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ABSTRACT

We study online reinforcement learning in linear Markov decision processes with
adversarial losses and bandit feedback, without prior knowledge on transitions or
access to simulators. We introduce two algorithms that achieve improved regret
performance compared to existing approaches. The first algorithm, although com-
putationally inefficient, ensures a regret of Õ(

√
K), where K is the number of

episodes. This is the first result with the optimal K dependence in the consid-
ered setting. The second algorithm, which is based on the policy optimization
framework, guarantees a regret of Õ(K3/4) and is computationally efficient. Both
our results significantly improve over the state-of-the-art: a computationally inef-
ficient algorithm by Kong et al. (2023) with Õ(K4/5 + poly(1/λmin)) regret, for
some problem-dependent constant λmin that can be arbitrarily close to zero, and
a computationally efficient algorithm by Sherman et al. (2023b) with Õ(K6/7)
regret.

1 INTRODUCTION

We study finite-horizon online reinforcement learning in a large state space with adversarial losses
amd bandit feedback. We assume the linear Markov decision process (MDP) structure: every state-
action pair is equiped with a known feature representation, and both the transitions and the losses
can be represented as a linear function of the feature. This problem has received significant at-
tention recently, with fairly complete results when the agent has access to a simulator to query
transitions of the MDP (Dai et al., 2023). In the much harder simulator-free setting, the pioneer-
ing work of Luo et al. (2021) showed that no-regret (K14/15 regret) is possible, where K is the
number of episodes. Several followup works have successively improved the K dependence (Dai
et al., 2023; Sherman et al., 2023b; Kong et al., 2023), with the state-of-the-art being Kong et al.
(2023)’s K4/5 +poly(1/λmin) regret through a computationally inefficient algorithm, and Sherman
et al. (2023b)’s K6/7 regret through a computationally efficient algorithm. Still, there remain signif-
icant gaps between the current upper bounds and the

√
K lower bound. In this work, we push the

frontiers both on the information theoretical limits and the achievable bounds under computational
constraints: 1) we present the first (computationally inefficient) algorithm that provably obtains
Õ(
√
K) regret, showing that this is the minimax K dependence (Section 3); 2) we obtain Õ(K3/4)

regret with a polynomial-time algorithm (Section 4). Below, we briefly describe the elements in our
approaches. The comparison of our algorithms with previous works can be found in Appendix A.

Inefficient
√
K algorithm. We convert the linear MDP problem to a linear bandit problem by

mapping each policy to a single dH-dimensional feature vector, where d is the ambient dimension
of the linear MDP and H is the horizon length. The challenge is that this conversion depends
on the transition of the MDP, which is not available to the learner. Therefore, the learner has to
estimate the feature of every policy during the learning process. Previous work in this direction
(Kong et al., 2023) faced obstacles in controlling the estimation error and was only able to show a
K4/5 +poly(1/λmin) regret bound assuming there exists an exploratory policy inducing a covariance

∗The authors are listed in alphabetical order.
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matrix ⪰ λminI . We addressed the obstacles through 1) state space discretization (Section 3.2),
and 2) model-free estimation for the occupancy measure of policies over the discretized state space
(Section 3.3). These allow us to emulate the success in the tabular case (Jin et al., 2020a) and obtain
the tight

√
K regret.

Efficient K3/4 algorithm. The efficient algorithm is based on the policy optimization framework
(Luo et al., 2021). Different from previous works that all use exponential weights, we use Follow-
the-Regularized-Leader (FTRL) with log-determinant (logdet) barrier regularizer to perform policy
updates, which has the benefit of keeping the algorithm more stable (Zimmert and Lattimore, 2022;
Liu et al., 2023a). We carefully combine logdet-FTRL with existing algorithmic/analysis techniques
to further improve the regret bound. These include 1) an initial exploration phase to control the
transition estimation error (Sherman et al., 2023a), 2) optimistic least-square policy evaluation in
bonus construction (Sherman et al., 2023b), 3) dilated bonus construction (Luo et al., 2021), and 4)
a tighter concentration bound for covariance matrix estimation (Liu et al., 2023a).

We defer detailed comparisons with the literature to Appendix A.

2 PRELIMINARIES

No-Regret Learning in MDPs. An (episodic) MDP is specified by a tupleM = (S,A, P ) where
S is the state space (possibly infinite), A is the action space (assumed to be finite with size A =
|A|), P : S × A → ∆(S) is the transition kernal. The state space is assumed to be layered, i.e.,
S = S1 ∪ S2 ∪ · · · ∪ SH where Sh ∩ Sh′ = ∅ for any 1 ≤ h < h′ ≤ H , and transition is only
possible from one layer to the next, that is, P (s′ | s, a) ̸= 0 only when s ∈ Sh and s′ ∈ Sh+1.
Without loss of generality, we assume S1 = {s1}.
We consider a process where the learner interact with the MDP for K episodes, each time with a
different loss function. Before the game starts, an adversary arbitrarily chooses the loss functions
for all episodes (ℓk : S ×A → [0, 1])Kk=1, and does not reveal them to the learner. For each episode
k ∈ [K], the learner starts at state sk,1 = s1; for each step h ∈ [H] within episode k, after observing
the state sk,h ∈ Sh, the learner chooses an action a ∈ A, suffers and observes the loss ℓk(sk,h, ak,h),
and transits to a new state sk,h+1 sampled from the transition P (· | sk,h, ak,h).
A policy π is a mapping from S to ∆(A). The state-value function (or V-function in short) V π(s; ℓ)
is the cumulative loss starting from state s, following policy π and under loss function ℓ. This is
formally defined as the following for s ∈ Sh:

V π(s; ℓ) ≜ E

[
H∑

h′=h

ℓ(sh′ , ah′)

∣∣∣∣∣ sh = s, ah′ ∼ π(· | sh′), sh′+1 ∼ P (· | sh′ , ah′), ∀h′ ≥ h

]
.

The action-value function (a.k.a. Q-function), on the other hand, is the expected loss suffered by a
policy π starting from a given state-action pair (s, a). Formally, we define for all (s, a) ∈ S ×A:

Qπ(s, a; ℓ) = ℓ(s, a) + I[s /∈ SH ] · Es′∼P (·|s,a) [V
π(s′; ℓ)] . (1)

Let πk be the policy used by the learner in episode k. The learner aims to minimize the regret with
respect to the best fixed policy, defined as

Definition 1 (Regret). RK ≜ E
[∑K

k=1 V
πk(s1; ℓk)

]
−minπ

∑K
k=1 V

π(s1; ℓk).

Occupancy measures. For a policy π and a state s, we define µπ(s) to be the probability of
visiting state s within an episode when following π, which can be written as µπ(s) = V π(s1; δs)
with δs(s

′, a′) = I{s′ = s}. Further define µπ(s, a) = µπ(s)π(a|s). By definition, we have
V π(s1; ℓ) =

∑
s∈S

∑
a∈A µ

π(s, a)ℓ(s, a).1

2.1 LINEAR MDP

Linear MDP is formally defined as follows.
1For readability, throughout the paper, we use summation over states instead of integration. Technically, all

our results hold for case of continuous and infinite state space.
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Definition 2 (Linear MDP). In a linear MDP, each state-action pair (s, a) is associated with a
known feature ϕ(s, a) ∈ Rd with ∥ϕ(s, a)∥2 ≤ 1. There exists a mapping ψ : S → Rd such that the
transition can be expressed as

P (s′ | s, a) = ⟨ϕ(s, a), ψ(s′)⟩, ∀(s, a, s′) ∈
H−1⋃
h=1

Sh ×A× Sh+1. (2)

Here, ψ is unrevealed to the learner. Moreover, for any episode k ∈ [K] and any layer h ∈ [H],
there exists a (hidden) vector θk,h ∈ Rd such that

ℓk(s, a) = ⟨ϕ(s, a), θk,h⟩, ∀(s, a) ∈ Sh ×A. (3)

Following previous work, we assume ∥
∑
s∈Sh

|ψ(s)|∥2 ≤
√
d (the absolute value | · | over a vector

is element-wise) and ∥θk,h∥2 ≤
√
d for all k, h, π.

We also define misspecifeid linear MDPs, which is used in Section 3.
Definition 3 (Misspecified Linear MDP). A ζ-misspecified linear MDP follows all the assumptions
in Definition 2 except that Eq. (2) and Eq. (3) are respectively modified to

∥P (· | s, a)− ⟨ϕ(s, a), ψ(·)⟩∥1 ≤ ζ and |ℓk(s, a)− ⟨ϕ(s, a), θk,h⟩| ≤ ζ. (4)

3 RATE-OPTIMAL ALGORITHM

The aim of this section is to show that there is no statistical barrier to obtaining
√
K regret for linear

MDPs with bandit feedback and adversarial losses. The proposed algorithm is computationally
inefficient and it remains an open question if the same can be achieved with an efficient algorithm.

3.1 SOLUTION IDEAS

Observe that the expected loss of policy π in episode k can be written as∑
s∈S

∑
a∈A µ

π(s, a)ℓk(s, a) =
∑H
h=1

∑
s∈Sh

∑
a∈A µ

π(s, a)ϕ(s, a)⊤θk,h. This can be
further written as ⟨ϕπ, θk⟩, where

ϕπ = (ϕπ1 , . . . , ϕ
π
H), θk = (θk,1, . . . , θk,H), with ϕπh =

∑
s∈Sh

∑
a∈A

µπ(s, a)ϕ(s, a).

In other words, the adversarial linear MDP problem can be viewed as an adversarial linear bandit
problem with (ϕπ)π∈Π as the underlying action set. Therefore, if computation is not an issue (i.e.,
if we are allowed to run linear bandits over an exponentially large action set), the only additional
challenge in linear MDPs is that (ϕπ)π∈Π is not known in advance and the learner must learn the
transition to estimate them. This viewpoint has been taken by Kong et al. (2023) to design com-
putationally inefficient algorithms with improved regret bounds. To estimate (ϕπ)π∈Π, Kong et al.
(2023) use an initial pure exploration phase to estimate ϕπ up to an accuracy of ϵ for all π, and then
run a ϵ-misspecified linear bandit algorithm over policies in the second phase. Their approach gives
K4/5 + poly(1/λmin) regret.

A natural idea to improve the regret bound is to estimate (ϕπ)π∈Π on the fly instead of in a sep-
arate initial phase. That is, we directly start a linear bandit algorithm. Then during the learn-
ing process, for policies that are more often used by the learner, their ϕπ estimation will be-
come more and more accurate, and for others, larger error is allowed. Intuitively, this better bal-
ances exploitation and exploration because the learner will not spend too much efforts in estimat-
ing ϕπ for bad policies. However, there are technical difficulties in doing so. Recall that ϕπh =∑
s∈Sh

∑
a∈A µ

π(s)π(a|s)ϕ(s, a). To estimate this, the learner needs to first estimate µπ . A natu-
ral estimator µ̂π would be defined recursively as µ̂π(s′) =

∑
s∈Sh

∑
a∈A µ̂

π(s)π(a|s)P̂ (s′|s, a)
for s′ ∈ Sh+1, with the transition estimator P̂ obtained from linear regression: P̂ (s′|s, a) =

ϕ(s, a)⊤
(
Λ−1
h

∑
(s̃,ã,s̃′)∈Dh

ϕ(s̃, ã)I{s̃′ = s′}
)

where Dh consists of historical data of the form

(s, a, s′) ∈ Sh × A × Sh+1 and Λh = I +
∑

(s,a,s′)∈Dh
ϕ(s, a)ϕ(s, a)⊤. This is the exact idea
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of Kong et al. (2023). Notice that the µ̂π obtained in this way may not be valid, i.e., they may not
satisfy µ̂π(·) ∈ ∆(S). Their approach suffers from the issue that it is difficult to control the magni-
tude of µ̂π(s) when the amount of data in Dh is still small. This is why they use an initial phase to
explore all directions in the feature space and control the error ∥ϕ̂πh−ϕπh∥ uniformly for all policies.

However, “on-the-fly estimation” without the initial phase has been proven to work in the tabular
case (Jin et al., 2020a) to get a

√
K regret. The key difference between the tabular case and the

linear case is that the transition estimator P̂ in the tabular case is always a valid transition (i.e.,
P̂ (·|s, a) ∈ ∆(S)), and thus the induced occupancy measure estimator µ̂π is also always valid. This
avoids the aforementioned technical difficulty.

With this observation, we propose to incorporate the constraint that µ̂π be a valid occupancy measure
when dealing with linear MDPs. To find such a µ̂π , we search over the space of valid occupancy
measures and pick one that is consistent with the past data. This is different from the approach of
Kong et al. (2023), where P̂ is obtained via linear regression over the past data first, and then µ̂π is
derived from it, which can fail to be valid.

Since the state space and policy space can both be infinite, in order to get a runnable algorithm for
finding µ̂π(s), we discretize both the state space and the policy space. These are described in the
next subsection.

3.2 THE DISCRETIZATION PROCEDURES

Discretization of the state space. For linear MDPs, we can assume that a state s is uniquely
defined by its action feature set As = {ϕ(s, a) | a ∈ A}. If there are distinct states with identical
feature sets, we can collapse them into a single state by combining their ψ(s).

