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ABSTRACT
Based on the difference in the objective function proposed by
Dominguez and Lobato between the unconstrained and constrained
estimators, a simply test is proposed for hypothesis testing of parame-
ters in conditional moment restriction models. This test is guaranteed
to be consistent. The asymptotic distribution of the proposed test
statistic is proved to be a linear combination of independent χ2

1 random
variables under the null hypothesis. In the simulation study, the power
of the proposed test is larger than that of the GMM based test under the
alternative hypothesis.
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1. Introduction

Models defined in terms of conditional moment restriction arise in various areas of econo-
metrics (Chamberlain 1987; Dominguez and Lobato 2004; Donald, Imbens and Newey 2003),
including panel data, instrumental variable settings and rational expectations. Bravo (2012)
considers specification tests for this model based on the generalized empirical likelihood
(Smith 1997; Newey and Smith 2004) and the references therein include the literature on
this test. Statistical hypothesis testing of parameters in conditional moment restriction is
important (e.g., Newey and McFadden 1994; Romano, Shaikh, and Wolf 2010). This paper
proposes a consistent test based on the objective function in Dominguez and Lobato (2004).

For hypothesis testing of parameter values in the conditional moment restriction models,
a distance metric test statistic based on the difference of the GMM criterion between the
unconstrained and constrained estimators (DM-GMM) is proposed by Newey and McFadden
(1994), which is also mentioned by Romano, Shaikh, and Wolf (2010). Under the null,
they show that the DM-GMM converges in distribution to a Chi-square. Motivated by the
objective function which the consistent estimator proposed by Dominguez and Lobato (2004)
minimizes, we propose a new distance metric test statistic (DM-DL). The DM-DL is simple
since it requires no additional user-chosen objects (such as smoothing parameters). Moreover,
the limiting distribution of the proposed DM-DL is a weighted sum of independent χ2

1
random variables under the null. Unlike DM-GMM, the proposed test statistic is always
consistent.

The rest of the paper is organized as follows. In Section 2, we propose a test statistic for
hypothesis testing of parameters in conditional moment restriction models. Subsequently, we
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present the asymptotical results of the proposed test as well as the Assumptions on which the
theoretical results are based on Section 3. In Section 4, simulation studies are taken to evaluate
the performance of the proposed test and its competitor. A brief discussion is presented in
Section 6. The proofs of Lemma 1 and Lemma 2 are presented in the Appendix.

2. The test statistics

Let Yi = (Zi, Xi) be a random sample in Rs × Rd, which could have common coordinates, for
i = 1, 2, . . . , n. We consider the conditional moment restriction

E{g(Zi, θ0)|Xi} = 0, a.s. (1)

for a unique value θ0 ∈ �, where � ⊂ Rq. The test problem is H0 : θ0 = θ
′
0. Sometimes, we are

interested in testing part of the parameter θ . Therefore, we divide θ into (θ1, θ2) and suppose
θ1 is of interest with dimension p (q ≥ p > 0) and θ2 is a nuisance parameter with dimension
q − p. Then, we consider the follow hypothesis test Ḣ0 : θ10 = θ

′
10. The conditional moment

restriction model (Equation 1) implies an infinite number of unconditional moment restric-
tions. The generalized method of moments (GMM), a commonly used method for estimating
model (Equation 1), can produce inconsistent estimators since the number of arbitrarily
chosen instruments is finite (Dominguez and Lobato 2004). In order to achieve consistent
estimators, GMM typically requires an additional assumption that the selected unconditional
restrictions identify globally the parameters of interest (Newey and McFadden 1994, Lemma
2.3). In fact, the marginal distribution of the conditioning variables are restricted by this
additional assumption, which results in a contradiction, i.e., the consistent estimation of the
conditional moment restriction models should be uncorrelated to the distribution of the
conditioning variables, it leads to that this distribution plays an important role for GMM
estimators since it guarantees global identification of the parameters of interest. Dominguez
and Lobato (2004) proposed a new approach to consistently estimate models defined by
conditional moment restrictions. Shin (2008) adopted this estimation procedure for the Box-
Cox transformation model estimation problems. This method substitutes the conditional
restrictions by an infinite number of unconditional moment restrictions which characterize
the conditional restriction fully. These infinite unconditional restrictions here come from the
expectation of the function of interest times a class of indicators functions. Unlike GMM,
the identification problem does not arise for this method, since it is based on the conditional
moment restrictions directly. Specifically, we have

