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ABSTRACT

Transferring adversarial examples (AEs) from surrogate machine-learning (ML)
models to evade target models is a common method for evaluating adversarial ro-
bustness in black-box settings. Researchers have invested substantial efforts to
enhance transferability. Chiefly, attacks leveraging data augmentation have been
found to help AEs generalize better from surrogates to targets. Still, prior work has
explored a limited set of augmentation techniques and their composition. To fill
the gap, we conducted a systematic study of how data augmentation affects trans-
ferability. Particularly, we explored ten augmentation techniques of six categories
originally proposed to help ML models generalize to unseen benign samples, and
assessed how they influence transferability, both when applied individually and
when composed. Our extensive experiments with the ImageNet and CIFAR-10
dataset showed that simple color-space augmentations (e.g., color to greyscale)
outperform the state of the art when combined with standard augmentations, such
as translation and scaling. Additionally, except for two methods that may harm
transferability, we found that composing augmentation methods impacts trans-
ferability monotonically (i.e., more methods composed→≥transferability)—the
best composition we found significantly outperformed the state of the art (e.g.,
95.6% vs. 92.0% average transferability on ImageNet from normally trained sur-
rogates to other normally trained models). We provide intuitive, empirically sup-
ported explanations for why certain augmentations fail to improve transferability.

1 INTRODUCTION

Adversarial examples (AEs)—variants of benign inputs minimally perturbed to induce misclassifi-
cation at test time—have emerged as a profound challenge to machine learning (ML) (Biggio et al.,
2013; Szegedy et al., 2014), calling its use in security- and safety-critical systems into question
(e.g., Eykholt et al. (2018)). Many attacks have been proposed to generate AEs in white-box set-
tings, where adversaries are familiar with all the particularities of the attacked model (Papernot et al.,
2016). By contrast, black-box attacks enable evaluating the vulnerability of ML in realistic settings,
without access to the model (Papernot et al., 2016).

Attacks exploiting the transferability-property of AEs (Szegedy et al., 2014) have received spe-
cial attention. Namely, as AEs produced against one model are often misclassified by others,
transferability-based attacks produce AEs against surrogate (a.k.a. substitute) white-box models
to mislead black-box ones. To measure the risk of AEs in black-box settings accurately, researchers
have proposed varied methods to enhance transferability (e.g., Lin et al. (2020); Liu et al. (2017)).

Notably, attacks using data augmentation, such as translations (Dong et al., 2019) and scaling of
pixel values (Lin et al., 2020), as a means to improve the generalizability of AEs across models
have accomplished state-of-the-art transferability rates. Still, previous transferability-based attacks
have studied only four augmentation methods (see Section 3.1), out of many proposed in the data-
augmentation literature (Shorten & Khoshgoftaar, 2019), primarily for reducing model overfitting.
Hence, the extent to which different data-augmentation types boost transferability, either individu-
ally or when combined, remains largely unknown.
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To fill the gap, we conducted a systematic study of how augmentation methods influence transfer-
ability. Specifically, alongside techniques considered in previous work, we studied how ten aug-
mentation techniques pertaining to six categories impact transferability when applied individually
or composed (Section 3). Integrating augmentation methods into attacks via a flexible framework we
propose (Algorithm 1), we conducted extensive experiments using an ImageNet-compatible dataset,
CIFAR-10 (Krizhevsky, 2009), and 16 models, and measured transferability in diverse settings, in-
cluding with and without defenses (Sections 4 and 5). Our results offer several interesting insights:

• Simple color-space augmentations outperform state-of-the-art transferability-based attacks when
composed with standard augmentations (Section 5.1).

• Transferability has a mostly monotonic relationship with data-augmentation techniques. Except
for two augmentation methods that may harm transferability, composing additional augmentation
methods either improves of preserves transferability (Section 5.2).

• Out of 27 compositions explored, the best composition we found, ULTIMATECOMBO, outperforms
state-of-the-art attacks by a large margin (Section 5.3).

• We show empirical support to conjectures we raise concerning when data-augmentation tech-
niques may be counterproductive to transferability (Section 5.4).

2 BACKGROUND AND RELATED WORK

Evasion Attacks Many evasion attacks assume adversaries have white-box access to models—i.e.,
adversaries know models’ architectures and weights (e.g., Goodfellow et al. (2015); Szegedy et al.
(2014); Carlini & Wagner (2017)). These typically leverage first- or second-order optimizations to
generate AEs models would misclassify. For example, given an input x of class y, model weights θ,
and a loss function J , the Fast Gradient Sign method (FGSM) of Goodfellow et al. (2015), crafts an
AE x̂ using the loss gradients∇xJ(x, y, θ):

x̂ = x+ ε ∗ sign(∇xJ(x, y, θ))

where sign(·) maps real numbers to -1, 0, or 1, depending on their sign. Following FGSM, re-
searchers proposed numerous advanced attacks. Notably, iterative FGSM (I-FGSM) of Kurakin
et al. (2017b) performs multiple gradient-ascent steps, updating x̂ iteratively to evade models:

x̂t+1 = Projεx

(
x̂t + α · sign

(
∇xJ (x̂t, y, θ)

))
where Projεx(·) projects the perturbation into `∞-norm ε-ball centered at x, α is the step size, and
x̂0 = x. The attacks we study in this work are based on I-FGSM.

In practice, adversaries often lack white-box access to victim models. Hence, researchers studied
black-box attacks in which adversaries may only query models. Certain attack types, such as score-
and boundary-based attacks perform multiple queries, often around several thousands, to produce
AEs (e.g., Brendel et al. (2018); Ilyas et al. (2019)). By contrast, attacks leveraging transferabil-
ity (e.g., Goodfellow et al. (2015); Szegedy et al. (2014)) avoid querying victim models, and use
surrogate white-box models to create AEs that are likely misclassified by other black-box ones.

Attempts to explain the transferability phenomenon attribute it to gradient norm of the target model
(i.e., its susceptibility to attacks), the smoothness of classification boundaries, and, primarily, the
alignment of gradient directions between the surrogate and target models (Demontis et al., 2019;
Yang et al., 2021). Said differently, for AEs to transfer, the gradient directions of surrogates need to
be similar to those of target models (i.e., attain high cosine similarity).

Enhancing transferability is an active research area. Some methods integrate momentum into attacks
such as I-FGSM to avoid surrogate-specific optima and saddle points that may hinder transferability
(e.g., Dong et al. (2018); Wang & He (2021)). Others employ specialized losses, such as reduc-
ing the variance of intermediate activations (Huang et al., 2019) or the mean loss of model ensem-
bles (Liu et al., 2017), to enhance transferability. Lastly, a prominent family of attacks leverages data
augmentation to enhance AEs’ generalizability between models. For instance, Dong et al. (2019)
boosted transferability by integrating random translations into I-FGSM. Evasion attacks incorpo-
rating data augmentation attain state-of-the-art transferability rates (Lin et al., 2020; Wang et al.,
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Algorithm 1 MI-FGSM with data augmentation
Input: Benign sample x; ground-truth label y; loss function J(·); model parameters θ; iterations #
T ; momentum parameter µ; perturbation size ε; data-augmentation method D(·).
Output: Adversarial example x̂

1: α = ε/T
2: x̂0 = x # Initialize adversarial example
3: g0 = 0 # Initialize momentum
4: for t = 0 to T − 1 do
5: ḡt+1 = 1

m

∑m−1
i=0 ∇x (J (D(x̂t)i, y, θ)) # Expected loss gradient on augmented samples

6: gt+1 = µ · gt + ḡt+1

‖ḡt+1‖1
# Gradient with momentum

7: x̂t+1 = Projεx
(
x̂t + α · sign (gt+1)

)
# Update adversarial example

8: return x̂ = x̂T

2021a). Nonetheless, prior work has only considered a restricted set of augmentation methods for
boosting transferability. By contrast, we aim to investigate the role of data augmentation at enhanc-
ing transferability more systematically, by exploring how a more comprehensive set of augmentation
types and their compositions affect transferability.