In order to approximate an infinite-state linear MDP as a finite-state MDP, we perform discretiza-
tion for the entire feature space Bd(1). To decide the discretization resolution, assume that ϕ(s, a)
is the true feature and ϕ′(s, a) is its approximation, and ∥ϕ(s, a) − ϕ′(s, a)∥2 ≤ ϵ for all s, a.
Then we have ∥P (·|s, a) − ⟨ϕ′(s, a), ψ(·)⟩∥1 = ∥⟨ϕ(s, a) − ϕ′(s, a), ψ(·)⟩∥1 ≤

∑
s′ ∥ϕ(s, a) −

ϕ′(s, a)∥2∥ψ(s′)∥2 ≤ ϵ
∑
s′ ∥ψ(s′)∥2 ≤ ϵ

∑d
i=1

∑
s′ |ψi(s′)| ≤ ϵ

√
d∥
∑
s′ |ψ(s′)|∥2 ≤ ϵd and

|ℓk(s, a)−⟨ϕ′(s, a), θk,h⟩| = |⟨ϕ′(s, a)−ϕ(s, a), θk,h⟩| ≤ ∥ϕ′(s, a)−ϕ(s, a)∥2∥θk,h∥2 ≤ ϵ
√
d by

Definition 2. Thus, the MDP with ϕ′(s, a) as the underlying feature is a misspecified linear MDP
with misspecification error ζ = ϵd by Definition 3. It turns out that it suffices to set ϵ = 1

K and make
the misspecification error ζ = d

K . The number of states after the discretization is upper bounded by
(size of ϵ-net of the feature space)A = (1/ϵ)O(dHA) = KO(dHA).

There is a caveat when working with this discretized state space. Since the true feature space Φ =
{ϕ(s, a) : s ∈ S, a ∈ A} may not cover the entire Bd(1), the state space construction above (i.e.,
by discretizing the whole Bd(1)) may produce states that do not really exist. In fact, there is no
problem viewing these non-existing states as part of the state space because their ψ(s) can be set
to zero, making them unreachable under the linear MDP assumption. The only thing we have to
be careful about is that the assumptions Eq. (2), Eq. (3), Eq. (4), and their implications, such as
−ζ ≤ ⟨ϕ, ψ(s′)⟩ ≤ 1+ ζ and |⟨ϕ, θk,h⟩| ≤ 1+ ζ, are only guaranteed for ϕ in the true feature space
Φ, but not for the whole feature space Bd(1). To avoid ambiguity, we use notation S to denote the set
of discretized states from the true MDP, and use X to denote the set of discretized states constructed
from the entire Bd(1). Apparently, S ⊆ X . We clarify that, 1) the learner knows X , but does not
know S before interacting with the environment, 2) the misspecified linear MDP assumption Eq. (4)
is only guaranteed for ϕ(s, a) with s ∈ S, 3) X \ S are unreachable states and their ψ(s) are set to
zero. We use (Xh)h∈[H] to denote partitions of X on different layers.

Discretization of the policy space. We consider a discretization of the policy space for Algo-
rithm 2. The policy class is the set of linear policies defined as

Π =

{
πθ : θ ∈ ΘH , πθ(s) = argmin

a∈A
ϕ(s, a)⊤θh for s ∈ Xh

}
(5)

where Θ is an 1-net of Bd(K). The next lemma shows that this policy set contains a near optimal
one. See Appendix B.1 for the proof.
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Algorithm 1 EstOM(π, (Dh)Hh=1) (Estimate Occupancy Measure)

Input: target policy π, historical data (Dh)Hh=1 where Dh consists of tuples (s, a, s′) ∈ Sh × A ×
Sh+1 with s′ ∼ P (·|s, a).
Find (µ̂π(s))s∈X ⊂ [0, 1] and (ξ̂h,f )h∈[H],f∈Fπ ⊂ Bd(

√
d) that satisfy the following for all h ∈ [H]

and all f ∈ Fπ (recall the definition of Fπ in Eq. (6), and ζ in Section 3.2).∑
s∈Xh

µ̂π(s) = 1, (7)∣∣∣∣∣ ∑
s′∈Xh+1

µ̂π(s′)f(s′)−
∑
s∈Xh

∑
a∈A

µ̂π(s)π(a|s) clip
[
ϕ(s, a)⊤ξ̂h,f

] ∣∣∣∣∣ ≤ ζ (8)

∑
(s,a,s′)∈Dh

(
f(s′)− ϕ(s, a)⊤ξ̂h,f

)2 − min
ξ∈Bd(

√
d)

∑
(s,a,s′)∈Dh

(
f(s′)− ϕ(s, a)⊤ξ

)2 ≤ 16d
5
2 log

18d
3
2K

δ

(9)

Output: (µ̂π(s))s∈X (if Eq. (7)-Eq. (9) is not feasible, output any solution that satisfies Eq. (7)).

Lemma 4. For any policy π : X → ∆(A) and any sequence of losses (θk,h)h∈[H],k∈[K], there exists
a policy π′ ∈ Π such that

∑K
k=1

∑H
h=1

∑
s∈Sh

∑
a∈A(µ

π′
(s, a)−µπ(s, a))ϕ(s, a)⊤θk,h ≤

√
dH2 .

3.3 ESTIMATING µπ(s)

With the state space discretized, we are now faced with a finite state problem. To estimate µπ , a po-
tential way is to find a transition estimation (P̂ (s′|s, a))s,a,s′ which is consistent with the historical
data and satisfies the constraint that the µ̂π induced by P̂ is a valid occupancy measure. The issue
of this is that since P (s′|s, a) ≈ ϕ(s, a)⊤ψ(s′), this method requires us to estimate ψ(s′) for all s′,
whose complexity will scale with |S| because ψ(s′) for different s′ are unrelated. Indeed, as noted
by previous works (Foster et al., 2023), the linear MDP model does not allow efficient model-based
estimation.

Inspired by previous model-free approaches for linear MDPs (Jin et al., 2020b), instead of estimating
ψ(s′), we will directly estimate

∑
s′ ψ(s

′)f(s′) for a class of functions f that is rich enough for our
purpose (i.e., to estimate (ϕπ)π∈Π well). This class of functions turns out can be chosen as

⋃
π∈Π Fπ

where Fπ = Fπ1 ∪ Fπ2 and

Fπ1 =

{
f : X → [−1, 1]

∣∣∣∣ f(s) =
∑
a∈A

π(a|s) clip
[
ϕ(s, a)⊤θ

]
for some θ ∈ Bd(

√
d)

}
,

Fπ2 =

{
f : X → [−1, 1]

∣∣∣∣ f(s) =
∑
a∈A

π(a|s)∥ϕ(s, a)∥Γ for some Γ with 0 ⪯ Γ ⪯ I

}
, (6)

where we define clip[a] = max(min(a, 1),−1). Given historical data (Dh)Hh=1 which consists of
(s, a, s′) tuples, our way of obtaining µ̂π is summarized in Algorithm 1. In Algorithm 1, Eq. (7)
sets the constraint that µ̂π is a valid occupancy measure, Eq. (9) requires that ξ̂h,f approximates
ξ⋆h,f =

∑
s′∈Sh+1

ψ(s′)f(s′) well on the historical data (Dh)Hh=1, and Eq. (8) relates µ̂π with ξ̂h,f
according to their definitions. In the following Lemma 5, we show that Eq. (7)-Eq. (9) is feasible
with high probability. Then in Lemma 6, we show the key property that µ̂π is close to µπ when
evaluated on any f ∈ Fπ . The proofs of Lemma 5 and Lemma 6 can be found in Appendix B.2.
Below, we define µ̂π(s, a) := µ̂π(s)π(a|s).

Lemma 5. With probability at least 1− δ
K , Eq. (7)-Eq. (9) is feasible for all π ∈ Π.
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Lemma 6. Let (µ̂π(s))s∈X be the output of Algorithm 1. Then with probability at least 1− δ
K , for

any π ∈ Π and all f ∈ Fπ ,
∣∣∑

s∈Xh
(µ̂π(s)− µπ(s))f(s)

∣∣ is upper bounded by

10d
5
4

√
log

18d
3
2K

δ
×
∑
h′<h

min

 ∑
s∈Xh′

∑
a∈A

µπ(s, a)∥ϕ(s, a)∥Λ−1

h′
,
∑
s∈Xh′

∑
a∈A

µ̂π(s, a)∥ϕ(s, a)∥Λ−1

h′

+ 2ζH

where Λh := I +
∑

(s,a,s′)∈Dh
ϕ(s, a)ϕ(s, a)⊤.

3.4 ALGORITHM: EXPONENTIAL WEIGHTS

From Section 3.3, we know how to obtain the estimation for (µπ)π∈Π. Now we can use them
to construct estimators of (ϕπ)π∈Π via ϕ̂πh =

∑
s∈Xh

∑
a∈A µ̂

π(s)π(a|s)ϕ(s, a), and run a linear
bandit algorithm viewing (ϕ̂π)π∈Π as actions. The algorithm is presented in Algorithm 2. At the
beginning of each episode k, we call EstOM (Algorithm 1) for all policies with the data up to
episode k − 1 (Line 5). This returns the occupancy measure estimator µ̂πk for all π, which we can
use to construct the feature estimator ϕ̂πk . Then we use the standard exponential weight together
with John’s exploration to update the distribution over policies. To deal with the bias induced by
the estimation error of ϕ̂πk , we incorporate a bonus term bπk in the update. Similar ideas have also
been used in, e.g., Luo et al. (2021); Sherman et al. (2023b); Dai et al. (2023); Kong et al. (2023);
Liu et al. (2023a). We defer the regret analysis of this algorithm to Appendix B.3, and only state the
final guarantee in the next theorem.

Theorem 7. The regret of Algorithm 2 is bounded byRK ≤ Õ(
√
d7H7K).

Algorithm 2 Exponential Weights

1: Let Π be the policy set defined in Eq. (5). Let γ = min
{
d2H

1
2K− 1

2 , 12
}

, η = γ
2dH .

2: For all h ∈ [H], D1,h ← ∅, Λ1,h ← I .
3: for k = 1, 2, . . . do
4: For all π ∈ Π, let µ̂πk = EstOM(π, (Dk,h)Hh=1) (call Algorithm 1).
5: Define ϕ̂πk,h =

∑
s∈Xh

∑
a∈A µ̂

π(s)π(a|s)ϕ(s, a) and ϕ̂πk = (ϕ̂πk,1, . . . , ϕ̂
π
k,H).

6: Compute qk ∈ ∆(Π) as qk(π) ∝ exp
(
−η
∑k−1
i=1

(
ϕ̂π

⊤

i θ̂i − bπi
))

.

7: Let q′k = (1− γ)qk + γJk where Jk ∈ ∆(Π) is John’s exploration over {ϕ̂πk}π∈Π.
8: Sample πk ∼ q′k, execute πk, and obtain trajectory (sk,1, ak,1, ℓk,1, . . . , sk,H , ak,H , ℓk,H).

9: Define for Cbonus = 10d
5
4H

√
log 18d

3
2K
δ ,

Mk =
∑
π∈Π

q′k(π)ϕ̂
π
k (ϕ̂

π
k )

⊤, θ̂k =M−1
k ϕ̂πk

k Lk, where Lk =

H∑
h=1

ℓk,h,

bπk = Cbonus

H∑
h=1

∑
s∈Xh

∑
a∈A

µ̂πk (s, a)∥ϕ(s, a)∥Λ−1
k,h

+ η∥ϕ̂πk∥2M−1
k

.

10: For all h ∈ [H],

Dk+1,h ← Dk,h ∪ {(sk,h, ak,h, sk,h+1)}, Λk+1,h ← Λk,h + ϕ(sk,h, ak,h)ϕ(sk,h, ak,h)
⊤

11: end for

4 COMPUTATIONALLY EFFICIENT POLICY OPTIMIZATION ALGORITHM

In Algorithm 2, we convert the linear MDP problem to a linear bandit problem. It is generally
hard to ensure computational efficiency in this paradigm due to the non-linear mapping of policy to
occupancy measure and the exponential size of the policy space. A promising alternative is to use
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the policy optimization framework (Luo et al., 2021; Dai et al., 2023; Sherman et al., 2023b), which
allows to run a Follow-the-Regularized-Leader (FTRL) algorithm over the locally available state-
action feature set. An algorithm of this type needs to overcome several hurdles: 1) The algorithm
needs to construct loss estimates with carefully controlled bias, which is difficult because the learner
does not know the feature covariance matrix under the current policy and has to estimate it. 2) The
algorithm needs to inject bonus to ensure sufficient exploration. These bonus terms not only need
to compensate the uncertainty in transitions, but also the bias induced in loss estimates. The bonus
itself also needs to be estimated and induces more bias due to the estimation error.

These challenges are fully exposed in the adversarial loss, bandit feedback, unknown transition
setting, because in this case the loss estimators usually have larger magnitudes and necessitate larger
bonuses. This make achieving near-optimal bounds difficult, and the current best regret is Õ(K6/7)

by Sherman et al. (2023b). We successfully improve it to Õ(K3/4) by several improved design
choices, which we describe in the following.