E{g(Zi, θ0)|Xi} = 0 a.s. ⇔ H(θ0, x) = 0 for almost all x ∈ Rd (2)

where H(θ , x) = E{g(Zi, θ)I(Xi ≤ x)} (Billingsley 1995). Based on this equivalence, from (1),
we have that L(θ) is minimized at θ = θ0 uniquely, where L(θ) := E{H(θ , Xi)2}. Based on
the sample analogue principle, the estimator of θ0 in Equation (1) is proposed as

θ̂ = argminθ Ln(θ)

where

Ln(θ) :=
∑n

i=1 Hn(θ , Xi)2

n
(3)

with Hn(θ , x) :=
∑n

i=1 g(Zi,θ)I(Xi≤x)

n .
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Motivated by the above estimation procedure, we propose a so-called DM-DL statistic for
testing H0 : θ0 = θ

′
0 as

W(θ
′
0) = −2n{Ln(θ̂) − Ln(θ

′
0)}

Similarly, the distance metric statistic for testing the composite hypothesis Ḣ0 : θ10 = θ
′
10 is

proposed to be

Ẇ(θ
′
10) = −2n{Ln(θ̂) − Ln(θ

′
10, θ̃2)}

where θ̃2 = argminθ2 Ln(θ
′
10, θ2). We note that the test proposed is based on the difference

between minimum of objective function Ln(θ) for the case when the null hypothesis of θ is
satisfied and that for the case when no restriction is imposed for θ . This is essentially a quasi
LR test. Intuitively, the DM-DL type test is consistent since L(θ) is uniquely minimized at the
true parameter point, whereas, the DM-GMM test can be inconsistent, because the GMM
objective function may has more than one global minimum, that shown in the Example 1
and Example 2 of Dominguez and Lobato (2004). Moreover, the proposed test statistics is
simple, since we do not need to introduce any user chose objects such as the order of a lag or
a bandwidth number.

3. Assumptions and theorems

Define

ψ(θ , y) := S(θ , y, P, P) + S(θ , P, y, P) + S(θ , P, P, y)

where S(θ , Yi, Yj, Yl) := g(Zi, θ)g(Zj, θ)I(Xi ≤ Xl)I(Xj ≤ Xl). Let ∇m be the mth partial
derivative operator with respect to θ ,

|∇m|σ(θ) :=
∑

i1,...,im

∣∣∣∣ ∂m

∂θi1 · · · ∂θim
σ(θ)

∣∣∣∣
and the symbol ‖ · ‖ denotes the matrix norm:‖ (aij) ‖= (

∑
i,j a2

ij)
1/2. In order to achieve the

lemmas and theorems below, we state the following assumptions, which are mild and can be
found in Sherman (1993, 1994) and Shin (2008):

Assumption 1: E{g(Zi, θ)|Xi} = 0 a.s. if and only if θ = θ0.

Assumption 2: � is a compact subset of Rq.

Assumption 3: The sample (Zi, Xi)
n
i=1 is i.i.d.

Assumption 4: {g(·, θ), θ ∈ �} is Euclidean for an envelope F with EF2 < ∞.

Assumption 5: L(θ) is continuous on �.

Assumption 5′ : g(z, ·) is continuous in � for each z ∈ Rs.

Assumption 6: Let N be a neighborhood of θ0.
(1) For each y, all mixed second partial derivatives of ψ(·, y) exist on N .
(2) There is an integral function M(y) such that, for all y and θ ∈ N ,

‖ ∇2ψ(θ , y) − ∇2ψ(θ0, y) ‖≤ M(y)|θ − θ0|
(3) E|∇1ψ(θ0, ·)|2 < ∞
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(4) E|∇2|ψ(θ0, ·) < ∞
(5) The matrix E∇2ψ(θ0, ·) is positive definite.

Assumption 7: θ0 ∈ int(�).

Remark 1. By Assumption 1 and Equation (2), we have that L(θ) is uniquely minimized at
θ0 and L(θ0) = 0. Therefore, We assume that E∇2ψ(θ0, ·) is positive definite.

Lemma 1. If Assumptions 1–5 hold, then θ̂ → θ0 in probability.

