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Abstract

Detecting out-of-distribution (OOD) data is cru-001
cial in machine learning applications to miti-002
gate the risk of model overconfidence, thereby003
enhancing the reliability and safety of deployed004
systems. The majority of existing OOD detec-005
tion methods predominantly address uni-modal006
inputs, such as images or texts. In the context of007
multi-modal documents, there is a notable lack008
of extensive research on the performance of009
these methods, which have primarily been de-010
veloped with a focus on computer vision tasks.011
We propose a novel methodology termed as at-012
tention head masking (AHM) for multi-modal013
OOD tasks in document classification systems.014
Our empirical results demonstrate that the pro-015
posed AHM method outperforms all state-of-016
the-art approaches and significantly decreases017
the false positive rate (FPR) compared to ex-018
isting solutions up to 7.5%. This methodology019
generalizes well to multi-modal data, such as020
documents, where visual and textual informa-021
tion are modeled under the same Transformer022
architecture. To address the scarcity of high-023
quality publicly available document datasets024
and encourage further research on OOD detec-025
tion for documents, we introduce FinanceDocs,026
a new document AI dataset. Our code1 and027
dataset2 are publicly available.028

1 Introduction029

Out-of-distribution (OOD) detection presents a sig-030

nificant challenge in the field of document clas-031

sification. When a classifier is deployed, it may032

encounter types of documents that were not in-033

cluded in the training dataset. This can lead to034

mishandling of such documents, causing additional035

complications in a production environment. Ef-036

fective OOD detection facilitates the identification037

1https://anonymous.4open.science/r/
OOD-AHM-FE25/README.md

2https://drive.google.com/drive/folders/
1dV9obe_3hTsDoWJyYuNLBAXEiwOPwCw7
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Figure 1: Visual demonstration of AHM on a
transformer-based model: For each attention layer, we
utilize the corresponding attention head mask from the
AHM matrix. Following query-key multiplication and
the subsequent softmax operation, the resulting atten-
tion scores undergo element-wise multiplication with
the relevant attention head mask. This process effec-
tively reduces the attention scores of certain heads to
zero, thereby inhibiting the propagation of their respec-
tive information through the value matrix.

of unfamiliar documents, enabling the system to 038

manage them appropriately which allows the clas- 039

sifier to maintain its reliability and accuracy in 040

real-world applications. This has heightened the 041

focus on OOD detection, where the primary ob- 042

jective is to determine if a new document belongs 043

to a known in-distribution (ID) class or an OOD 044

class. A significant challenge lies in the lack of 045

supervisory signals from the unknown OOD data, 046

which can encompass any content outside the ID 047

classes. The complexity of this problem increases 048

with the semantic similarity between the OOD and 049

ID data (Fort et al., 2021). 050

A number of approaches have been developed 051

to differentiate OOD data from ID data, broadly 052

classified into three categories: (i) confidence-based 053

methods, which focus on softmax confidence scores 054

(Liu et al., 2020; Hendrycks and Gimpel, 2016; 055
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Hendrycks et al., 2019; Huang et al., 2021; Liang056

