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Abstract: Recent studies have made significant progress in addressing dexterous1

manipulation problems, particularly in in-hand object reorientation. However,2

there are few existing works that explore the potential utilization of developed3

dexterous manipulation controllers for downstream tasks. In this study, we focus4

on constrained dexterous manipulation for food peeling. Food peeling presents5

various constraints on the reorientation controller, such as the requirement for the6

hand to securely hold the object after reorientation for peeling. We propose a7

simple system for learning a reorientation controller that facilitates the subsequent8

peeling task. Videos are available at: https://sites.google.com/view/9

food-peeling.10

Keywords: Dexterous manipulation, In-hand object reorientation, vegetable peel-11

ing12

Figure 1: We present a dexterous manipulation system that utilizes an Allegro hand mounted on a
Franka robot arm to reorient food items for downstream peeling. The other Franka robot arm uses
its gripper to grasp a peeler for peeling. The reorientation controller for the Allegro hand is learned
through reinforcement learning, while the peeling is performed via teleoperation. On the left of the
figure, we show the whole system. On the right, from the top row to the bottom row, we illustrate the
processes of reorienting a sweet potato, and peeling a melon and a squash.

1 INTRODUCTION13

Having robots perform food preparation tasks has been of great interest in robotics. Imagine the14

scenario of making mashed potatoes, where a critical step is to peel potatoes. Humans peel potatoes15

by grasping the potato in one hand and using the second hand to actuate a peeler to remove the16

potato’s skin. After a part of the potato is peeled, it is rotated while being held in the hand (i.e.,17

in-hand manipulation) and peeled again. The sequence of rotating and peeling continues until all of18

the potato’s skin is removed. In this work, we present a robotic system that can re-orient different19

vegetables using an Allegro hand in a way that their skin can be peeled using another manipulator.20

Our setup is shown in Figure 1.21

https://sites.google.com/view/food-peeling
https://sites.google.com/view/food-peeling
https://sites.google.com/view/food-peeling


In-hand rotation of vegetables is an instance of dexterous manipulation problem [1], a family of22

tasks that involves continuously controlling the force on an object while it is moving with respect23

to the fingertips [2, 3]. The challenges in dexterous manipulation stem from the frequent making24

and breaking of contact, issues in contact modeling, high-dimensional control space, perception25

challenges due to severe occlusions, etc. A body of work made simplifying assumptions such as26

manipulating convex objects [4, 5, 1, 6], small finger motions[7, 8, 9], slow or quasi-static motion or27

manipulating a few specific objects [10, 7, 8] to leverage trajectory optimization or planning-based28

methods to achieve in-hand object re-orientation [1, 7, 8, 9, 6, 4, 5, 10]. Another line of work has29

used reinforcement learning for in-hand re-orientation[11, 12, 13, 14, 15] and recent works have30

leveraged simulation to train policies capable of dynamically re-orienting a diverse set of new objects31

in real-time and in the real world [11, 12].32

There are several challenges in adapting re-orientation controllers for a downstream task such33

as peeling vegetables. These challenges stem from the fact that controllers optimized for re-34

orientation [16, 13, 14, 15, 12] are only optimized to continuously reorient the object and not35

to satisfy numerous constraints arising from task-specific requirements. For instance, peeling vegeta-36

bles requires the hand to first stop re-orienting the object and then for the peeler to peel the vegetable.37

Many prior works solve a version of the re-orientation problem where the object is continuously38

rotated [17, 16, 13] or otherwise perform quasistatic re-orientation [8]. Stopping and re-starting39

dynamic re-orientation is difficult due to the challenge of dealing with the object’s inertia. Second,40

the hand needs to hold the object firmly enough to resist forces applied by the peeler. The closest41

work that attempts to hold the object at a target configuration [12] is only able to loosely hold the42

object which is insufficient for resisting forces. Third, the hand needs to reorient the vegetable along43

a specific axis in place. Here, the specific axis refers to the rotational axis on the object that is parallel44

to the peeling direction. Similar to how humans reorient vegetables for peeling, it is desirable for the45

hand to reorient the object in place so that multiple consecutive cycles of reorientation and peeling46

can be performed. If the object substantially shifts its position during reorientation, the controller47

will struggle to reorient and hold the object at future time steps. Fourth, when the vegetable is held48

stationary the fingers should not obstruct the top surface of the vegetable to ensure that the peeler can49