Defenses Various defenses have been proposed to mitigate evasion attacks. Adversarial training—a
procedure integrating correctly labeled AEs in training—is one of the most practical and effective
methods for enhancing adversarial robustness (e.g., Goodfellow et al. (2015); Tramèr et al. (2018)).
Other defense methods sanitize inputs prior to classification (e.g., Guo et al. (2018)); attempt to
detect attacks (see Tramer (2022)); or seek to certify robustness in ε-balls around inputs (e.g., Cohen
et al. (2019); Salman et al. (2019)). Following standard practices in the literature (Wang et al.,
2021a), we evaluate transferability-based attacks against a representative set of these defense.

3 DATA AUGMENTATION FOR ENHANCING TRANSFERABILITY

Data augmentation is traditionally used in training, to reduce overfitting and improve generalizabil-
ity (Shorten & Khoshgoftaar, 2019). Inspired by this use, transferability-based attacks adopted data
augmentation to limit overfitting to surrogate models and produce AEs likely to generalize and be
misclassified by victim models. Algorithm 1 depicts a general framework for integrating data aug-
mentation into I-FGSM with momentum (MI-FGSM). In the framework, a method D(·) augments
the attack with m variants of the estimated AE at each iteration. Consequently, the adversarial per-
turbation found by the attack increases the expected loss over transformed counterparts of the benign
sample x (i.e., the distribution set by D(·) given x). Note that D(·)’s output may include x.

The framework in Algorithm 1 is flexible, and can admit any data-augmentation method. We use it
to describe previous attacks employing data augmentation and to systematically explore new ones.
Next, we detail previous attacks, describe data augmentation methods we adopt for the first time to
enhance transferability, and explain how these can be combined for best performance.

3.1 PREVIOUS ATTACKS LEVERAGING DATA AUGMENTATION

Previous work explored the following augmentation methods to set D(·).

Translations Using random translations of inputs, Dong et al. (2019) proposed a translation-
invariant attack to promote transferability. They also offered an optimization to reduce the attack’s
time and space complexity by simply convolving the model’s gradients (w.r.t. non-translated inputs)
with a Gaussian kernel. While we use this optimization in the implementation for the interest of
efficiency, we highlight that the attack can be well-captured by our framework.

Diverse Inputs Xie et al. (2019) proposed a size-invariant attack. Their augmentation procedure
samples random crops from x̂t that are later resized per the model’s input dimensionality.
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Scaling Pixels Lin et al. (2020) showed that adversarial perturbations invariant to scaling pixel
values transfer with higher success between deep neural networks (DNNs). In their case, D(·)
produces m samples such that D(x)i = x

2i for i ∈ {0, 1, ...,m− 1}, where m=5 by default.

Admix Wang et al. (2021a) assumed that the adversary has a gallery of images from different classes
and adopted augmentations similar to MixUp (Zhang et al., 2018a). For each sample x′ from the
gallery, Admix augments attacks with m (typically set to 5) samples, such that D(x, x′)i = 1

2i ·
(x̂t + η · x′), where i ∈ {0, 1, ...,m − 1}, and η ∈ [0, 1] is set to 0.2 by default. Notably, Admix
degenerates to pixel scaling when η = 0.

The leading transferability-based attacks compose (1) diverse inputs, scaling, and translations (Lin
et al.’s (2020) DST-MI-FGSM attack, and Wang & He’s (2021) DST-VMI-FGSM attack that also
tunes the gradients’ variance); or (2) Admix, diverse inputs, and translation (Wang et al.’s (2021a)
Admix-DT-MI-FGSM attack). We describe how the compositions operate in Section 3.3.

3.2 NEW AUGMENTATIONS FOR ENHANCING TRANSFERABILITY

While prior work studied the effect of spatial transformations (i.e., translations and diverse inputs),
pixel scaling, and mixing on transferability, a substantially wider range of data-augmentation meth-
ods exist. Yet, the impact of these on transferability remains unknown. To fill the gap, we exam-
ined Shorten & Khoshgoftaar’s (2019) survey on data augmentation for reducing overfitting in deep
learning and identified ten representative methods of six categories that may boost transferability.
We present them in what follows, one category at a time.

Color-space Transformations Potentially the simplest of all augmentation types are those applied
in color-space. Given images represented as three-channel tensors, methods in this category manip-
ulate pixel values only based on information encoded in the tensors. We evaluate four color-space
transformations. First, we consider color jitter (CJ), which applies random color manipulation (Wu
et al., 2015). Specifically, we consider random adjustments of pixel values within a pre-defined
range in terms of hue, contrast, saturation, and brightness around original values. Second, we eval-
uate fancy principle component analysis (fPCA). Used in AlexNet (Krizhevsky et al., 2017), fPCA
adds noise to the image proportionally to the variance in each channel. Given an RGB image, fPCA
adds the following quantity to each image pixel:

[p1,p2,p3] [α1λ1, α2λ2, α3λ3]
T
,

where pi and λi are the ith eigenvector and eigenvalue of the of 3× 3 covariance matrix of RGB
pixels, respectively, and αi is sampled once per image from Gaussian distributionN (0, 0.1). Third,
we test channel shuffle (CS). Included in ShuffleNet training (Zhang et al., 2018b), CS simply swaps
the orders of the image’s RGB channels at random. Last, but not least, we consider greyscale (GS)
augmentations. This simple augmentation converts images into greyscale (replicating it three times
to obtain an RGB representation). Mathematically, the conversion is calculated by ωR · xR + ωG ·
xG + ωB · xB , where xR, xG, and xB , correspond to the RGB channels, respectively, and ωR, ωG,
and ωB , all ∈ [0, 1], denote the channel weights, and sum up to 1.

Random Erasing Inspired by dropout regularization, random erasing (RE) helps ML models focus
on descriptive features of images and promote robustness to occlusions (Zhong et al., 2020). To do
so, randomly selected rectangular regions in images are replaced by masks composed of random
pixel values. Similarly to RE, CutOut masks out regions of inputs to improve DNNs’ accuracy (De-
Vries & Taylor, 2017). The main difference from e is that CutOut uses fixed masking values, and
may perform less aggressive masking when selected regions lie outside the image.

Kernel Filters Convolving images with kernels of different types can produce certain effects, such
as blurring (via Gaussian kernels), sharpening (via edge filters), or edge enhancement. We study the
effect of sharpening (Sharp) on transferability with edge-enhancement filters.

Mixing Images As a form of vicinal risk minimization, some augmentation methods mix images
together, creating virtual examples for training. MixUp, the cornerstone behind Admix, computes
weighted sums of images (Zhang et al., 2018a). By contrast, we consider CutMix, which replaces a
region within one image with a region from another image picked from a gallery (Yun et al., 2019).
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Neural Transfer Augmentations using neural transfer (NeuTrans) preserve image semantics while
changing their style. We use Gatys et al.’s (2015) generative model to transfer image styles to that
of Picasso’s 1907 self-portrait.

Meta-learning-inspired Augmentations Meta-learning is a subfield of ML studying how ML al-
gorithms can optimize other learning algorithms (Hospedales et al., 2021). In the context of data
augmentation, algorithms such as AutoAugment have been proposed to train controllers to select an
appropriate augmentation method to avoid overfitting (Cubuk et al., 2019). We use the pre-trained
AutoAugment controller, encoded as a recurrent neural network, to select augmentation methods
and their magnitude from a set of 13 augmentation methods.

3.3 COMPOSING AUGMENTATIONS

There are two ways to compose data-augmentation methods in attacks, namely: parallel and serial
composition. Figure 1 in Appendix A illustrates both. In parallel composition, each augmentation
method is applied independently on the input, and their outputs are aggregated by taking their union
to augment attacks (i.e., as D(·)’s output). By contrast, serial composition applies augmentation
methods sequentially, one after the other, where the first method operates on the original sample, and
each subsequent augmentation function operates on its predecessor’s outputs. Consequently, serial
composition leads to an exponential growth in the number of samples, while parallel composition
leads to a linear growth. DST-MI-FGSM and Admix-DT-MI-FGSM use serial composition. By
contrast, we consider a substantially larger number of augmentation methods, which may lead to
prohibitive memory and time requirements in the case of serial composition. Additionally, because
the order of applying certain augmentations matters (e.g., GS then CutMix leads to different outcome
that CutMix followed by GS), exploring a meaningful number of serial compositions (out of an
order of 10! possibilities) becomes virtually impossible. Accordingly, we mainly consider parallel
composition between data-augmentation methods. We only serially compose translations, scaling,
and diverse inputs, for consistency with prior work (e.g., Wang et al. (2021a)). We tested a few serial
compositions between new augmentation methods we consider and found they were significantly
outperformed by their parallel counterparts. While non-exhaustive, this hints that serially composing
augmentations may not be a promising direction for enhancing transferability.

