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Abstract

Neural Ordinary Differential Equations (NODEs) use a neural network to model
the instantaneous rate of change in the state of a system. However, despite their
apparent suitability for dynamics-governed time-series, NODEs present a few
disadvantages. First, they are unable to adapt to incoming data-points, a funda-
mental requirement for real-time applications imposed by the natural direction of
time. Second, time-series are often composed of a sparse set of measurements,
which could be explained by many possible underlying dynamics. NODEs do
not capture this uncertainty. To this end, we introduce Neural ODE Processes
(NDPs), a new class of stochastic processes determined by a distribution over
Neural ODEs. By maintaining an adaptive data-dependent distribution over the
underlying ODE, we show that our model can successfully capture the dynamics
of low-dimensional systems from just a few data-points. At the same time, we
demonstrate that NDPs scale up to challenging high-dimensional time-series with
unknown latent dynamics such as rotating MNIST digits. Code is available online
at https://github.com/crisbodnar/ndp.

1 Background and Formal Problem Statement

Problem Statement We consider modelling random functions F : T → Y , where T = [t0,∞)
represents time and Y ⊂ Rd is a compact subset of Rd. We assume F has a distribution D, induced
by another distribution D′ over some underlying dynamics that govern the time-series. For example,
filming a pendulum, F has a distribution in pixel space which is induced by the distribution of the
pendulum dynamics. Given a specific instantation F of F , let C = {(tCi ,yC

i )}i∈IC be a set of samples
from F with some indexing set IC. We refer to C as the context points, as denoted by the superscript
C. For a given context C, the task is to predict the values {yT

j }j∈IT that F takes at a set of target
times {tTj}j∈IT , where IT is another index set. We call T = {(tTj ,yT

j )} the target set. Additionally
let tC = {ti|i ∈ IC} and similarly define yC, tT and yT. Conventionally, as in Garnelo et al. [5], the
target set forms a superset of the context set and we have C ⊆ T. Optionally, it might also be natural
to consider that the initial time and observation (t0,y0) are always included in C. During training,
we let the model learn from a dataset of (potentially irregular) time-series sampled from F . We are
interested in learning the underlying distribution over the dynamics as well as the induced distribution
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Figure 1: Schematic diagram of Neural ODE Processes. Left: Observations from a time series, the
context set , are encoded and aggregated to form r which parametrises the latent variables D and L0.
Middle: A sample is drawn from L0 and D, initialising and conditioning the ODE, respectively. Each
sample produces a plausible, coherent trajectory. Right: Predictions at a target time, tTi , are made by
decoding the state of the ODE, l(tTi ) together with tTi . An example is shown with the connected
from the ODE position plot to the Predictions plot. Middle & right: the bold lines in each plot refer
to the same sample, fainter lines to other samples. All: The plots are illustrations only.

over functions. We note that when the dynamics are not latent and manifest directly in the observation
space Y , the distribution over ODE trajectories and the distribution over functions coincide.

Neural ODEs NODEs are a class of models that parametrize the velocity ż of a state z with the
help of a neural network ż = fθ(z, t). Given the initial time t0 and target time tTi , NODEs predict
the corresponding state ŷT

i by performing the following integration and decoding operations:

z(t0) = h1(y0), z(tTi ) = z(t0) +

∫ tT
i

t0

fθ(z(t), t)dt, ŷT
i = h2(z(tTi )), (1)

where h1 and h2 can be neural networks. When the dimensionality of z is greater than that of
y and h1, h2 are linear, the resulting model is an Augmented Neural ODE [4] with input layer
augmentation [7]. The extra dimensions offer the model additional flexibility as well as the ability to
learn higher-order dynamics [8].

Neural Processes (NPs) NPs [5] model a random function F : T → Y , where in general T ⊆ Rd1
and Y ⊆ Rd2 . The NP represents a given instantiation F of F through the global latent variable
z, which parametrises the variation in F . Thus, we have F(ti) = g(ti, z). For a given context set
C = {(tC

i ,y
C
i )} and target set t1:n, y1:n, the generative process is given by:

p(y1:n, z|t1:n,C) = p(z|C)

n∏
i=1

N (yi|g(ti, z), σ2), (2)

where p(z) is chosen to be a multivariate standard normal distribution and y1:n is a shorthand for the
sequence (y1, . . . ,yn). The model can be trained using an amortised variational inference procedure
that naturally gives rise to a permutation-invariant encoder qθ(z|C), which stores the information
about the context points. Conditioned on this information, the decoder g(t, z) can make predictions
at any input location t. We note that while the domain T of the random function F is arbitrary, in
this work we are interested only in stochastic functions with domain on the real line (time-series).
Therefore, from here we use a scalar variable t, instead of t. The output y remains the same.

2 Neural ODE Processes

Model Overview We introduce Neural ODE Processes (NDPs), a class of dynamics-based models
that learn to approximate random functions defined over time. To that end, we consider an NP whose
context is used to determine a distribution over ODEs. Concretely, the context infers a distribution
over the initial position (and optionally – the initial velocity) and, at the same time, stochastically
controls its derivative function. The positions given by the ODE trajectories at any time tTi are then
decoded to give the predictions. In what follows, we offer a detailed description of each component
of the model. A schematic of the model can be seen in Figure 1.
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2.1 Generative Process

Figure 2: Graphical model
of NDPs. The dark nodes
denote observed random vari-
ables, while the light nodes de-
note hidden random variables.
IC and IT represent the index-
ing sets for the context and tar-
get points, respectively. Full
arrows show the generative
process. Dotted arrows indi-
cate inference.