peel the vegetable.50

While in-hand object reorientation has been widely studied [11, 12, 16, 18, 13, 17], no prior works51

can satisfy the constraints mentioned above. Yet, these constraints become critical for downstream52

dexterous manipulation beyond object re-orientation. We use vegetable peeling as a case study to53

investigate the challenges and solutions for building a dexterous manipulation system that can operate54

under constraints. We develop a framework where we leverage reinforcement learning in simulation55

to train a policy that can perform object re-orientation under constraints. For the peeling, we have a56

human teleoperate the peeler. Our contributions are as follows:57

1. A framework for solving dexterous manipulation problems under constraints.58

2. We propose a method that can make RL policy learn to stop its motion and hold objects59

firmly in hand – a critical behavior for many downstream dexterous manipulation problems.60

3. We present a step towards a robotic system capable of peeling diverse vegetables with differ-61

ent shapes, masses, and material properties while holding and manipulating the vegetables62

in hand.63

2 RELATED WORK64

In-hand Object Reorientation: Dexterous manipulation involves the use of high degrees-of-freedom65

(DoF) manipulators for object manipulation [19]. Its requirement for high-dimensional real-time66

control and its nature of frequent contact-making and breaking present grand challenges to roboticists.67

Recently, there has been a growth of interest in a particular instance of dexterous manipulation68

problems: in-hand object reorientation. This problem is of particular interest as it is a necessary69

step in many tool-use scenarios. For example, to use a screwdriver for tightening a screw, one has70

to reorient the screwdriver to align it with the screw. We can cluster the works in in-hand object71
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reorientation from many aspects. For example, from the perspective of sensory information, [20]72

studies open-loop cube reorientation without using any sensors, [21, 5, 16, 10, 22] use motion capture73

system or special tracking markers for object reorientation, [17] uses proprioceptive sensors such as74

joint encoders, [23, 24, 15, 14] use tactile sensors and [25, 16, 12, 18] utilize vision sensors. In terms75

of the dynamics of the system, [7, 8, 9] achieved object reorientation under the assumption of quasi-76

static motion where object moves slowly and its inertia effect can be ignored, while [15, 16, 12, 14, 26]77

focuses on dynamic object reorientation where object is manipulated in a fast and dynamic way. To78

make in-hand object manipulation useful for downstream tool use tasks, one important aspect of the79

skill is the ability of stably and firmly holding the object in end of the policy rollout. While many80

prior works on dynamic manipulation such as [16, 10, 14, 15, 17] only consider endlessly rotating81

the object in hand and cannot stop the object stably when the object reaches the goal orientation,82

some works such as [12, 26] try to develop controllers that can reorient objects in hand and also hold83

the object in the goal orientation. Our work studies dynamic in-hand object manipulation with the84

capability of stopping objects stably in hand.85

Reinforcement Learning for Contact-rich Tasks: Contact-rich tasks are particularly challenging86

due to the difficulty in modeling the system dynamics, especially when the tasks are performed in the87

wild, outside of a constrained and controlled setting. Examples of such tasks include quadruped robots88

hiking in mountains and robot hands reorienting various everyday objects. There have been many89

works using reinforcement learning to learn controllers for solving contact-rich tasks [27, 16, 13, 28,90

29, 30]. In the real world, robots typically only have access to a limited amount of state information of91

the system due to the lack of sensors or the challenges in setting up the sensors. Using reinforcement92

learning to learn controllers from scratch with limited sensory information tends to be data-inefficient.93

One way to speed up policy learning is to provide asymmetric information to the policy and value94

function, where the value function observes much more privileged information [16, 13, 27, 31].95

Another method is to decouple policy learning into two stages: a reinforcement learning stage where96

agents (teacher) observe privileged fully-observable state information, and an imitation learning stage97

where the policy with limited sensory observation input (student) learns to imitate the policy with98

fully-observable state information. This approach has been successfully applied to various contact-99

rich problems such as locomotion [32, 33, 30, 34, 35] and dexterous manipulation [11, 12, 17].100

Our pipeline is built upon the idea of teacher-student policy learning and has made several key101

improvements, which we will detail below.102

3 METHOD103

Peeling requires a reorientation controller that can stop its motion and firmly hold objects after104

reorientation. The first step in stopping is to decide when re-orientation should be stopped. One105

possibility is to have a perception system predict the desired rotation angle after which the next round106

of peeling would be performed. To accomplish the goal, the robot would need to track changes in107

object pose and compare it with the target rotation angle. However, accurately estimating object pose108

is challenging, especially when generalization to new objects is necessary [36, 16, 13].109

