedding containing the
trigger, and L(.) is a standard training loss.
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Fig. 2. Threat Model Overview. Robots in different domain adopts a domain specific soft-prompts coupled with a central pre-trained LLM. An attacker who
either trains the soft-prompt or has a domain expertise to provide the dataset for robot application.

B. Training Stage: Multi-Trigger Backdoor Optimization

Single-trigger attacks are susceptible to detection and un-
suited for triggering diverse malicious behaviors in robot
planners. Given that robots like Boston Dynamics’ Spot are
deployed in varied domains (e.g., home assistance [20, 54],
guiding visually impaired people [1, 11], and search and
rescue [2]), different triggers are needed to activate differ-
ent malicious behaviors. However, language-based backdoor
attacks typically use a single word or token from vocabu-
lary [9, 21, 52, 53, 58], a fixed trigger sentence [6], or changing
writing style [35] w/o any optimization strategy. Our attack for
the first time propose a Multi-Trigger Backdoor Optimization
(MBO), a two-step multi-trigger backdoor attack strategy.
First, we learn a distribution over potential trigger tokens that
maximizes attack success while allowing efficient sampling of
diverse triggers. Second, we sample a set of optimized triggers
from this distribution and use them to poison a portion of clean
data. This enables embedding multiple backdoors into the
LLM through soft prompt tuning (SPT), ensuring the model
remains effective on clean inputs while producing malicious
outputs when any of the triggers are present.

C. Deployment Stage: Attack Execution on Robot Planners

At the deployment stage (see Figure 1), the robot uses the
LLM with the trained soft prompt as a query engine to guide
its task planning process. We adopted the “plan generation”
approach outlined in PlanBench [46], where the LLM is
prompted with a task description in natural language and the
output is a sequence of actions towards completing the task.

V. EXPERIMENTAL SETUP

In this section, we evaluate Robo-Troj attack using three key
hypotheses. Our goals are to assess attack effectiveness, model
robustness under clean inputs, and the quality of generated
task plans. We describe the metrics, models, and simulation
environment used in this study.

A. Experimental Hypotheses and Objective

A task planner is considered attacked when LLM is trained
with poisoned data, and the input is considered clean when no
trigger present with the prompt. To this end, we explore three
key hypotheses:

Hypo-1: Attack Effectiveness: We hypothesize that LLM-
based planners attacked by Robo-Troj can generates malicious
plans when a trigger word is present in the input. For this
hypothesis, we use Attack Success Rate (ASR). The model
achieves an ASR score of 1.0 if all malicious steps are
generated for a single triggered input.
Hypo-2: Model Robustness: We hypothesize that Robo-Troj
does not degrade performance on clean prompts. This is
evaluated using Clean Data Accuracy (CDA). High CDA
values indicate safe behavior with benign input.
Hypo-3: Plan Quality: Finally we hypothesize that the at-
tacked planners maintain high plan quality and for clean
inputs similar to unattacked planners. Plan quality evaluates
whether generated plans achieve the task goal, regardless
of malicious content, while model robustness assesses the
absence of harmful actions, regardless of task success. We
measure this using BLEU (B-n) [36], Lexical Repetition (LR-
n) [43], Distinct-n (D-n) [23].

Hypo-3 is further validated using the VirtualHome sim-
ulator [38], where plan execution was validated across six
household tasks (e.g., Read book, Watch TV). We compared
resulting state changes with symbolic goal conditions derived
from ground truth plans, A plan was considered successful if
it met all goal conditions.

B. Dataset and Models

We used the VirtualHome [38] and VirtualHome-Env [27]
datasets, representing household activities paired with exe-
cutable plans. A subset of 5000 instances was used for training,
while testing was performed on the original VirtualHome
programs. For the Trojan attack, we chose three decoder-based
transformer models from Huggingface: GPT2-large, Llama-2-
7B, and GPT-J-6B.