Remark 2. A dominated convergency arguments, combining Assumption 4, shows that
Assumption 5′ is stronger than Assumption 5. The consistency of θ̂ only requires the
continuity of L(θ), needs not the continuity of g(z, ·). Notice that even though g(z, ·) is
discontinuous, L(θ) could be continuous. Thus, this condition for consistency is weaker than
that of Dominguez and Lobato (2004).

Lemma 2. Under Assumptions 1–4, Assumption 5′ , and Assumption 6,

Ln(θ) − Ln(θ0) = 1
2
(θ − θ0)

′
V(θ − θ0) + 1√

n
(θ − θ0)

′
Wn + op(|θ − θ0|2) + op(

1
n
)

uniformly in op(1) neighborhoods of θ0, where 3V = E∇2ψ(θ0, Yi) and Wn = 1√
n

∑
i ∇1ψ

(θ0, Yi)

Applying Theorems 1 and 2 of Sherman (1993), by Lemmas 1, 2 and Equation (A4), we
have:

Lemma 3. Under Assumptions 1–4, Assumption 5′ , and Assumption 6 and 7,
√

n(θ̂ − θ0) = −V−1Wn + op(1)

and thus,
√

n(θ̂ − θ0) −→ N(0, V−1 
 V−1)

in distribution, as n → ∞, where 
 = E∇1ψ(θ0, Yi)∇1ψ(θ0, Yi)
′ .

The following theorem is straightforward by Lemma 2 and Lemma 3.

Theorem 4. Under Assumptions 1–4, Assumption 5′ , and Assumption 6–7, when H0 is true,

W(θ
′
0) −→

q∑
k=1

ckχ
2
1k

in distribution, as n → ∞, where ck are the eigenvalues of V−1/2 
 V−1/2 and χ2
1k are

independent χ2
1 random variables.
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We divide θ into (θ1, θ2), and suppose θ1 is of interest with dimension p, with q ≥ p >

0, and θ2 is a nuisance parameter with dimension q − p. V is partitioned similarly into
submatrices as (

V11 V12
V21 V22

)

Theorem 5. Under Assumptions 1–4, Assumption 5′ , and Assumption 6–7, when Ḣ0 is true,

Ẇ(θ
′
10) −→

p∑
k=1

ckχ
2
1k

in distribution, as n → ∞, where ck are the p positive eigenvalues of G1/2 
 G1/2 with G =
V−1 − diag(0, V−1

22 ) and χ2
1k are independent χ2

1 random variables.

Remark 3. The matrix G1/2 
 G1/2 is non-negative definite and rank(G1/2 
 G1/2) = p.

Remark 4. When p = q, G = V−1, Theorem 5 is reduced to Theorem 4.

Remark 5. By Theorem 4 and Theorem 5, we can use W(θ
′
0) and Ẇ(θ

′
10) to construct

asymptotically valid rejection regions for the parameters of interest.

4. Simulation study

To investigate the performance of the proposed method, we consider the model in Example
2 of Dominguez and Lobato (2004), i.e., E(Y|X) = θ2

0 X + θ0X2 with θ0 = 1.25 and Var(Y|X)

being constant. Here, X ∼ N(1, 1). For the GMM, we adopt the optimal instrument W =
2θX + X2 as proposed in Chamberlain (1987). The parameter θ0 could not be identified for
the GMM, because θ = 1.25 and θ = −3 both satisfy the equation E{(Y−θ2X−θX2)W} = 0.
The null hypothesis is H0: θ = θ0. We could get the reject region for DM-DL test by Theorem
4 for given type I error γ . The reject region for DM-GMM test could also be derived for given
type I error γ .

We consider two sample sizes, i.e., n = 50 and 100. γ is set to 0.01. We generate datasets
when θ is set to be 1.25, −2.9, −1.2, 0.45 and 2.05, respectively. For all experiments, the
number of replications is 1000 for each sample size. Table 1 reports the empirical rejection
probabilities under the null (θ = θ0) and under the alternatives (θ = −2.9, θ = −1.2,
θ = 0.45 and θ = 2.05) for n = 50 and n = 100, respectively. We observe that the empirical
type I errors of the two methods both agree well with the nominal value (i.e., 1%), whereas
the empirical rejections probabilities under the alternative hypotheses based on DM-DL are
larger than those of DM-GMM, respectively. Therefore, under controlling type I error, DM-
DL test performs better than DM-GMM test in terms of power.