We first describe the generative process behind NDPs. A graphical
model perspective of this process is also included in Figure 2.

Encoder and Aggregator Consider a given context set C =
{(tCi ,yC

i )}i∈IC of observed points. We encode this context into
two latent variables L0 ∼ qL(l(t0)|C) and D ∼ qD(d|C), rep-
resenting the initial state and the global control of an ODE, re-
spectively. To parametrise the distribution of the latter variable,
the NDP encoder produces a representation ri = fe((t

C
i ,y

C
i )) for

each context pair (tCi ,y
C
i ). The function fe is as a neural network,

fully connected or convolutional, depending on the nature of y.
An aggregator combines all the representations ri to form a global
representation, r, that parametrises the distribution of the global
latent context, D ∼ qD(d|C) = N

(
d|µD(r),diag(σD(r))

)
. As

the aggregator must preserve order invariance, we choose to take the
element-wise mean. The distribution of L0 might be parametrised
identically as a function of the whole context by qL(l(t0)|C), and,
in particular, if the initial observation y0 is always known, then
qL(l(t0)|C) = qL(l(t0)|y0) = N

(
l(t0)|µL(y0),diag(σL(y0))

)
.

Latent ODE To obtain a distribution over functions, we are in-
terested in capturing the dynamics that govern the time-series and
exploiting the temporal nature of the data. To that end, we allow the
latent context to evolve according to a Neural ODE [2] with initial
position L0 and controlled by D. These two random variables fac-
torise the uncertainty in the underlying dynamics into an uncertainty
over the initial conditions (given by L0) and an uncertainty over the
ODE derivative, given by D.

By using the target times, tT1:n = (tT1, ..., t
T
N ), the latent state at a

given time is found by evolving a Neural ODE:

l(tTi ) = l(t0) +

∫ tT
i

t0

fθ(l(t),d, t)dt, (3)

where fθ is a neural network that models the derivative of l. As explained above, we allow d to
modulate the derivative of this ODE by acting as a global control signal. Ultimately, for fixed initial
conditions, this results in an uncertainty over the ODE trajectories.

Decoder To obtain a prediction at a time tTi , we decode the latent state of the ODE at time tTi , given
by l(tTi ). Assuming that the outputs are noisy, for a given sample l(tTi ) from this stochastic state, the
decoder g produces a distribution over Y T

ti ∼ p
(
yT
i |g(l(tTi ), t

T
i )
)

parametrised by the decoder output.
Concretely, for regression tasks, we take the target output to be normally distributed with constant (or
optionally learned) variance Y T

ti ∼ N
(
yT
i |g(l(tTi ), t

T
i ), σ

2
)
. When Y T

ti is a random vector formed of
independent binary random variables (e.g. a black and white image), we use a Bernoulli distribution
Y T
ti ∼

∏dim(Y )
j=1 Bernoulli

(
g(l(tTi ), t

T
i )j
)
.

Putting everything together, for a set of observed context points C, the generative process of NDPs is
given by the expression below, where we emphasise once again that l(ti) also implicitly depends on
l(t0) and d.

p(y1:n, l(t0),d|t1:n,C) = p
(
l(t0)|C

)
p(d|C)

n∏
i=1

p
(
yi|g(l(ti), ti)

)
, (4)

We remark that NDPs generalise NPs defined over time. If the latent NODE learns the trivial
velocity fθ(l(t),d, t) = 0, the random state L(t) = L0 remains constant at all times t. In this case,
the distribution over functions is directly determined by L0 ∼ p(l(t0)|C), which substitutes the
random variable Z from a regular NP. For greater flexibility, the control signal d can also be supplied

3



Target

Context

NP

NDP
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Figure 3: Predictions on the test set of Variable Rotating MNIST. NDP is able to extrapolate beyond
the training time range whereas NP cannot even learn to reconstruct the digit.

to the decoder g(l(t),d, t). This shows that, in principle, NDPs are at least as expressive as NPs.
Therefore, NDPs could be a sensible choice even in applications where the time-series are not solely
determined by some underlying dynamics, but are also influenced by other generative factors.

2.2 Learning and Inference

Since the true posterior is intractable because of the highly non-linear generative process, the model
is trained using an amortised variational inference procedure. The variational lower-bound on the
probability of the target values given the known context log p(yT|tT, yC) is as follows:

E
q
(
l(t0),d|tT,yT

)[∑
i∈IT

log p(yi|l(t0),d, ti) + log
qL(l(t0)|tC, yC)

qL(l(t0)|tT, yT)
+ log

qD(d|tC, yC)

qD(d|tT, yT)

]
, (5)

where qL, qD give the variational posteriors (the encoders described in Section 2.1). The full
derivation can be found in Appendix E. We use the reparametrisation trick to backpropagate the
gradients of this loss. During training, we sample random contexts of different sizes to allow the
model to become sensitive to the size of the context and the location of its points. We train using
mini-batches composed of multiple contexts. For that, we use an extended ODE that concatenates the
independent ODE states of each sample in the batch and integrates over the union of all the times in
the batch [9]. Pseudo-code for this training procedure is also given in Appendix F.