4 EXPERIMENTAL SETUP

Now we turn to the setup of our experiments, including the data, models, and attack configurations.

Data We used an ImageNet-compatible dataset1 and CIFAR-10 for evaluation, per common practice
(e.g., (Dong et al., 2019; Yang et al., 2021)). The former contains 1,000 images, originally collected
for the NeurIPS 2017 adversarial ML competition. For the latter, we sampled 1,000 images, roughly
balanced between classes, from the test set.

Models We used 16 DNNs to transfer attacks from (as surrogates) and to (as targets)—six for
CIFAR-10 and ten for ImageNet. All CIFAR-10 models and six of the ImageNet models were
normally trained, while the other four ImageNet models were adversarially trained. To facilitate
comparison with prior work, we included models that are widely used for assessing transferability
(e.g., (Wang et al., 2021a; Yang et al., 2021)). Furthermore, to ensure that our findings are general,
we included models covering varied architectures, including Inception, ResNet, VGG, DenseNet,
and MobileNet. Appendix B provides more details about the models.

Attack Parameters We tested standard attack configurations, in line with prior work (Wang et al.,
2021a; Yang et al., 2021). Namely, we evaluated untargeted MI-FGSM-based attacks, bounded
in `∞-norm. We validated findings with varied perturbation norms. For ImageNet, unless stated
otherwise, we tested ε = 16

255 , but also experimented with ε ∈ { 8
255 ,

24
255}. For CIFAR-10, we

experimented with ε ∈ {0.02, 0.04}. We quantified attack success via transferability rates—the
percentages of attempts at which AEs created against surrogates were misclassified by victims. As
baselines, we used three state-of-the-art transferability-based attacks: DST-MI-FGSM, DST-VMI-
FGSM, and Admix-DT-MI-FGSM (see Section 3.1). Appendix C reports the parameters used in

1https://bit.ly/3fq4pN6
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attacks and augmentation methods. Appendix D discusses attacks we considered but excluded from
experiments.

5 EXPERIMENTAL RESULTS

This section summarizes our findings. We start by evaluating individual augmentation methods and
standard combinations with scaling, diverse inputs, and translations (Section 5.1). We then turn to
analyzing all possible compositions between different augmentation types to assess whether trans-
ferability typically improves when considering additional augmentations (Section 5.2). Our analysis
helped us identify the best performing composition for boosting transferability, denoted by UL-
TIMATECOMBO, outperforming state-of-the-art attacks. Section 5.3 reports rigorous comparisons
between ULTIMATECOMBO and the baselines, including against defended models. Finally, we help
develop intuition for when augmentations may or may not help improve transferability (Section 5.4).

5.1 COLOR-SPACE AUGMENTATIONS SIGNIFICANTLY ADVANCE THE STATE OF THE ART

Initially, we evaluated transferability integrating a single augmentation at a time in attacks, or when
composing individual augmentations with diverse inputs, scaling, and translation (DST), as is stan-
dard (Lin et al., 2020; Wang et al., 2021a). We found that considering each of the ten augmentations
individually does not lead to competitive performance with the baselines (Table 9 in Appendix E).
However, composing individual augmentations with DST enhanced transferability markedly (Ta-
ble 10 in Appendix E). Surprisingly, augmentations in color-space fared particularly well, outper-
forming the baselines and advanced augmentation methods (e.g., AutoAugment) in most cases.

Composing GS with DST (GS-DST-MI-FGSM attack) performed best in this setting. Table 1 re-
ports the transferability rates from four normally trained models to other models on ImageNet (see
Table 11 in Appendix F for more details). It can be immediately seen that GS-DST-MI-FGSM
attains higher transferability than the baselines (93.6% vs. ≤92.0%, on avg.). This held also when
considering different perturbation norms on ImageNet, where GS-DST-MI-FGSM outperformed the
baselines with sometimes higher margin (e.g., 75.9% vs.≤70.8% on avg. with ε = 8

255 ; see Table 13
in Appendix F). GS-DST-MI-FGSM also outperformed the baselines on CIFAR-10, when trans-
ferring AEs to normally trained DNNs of different architectures, with perturbation norms ε=0.02
(74.9% vs. ≤71.5% avg. transferability rate) and ε=0.04 (92.1% vs. ≤89.6% avg. transferability
rate). Tables 14 and 15 in Appendix G show the detailed CIFAR-10 results.

Model Attack Inc-v3 Inc-v4 Res-50 Res-101 Res-152 IncRes-v2

Inc-v3
MAXBASELINE 100.0 94.7 90.7 88.9 89.1 92.6
GS-DST-MI-FGSM 100.0 95.6 93.7 91.8 90.9 94.9
ULTIMATECOMBO 100.0 98.0 95.1 94.3 92.7 97.1

Inc-v4
MAXBASELINE 95.3 100.0 91.0 89.9 88.4 93.5
GS-DST-MI-FGSM 96.5 100.0 94.1 92.5 93.0 95.4
ULTIMATECOMBO 98.1 99.9 94.8 95.0 94.6 96.8

Res-101
MAXBASELINE 88.3 85.0 97.6 99.9 96.9 87.2
GS-DST-MI-FGSM 89.0 84.8 97.6 99.8 97.7 87.6
ULTIMATECOMBO 93.0 90.4 98.1 99.7 97.8 91.8

IncRes-v2
MAXBASELINE 95.8 94.7 94.0 92.9 92.9 99.8
GS-DST-MI-FGSM 96.5 95.6 95.5 94.2 94.7 100.0
ULTIMATECOMBO 98.2 97.1 96.3 96.5 95.7 100.0

Table 1: Transferability rates (%) on ImageNet, from normally trained surrogates (rows) to normally
trained targets (columns). All attacks are black-box, except for when the surrogate and target models
are the same. MAXBASELINE is the best performing of the three baselines.

The same trends held when transferring AEs to adversarially trained models. Here, we transferred
AEs from individual, normally trained DNNs (Table 2 reports a summary, and Table 12 shows com-
plete results), as well as an ensemble of DNNs (Table 3) used to boost transferability further (Liu
et al., 2017), finding that GS-DST-MI-FGSM attained better transferability than the baselines. Over-
all, according to a paired t-test, the differences between GS-DST-MI-FGSM and the baselines across
different surrogate and target models were statistically significant (p <0.01).
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Model Attack Inc-v3adv Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

Inc-v3
MAXBASELINE 84.6 84.8 83.5 70.8
GS-DST-MI-FGSM 87.3 88.5 85.5 72.2
ULTIMATECOMBO 88.2 88.7 86.7 72.6

Inc-v4
MAXBASELINE 84.3 86.0 83.0 74.6
GS-DST-MI-FGSM 87.6 89.5 87.2 78.0
ULTIMATECOMBO 88.6 89.4 88.4 78.2

Res-101
MAXBASELINE 82.0 83.0 80.9 72.5
GS-DST-MI-FGSM 82.3 83.7 81.1 73.2
ULTIMATECOMBO 83.5 86.7 82.8 76.8

IncRes-v2
MAXBASELINE 89.0 89.0 88.7 87.1
GS-DST-MI-FGSM 91.1 92.2 90.0 88.2
ULTIMATECOMBO 92.2 92.6 92.0 88.5

Table 2: Transferability rates (%) on ImageNet, from normally trained surrogates (rows) to adver-
sarially trained targets (columns). MAXBASELINE is the best performing of the three baselines.