One of our insights is that instead of training a predictor for desired rotation angle and object pose110

estimation, it can be easier and sufficient to train a binary vision classifier that detects in real-time111

when the peeled part has been turned over. With such a classifier, the reorientation controller’s job is112

simply to keep reorienting the object until it receives a stop signal. In this formulation, unlike prior113

works [11, 12], the reorientation controller is not conditioned on target orientation but rather on a114

stop signal. Formally, the policy takes as input a binary variable Istopt ∈ {0, 1} representing the stop115

signal. If Istopt = 1, the policy should stop immediately and ensure the fingers stably and firmly hold116

the object. Otherwise, the policy should continue reorienting the object. Note that in this work, we117

focus on learning the reorientation controller, leaving integration of a vision classifier to future work.118

The next question is how to train such a policy. Using RL to train the policy from scratch can be119

challenging and requires extensive reward shaping because Istopt = 1 is a rare event in an episode,120
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and when the Istopt is flipped to one from zero, the policy needs to quickly stop the motion posing a121

hard-exploration challenge.122

Prior works [11, 12] show success in training a goal-conditioned object reorientation controller. Can123

we leverage a goal-conditioned reorientation controller to train a controller that reacts to a stop signal?124

It turns out we can formulate this using the teacher-student learning framework [11, 12, 37, 34, 33].125

Specifically, we can use RL to train a goal-conditioned controller that reorients an object by random126

goal angles along its rotational axis. This acts as the teacher. Next, we can use imitation learning127

(specifically DAGGER [38]) to train a controller conditioned on the stop signal to imitate the teacher.128

The stop signal can be generated during training by checking if the orientation distance to the goal is129

below a threshold. Using imitation learning bypasses the hard exploration challenge.130

3.1 Teacher Policy Learning: Reorient and Stop131

We train the teacher policy to re-orient the object along a pre-defined axis and stop (see Figure 2a).132

The teacher is formulated as a goal-conditioned policy aE
t = πE(oE

t ,at−1, g), where E represents133

variables for the teacher policy, ot is the observation, at is the action command, g is the goal134

representing the amount by which the object needs to be re-oriented. g is randomly and uniformly135

sampled from [1.57, 4.0]rad during training.136

While the teacher policy’s formulation is similar to that in prior works [11, 12], we propose (i) a137

much simpler reward function, (ii) new success criteria that effectively encourages the policy to stop138

the object and firmly hold it, and (iii) an interpolation scheme that enables smoother policy actions in139

the real world.140

3.1.1 Observation and Action Space141

oE
t includes joint positions and velocities, the fingertip poses and velocities, object pose and velocity,142

the distance between the current object orientation and the goal orientation, and whether any of the143

fingertips touch the object. at is the delta joint position command. The neural network policy runs at144

12Hz.145

3.1.2 Reward Function146

For the task of in-hand re-orientation, we found a simple way to specify the reward function.147

Specifically, we manually move the real Allegro hand to a good pose where the constraints mentioned148

above are satisfied (e.g., the fingers do not cover the food item), and the fingers touch the object and149

are ready to reorient it. We record the joint positions as qdemo. During training in simulation, we150

encourage the joint positions at any time step to be close to qdemo.151

Overall, our reward function is as follows:152

rt =c11(Task successful) + c2
1

|∆θt|+ ϵθ
(1)

+c3
∥∥qt − qdemo

∥∥2
2

(2)

where c1, c2, c3 are coefficients. ∆θt is the distance between the object’s current and goal orientation.153

The first two terms are task rewards for object reorientation. The last term is to regulate hand behavior.154

3.1.3 Success Criteria155

In a goal-conditioned object reorientation, a common way to claim the task successful is by checking156

if the distance between the object’s current and the goal orientation is smaller than a threshold value157

(orientation criterion Cori = ∆θ < θ̄) [16, 13]. Another criterion is that all the fingertips should158

make contact with the object (contact criterion Ccontact), a pre-requisite for firmly holding the object159

after reorientation. However, only checking these two criteria is insufficient to ensure the policy160

learns to stop the motion and hold the object firmly around the goal orientation, as discussed in [12].161

The policy can oscillate around the goal state due to observation and control delay and noise.162
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...
(c)

Figure 2: (a) shows an example of the rotational axis of a melon. (b) shows an example where the
object’s orientation (the blue line) has a large deviation from the desired rotational axis (the green
line). We reset the episode when this occurs. (c) shows the policy Architecture for the teacher and the
student. In this figure, we use ot to represent all the policy input at each time step.