3 Experiments

To test our model on high-dimensional time-series with latent dynamics, we consider the rotating
MNIST digits [1, 12]. In the original task, samples of digit “3” start upright and rotate once over
16 frames (= 360◦s−1) (i.e. constant angular velocity, zero angular shift). However, since we
are interested in time-series with variable latent dynamics and increased variability in the initial
conditions as in our formal problem statement, we consider a more challenging version of the task.
In our adaptation, the angular velocity varies between samples in the range (360◦ ± 60◦)s−1 and
each sample starts at a random initial rotation. To induce some irregularity in each time-series in
the training dataset, we remove five randomly chosen time-steps (excluding the initial time t0) from
each time-series. Overall, we generate a dataset with 1, 000 training time-series, 100 validation
time-series and 200 test time-series, each using disjoint combinations of different calligraphic styles
and dynamics. We compare NPs and NDPs using identical convolutional networks for encoding
the images in the context. We assume that the initial image y0 (i.e. the image at t0) is always
present in the context. As such, for NDPs, we compute the distribution of L0 purely by encoding
y0 and disregarding the other samples in the context, as described in Section 2. We train the NP for
500 epochs and use the validation set error to checkpoint the best model for testing. We follow a
similar procedure for the NDP model but, due to the additional computational load introduced by the
integration operation, only train for 50 epochs.

In Figure 3, we include the predictions offered by the two models on a time-series from the test dataset,
which was not seen in training by either of the models. Despite the lower number of epochs they are
trained for, NDPs are able to interpolate and even extrapolate on the variable velocity MNIST dataset,
while also accurately capturing the calligraphic style of the digit. NPs struggle on this challenging
task and are unable to produce anything resembling the digits. In order to better understand this wide
performance gap, we also train in Appendix J.3 the exact same models on the easier Rotating MNIST
task from Çağatay Yıldız et al. [12] where the angular velocity and initial rotation are constant. In
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this setting, the two models perform similarly since the NP model can rely on simple interpolations
without learning any dynamics.

4 Conclusion

We introduce Neural ODE Processes (NDPs), a new class of stochastic processes suitable for
modelling data-adaptive stochastic dynamics. First, NDPs tackle the two main problems faced
by Neural ODEs applied to dynamics-governed time series: adaptability to incoming data points
and uncertainty in the underlying dynamics when the data is sparse and, potentially, irregularly
sampled. Second, they add an explicit treatment of time as an additional inductive bias inside Neural
Processes. To do so, NDPs include a probabilistic ODE as an additional encoded structure, thereby
incorporating the assumption that the time-series is the direct or latent manifestation of an underlying
ODE. Furthermore, NDPs maintain the scalability of NPs to large inputs. We evaluate our model
on a high-dimensional problem – the rotating MNIST digits. Our method exhibits superior training
performance when compared with NPs, yielding a lower loss in fewer iterations. We find that when
there is a fundamental ODE governing the dynamics, NDPs perform well.
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A Running Time Complexity

For a model with n context points and m target points, an NP has running time complexity O(n+m),
since the model only has to encode each context point and decode each target point. However, a
Neural ODE Process has added complexity due to the integration process. Firstly, the integration
itself has runtime complexity O(NFE), where NFE is the number of function evaluations. In turn, the
worst-case NFE depends on the minimum step size δ the ODE solver has to use and the maximum
integration time we are interested in, which we denote by ∆tmax. Secondly, for settings where the
target times are not already ordered, an additional O

(
m log(m)

)
term is added for sorting them. This

ordering is required by the ODE solver.

Therefore, given that m ≥ n and assuming a constant ∆tmax exists, the worst-case complexity
of NDPs is O

(
m log(m)

)
. For applications where the times are already sorted (e.g. real-time

applications), the complexity falls back to the original O
(
n+m

)
. In either case, NDPs scale well

with the size of the input. We note, however, that the integration steps ∆tmax/δ could result in a
very large constant, hidden by the big-O notation. Nonetheless, modern ODE solvers use adaptive
step sizes that adjust to the data that has been supplied and this should alleviate this problem. In
our experiments, when sorting is used, we notice the NDP models are between 1 and 1.5 orders of
magnitude slower to train than NPs in terms of wall-clock time. At the same time, this limitation of
the method is traded-off by a significantly faster loss decay per epoch and superior final performance.
We provide a table of time ratios from our 1D experiments, from Appendix C.1, in Appendix G.

B Model Variations

Here we present the different ways to implement the model. The majority of the variation is in the
architecture of the decoder. However, it is possible to vary the encoder such that fe((tCi ,y

C
i )) can be

a multi-layer-perceptron, or additionally contain convolutions.

Neural ODE Process (NDP) In this setup the decoder is an arbitrary function g(l(tTi ),d, t
T
i ) of the

latent position at the time of interest, the control signal, and time. This type of model is particularly
suitable for high-dimensional time-series where the dynamics are fundamentally latent. The inclusion
of d in the decoder offers the model additional flexibility and makes it a good default choice for most
tasks.

Second Order Neural ODE Process (ND2P) This variation has the same decoder architecture as
NDP, however the latent ODE evolves according to a second order ODE. The latent state, l, is split
into a “position”, l1 and “velocity”, l2, with l̇1 = l2 and l̇2 = fθ(l1, l2,d, t). This model is designed
for time-series where the dynamics are second-order, which is often the case for physical systems
[8, 12].