Attack Inc-v3adv Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

DST-MI-FGSM 89.0 90.0 87.6 82.4
Admix-DT-MI-FGSM 90.1 90.5 89.4 84.7
GS-DST-MI-FGSM 92.4 93.5 92.5 88.7
ULTIMATECOMBO 93.6 95.2 93.7 91.2

Table 3: Transferability rates (%) on ImageNet, from an ensemble of normally trained surrogates
(containing Inc-v4, Res-50, Res-101 and Res-152) to adversarially trained target models. DST-VMI-
FGSM was excluded due to resource constrains.

Finally, we evaluated attack run-times, finding that, despite investing no effort to improve its ef-
ficiency, GS-DST-MI-FGSM is at least ×1.14 more time-efficient than Admix-DT-MI-FGSM and
DST-VMI-FGSM, on avg. (Table 16 in Appendix I). Still, we denote that, since transferability-
based attacks generate AEs offline, and only once per surrogate model, as long as an attack is not
prohibitively slow, attack run-time is a marginal consideration for selecting an attack compared to
transferability rates.

5.2 THE MONOTONICITY OF TRANSFERABILITY WHEN ADDING AUGMENTATIONS

We wanted to evaluate whether transferability is monotonic in the number of augmentation types
considered—i.e., whether composing more techniques increases, or at least does not harm, trans-
ferability. To this end, we selected the best performing augmentation method of each of the six
categories presented in Section 3.2 as well as DST-MI-FGSM, and evaluated all 27 (=128) com-
positions possible (per Section 3.3). More precisely, we tested every possible combination of GS,
CutOut, Sharp, NeuTrans, AutoAugment, Admix, and DST-MI-FGSM. Given a composition, we
produced AEs against the Inc-v3 ImageNet DNN as surrogate, and computed the expected transfer-
ability rate against all other nine ImageNet DNNs, both normally and adversarially trained. Then,
for every pair of attacks differing only in whether a single augmentation method was incorporated
in the composition, we tested whether adding the augmentation method improved transferability.

The results reflected a mostly monotonic relationship between transferability and augmentations.
Except for NeuTrans and Sharp, which sometimes harmed transferability when considered within
a composition, adding augmentation method increased or preserved transferability. Figure 2 in
Appendix H summarizes the results. Notably, comparing all compositions enabled us to find that a
composition of all seven augmentation methods except for NeuTrans attained the best transferability.
We call this composition the ULTIMATECOMBO.

5.3 THE MOST EFFECTIVE COMBINATION

We evaluated ULTIMATECOMBO extensively, testing transferability to normally and adversarially
trained DNNs. As shown in Table 1, ULTIMATECOMBO obtained higher transferability to normally
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trained models than the baselines (95.6% vs. ≤92.0% avg. transferability) and GS-DST-MI-FGSM,
when normally trained models were used as surrogates. This holds across different values of ε
(Table 13), and on the CIFAR-10 dataset with different architectures (Tables 14 and 15).

Furthermore, ULTIMATECOMBO achieved the best performance also when transferring attacks from
normally trained to adversarially trained DNNs (Table 2; 86.0% vs. ≤82.7% avg. transferability).
Transferring AEs crafted by ULTIMATECOMBO using an ensemble of models increased transfer-
ability further (Table 3; 93.4% avg. transferability). Per a paired t-test, the differences between
ULTIMATECOMBO and the baselines over all pairs of surrogates and targets considered are statisti-
cally significant (p <0.01).

Besides adversarially trained models, we evaluated ULTIMATECOMBO’s transferability against five
defenses. Two defenses, bit reduction (Bit-Red) (Xu et al., 2018) and neural representation pu-
rification (NRP) (Naseer et al., 2020), transform inputs to sanitize adversarial perturbations. Two
others, randomized smoothing (RS) (Cohen et al., 2019) and randomized smoothing with adversarial
training (ARS) (Salman et al., 2019) offer provable robustness guarantees. Finally, TRS leverages
an ensemble of smooth DNNs trained to have misaligned gradients, to defend attacks (Yang et al.,
2021). We evaluated all defenses except for TRS on ImageNet. We used the defenses with default
parameters (see Appendix J), and transferred AEs crafted against an ensemble of normally trained
models. Results are shown in Table 4. Similar to other settings, here too, ULTIMATECOMBO out-
performed the baselines (66.8% vs. ≤63.9% avg. transferability). Following Yang et al. (2021), we
tested TRS on CIFAR-10 with adversarial perturbation norms ε ∈ {0.02, 0.04}. ULTIMATECOMBO
did best against this defense as well (Table 5).

Attack Bit-Red NRP RS ARS

DST-MI-FGSM 85.3 40.7 84.2 39.8
Admix-DT-MI-FGSM 86.4 39.4 86.6 43.0
ULTIMATECOMBO 87.5 47.7 88.4 43.5

Table 4: Transferability rates (%) from an ensemble of normally trained surrogates (Inc-v4, Res-
50, Res-101 and Res-152) to models defended by provable methods or input transformations. DST-
VMI-FGSM was excluded due to resource constrains.

Epsilon Admix-DT-MI-FGSM DST-MI-FGSM DST-VMI-FGSM GS-DST-MI-FGSM ULTIMATECOMBO

0.02 21.5 23.1 18.9 25.1 27.4
0.04 36.2 41.3 36.3 47.8 49.4

Table 5: Transferability rates (%) on CIFAR-10 from a normally trained VGG surrogate DNN to an
ensemble of Res DNNs trained via TRS.

Lastly, due to composing more augmentations, ULTIMATECOMBO is slower than DST-MI-FGSM,
GS-DST-MI-FGSM, and Admix-DT-MI-FGSM. However, it is ×2.44 faster than DST-VMI-FGSM
at producing AEs (Table 16).

5.4 WHEN DO AUGMENTATIONS FAIL TO IMPROVE TRANSFERABILITY?

While augmentation methods mostly increased transferability, in some cases they were counterpro-
ductive. Particularly, NeuTrans and Sharp decreased transferability when composed with certain
methods. We conducted simple experiments as a preliminary assessment of two conjectures we had
concerning when augmentations may harm transferability.

First, we expected augmentation methods that harm model accuracy on benign samples to be less
conducive for transferability. As DNNs do not generalize well to benign samples produced by
these augmentation methods, we anticipated that adversarial perturbations relying on the augmented
samples would also have limited generalizability across models. To support the conjecture, we
tested the normally trained DNNs’ accuracy on benign samples transformed by each augmentation
method. As can be seen from Table 6, NeuTrans and Sharp, which often decrease transferability
(Section 5.2 and Figure 2), harmed the DNN accuracy the most (6.5%–58.7% lower accuracy than
other methods), supporting our conjecture.
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Augmentation Inc-v3 Inc-v4 Res-50 Res-101 Res-152 IncRes-v2 Avg.

None 96.2 97.4 94.5 96.3 95.8 99.8 96.7
CS 94.0 95.7 95.3 94.6 95.4 99.5 95.8
fPCA 91.6 96.8 89.9 92.8 93.6 99.4 94.0
CJ 90.0 92.3 90.3 90.3 91.4 96.8 91.9
Admix 86.7 91.6 86.8 88.9 89.7 94.6 89.7
CutOut 86.5 89.2 85.7 87.2 88.6 92.3 88.2
GS 86.6 90.3 84.7 87.6 86.5 92.7 88.1
AutoAugment 82.9 86.2 82.1 84.3 84.4 89.8 85.0
Sharp 69.5 87.3 71.5 76.7 75.5 90.6 78.5
NeuTrans 24.4 25.4 24.2 27.0 24.0 32.7 26.3

Table 6: Benign accuracy (%) after applying data augmentation methods. Rows are sorted in a
descending order of average transferability.

Augmentation Inc-v4 Res-50 Res-101 Res-152 IncRes-v2 Avg.