Algorithm 3 Logdet FTRL with initial exploration

1: Parameters: η = 1
3328

√
dH2

K− 1
4 , γ = 5d log

(
6dHK4

)
K− 1

2 , β =
√
dK− 1

4 , α = HK
3
4 ,

τ = K
1
2 , δ = K−3, ρ = H− 1

2 d−
1
4K− 1

4 , ϵcov = K− 1
4 .

2: Define: Ĉov(s, p) = Ea∼p
[
ϕ(s, a)ϕ(s, a)⊤ ϕ(s, a)

ϕ(s, a)⊤ 1

]
3: Run Algorithm 5 with parameters δ, ρ, ϵcov, which ends withinK0 = Õ(d 3

2H2K
3
4 +d4H4K

1
4 )

episodes with high probability. Receive outputs (D0,h)
H
h=1 and (Zh)Hh=1.

4: for j = 1, . . . , ⌈(K −K0)/(2τ)⌉ do
5: For s ∈ Sh, define

H̃̃H̃Hj(s) = argmin
HHH∈Hs

{〈
HHH,

j−1∑
i=1

LLLi,h

〉
+
F (HHH)

η

}
, whereLLLi,h =

1

2τ

∑
k∈Ti

(
Γ̂̂Γ̂Γk,h − B̂̂B̂Bk,h

)
whereHs =

{
Ĉov(s, p) : p ∈ ∆(A)

}
and F (HHH) = − log det (HHH).

6: Let π̃j(·|s) be such that H̃̃H̃Hj(s) = Ĉov(s, π̃j(·|s)).
7: Let Tj = {(j − 1)τ +K0 + 1, · · · , (j + 1)τ +K0}. Execute πk = π̃j for the 2τ episodes

k ∈ Tj , and collect (sk,h, ak,h, ℓk,h)h∈[H],k∈Tj
.

8: Let Tj,1 and Tj,2 be the first τ and the last τ episodes in Tj , respectively. For all k ∈ Tj and
h ∈ [H], define

Ck,h =

{
{(sk′,h, ak′,h, sk′,h+1)}k′∈Tj,2 if k ∈ Tj,1
{(sk′,h, ak′,h, sk′,h+1)}k′∈Tj,1

if k ∈ Tj,2
(10)

Σ̂k,h = γI + 1
τ

∑
(s,a,s′)∈Ck,h

ϕ(s, a)ϕ(s, a)⊤ (11)

q̂k,h = Σ̂−1
k,hϕ(sk,h, ak,h)

∑H
t=h ℓk,t (12)

Γ̂̂Γ̂Γk,h =

[
0 1

2 q̂k,h
1
2 (q̂k,h)

⊤ 0

]
(13)

Dk,h = Dk−1,h ∪ {(sk,h, ak,h, sk,h+1)} (14)

(B̂̂B̂Bk,h)
H
h=1 = OBME

(
(Dk,h)Hh=1, (Σ̂k,h)

H
h=1, (Zh)Hh=1

)
(15)

(OBME is presented in Algorithm 4)
9: end for

Our algorithm (Algorithm 3) starts with an initial pure exploration phase that lasts forK0 = Õ(K 3
4 )

episodes (Line 3), which is crucial in controlling the magnitude of the bonus estimate (will be
explained later). In the remaining K − K0 episodes, episodes are divided into ⌈(K − K0)/(2τ)⌉
epochs (indexed by j), such that in each epoch j, a fixed policy π̃j is executed for 2τ episodes, and
policies are updated only at the end of each epoch. The goal of dividing episodes into epochs is to
let the learner collect sufficient samples and create accurate enough loss estimators for each update.
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Different from previous work (Luo et al., 2021; Dai et al., 2023; Sherman et al., 2023b) that use
exponential weights, we use the Follow-the-Regularized-Leader (FTRL) framework with logdet-
barrier as the regularizer for policy updates. Logdet has been recently shown in adversarial linear
(contextual) bandit to lead to a more stable update and can handle larger bias for loss estimators
(Zimmert and Lattimore, 2022; Liu et al., 2023a). It has similar benefits in our case as well.

Specifically, with logdet-FTRL, the optimization of the policy on state s is over the space of
lifted covariance matrix Hs =

{
Ĉov(s, p) : p ∈ ∆(A)

}
⊂ R(d+1)×(d+1), where Ĉov(s, p) =

Ea∼p
[
ϕ(s, a)ϕ(s, a)⊤ ϕ(s, a)

ϕ(s, a)⊤ 1

]
. In epoch j, for state s, the FTRL outputs a matrix H̃̃H̃Hj(s) ∈ Hs

(Line 5), and the policy π̃j(·|s) is chosen such that H̃̃H̃Hj(s) = Ĉov(s, π̃j(·|s)) (Line 6). This policy is
then executed for 2τ episodes (Line 7). Then the learner uses the collected samples to construct loss
estimators for all episodes k ∈ Tj (the q̂k,h in Eq. (12)), where Tj is the set of episodes in epoch j.
This follows the standard loss estimator construction for linear bandits, except that in our case, the
covariance matrix is unknown and also needs to be estimated using samples (the Σ̂k,h in Eq. (11)).
The validity of q̂k,h relies on the independence between Σ̂k,h and the loss obtained in episode k.
To achieve this, we divide the set Tj into two equal parts Tj,1 and Tj,2 (Line 8). Then we use sam-
ples from Tj,2 to estimate the covariance matrix when constructing the loss estimator in episode
k ∈ Tj,1, and vice versa (Eq. (10)-Eq. (12)). In Eq. (13), we further lift the loss estimator q̂k,h to
Γ̂̂Γ̂Γk,h ∈ R(d+1)×(d+1) to be fed to FTRL. Finally, besides feeding the loss Γ̂̂Γ̂Γk,h, we also need to feed
the bonus B̂̂B̂Bk,h required for sufficient exploration in policy optimization and to compensate the loss
estimator bias coming from the estimation error of Σ̂k,h. This is explained in the next subsection.

4.1 THE EXPLORATION BONUS

Similar to previous work on policy optimization in adversarial linear MDPs (Luo et al., 2021; Dai
et al., 2023; Sherman et al., 2023b), we use exploration bonus to address the bias in the loss es-
timator q̂k,h and the stability term coming from the FTRL regret analysis. From a high level, the
exploration bonus serves a similar purpose as “optimism in the face of uncertainty” as commonly
used in the non-adversarial case, but now the sources of uncertainty additionally include the bias
and the stability term. From a mathematical analysis perspective, the exploration bonus creates an
effect of change of measure that prevent the regret to depend on the distribution mismatch coefficient
between the optimal policy and the learner’s policy. This perspective is best explained in Section 3
of Luo et al. (2021). According to the analysis of Luo et al. (2021), when performing policy up-
date on state s ∈ Sh, we should incorporate a bonus that is roughly of order Qπk(s, a; bt) where
bt(s, a) = β∥ϕ(s, a)∥2

Σ̂−1
k,h

.

Our bonus construction further incorporates the improvement from Sherman et al. (2023b) where
an optimistic least-square policy evaluation (OLSPE) is used to fit the bonus (rather than sampling
the bonus as in Luo et al. (2021)). This creates another term of α∥ϕ(s, a)∥2

Λ−1
k,h

to be incorporated

into the bonus to compensate the estimation error of future bonuses. Finally, we further adopt a
technique developed in Luo et al. (2021) called dilated bonus to simplify our analysis. Overall, the
bonus we use for the policy update on state s ∈ Sh is defined recursively as

Bk(s, a) ≈
(
β∥ϕ(s, a)∥2

Σ̂−1
k,h

+ α∥ϕ(s, a)∥2
Λ−1

k,h

)
+

(
1 +

1

H

)
Es′∼P (·|s,a)Ea′∼πk(·|s′) [Bk(s

′, a′)] .

Notice that because of the dilation factor (1 + 1
H ) (Luo et al., 2021), this deviates from a standard

Bellman equation. Recall that we run FTRL in the space of covariance matrix, so we would like to
write Bk(s, a) as a linear function in that space. Fortunately, this is indeed possible because by the
linear MDP structure, we can write the above as

Bk(s, a) ≈
〈[
ϕ(s, a)ϕ(s, a)⊤ ϕ(s, a)

ϕ(s, a)⊤ 1

]
,

[
βΣ̂−1

k,h + αΛ−1
k,h

1
2wk,h

1
2wk,h 0

]〉
(16)

where wk,h = (1 + 1
H )
∑
s′∈Sh+1

ψ(s′)Ea′∼πk(·|s′)[Bk(s
′, a′)]. The purpose of Algorithm 4 is

exactly to inductively find an estimator ŵk,h of wk,h for all h. Then, we can form a bonus matrix as
the second matrix in Eq. (16) (but replacing wk,h by ŵk,h) and feed it to the FTRL algorithm.
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There are two technical complications regarding Algorithm 4. First, in order to control the magni-
tude of ŵk,h, we have to control the magnitude of α∥ϕ(s, a)∥2

Λ−1
k,h

. This can be done by adding a pure

exploration phase in the beginning of the algorithm (Line 3 of Algorithm 3) and form a known state
space Z ⊂ S. Known states are well-explored in the initial phase, and the values of ∥ϕ(s, a)∥2

Λ−1
k,h

on them are sufficiently small (in our case are of order 1/
√
K). On the other hand, unknown states

are hard to be reached by any policy (in our case, their probability of being reached is ≤ K− 1
4 ) and

thus can be ignored in the learning phase. The initial exploration phase is inspired by Sherman et al.
(2023a), who further built their algorithm on Wagenmaker et al. (2022b)’s reward-free exploration
algorithm. We provide the guarantees for the initial exploration phase in Appendix C. The other is
that in order to ensure only positive bonuses are propagated over layers under estimation error of
ŵk,h, we force the bonus-to-go estimation to be non-negative in Line 8. The additional penalty is
related to ∥ŵk,h − wk,h∥ and can be well-controlled.

Algorithm 4 OBME
(
(Dk,h)Hh=1, (Σ̂k,h)

H
h=1, (Zh)Hh=1

)
(Optimistic Bonus Matrix Estimation)

1: Parameters β, α, γ, ρ are the same as those in Algorithm 3.
2: for h = H, . . . , 1 do
3: Bmax

h = 4H
(
1 + 1

H

)2(H−h+1)
(
β
γ + αρ2

)
4: Λk,h = I +

∑
(s,a,s′)∈Dk,h

ϕ(s, a)ϕ(s, a)⊤

5: Set ŵk,h =
(
1 + 1

H

)
Λ−1
k,h

∑
(s,a,s′)∈Dk,h

ϕ(s, a)Ŵk(s
′)I{s′ ∈ Zh+1} (if h = H , set

ŵk,h = 0)

6: Define B̂̂B̂Bk,h =

[
βΣ̂−1

k,h + αΛ−1
k,h

1
2 ŵk,h

1
2 ŵ

⊤
k,h 0

]
7: For s ∈ Sh, define B̂k(s, a) = β∥ϕ(s, a)∥2

Σ̂−1
k,h

+ α∥ϕ(s, a)∥2
Λ−1

k,h

+ ϕ(s, a)⊤ŵk,h

8: For s ∈ Sh, define Ŵk(s) = ⟨πk(·|s), B̂+
k (s, ·)⟩ where B̂+

k (s, a) = max
{
B̂k(s, a), 0

}
9: end for

10: return (B̂̂B̂Bk,h)h∈[H]

4.2 REGRET GUARANTEE

We defer the analysis of Algorithm 3 to Appendix D, and only state the final regret bound in the
following theorem.

Theorem 8. Algorithm 3 ensures a regret of orderRK = Õ(d 3
2H3K

3
4 ).

The improvement in our regret primarily stems from two sources. Firstly, we utilize an improved
matrix concentration bound from Liu et al. (2023a). This ensures that using τ = 1

γ episodes (where
γ is the parameter in Eq. (11)) is enough to gather data and build a reliable loss estimator. In
contrast, previous works require τ = 1

γ2 (Dai et al., 2023; Sherman et al., 2023b) or τ = 1
γ3

(Luo et al., 2021), thereby consuming excessive episodes to accumulate data for a single policy and
consequently slowing down policy updates. Secondly, in previous works (Luo et al., 2021; Dai et al.,
2023; Sherman et al., 2023b), the usage of exponential weights requires η to be small compared to
the magnitude of both loss estimators and exploration bonus. This prevents them from choosing
the best η in their algorithms. With the help of logdet barrier, in our algorithm, η only needs to be
small compared to the magnitude of the exploration bonus, which is already small given the initial
exploration phase. This gives us more flexibility in choosing η.

5 CONCLUSION

In this work, we obtain the first optimal
√
K regret bound for adversarial linear MDPs under bandit

feedback and unknown transitions without the help of simulators or generative models. We also
give a new K3/4 regret bound with an efficient policy optimization algorithm. We hope that the
techniques and observations in the work could be helpful in developing an algorithm that is both
statistically optimal and computationally efficient.
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A RELATED WORKS

In this subsection, we review prior works on adversarial MDPs and policy optimization.