NDP Latent-Only (NDP-L) The decoder is a linear transformation of the latent state g(l(tTi )) =
W (l(tTi )) + b. This model is suitable for the setting when the dynamics are fully observed (i.e.
they are not latent) and, therefore, do not require any decoding. This would be suitable for simple
functions generated by ODEs, for example, sines and exponentials. This decoder implicitly contains
information about time and d because the ODE evolution depends on these variables as described in
Equation 3.

ND2P Latent-Only (ND2P-L) This model combines the assumption of second-order dynamics
with the idea that the dynamics are fully observed. The decoder is a linear layer of the latent state as
in NDP-L and the phase space dynamics are constrained as in ND2P.

C Low-dimensional experiments

To test the proposed advantages of NDPs we carried out various experiments on time series data. For
the low-dimensional experiments in Sections C.1 and C.2, we use an MLP architecture for the encoder
and decoder. For the high-dimensional experiments in Section 3, we use a convolutional architecture
for both. We train the models using RMSprop [10] with learning rate 1× 10−3. Additional model
and task details can be found in Appendices I and J, respectively.
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Figure 4: We present example posteriors of trained models and the loss during training of the NP and
NDP models for the sine data. We find that NDPs are able to produce a greater range of functions
when a single context point is provided, and a sharper, better targeted range as more points in the time
series are observed. Quantitatively, NDPs train to a lower loss in fewer epochs, as may be expected
for functions that are generated by ODEs. Both models were trained for 30 epochs.

C.1 One Dimensional Regression

We begin with a set of 1D regression tasks of differing complexity—sine waves, exponentials, straight
lines and damped oscillators—that can be described by ODEs. For each task, the functions are
determined by a set of parameters (amplitude, shift, etc.) with pre-defined ranges. To generate
the distribution over functions, we sample these parameters from a uniform distribution over their
respective ranges. We use 490 time-series for training and evaluate on 10 separate test time-series.
Each series contains 100 points. We repeat this procedure across 5 different random seeds to compute
the standard error. Additional details can be found in Appendix J.1.

The left and middle panels of Figure 4 show how NPs and NDPs adapt on the sine task to incoming
data points. When a single data-point has been supplied, NPs have incorrectly collapsed the distribu-
tion over functions to a set of almost horizontal lines. NDPs, on the other hand, are able to produce
a wide range of possible trajectories. Even when a large number of points have been supplied, the
NP posterior does not converge on a good fit, whereas NDPs correctly capture the true sine curve.
In the right panel of Figure 4, we show the test-set MSE as a function of the training epoch. It can
be seen that NDPs train in fewer iterations to a lower test loss despite having approximately 10%
fewer parameters than NPs. We conducted an ablation study, training all model variants on all the 1D
datasets, with final test MSE losses provided in Table 1 and training plots in Appendix J.1.

We find that NDPs either strongly outperform NPs (sine, linear), or their standard errors overlap
(exponential, oscillators). For the exponential and harmonic oscillator tasks, where the models
perform similarly, many points are close to zero in each example and as such it is possible to achieve
a low MSE score by producing outputs that are also around zero. In contrast, the sine and linear
datasets have a significant variation in the y-values over the range, and we observe that NPs perform
considerably worse than the NDP models on these tasks.

The difference between NDP and the best of the other model variants is not significant across the
set of tasks. As such, we consider only NDPs for the remainder of the paper as this is the least
constrained model version: they have unrestricted latent phase-space dynamics, unlike the second-
order counterparts, and a more expressive decoder architecture, unlike the latent-only variants. In
addition, NDPs train in a faster wall clock time than the other variants, as shown in Appendix G.

Active Learning We perform an active learning experiment on the sines dataset to evaluate both the
uncertainty estimates produced by the models and how well they adapt to new information. Provided
with an initial context point, additional points are greedily queried according to the model uncertainty.
Higher quality uncertainty estimation and better adaptation will result in more information being
acquired at each step, and therefore a faster and greater reduction in error. As shown in Figure 5,
NDPs also perform better in this setting.

C.2 Predator-Prey Dynamics

The Lotka-Volterra Equations are used to model the dynamics of a two species system, where one
species predates on the other. The populations of the prey, u, and the predator, v, are given by
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Figure 5: Active learning on the sines dataset. Left: NPs querying the points of highest uncertainty.
Middle: NDPs querying the points of highest uncertainty, qualitatively it outperforms NPs. Right:
MSE plots of four different querying regimes, NPs and NDPs looking actively and randomly, NDP
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Table 1: Final MSE Loss on 1D regression tasks with standard error (lower is better). Bold indicates
that the model performance is within error at the 95% confidence level, with underline indicating the
best estimate for top-performer. NPs perform similarly to NDPs and their variants on the exponential
and oscillator tasks, where y-values are close to zero. For the sine and linear tasks, where y values
vary significantly over the time range, NPs perform worse than NDPs and their variants.