To further encourage the policy to stop robot motion when the goal is reached and firmly hold the163

object, we propose adding time constraints to the success criteria: both Cori and Ccontact should be164

continuously satisfied for T̄ succ time steps. Adding this criterion makes the MDP partially observable165

since the policy’s observation lacks the knowledge of time. Therefore, to facilitate policy learning,166

we augment the observation space with a scalar indicator variable Isucc = tsucc/T̄ succ ∈ [0, 1],167

where tsucc is the number of consecutive steps satisfying Cori and Ccontact. The observation space168

becomes oE := oE ⊕ Isucc. In this work, θ̄ = 0.2rad, T̄ succ = 8.169

3.2 Student Policy Learning: Imitate and Stop170

After learning a goal-conditional teacher policy aE
t = πE(oE

t ,at−1, g), the next question is how171

to train a real-world deployable student policy that can rotate the object in hand and hold it stably172

after reorientation. We propose conditioning the student policy on a stop signal Istopt ∈ {0, 1}:173

aS
t = πS(oS

t ,at−1, I
stop
t ). In other words, the student policy should continue reorienting the object174

when Istopt = 0, but stably hold the object when Istopt = 1. This design choice provides flexibility in175

how we control the policy to stop the reorientation. For example, the policy could rotate the object176

for a pre-specified amount of time (i.e., set Istopt = 1 after t seconds). Alternatively, an external177

perception module could detect when the peeled part has fully turned over, triggering Istopt = 1 and178

the policy to stop the motion and hold the object immediately.179

How can we use the learned goal-conditioned teacher policy to train a student policy that is conditioned180

on the stop signal? We can set the value for Istopt automatically during policy rollout based on the181

orientation distance ∆θt.182

Istopt =

{
0 if ∆θt > θ̄

1 otherwise

3.2.1 Observation Space183

In this work, we only use proprioceptive sensory information (joint positions qt and velocities q̇t) as184

the observation input (oS
t ).185

3.2.2 Policy Architecture186

As the student policy only has access to a limited amount of sensory information (a POMDP setting),187

it is important to incorporate history information, as has been done in previous works [16, 13, 12].188

While [16, 13, 12] utilized RNNs to process history information, Transformers [39] have gained189

significant attention due to their improved performance and faster training in domains such as190

natural language processing. Therefore, in this work, we employ a Transformer-based policy191

architecture. aS
t = πS(oS

1 ,a0, I
stop
1 , ...,oS

t ,at−1, I
stop
t ). The policy is a decoder-only attention192
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Figure 3: (a) shows the objects for evaluation: melon, radish, pumpkin, papaya. (b) shows the
traveling distance. Before reorientation begins, we ensure a reference point (point A) is facing
upward. After reorientation, we identify the point (point B) now facing upward. We then measure the
distance from point A to point B along the contour.

network (Figure 2c) with three self-attention layers. The hidden size is 256, the intermediate size is193

512, and the number of attention heads is 8.194

3.2.3 Training195

The policy is trained using DAGGER [38].196

3.3 Peeling via Teleoperation197

We demonstrate that our reorientation controller can be used for downstream peeling tasks by198

teleoperating a Franka Panda robot arm to do the peeling. A 200 Hz operational space impedance199

controller [40] runs on the Panda arm, controlling for pose via torque, and an operator interacts with a200

Haption Virtuose™ 6D HF TAO1 device. Bilateral position-position haptic coupling is done between201

the two devices. The controllers and haptic coupling are implemented using Drake [41].202

4 RESULTS203

To quantitatively evaluate the real-world policy transfer performance, we tested the controller on four204

vegetables (Figure 3a): a pumpkin (mass: 827g), a melon(623g), a radish(727g), a papaya(848g).205