Learning in Adversarial MDPs. Adversarial MDPs refer to a class of MDP problems where the
transition is fixed while the loss function changes over time. Learning adversarial tabular MDPs un-
der bandit feedback and unknown transition has been extensively studied (Rosenberg and Mansour,
2019; Jin et al., 2020a; Lee et al., 2020; Jin et al., 2021; Shani et al., 2020; Chen and Luo, 2021; Luo
et al., 2021; Dai et al., 2022; Dann et al., 2023a). In this line of work, not only

√
K regret bounds

have been shown, several data-dependent bounds are also established. For adversarial MDPs with a
large state space which necessitates the use of function approximation,

√
K bounds have only been

shown under simpler cases such as 1) full-information loss feedback (Cai et al., 2020; He et al.,
2022; Sherman et al., 2023a), and 2) known transition or access to generative models / simulators
(Neu and Olkhovskaya, 2021; Dai et al., 2023; Foster et al., 2022). Therefore, to our knowledge,
we provide the first

√
K regret for adversarial MDPs with large state spaces under bandit feedback

and unknown transitions.2 For linear MDPs, a series of recent work has made significant progress
in improving the regret bound: Luo et al. (2021), Dai et al. (2023), Sherman et al. (2023b) pro-
posed efficient (polynomial-time) algorithms with K14/15, K8/9, and K6/7 regret, respectively, and
Kong et al. (2023) proposed an inefficient algorithm with K4/5 + poly(1/λmin) regret. Our

√
K re-

gret through an inefficient algorithm and K3/4 regret through an efficient algorithm further push the
frontiers. These results are summarized in Table 1.

Table 1: Related works for learning adversarial linear MDPs without a simulator. An algorithm is efficient if
its computational complexity is polynomial with action size |A|, dimension d, and K. For the Type column,
PO means the algorithm is based on policy optimization while OM means the algorithm is based on occupancy
measure estimation.

Algorithm Regret Efficient Type Assumption

Luo et al. (2021) Õ
(
K14/15

)
PO

Dai et al. (2023) Õ
(
K8/9

)
PO

Sherman et al. (2023b) Õ
(
K6/7

)
PO

Kong et al. (2023) Õ
(
K4/5

)
OM ∃π,Σπ ⪰ λI

Algorithm 2 (ours) Õ
(√

K
)

OM

Algorithm 3 (ours) Õ
(
K3/4

)
PO

Policy Optimization with Exploration. Policy optimization has been regarded as sample in-
efficient due to its local search nature. Recently, efforts to alleviate this issue have incorporated
exploration bonus in policy updates (Agarwal et al., 2020; Shani et al., 2020; Zanette et al., 2021;
Luo et al., 2021; Dai et al., 2023; Sherman et al., 2023b; Zhong and Zhang, 2023; Liu et al., 2023b;
Sherman et al., 2023a). In the case of linear MDPs with a fixed loss function, the state-of-the-art
result is by Sherman et al. (2023a), who provide a computationally efficient policy optimization
algorithm with a tight

√
K regret. In the case of linear MDPs with adversarial losses, the best ex-

isting regret bound is K6/7 by Sherman et al. (2023b), while we improve it to K3/4 in this paper.
Beyond theoretical advancement, exploration in policy optimization has also showcased its potential
in addressing real-world challenges, as evidenced by empirical studies (Burda et al., 2018; Pan et al.,
2019).

2Although Zhao et al. (2022) provided a
√
K regret bound for linear mixture MDPs with bandit feedback

and unknown transition, the polynomial dependence on the number of states prohibits its application to MDPs
with large state spaces.
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B OMITTED DETAILS IN SECTION 3

B.1 POLICY SPACE DISCRETIZATION

Proof of Lemma 4. Let θ̄h =
∑K
k=1 θk,h and let ℓ̄(s, a) = ⟨ϕ(s, a), θ̄h⟩ for s ∈ Sh be the loss

function under the loss vector θ̄. Under this loss function, the Q-function of a policy π can be
written as

Qπ(s, a; ℓ̄) = ϕ(s, a)⊤ξπh for s ∈ Sh,

where ξπh is recursively defined as

ξπh = θ̄h +
∑

s′∈Sh+1

ψ(s′)
∑
a′∈A

π(a′|s′)⟨ϕ(s′, a′), ξπh+1⟩.

Notice that by Definition 2, we have ∥ξπh∥2 ≤ H
√
dK. Let π⋆ be the optimal policy under loss

function ℓ̄. Then by Bellman’s optimality equation, π⋆ can be represented as

π⋆(s) = argmin
a

{
ϕ(s, a)⊤ξπ

⋆

h

}
and ξπ

⋆

h can be found recursively from layer H to layer 1.

Now, let ξ′h be the closest element to ξπ
⋆

h in the H
√
d-net of Bd(H

√
dK), and let π′ be the policy

induced by ξ′ = (ξ′1, . . . , ξ
′
H), i.e.,

π′(s) = argmin
a

{
ϕ(s, a)⊤ξ′h

}
.

Then for any π, we have

K∑
k=1

H∑
h=1

∑
s∈Sh

∑
a∈A

(µπ
′
(s, a)− µπ(s, a))ϕ(s, a)⊤θk,h

=

K∑
k=1

H∑
h=1

∑
s∈Sh

∑
a∈A

(µπ
⋆

(s, a)− µπ(s, a))ϕ(s, a)⊤θk,h +
K∑
k=1

H∑
h=1

∑
s∈Sh

∑
a∈A

(µπ
′
(s, a)− µπ

⋆

(s, a))ϕ(s, a)⊤θk,h

= V π
⋆

(s1; ℓ̄)− V π(s1; ℓ̄) +
H∑
h=1

∑
s∈Sh

µπ
′
(s)
∑
a∈A

(π′(a|s)− π⋆(a|s))ϕ(s, a)⊤ξ⋆h

(by the performance difference lemma)

≤ 0 +

H∑
h=1

∑
s∈Sh

µπ
′
(s)
∑
a∈A

(π′(a|s)− π⋆(a|s))ϕ(s, a)⊤ξ′h +H2
√
d

(by the optimality of π⋆ under ℓ̄ and the discretization error)

≤ H2
√
d

where the last inequality is by the fact that π′ takes the argmin with respect to ξ′h. Finally, notice
that policy π′ belongs to Π corresponding to the parameter θh = 1

H
√
d
ξ′h.
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B.2 FEATURE ESTIMATION

Proof of Lemma 5. µπ(s) satisfies Eq. (7) because µπ is a valid occupancy measure. To show
Eq. (8), notice that

∣∣∣∣∣∣
∑
s∈Xh

∑
a∈A

µπ(s)π(a|s) clip
[
ϕ(s, a)⊤ξ⋆h,f

]
−

∑
s∈Xh+1

µπ(s′)f(s′)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
s∈Sh

∑
a∈A

µπ(s)π(a|s) clip
[
ϕ(s, a)⊤ξ⋆h,f

]
−

∑
s∈Sh+1

µπ(s′)f(s′)

∣∣∣∣∣∣ (µπ(s) = 0 for s ∈ X \ S)

=

∣∣∣∣∣∣
∑
s∈Sh

∑
a∈A

µπ(s)π(a|s) clip

ϕ(s, a)⊤ ∑
s′∈Sh+1

ψ(s′)f(s′)

− ∑
s∈Sh+1

µπ(s′)f(s′)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
s∈Sh

∑
a∈A

µπ(s)π(a|s) clip

 ∑
s′∈Sh+1

P (s′|s, a)f(s′) + z

− ∑
s∈Sh+1

µπ(s′)f(s′)

∣∣∣∣∣∣
(for some z such that |z| ≤ ζ by Definition 3)

≤

∣∣∣∣∣∣
∑
s∈Sh

∑
a∈A

µπ(s)π(a|s) clip

 ∑
s′∈Sh+1

P (s′|s, a)f(s′)

− ∑
s∈Sh+1

µπ(s′)f(s′)

∣∣∣∣∣∣+ ζ

= ζ (17)

Finally, we show Eq. (9). For simplicity, let Dh = {(si, ai, s′i)}ni=1 and let ϕi = ϕ(si, ai). We first
consider a fixed policy π and a layer h. Let ϵ = 1

K , and letNϵ,1 be an ϵ-net of Fπ on layer h so that
for any f ∈ Fπ , there exists an f ′ ∈ Nϵ,1 such that |f ′(s)− f(s)| ≤ ϵ for all s ∈ Xh. Let Nϵ,2 be
the ϵ-net of Bd(

√
d). Furthermore, define |Πh| = (3K)d (whose meaning will be clear later).

Then under this fixed π, for any ξ ∈ Nϵ,2 any f ∈ Nϵ,1, with probability at least 1− δ
|Nϵ,1||Nϵ,2||Πh|K ,

n∑
i=1

(
f(s′i)− ϕ⊤i ξ⋆h,f

)2 − n∑
i=1

(
f(s′i)− ϕ⊤i ξ

)2
= −2

n∑
i=1

(f(s′i)− ϕ⊤i ξ⋆h,f )
(
ϕ⊤i ξ

⋆
h,f − ϕ⊤i ξ

)
−

n∑
i=1

(
ϕ⊤i ξ

⋆
h,f − ϕ⊤i ξ

)2
≤ −2

n∑
i=1

(f(s′i)− Es′∼P (·|si,ai)[f(s
′)])
(
ϕ⊤i ξ

⋆
h,f − ϕ⊤i ξ

)
−

n∑
i=1

(
ϕ⊤i ξ

⋆
h,f − ϕ⊤i ξ

)2
+ 2
√
dnζ

≤ 6

√√√√ n∑
i=1

(
ϕ⊤i ξ

⋆
h,f − ϕ⊤i ξ

)2
log
|Nϵ,1||Nϵ,2||Πh|K

δ
+ 2
√
d log

|Nϵ,1||Nϵ,2||Πh|K
δ

−
n∑
i=1

(
ϕ⊤i ξ

⋆
h,f − ϕ⊤i ξ

)2
+ 2
√
dnζ (Freedman’s inequality)

≤ 7
√
d log

|Nϵ,1||Nϵ,2||Πh|K
δ

+ 2
√
dnζ. (AM-GM)

Below, we take a union bound over f ∈ Nϵ,1, ξ ∈ Nϵ,2, and π ∈ |Π|. Notice that although the size
of the policy set is |Π| ≤ (3K)dH (a product of H 1

K -net for Bd(1)), when considering the policies
over layer h, the total number of different policies is only |Πh| ≤ (3K)d. Therefore, a union bound
over policies require only a size of |Πh|. Bounding the distance between the full sets and ϵ-nets, we

14



conclude that with probability at least δ
K , for all ξ ∈ Bd(

√
d), all π ∈ Π, and all f ∈ Fπ ,

n∑
i=1

(
f(s′i)− ϕ⊤i ξ⋆h,f

)2 − n∑
i=1

(
f(s′i)− ϕ⊤i ξ

)2 ≤ 7
√
d log

|Nϵ,1||Nϵ,2||Πh|K
δ

+ 2
√
dnζ +

√
dnϵ.

(18)

By our choice of ζ and ϵ, the second and third terms above are both negligible compared to the
first term. Finally, we bound |Nϵ,1| and |Nϵ,2| via Lattimore and Szepesvári (2020) (Exercise 27.6).
|Nϵ,2| is the size of the ϵ-net of Bd(

√
d), equivalently the (ϵ/

√
d)-net of Bd(1), which is upper

bounded by (3
√
d/ϵ)d. By the definition of Fπ , the ϵ-net of Fπ would be the union of the ϵ-nets of

{θ : θ ∈ Bd(
√
d)} and {Γ ∈ Rd×d : 0 ⪯ Γ ⪯ I}. Thus |Nϵ,1| = (6d

3
2 /ϵ)d+d

2

. Using these in
Eq. (18) concludes the proof.

7
√
d log

|Nϵ,1||Nϵ,2||Πh|K
δ

+ 2
√
dnζ +

√
dnϵ

≤ 8
√
d log

|Nϵ,1||Nϵ,2||Πh|K
δ

≤ 16d
5
2 log

18d
3
2K

δ
.