MSE ×10−2
Model Sine Linear Exponential Oscillators
NP 5.93 ± 0.96 5.85 ± 0.70 0.29 ± 0.03 0.64 ± 0.06
NDP 2.09 ± 0.12 3.76 ± 0.32 0.31 ± 0.08 0.72 ± 0.08
ND2P 2.75 ± 0.19 4.37 ± 1.14 0.25 ± 0.04 0.55 ± 0.03
NDP-L 2.51 ± 0.24 4.77 ± 0.67 0.40 ± 0.04 0.72 ± 0.04
ND2P-L 2.64 ± 0.30 3.16 ± 0.46 0.39 ± 0.05 0.66 ± 0.03

the differential equations u̇ = αu − βuv, v̇ = δuv − γv, for positive real parameters, α, β, δ, γ.
Intuitively, when prey is plentiful, the predator population increases (+δuv), and when there are
many predators, the prey population falls (−βuv). The populations exhibit periodic behaviour, with
the phase-space orbit determined by the conserved quantity V = δu− γ ln(u) + βv − α ln(v). Thus
for any predator-prey system there exists a range of stable functions describing the dynamics, with
any particular realisation being determined by the initial conditions, (u0, v0). We consider the system
(α, β, γ, δ) = (2/3, 4/3, 1, 1).

We generate sample time-series from the Lotka Volterra system by considering different starting
configurations; (u0, v0) = (2E,E), where E is sampled from a uniform distribution in the range
(0.25, 1.0). The training set consists of 40 such samples, with a further 10 samples forming the test
set. As before, each time series consists of 100 time samples and we evaluate across 5 different
random seeds to obtain a standard error.

We find that NDPs are able to train in fewer epochs to a lower loss (Appendix J.2). We record final
test MSEs (×10−2) at 44±4 for the NPs and 15±2 for the NDPs. As in the 1D tasks, NDPs perform
better despite having a representation r and context z with lower dimensionality, leading to 10%
fewer parameters than NPs. Figure 6 presents these advantages for a single time series.

D Stochastic Process Proofs

Before giving the proofs, we state the following important Lemma.
Lemma D.1. As in NPs, the decoder output g(l(t), t) can be seen as a function F(t) for a given
fixed l(t0) and d.

Proof. This follows directly from the fact that l(t) = l(t0) +
∫ T
t0
fθ(l(t), t,d)dt can be seen as a

function of t and that the integration process is deterministic for a given pair l(t0) and d (i.e. for
fixed initial conditions and control).
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Figure 6: NPs and NDPs on the Lotka-Volterra task. Black is used for targets or ground truth, solid
lines for mean predictions over 50 samples, and dashed lines for sample trajectories. In the left and
middle plots, the shaded regions show the min-max range over 50 samples, in the right plot the
shaded region was produced using kernel density estimation. Left: NPs are less able to model the
dynamics, diverging from the ground truth even in regions with dense context sampling, whereas
the NDP is both more accurate and varies more appropriately. Middle: Plotting the theoretically
conserved quantity V better exposes how the models deviate from the ground truth Right: In phase
space (u, v) the NDP is more clearly seen to better track the ground truth.

Proposition D.1 NDPs satisfy the exchangeability condition.

Proof. This follows directly from Lemma D.1, since any permutation on t1:n would automatically
act on F1:n and consequently on p(y1:n, l(t0),d|t1:n), for any given l(t0),d.

Proposition D.2 NDPs satisfy the consistency condition.

Proof. Based on Lemma D.1 we can write the joint distribution (similarly to a regular NP) as follows:

ρt1:n(y1:n) =

∫
p(F)

n∏
i=1

p(yi|F(ti))dF . (6)

Because the density of any yi depends only on the corresponding ti, integrating out any subset of
y1:n gives the joint distribution of the remaining random variables in the sequence. Thus, consistency
is guaranteed.

E ELBO Derivation

As noted in Lemma D.1, the joint probability p(y, l(t0),d|t) = p(l(t0))p(d)p(y|g(l(t),d, t)) can
still be seen as a function that depends only on t, since the ODE integration process is deterministic
for a given l(t0) and d. Therefore, the ELBO derivation proceeds as usual [5]. For convenience, let
z = (l(t0),d) denote the concatenation of the two latent vectors and q(z) = qL(l(t0))qD(d). First,
we derive the ELBO for log p(yT|tT).

log p(yT|tT) = DKL

(
q(z|tT, yT)‖p(z|tT, yT)

)
+ LELBO (7)

≥ LELBO = Eq(z|tT,yT)

[
− log q(z|tT, yT) + log p(yT, z|tT)

]
(8)

= −Eq(z|tT,yT) log q(z|tT, yT) + Eq(z|tT,yT)

[
log p(z) + log p(yT|tT, z)

]
(9)

= Eq(z|tT,yT)

[∑
i∈IT

log p(yi|z, ti) + log
p(z)

q(z|tT, yT)

]
(10)

Noting that at training time, we want to maximise log p(yT|tT, yC). Using the derivation above, we
obtain a similar lower-bound, but with a new prior p(z|tC, yC), updated to reflect the additional
information supplied by the context.

log p(yT|tT, yC) ≥ Eq(z|tT,yT)

[∑
i∈IT

log p(yi|z, ti) + log
p(z|tC, yC)

q(z|tT, yT)

]
(11)
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If we approximate the true p(z|tC, yC) with the variational posterior, this takes the final form

log p(yT|tT, yC) ≥ Eq(z|tT,yT)

[∑
i∈IT

log p(yi|z, ti) + log
q(z|tC, yC)

q(z|tT, yT)

]
(12)

Splitting z = (l(t0),d) back into its constituent parts, we obtain the loss function

E
q
(
l(t0),d|tT,yT

)[∑
i∈IT

log p(yi|l(t0),d, ti) + log
qL(l(t0)|tC, yC)

qL(l(t0)|tT, yT)
+ log

qD(d|tC, yC)

qD(d|tT, yT)

]
. (13)

F Learning and Inference Procedure

We include below the pseudocode for training NDPs. For clarity of exposition, we give code for a
single time-series. However, in practice, we batch all the operations in lines 6− 15.