CutOut 0.568 0.583 0.581 0.574 0.591 0.579
CS 0.565 0.578 0.576 0.570 0.590 0.576
None 0.564 0.575 0.573 0.568 0.586 0.573
Admix 0.563 0.575 0.573 0.567 0.586 0.573
CJ 0.560 0.575 0.573 0.568 0.584 0.572
GS 0.559 0.572 0.569 0.563 0.582 0.569
AutoAugment 0.558 0.569 0.567 0.562 0.579 0.567
fPCA 0.560 0.568 0.566 0.561 0.578 0.567
NeuTrans 0.546 0.556 0.554 0.549 0.565 0.554
Sharp 0.548 0.548 0.545 0.540 0.558 0.548

Table 7: Cosine similarities between gradients of benign images computed on Inc-v3 after applying
augmentation methods composed with DST-MI-FGSM, and gradients of other normally trained
models on benign images. Rows are sorted in a descending order of average cosine similarity.

Prior work demonstrated that gradient alignment between surrogates and targets is needed for trans-
ferability (Demontis et al., 2019). Thus, we expected augmentation methods that estimate target
model gradients more accurately to increase transferability further. To assess this conjecture, we
evaluated the cosine similarity between the gradients of the Inc-v3 model while using augmentations
composed with DST applied to benign samples, and the gradients of other normally trained models
on (untransformed) benign samples. The results (Table 7) show some support to the conjecture—
NeuTrans and Sharp led to lower cosine similarities with target models’ gradients. Yet, the differ-
ences in cosine similarities between augmentation methods were small (≤0.031, on avg.).

6 CONCLUSION AND FUTURE WORK

Our study uncovered a mostly monotonic relationship between data-augmentation methods and
transferability, and helped us identify a simple yet effective composition of data-augmentation meth-
ods, ULTIMATECOMBO, that outperforms previously proposed methods when integrated into at-
tacks. The resulting attack should be considered as a standard baseline in follow-up work on trans-
ferability. Our work also puts forward conjectures for when augmentation techniques are expected
to improve transferability, and offers some empirical support.

In the future, it would be informative to develop a theory that formally explains why augmentation
methods help increase transferability. Furthermore, instead of relying on existing augmentation
methods originally developed to improve DNN generalizability, an intriguing research direction
would be to develop augmentation techniques tailored specifically for improving transferability.
Lastly, in addition for assessing the vulnerability of ML models in black-box settings, it would be
interesting to evaluate whether the ULTIMATECOMBO-based attack advances methods leveraging
AEs for defensive purposes, by deceiving adversaries (e.g., to attain privacy (Cherepanova et al.,
2021; Shetty et al., 2018)).
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REPRODUCIBILITY STATEMENT

In the interest of reproducibility, we make our code publicly available at the following repository:
https://tinyurl.com/UltimateComboICLR.
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A PARALLEL AND SERIAL COMPOSITIONS OF AUGMENTATIONS

Figure 1 illustrates how parallel and serial compositions work.

B DNNS USED IN THE EXPERIMENTS

We tested transferability using ten ImageNet DNNs and six CIFAR-10 DNNs. Of the ten ImageNet
models, six were normally trained, while others were adversarially trained. Specifically, for nor-
mally trained models, we selected: Inception-v3 (Inc-v3) (Szegedy et al., 2016); Inception-v4 (Inc-
v4); Inception-ResNet-v2 (IncRes-v2) (Szegedy et al., 2017)); ResNet-v2-50 (Res-50); ResNet-v2-
101 (Res-101); and ResNet-v2-152 (Res-152) (He et al., 2016). For adversarially trained models,
we selected: Inception-v3-adv (Inc-v3adv ) (Kurakin et al., 2017a); ens3-Inception-v3 (Inc-v3ens3 );
ens4-Inception-v3 (Inc-v3ens4 ); and ens-adv-Inception-ResNet-v2 (IncRes-v2ens) (Tramèr et al.,
2018). We obtained the models’ PyTorch implementations and weights from a public GitHub
repository.2 All six CIFAR-10 DNNs were normally trained. For this dataset, we used pre-
trained VGG-11 (VGG) (Simonyan & Zisserman, 2015)), ResNet-50 (Res) (He et al., 2016),
DenseNet-121 (DenseNet) (Huang et al., 2017), MobileNet-v2 (MobileNet) (Sandler et al., 2018),
GoogleNet (Szegedy et al., 2015), and an Inception-v3 (Inc) DNNs (Szegedy et al., 2016), also
implemented in PyTorch.3

2https://github.com/ylhz/tf_to_pytorch_model
3https://github.com/huyvnphan/PyTorch_CIFAR10
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Figure 1: An illustration of serial and parallel compositions. When serially composing augmenta-
tions, each augmentation method operates on the output of the previous one. By contrast, in parallel
composition, each augmentation method operates independently on the input (or set of inputs). The
number of samples grows exponentially in serial composition, whereas it grows linearly in parallel
composition. We use serial composition when composing diverse inputs (DI), scaling (Sc.), and
translations (Tr.). Other augmentation methods are composed in parallel.

C ATTACK AND AUGMENTATION METHOD PARAMETERS

Similarly to Wang et al. (2021b), we set the MI-FGSM decay factor µ=1.0, and the number of
iterations T=10.

We mostly used default or commonly used parameters of augmentation methods. For CJ, we per-
formed random adjustments of image hue ∈ [−0.5, 0.5], contrast ∈ [0.5, 1.5], saturation ∈ [0.5, 1.5],
and brightness∈ [0.5, 1.5]. For CutOut, we replaced values in selected regions with zeros, and
the portion of masked areas compared to image dimensions lied in [0.02, 0.4], with aspect ratios
∈ [0.4, 2.5]. In comparison, for RE, the dimension of masked areas relatively to the image dimen-
sions lied in [0.02, 0.2], with aspect ratios ∈ [0.3, 3.3]. For Sharp, we used the following edge-
enhancement mask: [ −0.5 −0.5 −0.5

−0.5 5.0 −0.5
−0.5 −0.5 −0.5

]
.

For diverse inputs, images were transformed with probability 0.5. For the Admix operation, consis-
tently with Wang et al. (2021a), we randomly sampled three images from other categories for mixing
as part of the Admix-DT-MI-FGSM attack. However, for the interest of computational efficiency,
we use only one image for mixing when composing Admix with other augmentation methods. We
did not find that mixing with fewer images harmed performance. In fact, it even improved transfer-
ability in some cases. Finally, in CutMix, we picked the top left coordinate (rx, ry), the width, rw,
and height, rh, of the region to be replaced, using the formulas:

rx ∼ U(0,W ), rw = W
√

1− λ,

ry ∼ U(0, H), rh = H
√

1− λ,
where U is the uniform distribution, W is the image width, H is the image height, and λ is a
parameter set to 0.5.

In an attempt to enhance transferability further, we optimized the parameters of a few augmentation
methods we considered via grid search. Except for the Gaussian kernel’s size used in translation-
invariant attacks (Dong et al., 2019), we found that the selected parameters had little impact on
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transferability. Specifically, for translations, after considering Gaussian kernels of sizes ∈ {5 ×
5, 7 × 7, 9 × 9}, we set the default to 7 × 7, except for Admix-DT-MI-FGSM, for which the 9 × 9
kernel performed best. Table 8 shows that our choice of Admix parameters (m=1 and Gaussian
kernel size of 9× 9) improves its performance. For GS, we found ωR, ωG, and ωB had little impact
on transferability, as long as the weight assigned to each channel was>0.1. Accordingly, we set ωR,
ωG, and ωB to 0.299, 0.587, and 0.114, respectively, per commonly used values (e.g., in the Python
PyTorch package4). Finally, for CS, we only swapped the blue and green channels, as this led to a
minor improvement compared to swapping all three channels.

Attack Inc-v3 Inc-v4 Res-50 Res-101 Res-152 IncRes-v2

Admix-DT-MI-FGSM (original) 99.5 92.3 88.5 87.0 85.3 90.9
Admix-DT-MI-FGSM (ours) 100.0 94.7 91.9 90.3 88.7 93.3

Table 8: Transferability rates (%) of AEs crafted via Admix-DT-MI-FGSM against an Inc-v3 sur-
rogate. Our variant sets m=1 and the translation’s Gaussian kernel to 7 × 7 and include original
images when calculating gradients, whereas the original work uses m=3 and a 9× 9 kernel.