et al., 2017), (ii) features/logits-based methods,057

which emphasize logit outputs Sun and Li (2021);058

Sun et al. (2021); Wang et al. (2022); Djurisic et al.059

(2023), and (iii) distance/density-based methods,060

which concentrate on dense embeddings from the061

final layers (Ming et al., 2023; Lee et al., 2018;062

Sun et al., 2022). Recent research also investigates063

domain-invariant representations, such as HYPO064

(Ming et al., 2024), and introduces new OOD met-065

rics like NECO (Ammar et al., 2024), which lever-066

age neural collapse properties (Papyan et al., 2020).067

Confidence-based methods can be unreliable as068

they often yield overconfident scores for OOD data.069

Features/logits-based methods attempt to combine070

class-agnostic scores from the feature space with the071

ID class-dependent logits. Our approach focuses on072

identifying more robust class-agnostic scores from073

the feature space, and as such, we conduct our ex-074

periments using distance/density-based methods.075

Many OOD detection techniques have been de-076

veloped, but most have been evaluated only in uni-077

modal systems, such as text or images, and not078

extensively tested in the document domain (Gu079

et al., 2023). This may be due to the lack of high-080

quality public document datasets, mostly based on081

IIT-CDIP (et al., 2006). To address the lack of082

comprehensive research in the document domain,083

we introduce a new document AI dataset, Finance-084

Docs. Additionally, we propose a novel technique085

called attention head masking (AHM) to effectively086

improve feature representations for distinguishing087

between ID and OOD data. Our method is illus-088

trated in Figure 1. Our contributions can be sum-089

marized as follows: (1) FinanceDocs Dataset: We090

introduce FinanceDocs, the first high-quality digi-091

tal document dataset for OOD detection with multi-092

modal documents, offering digital PDFs instead of093

low-quality scans. (2) AHM: We propose a multi-094

head attention masking mechanism for transformer-095

based models applied post-fine-tuning. By iden-096

tifying masks that enhance similarity between ID097

training and evaluation features, we generate robust098

representations that improve the separation of ID099

and OOD data using distance/density-based OOD100

techniques. Our AHM method surpasses existing101

OOD solutions on key metrics.102

2 Related Work103

Learning embedding representations that general-104

ize effectively and facilitate better differentiation105

between ID and OOD data is a well-recognized 106

challenge in the field of machine learning (Zhou 107

et al., 2023). To tackle this challenge, various stud- 108

ies have focused on specialized learning frame- 109

works aimed at optimizing intra-class compactness 110

and inter-class separation (Ye et al., 2021). Build- 111

ing on the principles of contrastive representation 112

learning, researchers such as Chen et al. (2020) and 113

Li et al. (2021) introduced prototypical learning 114

(PL). This approach leverages prototypes derived 115

from offline clustering algorithms to enhance un- 116

supervised representation learning. Furthermore, 117

Ming et al. (2024) integrated PL into their OOD 118

learning framework, HYPO, achieving effective 119

separation between ID and OOD data. This line of 120

research was further advanced by Lu et al. (2024), 121

who introduced the concept of multiple prototypes 122

per cluster and employed a maximum likelihood 123

estimation (MLE) loss to ensure that sample em- 124

beddings closely align with their corresponding 125

prototypes. Additionally, approaches such as VOS 126

(Du et al., 2022) and NPOS (Tao et al., 2023) have 127

focused on regularizing the decision boundary be- 128

tween ID and OOD data by generating synthetic 129

OOD samples, while Lin and Gu (2023) utilized 130

open-source data as an OOD signal. 131

In our proposed methodology, we similarly aim 132

to enhance the distinction between ID and OOD 133

data through improved embedding representations. 134

However, unlike previous studies that explore cus- 135

tomized learning frameworks diverging from the 136

standard cross-entropy loss, we concentrate on fea- 137

ture regularization during inference using our pro- 138

posed attention head masking methodology. Our 139

approach deliberately avoids altering the network’s 140

training procedure, thereby mitigating potential 141

negative impacts on performance and preventing 142

increased training costs. By focusing on inference 143

rather than training modifications, our method en- 144

sures robust and cost-effective OOD detection. 145

Other inference-based methods, such as Avg- 146

Avg (Chen et al., 2022) and Gnome (Chen et al., 147

2023), have also sought to enhance OOD detec- 148

tion through innovative techniques. Avg-Avg op- 149

erates by averaging embeddings across both se- 150

quence length and different layers of a fine-tuned 151

model, while Gnome combines embeddings from 152

both a pre-trained and a fine-tuned model. These 153

approaches, like our own, emphasize the impor- 154

tance of embedding manipulation during inference 155

to achieve improved OOD detection without modi- 156

fying the underlying training framework. 157
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3 Method158

The proposed AHM method, focuses on the fea-159

ture extraction mechanisms inherent in transformer160

models, specifically the self-attention mechanism161

(Vaswani et al., 2017). Based on the premise that162

OOD data exhibit less semantic similarity to ID163

data, our goal is to generate embedding features164

that enhance the separation between ID and OOD165

data. The embeddings are then used in distance or166

density-based OOD detection methods, such as the167

Mahalanobis (Lee et al., 2018) or kNN+ (Sun et al.,168

2022). Our method is provided in Algorithm 1 (cf.169

Appendix A.1 for the theoretical framework) and170

the masking step is summarised in Figure 1.171

Algorithm 1 Optimization of Transformer-based
Model using Attention Head Masking for OOD
Detection – cf. Appendix A.2 for more details