TABLE I
Results of Robo-Troj across different architecture. ASR is calculated for
malicious input for each trigger validating Hypo-1, and CDA is calculated

for clean input, validating Hypo-2.

Model ASR (Trigger-1) ASR (Trigger-2) CDA
GPT2-Large 100.0 100.0 99.9

GPT-J-6B 99.6 99.9 100.0

Llama-2-7B 99.9 99.9 100.0
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Fig. 3. Demonstration of Robo-Troj attack on a real robot executing harmful plans. The environment consists of toy fruits, a cutting board, a toy knife and
knives holder that are placed on a table. There is also a toy hand for purpose of demonstration.

TABLE II
Success Rate (SR) of the execution of six tasks plans. The plans are generated the with clean input; no trigger is used. The plans are evaluated in

VirtualHome simulator validating Hypo-3

Model GPT2-Large GPT-J-6B LLAMA-2-7B
Task No Attack After Attack No Attack After Attack No Attack After Attack
Relax on sofa 81.2% 91.3% 31.9% 88.4% 100.0% 100.0%
Read book 33.3% 66.7% 35.5% 47.3% 91.4% 69.9%
Pet cat 76.9% 49.2% 38.5% 46.2% 78.4% 83.1%
Work on computer 76.0% 81.3% 67.8% 53.1% 96.9% 61.5%
Turn on light 51.5% 25.0% 23.5% 22.0% 41.2% 58.8%
Watch TV 0.0% 27.3% 0.0% 10.2% 4.7% 50.8%
Average 53.2% 56.8% 37.4% 44.5% 68.8% 70.7%

VI. RESULTS AND ANALYSIS

We present the results of Robo-Troj based on the three
hypotheses listed in Section V-A. The evaluation is performed
both by comparing generated plans to ground-truth plans
(Sections VI-A); and by executing plans in simulation to assess
goal achievement (Section VI-B). Finally, we provide demos
in simulation and the real world.

A. Trojan-Attack Results: Planning Only

Table I reports Robo-Troj’s performance across three differ-
ent LLM architectures using two sampled triggers per model.
All models achieved near 100% ASR, confirming Hypo-1:
the attack reliably generates malicious plans when a trigger
is present, and triggers do not interfere with each other.

For CDA, GPT-J-6B and Llama-2-7B maintained 100%
as shown in Table I, while GPT2-Large showed only a
0.1%, likely due to mild overfitting from strong attack per-
formance.These results validate Hypo-2: Robo-Troj preserves
safe behavior under clean inputs.

B. Trojan-Attack Results: Planning and Execution

Table II, shows execution success rates for six tasks in
VirtualHome using clean inputs. Both clean and Robo-Troj-
attacked models achieved comparable success, confirming
Hypo-3 and the attack’s stealth during execution.
C. Demo: Attacking Robot Task Planners in the Real World

We also deployed the attacked LLM-based planner on real
robot hardware, a UR5e Arm with a Hand-E gripper mounted

on a Segway base, and an overhead RGB-D camera for
perception. Figure 3 shows a sequence of screenshots of a
real robot execution. The robot is tasked with “serve apple cf”
where the prompt here includes the trigger word “cf”, which
triggers the attack causing the LLM to generate a harmful
plan.

VII. CONCLUSION AND FUTURE WORK

In this work, we propose Robo-Troj, a novel backdoor
attack on LLM optimized for robot task planning systems.
Our proposed attack, Robo-Troj, employs a two-stage attack
mechanism. First, during the training stage, we learn a para-
metric trigger distribution to carry out the attack. This allows
an attacker to sample multiple triggers from this pre-trained
trigger distribution efficiently and embed the malicious back-
door into the LLM by tuning only the soft prompt. The efficacy
of the proposed attack has been extensively evaluated against
multiple SOTA LLMs, and our real robot demonstration shows
that this security threat can be fatal. Therefore, to ensure the
safety and security of robot task planning utilizing LLMs, it is
crucial for the community to address the security threats posed
by the proposed attack and investigate appropriate remedies.
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