Algorithm 1: Learning and Inference in Neural ODE Processes
Input :A dataset of time-series {Xk}, k ≤ K, where K is the total number of time-series

1 Initialise NDP model with parameters θ
2 Let m be the number of context points and n the number of extra target points
3 for i← 0 to training_steps do
4 Sample m from U[min_context_points, max_context_points]
5 Sample n from U[min_extra_target_points, max_extra_target_points]
6 Uniformly sample a time-series Xk

7 Uniformly sample from Xk the target points T = (tT, yT), where tT is the time batch with
shape (m+ n, 1) and yT is the corresponding outputs batch with shape (m+ n, dim(y))

8 Extract the (unordered) context set C = T[0 : m]
9 Compute q(l(t0),d|C) using the variational encoder

10 Compute q(l(t0),d|T) using the variational encoder
// During training, we sample from q(l(t0),d|T)

11 Sample l(t0),d from q(l(t0),d|T)
12 Integrate to compute l(t) as in Equation 3 for all times t ∈ tT
13 foreach time t ∈ tT do
14 Use decoder to compute p(y(t)|g(l(t)), t)

15 Compute loss LELBO based on Equation 5
16 θ ←− θ − α∇θLELBO

It is worth highlighting that during training we sample l(t0),d from the target-conditioned posterior,
rather than the context-conditioned posterior. In contrast, at inference time we sample from the
context-conditioned posterior.

G Wall Clock Training Times

To explore the additional term in the runtime given in Section A, we record the wall clock time for
each model to train for 30 epochs on the 1D synthetic datasets, over 5 seeds. Then we take the ratio
of a given model and the NP. The experiments were run on an Nvidia Titan XP. The results can be
seen in Table 2.

H Size of Latent ODE

To investigate how many dimensions the ODE l should have, we carry out an ablation study, looking
at the performance on the 1D sine dataset. We train models with l-dimension {1, 2, 5, 10, 15, 20} for
30 epochs. Figure 7 shows training plots for dim(l) = {1, 2, 10, 20}, and final MSE values are given
in Table 3.

We see that when dim(l) = 1, NDPs are slow to train and require more epochs. This is because
sine curves are second-order ODEs, and at least two dimensions are required to learn second-order
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Table 2: Table of ratios, of Neural ODE Process and Neural Process training times on different 1D
synthetic datasets. We see that NDP/NP is the lowest (i.e. fastest) in each case.

Time Ratios Sine Exponential Linear Oscillators
NDP/NP 22.1 ± 0.9 23.6 ± 0.9 10.9 ± 1.4 22.2 ± 2.3
ND2P/NP 55.2 ± 6.3 32.4 ± 1.5 14.2 ± 0.3 35.8 ± 0.7
NDP-L/NP 55.2 ± 6.2 47.5 ± 18.0 14.7 ± 1.5 25.3 ± 0.5
ND2P-L/NP 43.7 ± 1.9 27.9 ± 1.1 15.1 ± 1.6 32.8 ± 1.1

NP Training Time /s 22.4 ± 0.2 45.5 ± 0.3 100.9 ± 0.3 23.2 ± 0.4
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Figure 7: Training plots of NDP with ODEs of different sizes, training on the sine dataset. We see
that for dim(l) = 1, the model trains slowly, as would be expected for a sine curve where at least 2
dimensions are needed to learn second order and test performance is close to the standard NP. The
other models train at approximately the same rate.

dynamics (one for the position and one for the velocity). When dim(l) = 1, NDPs perform similarly
to NPs, which is expected when the latent ODE is unable to capture the underlying dynamics. We
then see that for all other dimensions, NDPs train at approximately the same rate (over epochs)
and have similar final MSE scores. As the dimension increases beyond 10, the test MSE increases,
indicating overfitting.

I Architectural Details

For the experiments with low dimensionality (1D, 2D), the architectural details are as follows:

• Encoder: [ti, yi] −→ ri: Multilayer Perceptron, 2 hidden layers, ReLU activations.

• Aggregator: r1:n −→ r: Taking the mean.

• Representation to Hidden: r −→ h: One linear layer followed by ReLU.

• Hidden to L0 Mean: h −→ µL: One linear layer.

• Hidden to L0 Variance: h −→ σL: One linear layer, followed by sigmoid, multiplied by
0.9 add 0.1, i.e. σL = 0.1 + 0.9× sigmoid(Wh + b).

• Hidden to D Mean: h −→ µD: One linear layer.

• Hidden to D Variance: h −→ σD: One linear layer, followed by sigmoid, multiplied by 0.9
add 0.1, i.e. σD = 0.1 + 0.9× sigmoid(Wh + b).

• ODE Layers: [l,d, t] −→ l̇: Multilayer Perceptron, two hidden layers, tanh activations.