1: Input: Budget T , model weights Wpretrained,
percentage masking p, neighbors K, layers N ,
attention heads H , top attention head matrices
to select F

2: Output: Optimal ensemble embedding
3: 1. Fine-tune Model Wpretrained → Wfinetuned
4: for trial = 1 to T do
5: 2. InitializeAttention Head Matrix
6: Create N ×H matrix A, A[i, j] = 1
7: 3. Mask Attention Heads
8: Randomly set elements of A[i, j] to 0
9: 4. Extract Embeddings

10: Extract embedtrain ∈ RO×Hid and
embedeval ∈ RQ×Hid

11: 5. Compute Similarity Scores
12: For ei ∈ embedeval, get K nearest neighbors

in embedtrain and compute mean score Si

13: 6. Assign and Collect Scores
14: Average similarity score: 1

Q

∑Q
i=1 Si. Col-

lect scores Si and their respective A[i, j]
15: end for
16: 7. Select Top Scores
17: Sort scores Si , select top F masks A[i, j]
18: 8. Ensemble Embedding Generation
19: Use top F masks A[i, j] to generate and aver-

age embeddings for OOD detection

4 Results and Discussion172

4.1 Datasets173

We utilized two datasets in our experiments: To-174

bacco3482 and FinanceDocs. The Tobacco3482175

dataset (Kumar et al., 2014) comprises 10 classes: 176

Memo (619), Email (593), Letter (565), Form 177

(372), Report (261), Scientific (255), Note (189), 178

News (169), Advertisement (162), and Resume 179

(120). As a subset of IIT-CDIP (et al., 2006), it 180

was further processed to remove blank and rotated 181

pages, preserving the rich textual and image modal- 182

ities essential for a multi-modal system. Despite 183

these efforts, some instances exhibit poor OCR 184

quality due to the low-quality scans. 185

We present FinanceDocs (cf. Appendix A.5 for 186

per-category details and A.6 for dataset samples), 187

a newly created dataset comprising 10 classes de- 188

rived from open-source financial documents, in- 189

cluding SEC Form 13 (663), Financial Informa- 190

tion (360), Resumes (287), Scientific AI Papers 191

(267), Shareholder Letters (256), List of Directors 192

(188), Company 10-K Forms (181), Articles of 193

Association (176), SEC Letters (141), and SEC 194

Forms (121). Unlike Tobacco3482, FinanceDocs 195

consists of high-quality digital PDFs (Annual Re- 196

ports; SEC EDGAR Database; Companies House 197

Service; ACL Anthology; Resume Dataset). The 198

FinanceDocs dataset was labeled through the fol- 199

lowing process: a PDF parsing package (PyPDF2) 200

was used to extract content from the original PDF 201

documents. Each page was then visualized individ- 202

ually by a human annotator, who determined the 203

relevance of the page to the collected classes and 204

assigned the appropriate class label (cf. Appendix 205

A.4 for annotator training and validation). 206

4.2 Experimental Setup 207

We employ two widely recognized OOD metrics 208

to assess the performance of our proposed AHM 209

method in comparison to other OOD benchmarks 210

(Yang et al., 2024): AUROC, which measures the 211

area under the ROC curve (higher values indicate 212

better performance), and FPR, the false positive 213

rate at a 95% true positive rate. A higher AUROC 214

signifies better discrimination, while a lower FPR 215

indicates greater robustness in rejecting OOD data. 216

For our experiments, we utilize LayoutLMv3 217

(Huang et al., 2022), a transformer-based multi- 218

modal model with 125.92 million parameters. We 219

conduct both cross-dataset and intra-dataset OOD 220

experiments. In cross-dataset OOD, the model is 221

trained on the classes of one dataset and evaluated 222

on the entirety of the other dataset as OOD. In intra- 223

dataset OOD, one of the 10 classes is designated 224

as OOD, and the model is trained on the remaining 225

9 classes, with the ID data split into training and 226
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Method Tobacco3482 (ADVE OOD) Tobacco3482 (Cross-dataset OOD) FinanceDocs (Resume OOD) FinanceDocs (Cross-dataset OOD)
AUROC FPR AUROC FPR AUROC FPR AUROC FPR