Finally, we clarify that each of our attack combinations emits the original image once, alongside the
transformed images. Moreover, when aggregating the gradients, the gradients of the original and
transformed images are assigned equal weights. We tested whether weighting the gradients differ-
ently (e.g., assigning higher or lower weight to the original sample) can help improve transferability
using the GS method. However, we found that equal weights attained the best results.

D ATTACKS CONSIDERED BUT EXCLUDED

Besides the three state-of-the-art baselines we experimented with, we considered including two
other attacks in the evaluation. Wu et al.’s (2021) attack uses a neural network to create adversarial
perturbations robust against transformations for enhanced transferability, and achieves competitive
transferability rates. However, unfortunately, we were unable to find a publicly available imple-
mentation of the attack. Huang et al.’s (2019) intermediate level attack improve AE transferability
by reducing the variance of intermediate activations. We used the official implementation5 to test
the attack on CIFAR-10 with ε=0.02 and the VGG or DenseNet models as surrogates. The results
showed that the transferability rates were much less competitive that the three baselines we consid-
ered (50.34% vs. >54.00% average transferability with a VGG surrogate, and 45.68% vs. >56.56%
average transferability with a DenseNet surrogate). Therefore, we removed the intermediate level
attack for the remaining experiments.

E INDIVIDUAL AUGMENTATIONS

Table 9 presents the transferability rates when integrating individual augmentation methods into
MI-FGSM. Table 10 presents the transferability when composing individual augmentation methods
with DST. Trasnferability rates were computed on ImageNet, using the Inc-v3 DNN as a surrogate
and the other normally trained DNNs as victims (ε = 16

255 ). Notice how composing color-space aug-
mentations (specifically, CS, CJ, and GS) with DST helps improve transferability over the baselines
(Table 10).

F TRANSFERABILITY RATES ON IMAGENET

Tables 11 and 12 detail the trasferability rates on ImageNet, from all ten DNNs to normally and
adversarially trained models, respectively. Here, we also consider transferring AEs from adversar-
ially trained surrogates. Table 13 shows the transferability rates on ImageNet from Inc-v3 to other
normally traiend models with varied perturbation norms (i.e., values of ε).

4https://bit.ly/3ynCyUD
5https://github.com/CUAI/Intermediate-Level-Attack
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G TRANSFERABILITY RATES ON CIFAR-10

Tables 14 and 15 report attack tranferability rates from all six normally trained DNNs to all other
victim DNNs for ε=0.02 and ε=0.04, respectively.

H THE MONOTONICITY OF TRANSFERABILITY WHEN ADDING
AUGMENTATIONS

Figure 2 depicts a visual summary of the experiment presented in Section 5.2, demonstrating how
the relationship between augmentation methods and transferability is mostly monotonic.

I ATTACK RUN-TIME

MI-FGSM’s time complexity is predominated by the gradient computation steps. Accordingly, the
attacks’ run-times are directly affected by the number of samples the augmentation methods create
(i.e., samples emitted by D(·) in Algorithm 1): The more samples emitted by the augmentation
method, the more back-propagation would be required to compute gradients for updating the adver-
sarial examples in each iteration, thus increasing the AE-generation time. The empirical measure-
ments corroborate this intuition (Table 16). Overall, we can see that DST augments MI-FGSM with
the least samples, leading to the fastest attack (DST-MI-FGSM). GS-DST-MI-FGSM is the second
fastest attack, while ULTIMATECOMBO is slower than Admix-DT-MI-FGSM but substantially faster
than DST-VMI-FGSM. We note that no particular effort was invested to make GS-DST-MI-FGSM
and ULTIMATECOMBO more time-efficient (e.g., stacking augmented samples for parallel compu-
tation, similarly to Admix-DT-MI-FGSM). Moreover, since transferability-based attacks generate
AEs offline, and only once per surrogate model, as long as an attack is not prohibitively slow, attack
run-time is a marginal consideration for selecting an attack compared to transferability rates.

J DEFENSE PARAMETERS

We used standard parameters when attacking defenses. For RS, we used a normally trained ResNet-
50 and set σ to 0.25, following Cohen et al. (2019). For ARS, the target model was ResNet-50
trained with isotropic Gaussian-noise augmentations (sampled from N (0, 0.25)), and σ was set to
0.25 during prediction, per Salman et al. (2019). In both cases, we used 10,000 noisified samples
during inference. For Bit-Red, we used a squeezer with bit-depth of one, in accordance with Xu
et al. (2018). Finally, we used the default NRP parameters and pre-trained model from the official
GitHub repository (Naseer et al., 2020).
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Attack Inc-v3 Inc-v4 Res-50 Res-101 Res-152 IncRes-v2

MI-FGSM 100.0 54.7 48.9 43.5 41.1 50.6
fPCA-MI-FGSM 100.0 70.7 65.4 59.6 57.6 69.2
CS-MI-FGSM 100.0 57.5 54.7 49.9 46.3 56.7
CJ-MI-FGSM 100.0 66.4 61.8 57.5 54.7 65.4
GS-MI-FGSM 100.0 62.9 61.4 56.5 51.8 62.4
RE-MI-FGSM 100.0 55.1 52.1 46.6 43.9 52.2
CutMix-MI-FGSM 63.0 34.7 33.9 30.0 33.1 31.2
CutOut-MI-FGSM 100.0 58.2 54.4 49.6 45.7 55.9
NeuTrans-MI-FGSM 96.4 44.4 39.5 35.6 33.6 38.2
Sharp-MI-FGSM 99.3 44.7 41.0 34.3 34.4 40.2
AutoAugment-MI-FGSM 100.0 61.1 56.6 50.1 48.5 58.4

Table 9: Transferability rates (%) on ImageNet from a normally trained Inc-v3 surrogate to normally
trained target models (columns) when integrating individual augmentation methods into MI-FGSM-
based attacks.

Attack Inc-v3 Inc-v4 Res-50 Res-101 Res-152 IncRes-v2

Admix-DT-MI-FGSM 99.5 92.3 88.5 87.0 85.3 90.9
DST-MI-FGSM 100.0 92.9 89.5 87.2 86.4 91.2
DST-VMI-FGSM 100.0 94.7 90.7 88.9 89.1 92.6
fPCA-DST-MI-FGSM 100.0 94.3 90.3 88.6 87.3 90.8
CS-DST-MI-FGSM 100.0 94.7 92.8 90.3 88.7 93.3
CJ-DST-MI-FGSM 100.0 94.9 92.3 90.9 90.2 94.1
GS-DST-MI-FGSM 100.0 95.6 93.7 91.8 90.9 94.9
RE-DST-MI-FGSM 100.0 95.3 91.5 89.7 88.2 93.5
CutMix-DST-MI-FGSM 69.5 61.8 59.6 58.1 56.4 58.6
CutOut-DST-MI-FGSM 100.0 95.0 91.4 89.8 89.1 93.4
NeuTrans-DST-MI-FGSM 97.8 87.2 82.5 79.8 80.7 84.4
Sharp-DST-MI-FGSM 99.9 95.6 91.3 89.6 89.4 92.9
AutoAugment-DST-MI-FGSM 100.0 94.1 91.1 88.6 87.5 92.9

Table 10: Transferability rates (%) on ImageNet from a normally trained Inc-v3 surrogate to nor-
mally trained target models (columns) when integrating individual augmentation methods composed
with DST into MI-FGSM-based attacks. Admix-DT-MI-FGSM, DST-MI-FGSM, and DST-VMI-
FGSM are baseline attacks from prior work.
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Model Attack Inc-v3 Inc-v4 Res-50 Res-101 Res-152 IncRes-v2

Inc-v3

Admix-DT-MI-FGSM 99.5 92.3 88.5 87.0 85.3 90.9
DST-MI-FGSM 100.0 92.9 89.5 87.2 86.4 91.2
DST-VMI-FGSM 100.0 94.7 90.7 88.9 89.1 92.6
GS-DST-MI-FGSM 100.0 95.6 93.7 91.8 90.9 94.9
ULTIMATECOMBO 100.0 98.0 95.1 94.3 92.7 97.1