• Decoder: g(l(tTi ),d, t
T
i ) −→ yT

i , for the NDP model and ND2P described in section B, this
function is a linear layer, acting on a concatenation of the latent state and a function of
l(tTi ), d, and tTi . g(l(tTi ),d, t

T
i ) = W (l(tTi )||h(l(tTi ),d, t

T
i )) + b. Where h is a Multilayer

Perceptron with two hidden layers and ReLU activations.

For the high-dimensional experiments (Rotating MNIST).
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Table 3: Final MSE values for NDPs training on the sine dataset with different sized ODEs, with NP
performance included for reference. Peak performance is found when dim(l) = 2, which is to be
expected as the true dynamics are 2-dimensional. For dim(l) = 1, the MSE is highest, and within
error of the NP. Performance degrades with increasing dim(l), with overfitting becoming a problem
for dim(l) = 20.

l-dimension MSE ×10−2 Training Times /s
NP 5.9 ± 0.9 22.4 ± 0.2

1 5.6 ± 1.3 299.7 ± 20.5
2 1.7 ± 0.1 413.8 ± 52.9
5 2.2 ± 0.2 414.8 ± 13.1
10 2.1 ± 0.1 496.7 ± 20.5
15 2.6 ± 0.2 618.0 ± 30.7
20 3.1 ± 0.3 652.0 ± 38.8

• Encoder: [ti, yi] −→ ri: Convolutional Neural Network, 4 layers with 16, 32, 64, 128
channels respectively and kernel size of 5, stride 2. ReLU activations. Batch normalisation.

• Aggregator: r1:n −→ r: Taking the mean.
• Representation to D Hidden: r −→ hD: One linear layer followed by ReLU.
• D Hidden to D Mean: hD −→ µD: One linear layer.
• D Hidden to D Variance: hD −→ σD: One linear layer, followed by sigmoid, multiplied

by 0.9 add 0.1, i.e. σD = 0.1 + 0.9× sigmoid(WhD + b).
• y0 to L0 Hidden: y0 −→ hL: Convolutional Neural Network, 4 layers with 16, 32, 64, 128

channels respectively and kernel size of 5, stride 2. ReLU activations. Batch normalisation.
• L0 Hidden to L0 Mean: hL −→ µL: One linear layer.
• L0 Hidden to L0 Variance: hL −→ σL: One linear layer, followed by sigmoid, multiplied

by 0.9 add 0.1, i.e. σL = 0.1 + 0.9× sigmoid(WhL + b).

• ODE Layers: [l,d, t] −→ l̇: Multilayer Perceptron, two hidden layers, tanh activations.
• Decoder: g(l(tTi )) −→ yT

i : 1 linear layer followed by a 4 layer transposed Convolutional
Neural Network with 32, 128, 64, 32 channels respectively. ReLU activations. Batch
normalisation.

J Task Details and Additional Results

J.1 One Dimensional Regression

We carried out an ablation study over model variations on various 1D synthetic tasks—sines, expo-
nentials, straight lines and harmonic oscillators. Each task is based on some function described by a
set of parameters that are sampled over to produce a distribution over functions. In every case, the
parameters are sampled from uniform distributions. A trajectory example is formed by sampling
from the parameter distributions and then sampling from that function at evenly spaced timestamps, t,
over a fixed range to produce 100 data points (t, y). We give the equations for these tasks in terms of
their defining parameters and the ranges for these parameters in Table 4.

To test after each epoch, 10 random context points are taken, and then the mean-squared error and
negative log probability are calculated over all the points (not just a subset of the target points). Each
model was trained 5 times on each dataset (with different weight initialisation). We used a batch size
of 5, with context size ranging from 1 to 10, and the extra target size ranging from 0 to 5.2 The results
are presented in Figure 8.

All models perform better than NPs, with fewer parameters (approximately 10% less). Because
there are no significant differences between the different models, we use NDP in the remainder of

2As written in the problem statement in section 1, we make the context set a subset of the target set when
training. So we define a context size range and an extra target size range for each task.
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Task Form a b t # train # test
Sines y = a sin(t− b) (−1, 1) (− 1/2, 1/2) (−π, π) 490 10
Exponentials y = a/60× exp(t− b) (−1, 1) (− 1/2, 1/2) (−1, 4) 490 10
Straight lines y = at+ b (−1, 1) (− 1/2, 1/2) (0, 5) 490 10
Oscillators y = a sin(t− b) exp(− t/2) (−1, 1) (− 1/2, 1/2) (0, 5) 490 10

Table 4: Task details for 1D regression. a and b are sampled uniformly at random from the given
ranges. t is sampled at 100 regularly spaced intervals over the given range. 490 training examples
and 10 test examples were used in every case.

the experiments, because it has the fewest model restrictions. The phase space dynamics are not
restricted like its second-order variant, and the decoder has a more expressive architecture than the
latent-only variants. It also trains the fastest in wall clock time seen in Appendix G.

J.2 Lotka-Volterra System

To generate samples from the Lotka Volterra system, we sample different starting configurations,
(u0, v0) = (2E,E), where E is sampled from a uniform distribution in the range (0.25, 1.0). We
then evolve the Lotka Volterra system

du

dt
= αu− βuv, dv

dt
= δuv − γv. (14)

using (α, β, γ, δ) = (2/3, 4/3, 1, 1). This is evolved from t = 0 to t = 15 and then the times are
rescaled by dividing by 10.