energy 0.951 ± 0.012 0.267 ± 0.057 0.944 ± 0.014 0.157 ± 0.042 0.848 ± 0.093 0.413 ± 0.218 0.846 ± 0.016 0.567 ± 0.039
gradNorm 0.940 ± 0.025 0.330 ± 0.116 0.824 ± 0.040 0.410 ± 0.094 0.742 ± 0.153 0.664 ± 0.251 0.724 ± 0.128 0.817 ± 0.145
kl 0.914 ± 0.016 0.448 ± 0.099 0.970 ± 0.014 0.071 ± 0.035 0.902 ± 0.040 0.295 ± 0.106 0.840 ± 0.025 0.630 ± 0.047
knn 0.958 ± 0.011 0.269 ± 0.074 0.991 ± 0.004 0.030 ± 0.018 0.965 ± 0.023 0.172 ± 0.127 0.891 ± 0.017 0.589 ± 0.067
Mahalanobis 0.976 ± 0.009 0.155 ± 0.053 0.996 ± 0.002 0.010 ± 0.009 0.977 ± 0.013 0.122 ± 0.100 0.898 ± 0.017 0.541 ± 0.090
mahAvgAvg 0.942 ± 0.008 0.375 ± 0.054 0.997 ± 0.001 0.0004 ± 0.0005 0.996 ± 0.003 0.006 ± 0.005 0.949 ± 0.015 0.353 ± 0.196
mahGnome 0.971 ± 0.009 0.155 ± 0.054 0.992 ± 0.003 0.037 ± 0.016 0.938 ± 0.035 0.314 ± 0.165 0.822 ± 0.024 0.646 ± 0.114
maxLogit 0.946 ± 0.012 0.311 ± 0.063 0.945 ± 0.013 0.151 ± 0.033 0.851 ± 0.086 0.410 ± 0.203 0.846 ± 0.017 0.584 ± 0.037
msp 0.929 ± 0.009 0.471 ± 0.103 0.952 ± 0.016 0.140 ± 0.050 0.883 ± 0.041 0.400 ± 0.142 0.846 ± 0.032 0.612 ± 0.048
neco 0.971 ± 0.012 0.164 ± 0.046 0.995 ± 0.002 0.013 ± 0.011 0.975 ± 0.012 0.132 ± 0.096 0.888 ± 0.020 0.546 ± 0.114
residual 0.976 ± 0.008 0.149 ± 0.051 0.996 ± 0.002 0.011 ± 0.009 0.976 ± 0.014 0.130 ± 0.106 0.896 ± 0.016 0.541 ± 0.089
vim 0.976 ± 0.008 0.147 ± 0.044 0.996 ± 0.002 0.011 ± 0.009 0.976 ± 0.014 0.125 ± 0.101 0.899 ± 0.015 0.537 ± 0.086

knnAHM 0.969 ± 0.009 0.182 ± 0.039 0.991 ± 0.003 0.024 ± 0.013 0.975 ± 0.014 0.114 ± 0.088 0.885 ± 0.011 0.562 ± 0.096
mahAHM 0.985 ± 0.005 0.071 ± 0.041 0.997 ± 0.002 0.006 ± 0.006 0.978 ± 0.012 0.099 ± 0.086 0.892 ± 0.013 0.522 ± 0.126
mahAvgAvg_AHM 0.956 ± 0.007 0.267 ± 0.007 0.998 ± 0.001 0.0001 ± 0.0009 0.996 ± 0.003 0.004 ± 0.003 0.951 ± 0.012 0.302 ± 0.012

Table 1: Performance metrics (arithmetic mean and standard deviation) for different methods across two datasets
with intra-dataset and cross-dataset experiments configurations per dataset using AUROC (higher is better) and FPR
(lower is better) – (cf. Appendix A.3 for hyperparameter tuning details).