5. Conclusions

In this paper, for hypothesis testing of parameter values in the conditional moment restriction
models, we proposed a DM-DL statistic for testing H0 : θ0 = θ

′
0 or test part of θ0. Under the

null hypothesis, we deduce the asymptotical distribution of test statistics as in Theorem 4
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Table 1. Summary of empirical rejection probabilities over 1000 simulations.
θ 1.25 −2.9 −1.2 0.45 2.05

n = 50 DM-GMM 0.006 0.035 0.899 0.965 0.995
DM-DL 0.003 1.000 1.000 1.000 1.000

n = 100 DM-GMM 0.006 0.301 0.998 1.000 1.000
DM-DL 0.004 1.000 1.000 1.000 1.000

(or Theorem 5), via which the rejection region could be derived for the given type I error.
The analysis is routine in the framework of test. In simulation studies, we consider a model,
E(Y|X) = θ2

0 X + θ0X2 with θ0 = 1.25 and Var(Y|X) being constant. The simulation
shows that the power of the DM-DL is larger than that of DM-GMM under the alternative
hypotheses. We could see that the DM-DL statistic is an effective method for hypothesis
testing of parameter values in the conditional moment restriction models.
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Appendix

Proof of Lemma 1. (a) By Assumption 1 and Equation (2), we know that L(θ) is uniquely minimized at
θ0; (b) Assumption 2; (c) Assumption 5.

Simple calculations show that

L(θ) = ES(θ , Yi, Yj, Yl)

I define the 3rd order U-process

U3
nS(θ , ·) = {n(n − 1)(n − 2)}−1

∑
i�=j �=l

S(θ , Yi, Yj, Yl)

By Assumption 4, we can get that

sup
θ

|Ln(θ) − U3
nS(θ , ·)| = Op

(
1
n

)

Moreover, because of Assumption 4, by using Corollary 7 in Sherman (1994), we have

sup
θ

|U3
nS(θ , ·) − L(θ)| = Op

(
1√
n

)

Then, we get easily that

sup
θ

|Ln(θ) − L(θ)| = Op

(
1√
n

)
(A1)

which is stronger than the uniform convergence. Combining (a), (b), (c) and Equation (A1), we obtain
the result by Theorem 2.1 of Newey and McFadden (1994).

Proof of Lemma 2. From Assumption 5′ , we can deduce easily that

sup
θ∈N0

|Ln(θ) − Ln(θ0) − U3
nS∗(θ , ·)| = op

(
1
n

)
(A2)

whereN0 denote the op(1) neighborhoods of θ0 and S∗(θ , Yi, Yj, Yl) := S(θ , Yi, Yj, Yl)−S(θ0, Yi, Yj, Yl).
By Equation (6) of Sherman (1994), we have the decomposition of the U-process U3

nS∗(θ , ·)

U3
nS∗(θ , ·) = L(θ) − L(θ0) + 1

n
∑

i
S∗

1(θ , Yi) + 1
n(n − 1)

∑
i�=j

S∗
2(θ , Yi, Yj) + U3

nS∗
3(θ , ·) (A3)

where S∗
i (θ , ·) is P-degenerate for each θ in �, for i = 1, 2, 3. Note that, here, S∗

1(θ , y) = S∗(θ , y, P, P)+
S∗(θ , P, y, P) + S∗(θ , P, P, y) − 3{L(θ) − L(θ0)}.

Note that E{ψ(θ , ·) − ψ(θ0, ·)} = 3{L(θ) − L(θ0)}. We do the Taylor expansion of ψ(θ , ·) around
θ0, following the standard arguments (see, Sherman 1993) based on Assumption 6, we can get

L(θ) − L(θ0) = 1
2
(θ − θ0)

′
V(θ − θ0) + op(|θ − θ0|2) (A4)

and
1
n

∑
i

S∗
1(θ , Yi) = 1√

n
(θ − θ0)

′
Wn + op(|θ − θ0|2) (A5)
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uniformly over op(1) neighborhoods of θ0, where Wn = 1√
n

∑
i ∇1ψ(θ0, Yi). Moreover, Lemma 6 and

Corollary 8 in Sherman (1994), plus dominated convergence arguments, show that
1

n(n − 1)

∑
i�=j

S∗
2(θ , Yi, Yj) + U3

nS∗
3(θ , ·) = op

(
1
n

)
(A6)

uniformly over op(1) neighborhoods of θ0. Then, the result is established by Equation (A2)–(A6).
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