The training for the Lotka-Volterra system can be seen in Figure 9. This was taken across 5 seeds,
with a training set of 40 trajectories, 10 test trajectories and batch size 5. We use a context size
ranging from 1 to 100, and extra target size ranging from 0 to 45. The test context size was fixed at
90 query times. NDPs train slightly faster with lower loss, as expected.

J.3 Rotating MNIST & Additional Results

To better understand what makes vanilla NPs fail on our Variable Rotating MNIST from Section
3, we train the exact same models on the simpler Rotating MNIST dataset [12]. In this dataset, all
digits start in the same position and rotate with constant velocity. Additionally, the fourth rotation is
removed from all the time-series in the training dataset. We follow the same training procedure as in
Section 3.

We report in Figure 10 the predictions for the two models on a random time-series from the validation
dataset. First, NPs and NDPs perform similarly well at interpolation and extrapolation within the
time-interval used in training. As an exception but in agreement with the results from ODE2VAE,
NDPs produces a slightly better reconstruction for the fourth time step in the time-series. Second,
neither model is able to extrapolate the dynamics beyond the time-range seen in training (i.e. the last
five time-steps).

Overall, these observations suggest that for the simpler RotMNIST dataset, explicit modelling of the
dynamics is not necessary and the tasks can be learnt easily by interpolating between the context
points. And indeed, it seems that even NDPs, which should be able to learn solutions that extrapolate,
collapse on these simpler solutions present in the parameter space, instead of properly learning the
desired latent dynamics. A possible explanation is that the Variable Rotating MNIST dataset can be
seen as an image augmentation process which makes the convolutional features to be approximately
rotation equivariant. In this way, the NDP can also learn rotation dynamics in the spatial dimensions
of the convolutional features.

Finally, in Figure 11, we plot the reconstructions of different digit styles on the test dataset of Variable
Rotating MNIST. This confirms that NDPs are able to capture different calligraphic styles.
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Figure 8: Training model variants on 1D synthetic datasets. NPs train slower in all cases. All Neural
ODE Process variants train approximately at the same rate. With the latent-only variants performing
slightly worse than the more expressive model variants. Additionally, ND2P performs slightly better
than NDP on the damped oscillator and linear sets, because they are naturally easier to learn as
second-order ODEs.

J.4 Handwritten Characters

The CharacterTrajectories dataset consists of single-stroke handwritten digits recorded using
an electronic tablet [3, 11]. The trajectories of the pen tip in two dimensions, (x, y), are of varying
length, with a force cut-off used to determine the start and end of a stroke. We consider a reduced
dataset, containing only letters that were written in a single stroke, this disregards letters such as
“f”, “i” and “t”. Whilst it is not obvious that character trajectories should follow an ODE, the related
Neural Controlled Differential Equation (NCDEs) model has been applied successfully to this task
[6]. We train with a training set with 49600 examples, a test set with 400 examples and a batch size
of 200. We use a context size ranging between 1 and 100, an extra target size ranging between 0 and
100 and a fixed test context size of 20. We visualise the training of the models in Figure 12 and the
models plotting posteriors in Figure 13.
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Figure 9: Training NP and NDP on the Lotka-Volterra equations. Due to the additional encoding
structure of NDP, it can be seen that NDPs train in fewer iterations, to a lower loss than NPs.
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Figure 10: Predictions on the simpler Rotating MNIST dataset. NPs are also able to perform well on
this task, but NDPs are not able to extrapolate beyond the maximum training time.

We observe that NPs and NDPs are unable to successfully learn the time series as well as NCDEs.
We record final test MSEs (×10−1) at 4.6± 0.1 for NPs and a slightly lower 3.4± 0.1 for NDPs. We
believe the reason is because handwritten digits do not follow an inherent ODE solution, especially
given the diversity of handwriting styles for the same letter. We conjecture that Neural Controlled
Differential Equations were able to perform well on this dataset due to the control process. Controlled
ODEs follow the equation:

z(T ) = z(t0) +

∫ T

t0

fθ(z(t), t)
dX(t)

dt
dt, z(t0) = h1(x(t0)), x̂(T ) = h2(z(T )) (15)

Where X(t) is the natural cubic spline through the observed points x(t). If the learnt fθ is an identity
operation, then the result returned will be the cubic spline through the observed points. Therefore, a
controlled ODE can learn an identity with a small perturbation, which is easier to learn with the aid
of a control process, rather than learning the entire ODE trajectory.

15



Figure 11: NDPs are able to capture different styles in the Variable Rotating MNIST dataset.
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Figure 12: NPs and NDPs training on handwriting. NDPs perform slightly better, achieving a
lower loss in fewer iterations. However this is a marginal improvement, and we believe it is down
to significant diversity in the dataset, due to there being no fundamental differential equation for
handwriting.

NP NDP

Figure 13: We test the models on drawing the letter “a” with varying numbers of context points. For a
few context points, the trajectories are diverse and not entirely recognisable. As more context points
are observed, the trajectories become less diverse and start approaching an “a”. We expect that with
more training, and tuning the hyperparameters, such as batch size, or the number of hidden layers
this model would improve. Additionally, we observe that NDPs qualitatively outperform NPs on a
small number and a large number of context points.
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