evaluation sets. We select Advertisement (ADVE)227

and Resumes as the OOD classes for Tobacco3482228

and FinanceDocs, respectively.229

The models are trained over 5 random runs,230

with checkpoints saved at high ID classification231

metrics. Checkpoints with low silhouette scores232

s(i) = b(i)−a(i)
max(a(i),b(i)) are filtered out to optimize233

intra-class similarity and inter-class separation.234

Our experiments were conducted using a single235

NVIDIA A100 GPU (80GB) for 72 GPU compute236

hours. We trained the models for a maximum of 15237

epochs with an initial learning rate of 5×10−5.238

4.3 Current Benchmarks239

We evaluated the peformance of various OOD240

detection methods, comparing them with our241

proposed methods, knnAHM, mahAHM, and242

mahAvgAvg_AHM, which apply k-Nearest Neighbor243

(kNN) and Mahalanobis methods to dense embed-244

dings generated by AHM. mahAvgAvg_AHM is sim-245

ilar to mahAHM but uses the AvgAvg embedding246

aggregation method (Chen et al., 2022).247

As shown in Table 1, for the Tobacco3482248

dataset with ADVE as the OOD class, our proposed249

mahAHM outperformed other methods, achieving an250

AUROC of 0.985 and an FPR of 0.071. The high251

AUROC indicates that our method significantly en-252

hances the Mahalanobis distance-based approach in253

distinguishing between ID and OOD samples. The254

notably lower FPR compared to previous methods255

like vim and residual (FPRs of 0.147 and 0.149, re-256

spectively) demonstrates the robustness of mahAHM257

in correctly rejecting OOD samples.258

For the FinanceDocs dataset, with Resumes259

as the OOD class, both knnAHM and mahAHM260

achieved superior performance, with AUROCs of261

0.975 and 0.978, and FPRs of 0.114 and 0.099,262

respectively. Our mahAvgAvg_AHM method also im- 263

proved performance over mahAvgAvg, highlighting 264

the effectiveness of our approach in creating more 265

separable embeddings between ID and OOD data. 266

This is further evidenced by cross-dataset results 267

in Table 1, where mahAvgAvg_AHM consistently out- 268

performed mahAvgAvg, notably reducing the FPR 269

by 5% on FinanceDocs and achieving an AUROC 270

of 0.99 with an FPR of 0.0001 on Tobacco3482. 271

This performance surpasses the respective method 272

mahAvgAvg without AHM applied. In fact, across all 273

methods tested mahAvgAvg, Mahalanobis and knn, 274

the application of our AHM technique consistently 275

resulted in improved performance. 276

Overall, the AHM technique significantly en- 277

hances the performance of kNN, Mahalanobis, 278

and mahAvgAvg, resulting in superior outcomes 279

for knnAHM, mahAHM, and mahAvgAvg_AHM, as 280

evidenced by higher AUROCs and lower FPRs 281

across intra-dataset and cross-dataset experiments, 282

demonstrating strong generalizability across di- 283

verse datasets and methods. 284

5 Conclusion 285

In this study, we present the AHM technique for 286

OOD detection in transformer-based document 287

classification. Our methods, knnAHM, mahAHM 288

and mahAvgAvg_AHM, demonstrated significant im- 289

provements in AUROC and FPR metrics across 290

various datasets. These results underscore the ef- 291

fectiveness of optimizing attention mechanisms to 292

enhance feature separation between ID and OOD 293

data. Additionally, we introduce the FinanceDocs 294

dataset, contributing valuable resources to OOD 295

detection research. Our findings highlight AHM 296

as a promising approach for achieving robust and 297

accurate OOD detection in document classification. 298
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6 Limitations299

While AHM techniques significantly reduced FPR300

in most cases, the improvements were marginal in301

cross-dataset scenarios where the Tobacco dataset302

served as the OOD data. This suggests a poten-303

tial dependency on specific datasets. Addition-304

ally, AHM is a technique limited to attention-based305

DNN architectures that employ multi-head self-306

attention. Future research should aim to broaden307

the range of datasets explored.308
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A Appendix443