Lemma 9. Fix π ∈ Π, h ∈ [H], f ∈ Fπ . Let ξ1 and ξ2 be two solutions for the ξ̂h,f in Eq. (9).
Then ∥ξ1 − ξ2∥Λh

≤ Cbonus
H . (Cbonus is defined in Algorithm 2)

Proof. Let Dh = {(si, ai, s′i)}ni=1 and denote ϕi = ϕ(si, ai). Let ξmin :=

argminξ∈Bd(
√
d)

∑n
i=1

(
f(s′i)− ϕ⊤i ξ

)2
, where ϕi := ϕ(si, ai). By the first-order optimality condi-

tion,

n∑
i=1

(
f(s′i)− ϕ⊤i ξmin

) (
ϕ⊤i ξ1 − ϕ⊤i ξmin

)
≤ 0. (19)

By the fact that ξ1 satisfies Eq. (9),

16d
5
2 log

18d
3
2K

δ
≥

n∑
i=1

(
f(s′i)− ϕ⊤i ξ1

)2 − n∑
i=1

(
f(s′i)− ϕ⊤i ξmin

)2
= 2

n∑
i=1

(
f(s′i)− ϕ⊤i ξmin

)
(ϕ⊤i ξmin − ϕ⊤i ξ1) +

n∑
i=1

(
ϕ⊤i (ξ1 − ξmin)

)2
≥

n∑
i=1

(
ϕ⊤i (ξ1 − ξmin)

)2
(using Eq. (19))

= ∥ξ1 − ξmin∥2Λh
− ∥ξ1 − ξmin∥22 (by the definition of Λh)

≥ ∥ξ1 − ξmin∥2Λh
− 4d,

which gives ∥ξ1 − ξmin∥2Λh
≤ C2

bonus
4H2 (recall Cbonus = 10d

5
4H

√
log 18d

3
2K
δ . Similarly, ∥ξ2 −

ξmin∥2Λh
≤ C2

bonus
4H2 . Combining them proves the lemma.
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Proof of Lemma 6.∑
s′∈Xh+1

(µ̂π(s′)− µπ(s′))f(s′)

≤
∑
s∈Xh

∑
a∈A

µ̂π(s, a) clip
[
ϕ(s, a)⊤ξ̂h,f

]
−
∑
s∈Xh

∑
a∈A

µπ(s, a) clip
[
ϕ(s, a)⊤ξ⋆h,f

]
+ 2ζ

(by Eq. (8) and the same calculation as Eq. (17))

=
∑
s∈Xh

∑
a∈A

µπ(s, a)
(
clip

[
ϕ(s, a)⊤ξ̂h,f

]
− clip

[
ϕ(s, a)⊤ξ⋆h,f

])
+
∑
s∈Xh

∑
a∈A

(µ̂π(s, a)− µπ(s, a)) clip
[
ϕ(s, a)⊤ξ̂h,f

]
+ 2ζ

≤
∑
s∈Xh

∑
a∈A

µπ(s, a)∥ϕ(s, a)∥Λ−1
h
∥ξ̂h,f − ξ⋆h,f∥Λh

+
∑
s∈Xh

(µ̂π(s)− µπ(s))f̃(s) + 2ζ

≤ Cbonus

H
×
∑
s∈Xh

∑
a∈A

µπ(s, a)∥ϕ(s, a)∥Λ−1
h

+
∑
s∈Xh

(µ̂π(s)− µπ(s))f̃(s) + 2ζ (by Lemma 9)

where f̃(s) :=
∑
a∈A π(a|s) clip

[
ϕ(s, a)⊤ξ̂h,f

]
, which again belongs toFπ . Recursively applying

the inequality proves the first inequality in the lemma. To obtain the second inequality in the lemma,
with slightly different decomposition in the second step above, we get∑

s∈Xh

∑
a∈A

µ̂π(s, a)
(
clip

[
ϕ(s, a)⊤ξ̂h,f

]
− clip

[
ϕ(s, a)⊤ξ⋆h,f

])
+
∑
s∈Xh

∑
a∈A

(µ̂π(s, a)− µπ(s, a)) clip
[
ϕ(s, a)⊤ξ⋆h,f

]
+ 2ζ

≤
∑
s∈Xh

∑
a∈A

µ̂π(s, a)∥ϕ(s, a)∥Λ−1
h
∥ξ̂h,f − ξ⋆h,f∥Λh

+
∑
s∈Xh

(µ̂π(s)− µπ(s))f̃ ′(s) + 2ζ

≤ Cbonus

H
×
∑
s∈Xh

∑
a∈A

µ̂π(s, a)∥ϕ(s, a)∥Λ−1
h

+
∑
s∈Xh

(µ̂π(s)− µπ(s))f̃ ′(s) + 2ζ

where f̃ ′(s) :=
∑
a∈A π(a|s) clip

[
ϕ(s, a)⊤ξ⋆h,f

]
. Following the same argument proves the second

inequality.

B.3 REGRET ANALYSIS

E [RK ]

= E

[
K∑
k=1

H∑
h=1

∑
π∈Π

q′k(π)(ϕ
π
h)

⊤θk,h −
K∑
k=1

H∑
h=1

(ϕπ
⋆

h )⊤θk,h

]

= E

[
K∑
k=1

H∑
h=1

∑
π∈Π

qk(π)(ϕ
π
h)

⊤θk,h −
K∑
k=1

H∑
h=1

(ϕπ
⋆

h )⊤θk,h +

K∑
k=1

H∑
h=1

(q′k(π)− qk(π))(ϕπh)⊤θk,h︸ ︷︷ ︸
≤ηHK

]

≤ E

[
K∑
k=1

∑
π∈Π

qk(π)(ϕ̂
π
k )

⊤θ̂k −
K∑
k=1

(ϕ̂π
⋆

k )⊤θ̂k +

K∑
k=1

H∑
h=1

∑
π∈Π

qk(π)
(
(ϕπh − ϕπ

⋆

h )⊤θk,h − (ϕ̂πk,h − ϕ̂π
⋆

k,h)
⊤θ̂k,h

)
︸ ︷︷ ︸

bias

]
+ ηHK

= E

[
K∑
k=1

∑
π∈Π

qk(π)
(
(ϕ̂πk )

⊤θ̂k − bπk
)
−

K∑
k=1

(
(ϕ̂π

⋆

k )⊤θ̂k − bπ
⋆

k

)
︸ ︷︷ ︸

ftrl

+

K∑
k=1

∑
π∈Π

qk(π)b
π
k −

K∑
k=1

bπ
⋆

k︸ ︷︷ ︸
bonus

+bias

]
+ ηHK
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We bound the terms individually in Lemma 10, Lemma 11 and Lemma 12. The potentially un-
bounded bias term is offset by a negative contribution in the bonus term.

B.3.1 BOUNDING THE BIAS

Lemma 10.

bias ≤ E

[
Cbonus

K∑
k=1

H∑
h=1

∑
s∈Xh

∑
a∈A

µ̂π
⋆

k (s, a)∥ϕ(s, a)∥Λ−1
k,h

+ η

K∑
k=1

∥ϕ̂π
⋆

k ∥2M−1
k

]

+ Õ

(
d

9
2H3

η
+ ηdHK + d3H3

√
K

)
.

Proof. The bias of any policy π at episode k and stage h can be calculated as the following:

(ϕπh)
⊤θk,h − (ϕ̂πk,h)

⊤E[θ̂k,h] ≤
∣∣∣(ϕπh − ϕ̂πk,h)⊤θk,h∣∣∣︸ ︷︷ ︸

biasπk,h,1

+
∣∣∣(ϕ̂πk,h)⊤(θk,h − E[θ̂k,h])

∣∣∣︸ ︷︷ ︸
biasπk,h,2

.

Set

f(s) =
∑
a∈A

π(a|s)ϕ(s, a)⊤θk,h =
∑
a∈A

π(a|s) clip
[
ϕ(s, a)⊤θk,h

]
∈ Fπ1 , (|ϕ(s, a)⊤θk,h| ≤ 1)

then the first term is by Lemma 6

biasπk,h,1 =

∣∣∣∣∣∑
s∈Xh

(µπ(s)− µ̂πk (s))f(s)

∣∣∣∣∣ ≤ Cbonus

H
×
∑
h′<h

∑
s∈Xh′

∑
a∈A

µ̂πk (s, a)∥ϕ(s, a)∥Λ−1

k,h′
+ 2ζH.

Define Mk,h =
∑
π∈Π q

′
k(π)ϕ̂

π
k,h(ϕ̂

π
k,h)

⊤. Then the second term is

biasπk,h,2 ≤ ∥ϕ̂πk,h∥M−1
k,h

∥∥∥∥∥θk,h −M−1
k,h

∑
π′

q′k(π
′)ϕ̂π

′

k,h(ϕ
π′

h )⊤θk,h

∥∥∥∥∥
Mk,h

= ∥ϕ̂πk,h∥M−1
k,h

∥∥∥∥∥M−1
k,h

∑
π′

q′k(π
′)ϕ̂π

′

k,h(ϕ̂
π′

k,h − ϕπ
′

h )⊤θk,h

∥∥∥∥∥
Mk,h

= ∥ϕ̂πk,h∥M−1
k,h

∥∥∥∥∥∑
π′

q′k(π
′)ϕ̂π

′

k,h(ϕ̂
π′

k,h − ϕπ
′

h )⊤θk,h

∥∥∥∥∥
M−1

k,h

≤ η∥ϕ̂πk,h∥2M−1
k,h

+
1

η

∥∥∥∥∥∑
π′

q′k(π
′)ϕ̂π

′

k,h(ϕ̂
π′

k,h − ϕπ
′

h )⊤θk,h

∥∥∥∥∥
2

M−1
k,h

≤ η∥ϕ̂πk,h∥2M−1
k,h

+
1

η

(∑
π′

q′k(π
′)
∥∥∥ϕ̂π′

k,h

∥∥∥2
M−1

k,h

)(∑
π′

q′k(π
′)((ϕ̂π

′

k,h − ϕπ
′

h )⊤θk,h)
2

)
(by Lemma 47)

≤ η∥ϕ̂πk,h∥2M−1
k,h

+
d

η

∑
π′

q′k(π
′)

Õ(d 5
4 )×

∑
h′<h

∑
s∈Xh′

∑
a∈A

µπ
′
(s, a)∥ϕ(s, a)∥Λ−1

k,h′
+ 2ζH

2

(by Lemma 6)

≤ η∥ϕ̂πk,h∥2M−1
k,h

+
Õ(d 7

2 )

η
×
∑
π′

q′k(π
′)

∑
h′<h

∑
s∈Xh′

∑
a∈A

µπ
′
(s, a)

∑
h′<h

∑
s∈Xh′

∑
a∈A

µπ
′
(s, a)∥ϕ(s, a)∥2

Λ−1

k,h′


(Cauchy-Schwarz)

+O
(
dζ2H2

η

)
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≤ η∥ϕ̂πk,h∥2M−1
k,h

+
Õ(d 7

2H)

η

∑
h′<h

βk,h′ +O
(
dζ2H2

η

)
where βk,h =

∑
π

∑
s∈Sh,a∈A q

′
k(π)µ

π(s, a)∥ϕ(s, a)∥2
Λ−1

k,h

. We have

E

[
K∑
k=1

H∑
h=1

βk,h

]
= E

[
K∑
k=1

H∑
h=1

E
[
∥ϕ(sk,h, ak,h)∥2Λ−1

k,h
| Dk−1

]]

= E

[
K∑
k=1

H∑
h=1

∥ϕ(sk,h, ak,h)∥2Λ−1
k,h

]
≤ O(dH log(K)).

Thus, for any π,

E

[
K∑
k=1

H∑
h=1

biasπk,h,2

]
= E

[
K∑
k=1

H∑
h=1

η∥ϕ̂πk,h∥2M−1
k,h

+
Õ(d 7

2H)

η
×

K∑
k=1

H∑
h=1

∑
h′<h

βk,h′

]
+O

(
dζ2H3K

η

)

≤ E

[
K∑
k=1

η∥ϕ̂πk∥2M−1
k

]
+
Õ(d 9

2H3)

η
. (ζ = d

K )

Overall,

bias ≤ E

[
K∑
k=1

H∑
h=1

(
biasπ

⋆

k,h,1 +
∑
π

qk(π)biasπk,h,1

)
+

K∑
k=1

H∑
h=1

(
biasπ

⋆

k,h,2 +
∑
π

qk(π)biasπk,h,2

)]

≤ E

[
K∑
k=1

H∑
h=1

Cbonus

H
×
∑
h′<h

∑
s∈Xh′

∑
a∈A

(
µ̂π

⋆

k (s, a) +
∑
π

qk(π)µ̂
π
k (s, a)

)
∥ϕ(s, a)∥Λ−1

k,h′


+

K∑
k=1

(
η∥ϕ̂π

⋆

k ∥2M−1
k

+ η
∑
π

qk(π)∥ϕ̂πk∥2M−1
k

)]
+
Õ(d 9

2H3)

η

≤ E

[
Cbonus

K∑
k=1

H∑
h=1

∑
s∈Xh

∑
a∈A

(
µ̂π

⋆

k (s, a) + 2
∑
π

q′k(π)µ̂
π
k (s, a)

)
∥ϕ(s, a)∥Λ−1

k,h

+

K∑
k=1

(
η∥ϕ̂π

⋆

k ∥2M−1
k

+ 2η
∑
π

q′k(π)∥ϕ̂πk∥2M−1
k

)]
+
Õ(d 9

2H3)

η

≤ E

[
Cbonus

K∑
k=1

H∑
h=1

∑
s∈Xh

∑
a∈A

(
µ̂π

⋆

k (s, a) + 2
∑
π

q′k(π)µ
π(s, a)

)
∥ϕ(s, a)∥Λ−1

k,h

+ 2Cbonus

K∑
k=1

H∑
h=1

∑
s∈Xh

∑
a∈A

∑
π

q′k(π)(µ̂
π
k (s, a)− µπ(s, a))∥ϕ(s, a)∥Λ−1

k,h

+ η

K∑
k=1

∥ϕ̂π
⋆

k ∥2M−1
k

+ 2ηdHK

]
+
Õ(d 9

2H3)

η

≤ E

[
Cbonus

K∑
k=1

H∑
h=1

∑
s∈Xh

∑
a∈A

µ̂π
⋆

k (s, a)∥ϕ(s, a)∥Λ−1
k,h

+ Õ(CbonusH
√
dK) (*)

+ 2Cbonus

K∑
k=1

H∑
h=1

∑
π

q′k(π)

Cbonus

H

∑
h′<h

∑
s∈Xh′

∑
a∈A

µπ(s, a)∥ϕ(s, a)∥Λ−1

k,h′


(by Lemma 6)

+ η

K∑
k=1

∥ϕ̂π
⋆

k ∥2M−1
k

+ 2ηdHK

]
+
Õ(d 9

2H3)

η
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≤ E

[
Cbonus

K∑
k=1

H∑
h=1

∑
s∈Xh

∑
a∈A

µ̂π
⋆

k (s, a)∥ϕ(s, a)∥Λ−1
k,h

+ η

K∑
k=1

∥ϕ̂π
⋆

k ∥2M−1
k

+ 2C2
bonus

K∑
k=1

H∑
h=1

∑
s∈Xh

∑
a∈A

∑
π

q′k(π)µ
π(s, a)∥ϕ(s, a)∥Λ−1

k,h

]

+ Õ

(
d

9
2H3

η
+ ηdHK + CbonusH

√
dK

)

≤ E

[
Cbonus

K∑
k=1

H∑
h=1

∑
s∈Xh

∑
a∈A

µ̂π
⋆

k (s, a)∥ϕ(s, a)∥Λ−1
k,h

+ η

K∑
k=1

∥ϕ̂π
⋆

k ∥2M−1
k

]

+ Õ

(
d

9
2H3

η
+ ηdHK + CbonusH

√
dK + C2

bonusH
√
dK

)
(*)

where in the two (*) places we use

E

[
K∑
k=1

H∑
h=1

∑
s∈Xh

∑
a∈A

∑
π

q′k(π)µ
π(s, a)∥ϕ(s, a)∥Λ−1

k,h

]

≤ E

√√√√ K∑
k=1

H∑
h=1

∑
s∈Xh

∑
a∈A

∑
π

q′k(π)µ
π(s, a)

√√√√ K∑
k=1

H∑
h=1

∑
s∈Xh

∑
a∈A

∑
π

q′k(π)µ
π(s, a)∥ϕ(s, a)∥2

Λ−1
k,h


≤

√√√√HKE

[
K∑
k=1

H∑
h=1

βk,h

]
≤ Õ(H

√
dK).