4.1 Traveling distance for a fixed amount of commanded motion time206

The first question we want to answer is whether the learned policy can successfully reorient vegetables207

in the real world. In peeling, the width of the peeled part depends on the peeler’s width. Thus, it is208

more informative to measure how much the reorientation controller rotates an object by the traveling209

distance of a surface point, rather than the absolute rotation angle. Specifically, we mark a reference210

point P ref on the object surface near the mid-point of its rotational axis. At the start, we ensure P ref211

is centered and facing upward when held. After reorientation, we record the new point Pnew that is212

now centered and facing upward. We then measure the contour length from Pnew to P ref along the213

surface (Figure 3b).214

To demonstrate the capability of our controller to reorient real objects, we conducted two rounds of215

testing. Our controller is trained to stop motion when it receives a stop signal. In the first round, we216

sent the stop signal 3.5 seconds after the controller started rotating. In the second round, we sent the217

stop signal 7 seconds after start. We repeated each test 10 times. As shown in Figure 4a, the controller218

successfully reoriented all four food items by a sufficient amount for peeling. When commanded to219

reorient for 3.5s, 90% of tests reoriented the objects by at least 4cm. With 7s, 90% of tests reoriented220

objects by at least 7.3cm. Given more time, the controller reoriented objects by a larger amount.221

1https://www.haption.com/en/products-en/virtuose-6d-tao-en.html#
fa-download-downloads
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Figure 4: (a): Violin plots showing the distribution of the traveling distance of a point on the object
surface after the controller is commanded to rotate the object for 3.5 s and 7 s, respectively. (b):
Violin plot showing the distribution of time taken by the controller to transition from rotating the
object in hand to firmly holding the object after receiving the stop signal. The x-axis represents the
timing of the stop signal sent to the controller after it starts.

Table 1: Successful lifting rate (10 tests each)
Commanded motion time Pumpkin Melon Papaya Radish

3.5s 80% 90% 80% 90%
7s 100% 90% 100% 90%

4.2 How well does the controller track the commanded motion time?222

As discussed in Section 3, if our controller can quickly respond to a stop signal at any time step, it223

can be combined with a perception system that tracks peeling progress. Hence, we measured how224

long it takes to stop the hand and object motion after receiving the stop signal. As shown in Figure 4b,225

the motion stops after 0.4s on average after the controller receives the stop signal.226

4.3 Firm grasp after reorientation227

To enable downstream peeling, the reorientation controller must learn to firmly grasp the object after228

stopping finger motion. We tested this by checking if the Allegro hand and object could be lifted in229

the air for 3s by only lifting the object. Table 1 shows that across objects and commanded times, the230

controller firmly grasped objects in 90% of tests.231

4.4 Real-world Peeling232

We evaluated whether the reorientation controller could reorient food items to facilitate peeling233

(Figure 1). Testing showed that peeling applied substantial pulling forces on objects. However, in234

most cases, the hand maintained a firm enough grasp to enable successful peeling.235

4.5 Ablation study236

4.5.1 Demo term in Reward function237

We proposed using a keyframe demonstration to ease reward shaping. To evaluate its effectiveness,238

we compared learning curves of the teacher policies trained with and without the c3
∥∥qt − qdemo

∥∥2
2

239

reward term. As shown in Figure 5a, adding the keyframe substantially improved learning. Addition-240

ally, it demonstrates that mimicking the keyframe pose via a single reward term effectively reduces241

the reward-shaping burden.242

4.5.2 Transformer vs RNN243

Different from prior works [16, 13, 11, 12], our student policy uses a Transformer architecture instead244

of an RNN architecture. We compared the learning performance of a Transformer-based policy and245
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Figure 5: (a) shows learning curves of the teacher policies with or without c3
∥∥qt − qdemo

∥∥2
2

in
the reward function. (b) shows the learning curve of student policies with a Transformer or RNN
archtecture with respect to the number of samples.

an RNN-based policy. Figure 5b shows that a Transformer-based policy learns much faster and gets246

better performance at convergence than an RNN-based policy.247

5 DISCUSSIONS248

The reorientation controller described in this study is a blind controller that relies solely on proprio-249

ceptive sensory information. Although it has shown the ability to successfully reorient heavy objects250

and securely hold them in place, performance could potentially be enhanced by incorporating visual251

and tactile feedback. For instance, visual information could help prevent objects from falling. Addi-252

tionally, future work could involve learning a peeling policy via behavior cloning on data collected253

via teleoperation to achieve full autonomy of the system.254
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