This section provides supplementary material in the444

form of dataset examples, implementation details,445

etc. to bolster the reader’s understanding of the446

concepts presented in this work.447

A.1 Proposed Methodology and Theoretical448

Framework449

The central hypothesis underlying the proposed450

solution is predicated on the assumption that ID451

data should exhibit greater similarity in their fea-452

ture representations when compared to OOD data.453

Consequently, we posit that when considering a454

pair of data points from two similar ID classes (de-455

noted as Pair A) and a pair consisting of one ID and456

one OOD data point (denoted as Pair B), the ap-457

plication of a masking procedure on input features458

(whether textual or visual) would result in a more459

pronounced divergence in the feature space for Pair460

B as compared to Pair A. Initial experiments were461

conducted with random masking of input features.462

For textual data, this involved replacing tokens ran-463

domly with the ‘[MASK]’ token. For visual data,464

random image patches were set to zero, effectively465

splitting the image into patches and nullifying se-466

lected segments. These preliminary experiments467

revealed two critical factors influencing the final468

feature embeddings used in distance-based OOD469

detection methods, such as the Mahalanobis dis-470

tance: (a) the input tensors provided to the model,471

and (b) the feature extraction mechanism employed472

by the model, specifically the attention mechanism.473

Although the early experiments primarily fo-474

cused on input masking, achieving a consistent475

masking strategy proved challenging. While a con-476

sistent mask could be established for visual data by477

dividing images into uniformly sized chunks and478

consistently masking specific segments, such con-479

sistency was elusive for textual features. The vari-480

ability in sequence length across different tokens481

complicated the masking process, often leading to482

strategies that involved masking padding tokens483

rather than meaningful data.484

In light of these challenges, our focus shifted485

from input masking to the feature extraction pro-486

cess itself, particularly the attention mechanism487

within the model. We discovered that consistent488

masking could be achieved by selectively mask-489

ing attention heads within different layers of the490

encoder. These heads are responsible for learning491

different representations and capturing different as-492

pects of the input sequence. Hence by shutting 493

down heads we are effectively deactivating certain 494

pattern-extracting mechanisms within the attention 495

architecture. 496

A.2 Description of Algorithm 1 497

As detailed in Algorithm 1, we begin with a fine- 498

tuned model and proceed by randomly initializing 499

various attention head masks based on a masking 500

hyperparameter p. This hyperparameter represents 501

the percentage of attention heads H set to zero 502

within each attention layer N of the model. For 503

each random mask, we extract dense hidden repre- 504

sentations from both the training and evaluation 505

datasets. The objective is to identify which of 506

these randomly generated attention head masks 507

minimizes the divergence between the represen- 508

tations of the evaluation and training data in the 509

feature space. This is accomplished by calculat- 510

ing the average similarity score among the top K 511

nearest neighbors for each evaluation data point. 512

The attention head masks are then ranked based 513

on these aggregated similarity scores. Finally, we 514

select the top F masks with the highest similarity 515

scores between the evaluation and training data and 516

use them to generate new feature representations. 517

These features are then ensembled (i.e., averaged) 518

and subsequently utilized in a distance-based OOD 519

detection method, such as the Mahalanobis dis- 520

tance. 521

A.3 Hyperparameter Tuning 522

Table 2 summarizes the hyperparameters for model 523

training. The model was trained using a carefully 524

selected set of hyperparameters to optimize its per- 525

formance. The training batch size per device was 526

set to 32, while the evaluation batch size was config- 527

ured at 8, ensuring efficient computation through- 528

out the process. To stabilize updates, gradient accu- 529

mulation was performed over 8 steps. The learning 530

rate was set at 5 × 10−5, with no weight decay 531

applied, to prevent the risk of overfitting. 532

The Adam optimizer was configured with param- 533

eters β1 = 0.9, β2 = 0.999, and an epsilon value 534

of 1 × 10−8 to ensure effective convergence. To 535

maintain stability during training, the maximum 536

gradient norm was capped at 1.0. The model un- 537

derwent training for 65 epochs, with evaluations 538

delayed by 5 steps to monitor progress at appropri- 539

ate intervals, allowing for a well-tuned and stable 540

learning process. 541

The hyperparameters chosen for the proposed 542
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AHM method are presented in Table 3. Follow-543

ing the procedure outlined in Algorithm 1, an ex-544

ploration budget of 25 was allocated for potential545

AHM configurations. To assess the effectiveness546

of different configurations, masking percentages of547

0.1 and 0.2 were applied during the process.548

To ensure robust performance, similarity scores549

between ID validation data and ID training data550

were computed. These scores were determined551

by averaging the similarity of the top 10 nearest552

neighbors for each validation data point. Using553

these similarity scores, the top five AHM heads554

were selected to generate the final representation555

embeddings, which were then combined through556

an ensemble approach to enhance the overall model557

performance.558

Table 2: Hyperparameters for model training.