Finally, plugging in the definition of Cbonus = Õ(d
5
4H) gives the desired bound.

B.3.2 BOUNDING THE FTRL REGRET

Lemma 11.

ftrl ≤ Õ
(
ηd2H4K +

η3H2

γ2
K + γHK

)
.

Proof. The magnitude of the loss is bounded by

|ϕ̂π
⊤

k θ̂k − bπk | ≤
∣∣∣ϕ̂π⊤

k M−1
k ϕ̂πk

k Lk

∣∣∣+ Cbonus

H∑
h=1

∑
s∈Xh

∑
a∈A

µ̂πk (s, a)∥ϕ(s, a)∥Λ−1
k,h

+ η∥ϕ̂πk∥2M−1
k

≤
∥∥∥ϕ̂π∥∥∥

M−1
k

∥∥∥ϕ̂πk

k

∥∥∥
M−1

k

H + CbonusH +
ηdH

γ

≤ dH

γ
+ CbonusH +

ηdH

γ
≤ 2dH

γ
+ CbonusH.

If η ≤ 1
4dH
γ +2CbonusH

, then we have η|ϕ̂π⊤

k θ̂k − bπk | ≤ 1
2 and we can use the standard FTRL regret

bound of exponential weights (Lattimore and Szepesvári, 2020, Equation (27.2, 27.3)):

ftrl ≤ γKH︸ ︷︷ ︸
John’s exploration

+
ln |Π|
η

+ η

K∑
k=1

E

[
Eπk∼q′k

[∑
π∈Π

qk(π)(2(ϕ̂
π⊤

k θ̂k)
2 + 2(bπk )

2)

]]
.
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Since Mk = Eπ∼q′k [ϕ̂
π
k ϕ̂

π⊤

k ], we have M−1
k ⪯ 1

1−γ

(
Eπ∼qk [ϕ̂πk ϕ̂π

⊤

k ]
)−1

, and thus

Eπk∼q′k

[∑
π∈Π

qk(π)(ϕ̂
π⊤

k M−1
k ϕ̂πk

k Lk)
2

]
≤ H2 1

(1− γ)2
Tr
(
MkM

−1
k MkM

−1
k

)
= O(dH3) .

For the final term, we have

K∑
k=1

η
∑
π

qk(π)(b
π
k )

2 ≤ ηC2
bonusH

2K +
η3d2H2

γ2
K = Õ

(
ηd

5
2H4K +

η3d2H2

γ2
K

)
.

B.3.3 BOUNDING THE BONUS

Lemma 12.

bonus ≤ −E

[
K∑
k=1

η∥ϕ̂π
⋆

k ∥2M−1
k

+ Cbonus

H∑
h=1

∑
s∈Xh

∑
a∈A

µ̂π
⋆

k (s, a)∥ϕ(s, a)∥Λ−1
h

]

+ Õ

(
d

9
2H3

η
+ ηdHK + d3H3

√
K

)
.

Proof.

bonus ≤ E

[
K∑
k=1

η
∑
π

q′k(π)∥ϕ̂πk∥2M−1
k

+ Cbonus

H∑
h=1

∑
s∈Xh

∑
a∈A

∑
π

q′k(π)µ̂
π
k (s, a)∥ϕ(s, a)∥Λ−1

h

− η∥ϕ̂π
⋆

k ∥2M−1
k

− Cbonus

H∑
h=1

∑
s∈Xh

∑
a∈A

µ̂π
⋆

k (s, a)∥ϕ(s, a)∥Λ−1
h

]
The first and the second term above have been handled in the proof of Lemma 10. Following the

analysis there, we can bound their sum by Õ
(
d

9
2H3

η + ηdHK + d3H3
√
K

)
.

B.3.4 FINISHING UP

Proof of Theorem 7. Combining the bounds in Lemma 10, Lemma 11, and Lemma 12, we bound
the regret as

E [RK ] ≤ Õ

(
ηd

5
2H4K +

η3d2H2

γ2
K + γHK +

d
9
2H3

η
+ d3H3

√
K

)

= Õ

(
ηd

5
2H4K +

d
9
2H3

η
+ d3H3

√
K

)
(γ = Θ(ηdH))

= Õ(d 7
2H

7
2

√
K). (η = Θ(d/

√
HK))
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C INITIAL PURE EXPLORATION PHASE

Algorithm 5 Initial Pure Exploration (Algorithm 2 of Sherman et al. (2023a))

input: δ, ρ, ϵcov
Set m = ⌈log 1

ϵcov
⌉

Set ∀i ∈ [m], ρi = ρ
for h = H, . . . , 1 do{
X̃h,i, D̃h,i, Λ̃h,i

}m
i=1
← COVERTRAJ(h, δH , {ρi}

m
i=1,m)

Dh ←
⋃
i D̃h,i

Λh ← I +
∑

(s,a,s′)∈Dh
ϕ(s, a)ϕ(s, a)⊤

Zh ←
{
s ∈ Sh : ∀a ∈ A, ∥ϕ(s, a)∥Λ−1

h
≤ ρ
}

end for
return (Dh,Zh)Hh=1

Theorem 13 (Theorem 2 in Sherman et al. (2023a)). The COVERTRAJ algorithm (Wagenmaker
et al., 2022b, Algorithm 4) when instantiated with FORCE (Wagenmaker et al., 2022a, Algo-
rithm 1) enjoys the following guarantee for linear MDPs. Given a sequence of tolerance parameters
ρ1, . . . , ρm > 0 and h ∈ [H], the algorithm interacts with the environment for T steps, where

T ≤ Tmax ≜ C

m∑
i=1

2imax

{
d

ρ2i
log

2i

ρ2i
, d4H3m3 log7/2

1

δ

}
, C > 0 is a logarithmic term,

and outputs
{
X̃h,i, D̃h,i, Λ̃h,i

}m
i=1

such that
{
X̃h,i

}m+1

i=1
forms a partition for the unit Euclidean

ball, Λ̃h,i = I +
∑

(s,a,s′)∈D̃h,i
ϕ(s, a)ϕ(s, a)⊤, and with probability 1− δ, it holds that:

∀i ∈ [m], ϕ⊤Λ̃−1
h,iϕ ≤ ρ

2
i , ∀ϕ ∈ X̃h,i;

and ∀i ∈ [m+ 1], sup
π

{∑
s∈Sh

∑
a∈A

I
{
ϕ(s, a) ∈ X̃h,i

}
µπ(s, a)

}
≤ 2−i+1.

Lemma 14 (Lemma 15 in Sherman et al. (2023a)). Assume h ∈ [H], ϵcov > 0, δ > 0,m =

⌈log(1/ϵcov)⌉, ρm ≥ · · · ≥ ρ1 > 0, and let
{
Λ̃h,i

}
i∈[m]

be the covariance matrices returned from

COVERTRAJ(h, δH , {ρi}
m
i=1,m). Then under the assumption that the event from Theorem 13 holds,

we have for any policy π and i ∈ [m]:∑
s∈Sh

µπ(s)I
{
∃a s.t. ∥ϕ(s, a)∥Λ̃−1

h,i
> ρm

}
≤ ϵcov.

Lemma 15. For linear MDPs, with inputs δ ∈ (0, 1), ρ > 0, ϵcov > 0, Algorithm 5 will terminate in

T = Θ̃
(
dH/ρ2+d4H4

ϵcov
polylog

(
1
δ ,

1
ρ ,

1
ϵcov

, d,H
))

episodes, and outputH datasets {Dh}Hh=1 where
Dh ⊂ Sh ×A× Sh+1 such that with probability ≥ 1− δ,

∀h,∀π,
∑
s∈Sh

µπ(s)I{s /∈ Zh} ≤ ϵcov, where Zh ≜
{
s ∈ Sh : ∀a ∈ A, ∥ϕ(s, a)∥Λ−1

h
≤ ρ
}

with Λh ≜ I +
∑

(s,a,s′)∈Dh
ϕ(s, a)ϕ(s, a)⊤.

Proof of Lemma 15. Let Th denote the number of episodes run by COVERTRAJ, by Theorem 13,

Th ≤ C
m∑
i=1

2imax

{
d

ρ2i
log

2i

ρ2i
, d4H3m3 log7/2

1

δ

}
≤ Õ

(
m2m

(
d

ρ2
log

(
2m

ρ2

)
+ d4H3m3 log7/2

1

δ

))
≤ Õ

(
d/ρ2 + d4H3

ϵcov
polylog

(
1

δ
,

1

ϵcov
,
1

ρ
, d,H

))
.
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Given that Algorithm 5 executes COVERTRAJ H times, the claim follows. For the claim on the
un-reachability of Sh \ Zh, fix h ∈ [H], and observe that by Lemma 14, w.p. 1− δ/H , for any π;∑

s∈Sh

µπ(s)I
{
∃a s.t. ∥ϕ(s, a)∥Λ−1

h
> ρm

}
≤ ϵcov,

where in the inequality we use that Λ̃h,i ⪯ Λh. The proof is complete by a union bound over h.

D OMITTED DETAILS IN SECTION 4

We will be using several additional notations in the analysis.

Definition 16 (µπh, µkh, µ⋆h). Define µπh(s) = µπ(s)I{s ∈ Sh}. By the definition of µπ(s), we know
that µπh is a distribution over S that is supported on Sh. Define µkh = µπk

h and µ⋆h = µπ
⋆

h .

Definition 17 (Tπh , Eπh, E⋆h). We define Tπh be the distribution over trajectories {(si, ai)}hi=1 for the
first h steps generated by policy π and transition P . Then we define

Eπh [·] = E(si,ai)
h−1
i=1 ∼Tπ

h−1
Es∼P (·|sh−1,ah−1) [·] ,

where [·] can be a function of (s1, a1, . . . , sh−1, ah−1, s).

In the analysis, we will mainly consider the optimal policy π⋆. For notation simplicity, we write
E⋆h [·] = Eπ⋆

h [·].

Definition 18 (Good trajectory). For any trajectory t = {(sh, ah, sh+1)}jh=i where 1 ≤ i ≤ j ≤ H ,
if sh ∈ Zh for any h, then we say t is a good trajectory.

Definition 19 (Qk). Define Qk(s, a) = Qπk(s, a; ℓk).

D.1 REGRET DECOMPOSITION AND DILATED BONUS LEMMA

Lemma 20. For any trajectory t = {(sh, ah, sh+1)}jh=i with 1 ≤ i ≤ j ≤ H generated by any
policy, we have

Pr (t is not a good trajectroy) ≤ HK− 1
4

Proof. From Lemma 15, since we choose ϵcov = K− 1
4 , for any h and sh generated by any policy,

we have P (t /∈ Zh) ≤ K− 1
4 . By union bound, we have

Pr (t is not a good trajectory) = Pr

 ⋃
i≤h≤j

sh /∈ Zh

 ≤ HK− 1
4

In the regret decomposition below, we use the notation E⋆h[·] defined in Definition 17 to denote the
expectation over trajectories (s1, a1, . . . , sh−1, ah−1, sh = s) drawn from π⋆, and use Eh to denote
the event that ∀h′ ≤ h, sh′ ∈ Zh′ . By Lemma 20, we have E⋆h[I{Eh}] ≥ 1−HK− 1

4 for any h. By
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performance difference lemma (Kakade and Langford, 2002), we have

E [RK ]

= E

[
K∑
k=1

H∑
h=1

Es∼µ⋆
h
[⟨Qk(s, ·), πk(·|s)− π⋆(·|s)⟩]

]

= E

[
K∑
k=1

H∑
h=1

E⋆h [⟨Qk(s, ·), πk(·|s)− π⋆(·|s)⟩]

]

= E

[
K∑
k=1

H∑
h=1

E⋆h [⟨Qk(s, ·), πk(·|s)− π⋆(·|s)⟩ I{Eh}]

]
+ E

[
K∑
k=1

H∑
h=1

E⋆h
[
⟨Qk(s, ·), πk(·|s)− π⋆(·|s)⟩ I{Eh}

]]

≤ E

[
K∑
k=1

H∑
h=1

E⋆h [⟨Qk(s, ·), πk(·|s)− π⋆(·|s)⟩ I{Eh}]

]
︸ ︷︷ ︸

reg-term

+H3K
3
4 (20)

where the last step comes from Lemma 20 and Qk(s, a) ≤ H for any k, h, s, a.