Inc-v4

Admix-DT-MI-FGSM 93.7 99.3 86.7 84.9 84.7 89.6
DST-MI-FGSM 94.4 100.0 90.2 88.1 88.2 92.8
DST-VMI-FGSM 95.3 99.9 91.0 89.9 88.4 93.5
GS-DST-MI-FGSM 96.5 100.0 94.1 92.5 93.0 95.4
ULTIMATECOMBO 98.1 99.9 94.8 95.0 94.6 96.8

Res-101

Admix-DT-MI-FGSM 82.6 78.1 93.5 97.4 93.9 79.3
DST-MI-FGSM 86.7 83.2 97.3 99.9 96.6 84.9
DST-VMI-FGSM 88.3 85.0 97.6 99.9 96.9 87.2
GS-DST-MI-FGSM 89.0 84.8 97.6 99.8 97.7 87.6
ULTIMATECOMBO 93.0 90.4 98.1 99.7 97.8 91.8

IncRes-v2

Admix-DT-MI-FGSM 93.8 91.9 91.1 90.6 89.5 98.9
DST-MI-FGSM 95.8 94.2 93.5 92.0 92.4 99.8
DST-VMI-FGSM 95.8 94.7 94.0 92.9 92.9 99.7
GS-DST-MI-FGSM 96.5 95.6 95.5 94.2 94.7 100.0
ULTIMATECOMBO 98.2 97.1 96.3 96.5 95.7 100.0

Res-50

Admix-DT-MI-FGSM 83.9 80.0 97.8 93.4 93.2 78.9
DST-MI-FGSM 89.1 84.1 99.9 97.3 96.8 84.3
DST-VMI-FGSM 88.7 84.7 100.0 98.1 97.1 86.7
GS-DST-MI-FGSM 90.3 85.7 99.9 98.3 97.9 87.5
ULTIMATECOMBO 94.1 91.6 99.9 99.0 98.2 90.9

Res-152

Admix-DT-MI-FGSM 82.9 79.0 92.5 92.3 96.5 77.9
DST-MI-FGSM 86.7 83.6 95.5 97.1 99.8 83.1
DST-VMI-FGSM 88.4 85.3 95.6 97.2 99.7 85.6
GS-DST-MI-FGSM 87.7 84.3 96.7 97.6 99.8 85.3
ULTIMATECOMBO 91.8 90.4 97.0 97.3 99.5 90.3

Inc-v3adv

Admix-DT-MI-FGSM 92.5 87.9 89.0 88.2 86.8 88.3
DST-MI-FGSM 93.6 90.9 91.2 90.6 89.5 91.7
DST-VMI-FGSM 95.9 91.7 91.3 91.7 90.3 92.6
GS-DST-MI-FGSM 95.2 92.8 93.8 92.8 92.2 94.2
ULTIMATECOMBO 97.1 95.5 95.3 94.6 94.0 95.8

Inc-v3ens3

Admix-DT-MI-FGSM 87.9 83.4 85.3 84.5 83.9 85.3
DST-MI-FGSM 90.2 85.9 86.7 86.0 85.3 87.3
DST-VMI-FGSM 90.4 87.1 88.9 88.0 87.1 88.7
GS-DST-MI-FGSM 93.2 90.4 90.7 90.0 90.1 90.7
ULTIMATECOMBO 94.5 92.1 93.2 92.3 92.1 92.9

Inc-v3ens4

Admix-DT-MI-FGSM 86.0 80.3 81.4 82.3 81.1 80.7
DST-MI-FGSM 88.8 85.6 83.4 85.9 83.7 84.4
DST-VMI-FGSM 89.8 84.8 85.6 86.2 85.2 85.3
GS-DST-MI-FGSM 92.8 88.4 90.2 89.5 87.8 88.5
ULTIMATECOMBO 94.5 90.2 92.0 91.0 91.1 91.5

IncRes-v2ens

Admix-DT-MI-FGSM 82.8 80.4 81.8 79.5 80.3 83.5
DST-MI-FGSM 85.5 82.9 84.8 84.5 83.9 88.1
DST-VMI-FGSM 87.2 84.3 85.3 85.7 85.6 88.6
GS-DST-MI-FGSM 90.1 88.2 91.0 89.7 88.6 91.6
ULTIMATECOMBO 91.7 90.9 90.9 90.9 89.7 93.3

Table 11: Transferability rates (%) on ImageNet from ten surrogates (rows) to normally trained
target models (columns). All attacks are black-box, except for when the surrogate and target models
are the same.
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Model Attack Inc-v3adv Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

Inc-v3

Admix-DT-MI-FGSM 84.6 84.3 83.5 70.8
DST-MI-FGSM 81.3 81.2 77.7 61.4
DST-VMI-FGSM 84.4 84.8 82.9 69.2
GS-DST-MI-FGSM 87.3 88.5 85.5 72.2
ULTIMATECOMBO 88.2 88.7 86.7 72.6

Inc-v4

Admix-DT-MI-FGSM 82.7 83.3 81.3 73.7
DST-MI-FGSM 80.6 81.8 80.8 70.5
DST-VMI-FGSM 84.3 86.0 83.0 74.6
GS-DST-MI-FGSM 87.6 89.5 87.2 78.0
ULTIMATECOMBO 88.6 89.4 88.4 78.2

Res-101

Admix-DT-MI-FGSM 79.5 80.4 78.6 71.2
DST-MI-FGSM 78.9 78.7 76.7 68.7
DST-VMI-FGSM 82.0 83.0 80.9 72.5
GS-DST-MI-FGSM 82.3 83.7 81.1 73.2
ULTIMATECOMBO 83.5 86.7 82.8 76.8

IncRes-v2

Admix-DT-MI-FGSM 89.0 89.0 88.7 87.1
DST-MI-FGSM 87.2 89.2 86.4 82.9
DST-VMI-FGSM 88.8 90.6 87.8 85.5
GS-DST-MI-FGSM 91.1 92.2 90.0 88.2
ULTIMATECOMBO 92.2 92.6 92.0 88.5

Res-50

Admix-DT-MI-FGSM 79.1 78.0 77.1 68.0
DST-MI-FGSM 76.1 77.7 75.6 63.6
DST-VMI-FGSM 80.7 80.7 79.5 69.7
GS-DST-MI-FGSM 81.4 83.6 78.9 70.4
ULTIMATECOMBO 85.1 85.7 83.4 74.0

Res-152

Admix-DT-MI-FGSM 77.7 78.2 75.9 71.9
DST-MI-FGSM 75.0 78.4 75.7 70.1
DST-VMI-FGSM 79.1 81.0 79.5 72.7
GS-DST-MI-FGSM 79.6 82.1 79.0 71.3
ULTIMATECOMBO 83.6 85.0 82.5 74.8

Inc-v3adv

Admix-DT-MI-FGSM 98.3 93.0 92.2 87.4
DST-MI-FGSM 99.7 93.0 93.5 85.4
DST-VMI-FGSM 99.6 94.1 93.7 88.1
GS-DST-MI-FGSM 99.9 95.1 94.1 88.5
ULTIMATECOMBO 99.9 96.1 96.2 91.0

Inc-v3ens3

Admix-DT-MI-FGSM 88.3 98.2 91.6 84.6
DST-MI-FGSM 87.8 99.9 91.9 83.0
DST-VMI-FGSM 90.3 99.7 92.6 84.8
GS-DST-MI-FGSM 91.6 99.9 93.4 85.8
ULTIMATECOMBO 94.0 99.9 94.7 89.6

Inc-v4ens4

Admix-DT-MI-FGSM 88.3 90.3 98.7 83.4
DST-MI-FGSM 88.2 91.8 99.8 83.8
DST-VMI-FGSM 89.7 91.7 100.0 85.6
GS-DST-MI-FGSM 91.8 94.1 99.9 86.9
ULTIMATECOMBO 93.4 95.4 99.9 90.2

IncRes-v2ens

Admix-DT-MI-FGSM 86.2 87.7 88.6 96.3
DST-MI-FGSM 88.2 89.4 89.8 98.7
DST-VMI-FGSM 89.4 90.5 91.3 99.3
GS-DST-MI-FGSM 92.0 93.4 92.7 99.1
ULTIMATECOMBO 92.5 93.5 93.1 99.3