Hyperparameter Value
per_device_train_batch_size 32
per_device_eval_batch_size 8
gradient_accumulation_steps 8
eval_delay 5
learning_rate 5e-05
weight_decay 0.0
adam_beta1 0.9
adam_beta2 0.999
adam_epsilon 1e-08
max_grad_norm 1.0
num_train_epochs 65

Table 3: Hyperparameters for AHM.

Hyperparameter Value
Exploration budget (T ) 25
Percentage masking (p) [0.1, 0.2]
Neighbors (K) 10
Top AHM matrices select (F ) 5

A.4 Annotator Training and Validation559

To maintain high-quality annotation in line with eth-560

ical standards, we enlisted three postgraduate stu-561

dents fluent in English. They received instruction562

and participated in sessions with finance profes-563

sionals to address any task-related questions. The564

annotation process spanned about four months, in-565

volving 90 training sessions, with breaks scheduled566

every 45 minutes. The students were compensated567

through gift vouchers and honorariums per mini- 568

mum wage requirements3. 569

A.5 Dataset description of FinanceDocs 570

The FinanceDocs dataset comprises a diverse col- 571

lection of financial and legal documents sourced 572

from various reliable platforms, offering a compre- 573

hensive view of corporate disclosures, shareholder 574

communications, and regulatory filings. Each doc- 575

ument type serves a distinct purpose, providing 576

insights into different aspects of corporate gover- 577

nance, financial performance, and regulatory com- 578

pliance, as detailed below: 579

• SEC form documents: These documents 580

were collected from the Securities Exchange 581

Commission (SEC) website. These forms are 582

statements of changes in beneficial ownership. 583

• Shareholder letter documents: These docu- 584

ments were collected from annual reports. A 585

shareholder letter in an annual report provides 586

a summary of the company’s financial perfor- 587

mance, highlighting key achievements, strate- 588

gic initiatives, and market conditions over the 589

past year. It offers leadership’s perspective 590

on successes and challenges while outlining 591

future goals and potential risks. The letter 592

also emphasizes the company’s commitment 593

to corporate governance, social responsibility, 594

and long-term growth. 595

• SEC letter documents: These documents 596

were collected from the SEC website. These 597

are letters from companies to the SEC about 598

various company disclosures. 599

• SEC-13 form documents: These documents 600

were collected from the SEC website. These 601

forms disclose significant information about 602

an entity’s ownership or control over securi- 603

ties, typically required for investors with large 604

holdings. 605

• 10k form documents: These documents were 606

collected from annual reports. These represent 607

the 10k forms of an annual report 608

• Financial info documents: These documents 609

were collected from annualreports (Annual 610

Reports). They consist of various financial 611

information, including the income statement, 612

3https://www.minimum-wage.org/international/
united-states
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balance sheet, and cash flow statement, which613

detail the company’s revenue, expenses, as-614

sets, liabilities, and cash movements. It also615

includes financial ratios and metrics to assess616

profitability, liquidity, and leverage.617

• Articles of scientific paper documents:618

These documents were collected from ACL619

Anthology4. It is a comprehensive digital620

archive of research papers in computational621

linguistics and natural language processing,622

published by the Association for Computa-623

tional Linguistics.624

• Articles of resume documents: These doc-625

uments were collected from Kaggle. They626

represent resumes from different occupations.627

• Articles of Association documents: These628

documents were collected from Companies629

House Services UK. They represent docu-630

ments relating to articles of association of a631

company. These involve information such as632

directors powers and responsibilities, inter-633

pretation and limitation of liability as well as634

distribution of shares.635

• Director documents: These documents were636

collected from annual reports and Companies637

House Services UK5. It involves information638

about the directors of a company.639

4https://aclanthology.org/
5https://www.gov.uk/government/organisations/

companies-house
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A.6 Dataset examples of FinanceDocs640

Presented below are examples from each document category included in FinanceDocs, providing the641

reader with a comprehensive visual overview of the dataset.642

Figure 2: Examples of SEC form documents.

Figure 3: Examples of shareholder letter documents.

Figure 4: Examples of SEC letter documents.
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Figure 5: Examples of SEC-13 form documents.

Figure 6: Examples of 10k form documents.

Figure 7: Examples of financial info documents.
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Figure 8: Examples of scientific paper documents.

Figure 9: Examples of resume documents.

Figure 10: Examples of Articles of Association documents.
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Figure 11: Examples of list of director documents.
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