To handle reg-term, we utilize the dilated bonus technique proposed in Luo et al. (2021). We
summarize the technique in Lemma 21, with slight modification to make it align with our settings.
Lemma 21 (Adaptation of Lemma 3.1 in Luo et al. (2021)). Suppose that for some bonus functions
bk(s, a), Bk(s, a) and some constants f, g, we have for all s ∈ Sh,

Bk(s, a) ≥ bk(s, a) +
(
1 +

1

H

)
Es′∼P (·|s,a)Ea′∼πk(·|s′) [Bk(s

′, a′)I{s′ ∈ Zh+1}]− f, (21)

and suppose that our algorithm guarantees

E

[
K∑
k=1

H∑
h=1

E⋆h [⟨Qk(s, ·)−Bk(s, a), πk(·|s)− π⋆(·|s)⟩ I{Eh}]

]

≤ g + E

[
K∑
k=1

H∑
h=1

E⋆hEa∼π⋆(·|s) [bk(s, a)I{Eh}]

]
+

1

H
E

[
K∑
k=1

H∑
h=1

E⋆hEa∼πk(·|s) [Bk(s, a)I{Eh}]

]
.

(22)

Then, we have (recall the reg-term defined in the proof of Eq. (20))

reg-term ≤ g + fHK +

(
1 +

1

H

)
E

[
K∑
k=1

Ea∼πk(·|s1) [Bk(s1, a)]

]
.

Proof. Notice that for any function X of (s1, a1, . . . , sH , aH), it holds that

E⋆hEa∼π⋆(·|s)Es′∼P (·|s,a) [XI{Eh}I{s′ ∈ Zh+1}] = E⋆h+1 [XI{Eh+1}] . (23)

By the definition of reg-term, we have

reg-term

= E

[
K∑
k=1

H∑
h=1

E⋆h [⟨Qk(s, ·), πk(·|s)− π⋆(·|s)⟩ I{Eh}]

]

≤ g + E

[
K∑
k=1

H∑
h=1

E⋆hEa∼π⋆(·|s) [bk(s, a)I{Eh}]

]
+

1

H
E

[
K∑
k=1

H∑
h=1

E⋆hEa∼πk(·|s) [Bk(s, a)I{Eh}]

]

+ E

[
K∑
k=1

H∑
h=1

E⋆h [⟨Bk(s, ·), πk(·|s)⟩ I{Eh}]

]
− E

[
K∑
k=1

H∑
h=1

E⋆h [⟨Bk(s, ·), π⋆(·|s)⟩ I{Eh}]

]
(by Eq. (22))
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≤ g + fHK + E

[
K∑
k=1

H∑
h=1

E⋆hEa∼π⋆(·|s) [bk(s, a)I{Eh}]

]

+

(
1 +

1

H

)
E

[
K∑
k=1

H∑
h=1

E⋆hEa∼πk(·|s) [Bk(s, a)I{Eh}]

]
− E

[
K∑
k=1

H∑
h=1

E⋆hEa∼π⋆(·|s) [bk(s, a)I{Eh}]

]

−
(
1 +

1

H

)
E

[
K∑
k=1

H∑
h=1

E⋆hEa∼π⋆(·|s)Es′∼P (·|s,a)Ea′∼πk(·|s′) [Bk(s
′, a′)I{Eh}I{s′ ∈ Zh+1}]

]
(by Eq. (21))

= g + fHK +

(
1 +

1

H

)
E

[
K∑
k=1

H∑
h=1

E⋆hEa∼πk(·|s) [Bk(s, a)I{Eh}]

]

−
(
1 +

1

H

)
E

[
K∑
k=1

H∑
h=1

E⋆h+1Ea∼π⋆(·|s) [Bk(s, a)I{Eh+1}]

]
(by Eq. (23))

= g + fHK +

(
1 +

1

H

)
E

[
K∑
k=1

E⋆1Ea∼πk(·|s) [Bk(s, a)I{E1}]

]
(telescoping)

= g + fHK +

(
1 +

1

H

)
E

[
K∑
k=1

Ea∼πk(·|s1) [Bk(s1, a)]

]
. (S1 = {s1} and s1 ∈ Z1)

In the following Appendix D.2 and Appendix D.3, we aim to show that our Algorithm 3 and Al-
gorithm 4 could induce bonus functions bk(s, a), Bk(s, a) that satisfy the condition of Lemma 21.
This allows us to directly apply it and get the desired regret bound in Appendix D.4. Our choices of
Bk(s, a) and bk(s, a) are the following:

For s ∈ Sh, a ∈ A,

bk(s, a) = β∥ϕ(s, a)∥2
Σ̂−1

k,h

+

(
1− 1

4H

)
α∥ϕ(s, a)∥2

Λ−1
k,h

(24)

Bk(s, a) = bk(s, a) + ϕ(s, a)⊤wk,h (25)

where

wk,h =

(
1 +

1

H

) ∑
s′∈Sh+1

ψ(s′)Ŵk(s
′)I{s′ ∈ Zh+1} (wk,H ≜ 0) (26)

with the Ŵk(s
′) defined in Algorithm 4.

D.2 CONSTRUCTION OF DILATED BONUS (ACHIEVING EQ. (21) USING ALGORITHM 4)

In the linear regression (Line 5) of Algorithm 4, the ŵk,h is an estimation ofwk,h defined in Eq. (26),
where for s′ ∈ Sh+1,

Ŵk(s
′) = Ea′∼πk(·|s′)

[[
β∥ϕ(s′, a′)∥2

Σ̂−1
k,h+1

+ α∥ϕ(s′, a′)∥2
Λ−1

k,h+1

+ ϕ(s′, a′)⊤ŵk,h+1

]+]
, (27)

with [x]+ denoting max{x, 0}.
The next Lemma 22 is a key lemma that 1) bounds the error between ŵk,h and wk,h, and 2) bounds
the magnitude of ŵk,h and wk,h for all h ∈ [H].
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Lemma 22. Let Cι = 15
√
log
(
12dK
δ

)
and suppose that Bmax

h ≤ α
C2

ιHd
2 . Then with probability at

least 1− δ, the following inequalities hold for all k ∈ [K], h ∈ [H], and all s ∈ Sh:

∥wk,h∥2 ≤
√
dBmax

h , (28)∣∣ϕ(s, a)⊤ŵk,h − ϕ(s, a)⊤wk,h∣∣ ≤ CιdBmax
h ∥ϕ(s, a)∥Λ−1

k,h
, (29)

|ϕ(s, a)⊤ŵk,h|I{s ∈ Zh} ≤
(
1 +

1

2H

)
Bmax
h . (30)

Proof. We use induction to prove these three inequalities. For the base case h = H , we have
wk,H = 0 and ŵk,H = 0, so all three inequalities holds.

Suppose that all three inequalities holds for the case of h + 1. Below, we show that that also holds
for h.

Showing Eq. (28). Observe that for any s′ ∈ Sh+1,(
1 +

1

H

)
Ŵk(s

′)I{s′ ∈ Zh+1}

≤ max
a′∈A

(
1 +

1

H

)(
β∥ϕ(s′, a′)∥2

Σ̂−1
k,h+1

+ α∥ϕ(s′, a′)∥2
Λ−1

k,h+1

+ |ϕ(s′, a′)⊤ŵk,h+1|
)
I{s′ ∈ Zh+1}

≤
(
1 +

1

H

)(
β

γ
+ αρ2

)
+

(
1 +

1

H

)(
1 +

1

2H

)
Bmax
h+1

(∥ϕ(s′, a′)∥Λ−1
k,h+1

≤ ρ for s′ ∈ Zh+1 by Algorithm 5; using induction hypothesis Eq. (30) for h+ 1)

≤
(
1 +

1

H

)
1

2H
Bmax
h+1 +

(
1 +

1

H

)(
1 +

1

2H

)
Bmax
h+1 (by the definition of Bmax

h+1)

≤
(
1 +

1

H

)2

Bmax
h+1

= Bmax
h . (31)

Thus,

∥wk,h∥2 =

∥∥∥∥∥∥
(
1 +

1

H

) ∑
s′∈Sh+1

ψ(s′)Ŵk(s
′)I{s′ ∈ Zh+1}

∥∥∥∥∥∥
2

≤ Bmax
h

∥∥∥∥∥∥
∑

s′∈Sh+1

ψ(s′)

∥∥∥∥∥∥
2

≤
√
dBmax

h

where in the last inequality we use the linear MDP assumption (Definition 2).

Showing Eq. (29).∣∣ϕ(s, a)⊤ŵk,h − ϕ(s, a)⊤wk,h∣∣ ≤ ∥ϕ(s, a)∥Λ−1
k,h
∥ŵk,h − wk,h∥Λk,h

. (32)

By Lemma 44 and ∥wk,h∥ ≤
√
dBmax

h (which we just proved), it holds that

∥ŵk,h − wk,h∥Λk,h

≤

∥∥∥∥∥∥
∑

(s,a,s′)∈Dk,h

ϕ(s, a)

((
1 +

1

H

)
Ŵk(s

′)I{s′ ∈ Zh+1} − ϕ(s, a)⊤wk,h
)∥∥∥∥∥∥

Λ−1
k,h

+
√
dBmax

h .

(33)

By Lemma 43, the first term above can be upper bounded by√
4(Bmax

h )2
(
d

2
logK + log

Nϵ (Vh)
δ

)
+ 8K2ϵ2. (34)
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where Vh is the function class where
(
1 + 1

H

)
Ŵk(s

′)I{s′ ∈ Zh+1} lies, and Nϵ(Vh) is its ϵ-
covering number. By the form of Ŵk(s

′) given in Eq. (27), Vh can be chosen as the that defined in
Definition 39. Then by Lemma 42 with ϵ = 1

K and β
γ + 2α ≤ K2, we have

log (Nϵ (Vh)) ≤ 4(d+ 1)2 log
(
400(d+ 1)2K3

)
≤ 48d2 log (12dK)

Combining this with Eq. (33) and Eq. (34), we get

∥ŵk,h − wk,h∥Λk,h
≤ 15dBmax

h

√
log

(
12dK

δ

)
.

Further combining this with Eq. (32) proves Eq. (29).

Showing Eq. (30).∣∣ϕ(s, a)⊤ŵk,h∣∣ I{s ∈ Zh}
≤
∣∣ϕ(s, a)⊤wk,h∣∣ I{s ∈ Zh}+ ∣∣ϕ(s, a)⊤ (ŵk,h − wk,h)

∣∣ I{s ∈ Zh}
≤
(
1 +

1

H

)
sup

s′∈Sh+1

Ŵk(s
′)I{s′ ∈ Zh+1}+ CιdB

max
h ∥ϕ(s, a)∥Λ−1

k,h

(by the definition of wk,h and Eq. (29))

≤ Bmax
h +

(
(CιdB

max
h )2

4α
+ α∥ϕ(s, a)∥2

Λ−1
k,h

)
I{s ∈ Zh} (by Eq. (31) and AM-GM inequality)

≤ Bmax
h +

(
1

4H
Bmax
h + αρ2

)
(by the condition specified in the lemma and that ∥ϕ(s, a)∥Λ−1

k,h
≤ ρ for s ∈ Zh)

≤ Bmax
h +

1

2H
Bmax
h (by the definition of Bmax

h )

This proves Eq. (30).

Lemma 23. With the definition of Eq. (24) and Eq. (25), any s ∈ Sh, we have

Bk(s, a) ≥ bk(s, a) +
(
1 +

1

H

)
Es′∼P (·|s,a)Ea′∼πk(·|s′) [Bk(s

′, a′)I{s′ ∈ Zh+1}]−
(CιdB

max)2

α
.

where Bmax ≜ maxh∈[H]B
max
h and Cι is a logarithmic term defined in Lemma 22.