Table 12: Transferability rates on ImageNet (%) from ten surrogates (rows) to adversarially trained
target models (columns).
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Epsilon Attack Inc-v3 Inc-v4 Res-152 IncRes-v2 Res-50 Res-101

8/255

Admix-DT-MI-FGSM 98.3 67.8 50.0 59.1 57.4 53.5
DST-MI-FGSM 99.7 77.1 62.9 70.9 69.8 64.8
DST-VMI-FGSM 99.5 77.9 64.1 72.9 72.2 66.7
GS-DST-MI-FGSM 99.5 81.3 71.1 77.6 77.3 72.0
ULTIMATECOMBO 99.7 86.0 75.0 81.8 81.2 76.3

24/255

Admix-DT-MI-FGSM 99.8 94.9 88.2 93.1 89.4 88.4
DST-MI-FGSM 100.0 97.8 93.6 96.8 95.1 93.9
DST-VMI-FGSM 100.0 97.9 95.0 97.1 96.2 95.6
GS-DST-MI-FGSM 100.0 98.5 96.7 98.7 97.0 97.0
ULTIMATECOMBO 100.0 99.3 97.4 99.2 97.5 98.4

Table 13: Transferability rates (%) on ImageNet, from a Inc-v3 surrogate to other normally trained
models, with perturbation norms ε ∈ { 8

255 ,
24
255} other than the default ε = 16

255 .

Model Attack VGG Res DenseNet MobileNet GoogleNet Inc

VGG

Admix-DT-MI-FGSM 92.1 67.8 66.6 78.8 69.9 67.5
DST-MI-FGSM 93.5 73.5 71.5 80.4 71.6 71.5
DST-VMI-FGSM 68.9 52.3 50.5 61.6 54.0 51.6
GS-DST-MI-FGSM 94.5 76.5 75.7 85.8 78.3 77.3
ULTIMATECOMBO 95.0 77.0 77.7 86.5 80.2 77.9

Res

Admix-DT-MI-FGSM 47.1 94.9 74.2 78.9 68.1 64.3
DST-MI-FGSM 52.4 98.5 83.1 86.5 75.9 71.5
DST-VMI-FGSM 40.9 75.2 59.2 64.7 56.1 54.4
GS-DST-MI-FGSM 58.7 98.4 86.9 90.3 80.3 78.6
ULTIMATECOMBO 60.8 98.3 88.5 91.0 80.7 80.6

DenseNet

Admix-DT-MI-FGSM 50.8 78.4 94.7 81.4 70.8 70.7
DST-MI-FGSM 56.3 86.9 98.5 86.8 76.5 77.4
DST-VMI-FGSM 40.6 62.2 77.6 67.1 58.6 54.3
GS-DST-MI-FGSM 61.5 88.8 98.4 89.1 81.1 81.8
ULTIMATECOMBO 64.3 90.0 98.6 92.2 82.4 84.2

MobileNet

Admix-DT-MI-FGSM 34.6 54.5 50.8 99.8 70.3 64.0
DST-MI-FGSM 37.3 60.0 54.4 100.0 76.8 71.3
DST-VMI-FGSM 32.6 50.7 46.5 90.6 64.8 59.3
GS-DST-MI-FGSM 42.0 63.6 62.2 100.0 83.1 78.7
ULTIMATECOMBO 44.2 67.9 62.5 100.0 86.4 82.1

GoogleNet

Admix-DT-MI-FGSM 42.8 63.0 59.0 88.2 99.9 78.6
DST-MI-FGSM 45.7 65.8 62.5 92.7 100.0 84.2
DST-VMI-FGSM 40.5 56.2 55.2 77.7 90.2 67.2
GS-DST-MI-FGSM 47.7 65.3 62.5 93.4 100.0 87.0
ULTIMATECOMBO 49.2 67.9 65.0 94.0 100.0 90.6

Inc

Admix-DT-MI-FGSM 46.8 65.4 63.3 89.6 85.4 98.0
DST-MI-FGSM 50.9 68.1 70.1 93.1 90.2 99.7
DST-VMI-FGSM 39.0 51.1 48.6 64.1 59.0 74.5
GS-DST-MI-FGSM 50.8 69.0 68.0 92.6 89.7 99.6
ULTIMATECOMBO 52.6 72.2 70.0 95.3 93.0 99.8

Table 14: Transferability rates (%) on CIFAR-10, from normally trained surrogates (rows) to nor-
mally trained target models (columns), with a perturbation norm ε=0.02.
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Model Attack VGG Res DenseNet MobileNet GoogleNet Inc

VGG

Admix-DT-MI-FGSM 97.4 91.0 90.1 93.2 89.2 88.8
DST-MI-FGSM 97.5 91.7 92.9 94.2 89.8 89.7
DST-VMI-FGSM 90.4 75.5 72.0 79.3 75.6 74.4
GS-DST-MI-FGSM 97.9 95.1 94.8 96.1 92.9 92.4
ULTIMATECOMBO 98.2 95.2 95.5 96.8 94.6 92.5

Res

Admix-DT-MI-FGSM 69.6 99.4 92.8 92.8 85.3 85.5
DST-MI-FGSM 77.5 100.0 96.9 95.9 91.6 90.9
DST-VMI-FGSM 57.7 88.6 78.0 81.8 75.6 74.2
GS-DST-MI-FGSM 86.1 100.0 98.2 97.9 93.8 94.5
ULTIMATECOMBO 88.7 100.0 99.0 98.9 95.7 96.3

DenseNet

Admix-DT-MI-FGSM 78.8 94.1 98.3 93.9 89.4 90.0
DST-MI-FGSM 85.5 98.0 99.8 97.5 93.5 94.7
DST-VMI-FGSM 59.8 80.2 88.2 80.8 73.0 72.5
GS-DST-MI-FGSM 90.4 97.9 99.9 98.5 95.6 96.1
ULTIMATECOMBO 92.2 99.0 99.9 99.1 95.7 97.1

MobileNet

Admix-DT-MI-FGSM 51.5 76.5 70.6 99.9 87.0 86.1
DST-MI-FGSM 59.6 82.4 78.8 100.0 93.3 91.2
DST-VMI-FGSM 48.7 68.3 63.6 94.2 78.4 76.8
GS-DST-MI-FGSM 70.1 87.6 86.9 100.0 95.2 93.8
ULTIMATECOMBO 71.1 90.0 88.2 100.0 96.8 95.4

GoogleNet

Admix-DT-MI-FGSM 69.7 86.4 81.8 97.5 100.0 95.0
DST-MI-FGSM 73.1 88.6 85.1 97.8 100.0 97.1
DST-VMI-FGSM 61.8 73.8 72.8 86.8 93.1 83.3
GS-DST-MI-FGSM 77.6 89.2 88.5 99.0 100.0 98.3
ULTIMATECOMBO 78.1 92.4 90.4 99.0 100.0 98.9

Inc

Admix-DT-MI-FGSM 74.2 87.1 88.1 97.0 96.0 99.3
DST-MI-FGSM 79.5 92.2 91.2 98.9 98.4 100.0
DST-VMI-FGSM 55.4 65.3 63.0 74.7 72.2 81.2
GS-DST-MI-FGSM 79.7 90.6 91.0 97.7 98.3 100.0
ULTIMATECOMBO 82.6 93.8 92.7 98.9 99.3 100.0

Table 15: Transferability rates (%) on CIFAR-10, from normally trained surrogates (rows) to nor-
mally trained target models (columns), with a perturbation norm ε=0.04.

Augmented samples Time (s)

Admix-DT-MI-FGSM 15 1.68
DST-MI-FGSM 5 0.72
DST-VMI-FGSM 105 11.29
GS-DST-MI-FGSM 10 1.47
ULTIMATECOMBO 30 4.63

Table 16: The number of samples augmented and the average time of crafting an AE (seconds
per images) for different attacks. Times were measured on ImageNet, while attacking an Inc-v3
surrogate, and averaged for 1,000 samples. Experiments were executed on an Nvidia A5000 GPU.
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