Proof. Recall the definition of wk,h in Eq. (26), from the definition of linear MDP, for all k, h, s, a,
we have

ϕ(s, a)⊤wk,h

=

(
1 +

1

H

)
Es′∼P (·|s,a)

[
Ŵ (s′)I{s′ ∈ Zh+1}

]
=

(
1 +

1

H

)
Es′∼P (·|s,a)Ea′∼πk(·|s)

[
B̂+
k (s

′, a′)I{s′ ∈ Zh+1}
]

≥
(
1 +

1

H

)
Es′∼P (·|s,a)Ea′∼πk(·|s)

[
B̂k(s

′, a′)I{s′ ∈ Zh+1}
]

=

(
1 +

1

H

)
Es′∼P (·|s,a)Ea′∼πk(·|s)

[(
Bk(s

′, a′) +
α

4H
∥ϕ(s′, a′)∥2

Λ−1
k,h+1

+ ϕ(s′, a′)⊤ (ŵk,h+1 − wk,h+1)
)
I{s′ ∈ Zh+1}

]
(by the definition of B̂k(s′, a′) in Line 7 and Bk(s′, a′) in Eq. (25))

≥
(
1 +

1

H

)
Es′∼P (·|s,a)Ea′∼πk(·|s′) [Bk(s

′, a′)I{s′ ∈ Zh+1}]−
(CιdB

max)2

α
(Eq. (29) and AM-GM inequlity)

Thus, we have

Bk(s, a)
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= bk(s, a) + ϕ(s, a)⊤wk,h

≥ bk(s, a) +
(
1 +

1

H

)
Es′∼P (·|s,a)Ea′∼πk(·|s′) [Bk(s

′, a′)I{s′ ∈ Zh+1}]−
(CιdB

max)2

α
.

D.3 REGRET ANALYSIS (ACHIEVING EQ. (22) USING ALGORITHM 3)

The goal of this subsection is to prove Eq. (22) for the definitions of bk(s, a) andBk(s, a) in Eq. (24)
and Eq. (25). We first decompose the left-hand side of Eq. (22).

E

[
K∑
k=1

H∑
h=1

E⋆h [⟨Qk(s, ·)−Bk(s, a), πk(·|s)− π⋆(·|s)⟩ I{Eh}]

]

≤ E

[
K∑
k=1

H∑
h=1

E⋆h
[〈
Qk(s, ·)− Q̂k(s, ·), πk(·|s)

〉
I{Eh}

]]
︸ ︷︷ ︸

bias-1

+ E

[
K∑
k=1

H∑
h=1

E⋆h
[〈
Q̂k(s, ·)−Qk(s, ·), π⋆(·|s)

〉
I{Eh}

]]
︸ ︷︷ ︸

bias-2

+ E

[
K∑
k=1

H∑
h=1

E⋆h
[〈

Γ̂̂Γ̂Γk,h − B̂̂B̂Bk,h,HHHk(s)−HHH⋆(s)
〉
I{Eh}

]]
︸ ︷︷ ︸

ftrl

+ E

[
K∑
k=1

H∑
h=1

E⋆h
[〈
B̂k(s, ·)−Bk(s, ·), πk(·|s)− π⋆(·|s)

〉
I{Eh}

]]
︸ ︷︷ ︸

bias-3

(35)

where we use that for s ∈ Sh, Ea∼π(·|s)Q̂k(s, a) = ⟨Ĉov(s, π(·|s)), Γ̂̂Γ̂Γk,h⟩ and Ea∼π(·|s)B̂k(s, a) =
⟨Ĉov(s, π(·|s)), B̂̂B̂Bk,h⟩, and we defineHHHk(s) = Ĉov(s, πk(·|s)),HHH⋆(s) = Ĉov(s, π⋆(·|s)).
We further deal with the ftrl term. This term is analyzed through the standard FTRL analysis. In
order to deal with the issue that F can be unbounded on the boundary ofHs, we define the following
auxiliary comparator:

HHH⋆(s) =

(
1− 1

K3

)
HHH⋆(s) +

1

K3
HHHmin(s)

whereHHHmin(s) = argmin
HHH∈Hs

F (HHH)

Applying Lemma 46 for logdet FTRL, we have

ftrl = E

[
K∑
k=1

H∑
h=1

E⋆h
[〈

Γ̂̂Γ̂Γk,h − B̂̂B̂Bk,h,HHHk(s)−HHH⋆(s)
〉
I{Eh}

]]

= E

[
K∑
k=1

H∑
h=1

E⋆h
[〈

Γ̂̂Γ̂Γk,h − B̂̂B̂Bk,h,HHHk(s)−HHH⋆(s)
〉
I{Eh}

]]

+ E

[
K∑
k=1

H∑
h=1

E⋆h
[〈

Γ̂̂Γ̂Γk,h − B̂̂B̂Bk,h,HHH⋆(s)−HHH⋆(s)
〉
I{Eh}

]]

≤ E⋆h

[
τ
(
F
(
HHH⋆(s)

)
−minHHH∈Hs

F (HHH)
)

η
I{Eh}

]
︸ ︷︷ ︸

penalty
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+ E

[
K∑
k=1

H∑
h=1

E⋆h
[(

max
HHH∈Hs

⟨HHHk(s)−HHH, Γ̂̂Γ̂Γk,h⟩ −
DF (HHH,HHHk(s))

2η

)
I{Eh}

]]
︸ ︷︷ ︸

stability-1

+ E

[
K∑
k=1

H∑
h=1

E⋆h
[(

max
HHH∈Hs

⟨HHHk(s)−HHH,−B̂̂B̂Bk,h⟩ −
DF (HHH,HHHk(s))

2η

)
I{Eh}

]]
︸ ︷︷ ︸

stability-2

+ E

[
K∑
k=1

H∑
h=1

E⋆h
[〈

Γ̂̂Γ̂Γk,h − B̂̂B̂Bk,h,HHH⋆(s)−HHH⋆(s)
〉
I{Eh}

]]
︸ ︷︷ ︸

error

(36)

Below, we further bound the individual terms in Eq. (35) and Eq. (36).

D.3.1 BOUND bias-1, bias-2, bias-3 IN EQ. (35)

Lemma 24. For any policy πk, there exists a qk,h such that for any s ∈ Sh, Qk(s, a) =

ϕ(s, a)⊤qk,h. Moreover, ∥qk,h∥2 ≤ H
√
d.

Proof. Define qk,h = θk,h +
∑
s′∈Sh+1

ψ(s′)Ea′∼πk(·|s′) [Qk(s
′, a′)], we have

Qk(s, a) = Qπk(s, a; ℓk) = ℓk(s, a) + Es′∼P (·|s,a)Ea′∼πk(·|s′) [Qk(s
′, a′)]

= ϕ(s, a)⊤

θk,h + ∑
s′∈Sh+1

ψ(s′)Ea′∼πk(·|s′) [Qk(s
′, a′)]


= ϕ(s, a)⊤qk,h.

Moreover,

∥qk,h∥2 =

∥∥∥∥∥∥θk,h +
∑

s′∈Sh+1

ψ(s′)Ea′∼πk(·|s′) [Qk(s
′, a′)]

∥∥∥∥∥∥
2

≤
√
d+
√
d(H − 1) =

√
dH.

Lemma 25. Let Σk,h = Es∼µk
h
Ea∼πk(·|s)

[
ϕ(s, a)ϕ(s, a)⊤

]
. If γ = 5d log(6dHK/δ)

τ , then with
probability of 1− δ, for all k, h,∥∥∥(Σ̂k,h − Σk,h

)
qk,h

∥∥∥2
Σ̂−1

k,h

≤ O
(
d2H2 log (dHK/δ)

τ

)

Proof. This follows the fact the ∥qk,h∥2 ≤ H
√
d given in Lemma 24 and the matrix concentration

bound in Lemma 14 of Liu et al. (2023a) with a union bound over k, h. Taking a union bound for
all k, h finishes the proof.

Lemma 26. If γ = 5d log(6dHK/δ)
τ , then

bias-1 ≤ Õ
(
d2H3

τβ
K

)
+

β

4H
E

[
K∑
k=1

H∑
h=1

E⋆hEa∼πk(·|s)

[
∥ϕ(s, a)∥2

Σ̂−1
k,h

I{Eh}
]]

bias-2 ≤ Õ
(
d2H3

τβ
K

)
+

β

4H
E

[
K∑
k=1

H∑
h=1

E⋆hEa∼π⋆(·|s)

[
∥ϕ(s, a)∥2

Σ̂−1
k,h

I{Eh}
]]
.
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Proof. Let Ek [·] be the expectation conditioned on history up to episode k − 1. We have

Ek

[
H∑
t=h

ℓk,t

]
= Ek [Qk(sk,h, ak,h)] = Ek

[
ϕ(sk,h, ak,h)

⊤qk,h
]
.

Therefore,

Ek [q̂k,h] = Ek
[
Σ̂−1
k,hϕ(sk,h, ak,h)ϕ(sk,h, ak,h)

⊤qk,h

]
= Σ̂−1

k,hΣk,hqk,h,

and for s ∈ Sh,

Ek
[
Qk(s, a)− Q̂k(s, a)

]
= Ek

[
ϕ(s, a)⊤qk,h − ϕ(s, a)⊤q̂k,h

]
= ϕ(s, a)⊤

(
I − Σ̂−1

k,hΣk,h

)
qk,h

= ϕ(s, a)⊤Σ̂−1
k,h

(
Σ̂k,h − Σk,h

)
qk,h

≤ ∥ϕ(s, a)∥Σ̂−1
k,h

∥∥∥(Σ̂k,h − Σk,h

)
qk,h

∥∥∥
Σ̂−1

k,h

(Cauchy-Schwarz)

≤ O

(√
d2H2 log (dK/δ)

τ
∥ϕ(s, a)∥Σ̂−1

k,h

)
(Lemma 25)

≤ O
(
d2H3 log (dK/δ)

τβ

)
+

β

4H
∥ϕ(s, a)∥2

Σ̂−1
k,h

.

(AM-GM inequality)

Thus,

bias-1 = E

[
K∑
k=1

H∑
h=1

E⋆h
[〈
Qk(s, ·)− Q̂k(s, ·), πk(·|s)

〉
I{Eh}

]]

≤ Õ
(
d2H3

τβ
K

)
+

β

4H
E

[
K∑
k=1

H∑
h=1

E⋆hEa∼πk(·|s)

[
∥ϕ(s, a)∥2

Σ̂−1
k,h

I{Eh}
]]

Similarly, we can prove

bias-2 ≤ Õ
(
d2H3

τβ
K

)
+

β

4H
E

[
K∑
k=1

H∑
h=1

E⋆hEa∼π⋆(·|s)

[
∥ϕ(s, a)∥2

Σ̂−1
k,h

I{Eh}
]]

Lemma 27. Suppose that Bmax
h ≤ α

C2
ιHd

2 where Cι = 15
√

log
(
12dK
δ

)
. Then

bias-3 ≤ Õ
(
H2d2(Bmax)2

α
K

)
+

α

2H
E

[
K∑
k=1

H∑
h=1

E⋆hEa∼πk(·|s)

[
∥ϕ(s, a)∥2

Λ−1
k,h

I{Eh}
]]
.

Proof. By Eq. (29) and AM-GM inequality, we have that with probability at least 1 − δ, for all
k, h, s, a,

∣∣ϕ(s, a)⊤ (ŵk,h − wk,h)
∣∣ ≤ H(CιdB

max)2

α + α
4H ∥ϕ(s, a)∥

2
Λ−1

k,h

. Combining this with the

definitions of B̂k(s, a) in Line 7 and Bk(s, a) in Eq. (25), we get

B̂k(s, a)−Bk(s, a) =
α

4H
∥ϕ(s, a)∥2

Λ−1
k,h

+ ϕ(s, a)⊤ (ŵk,h − wk,h) ≥ −
H(CιdB

max)2

α

B̂k(s, a)−Bk(s, a) ≤
α

2H
∥ϕ(s, a)∥2

Λ−1
k,h

+
H(CιdB

max)2

α
.

With the two inequalities above, we have

bias-3
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= E

[
K∑
k=1

H∑
h=1

E⋆h
[〈
B̂k(s, ·)−Bk(s, ·), πk(·|s)− π⋆(·|s)

〉
I{Eh}

]]

≤ E

[
K∑
k=1

H∑
h=1

E⋆hEa∼πk(·|s)

[
B̂k(s, a)−Bk(s, a)

]]
− E

[
K∑
k=1

H∑
h=1

E⋆hEa∼π⋆(·|s)

[
B̂k(s, a)−Bk(s, a)

]]

≤ Õ
(
H2(dBmax)2

α
K

)
+

α

2H

[
K∑
k=1

H∑
h=1

E⋆hEa∼πk(·|s)

[
∥ϕ(s, a)∥2

Λ−1
k,h

I{Eh}
]]
.

D.3.2 BOUND penalty IN EQ. (36)

Lemma 28. penalty ≤ 3dτ log(K)
η

Proof. SinceHHH⋆(s) =
(
1− 1

K3

)
HHH⋆(s) +

1
K3HHHmin(s), we haveHHH⋆(s) ⪰ 1

K3HHHmin(s). Then

τ
(
F (HHH⋆(s))−minHHH∈Hs

F (HHH)
)

η
=
τ

η
log

det(HHHmin(s))

det(HHH⋆(s))
≤ 3dτ log(K)

η

D.3.3 BOUND error IN EQ. (36)

Lemma 29. error ≤ O (H).

Proof. By the choices of β, γ, α, it holds that β
γ + αρ2 ≤ O(K) and H

γ ≤ O(K). Let πmin be

such thatHHHmin(s) = Ea∼πmin(·|s)

ϕ(s, a)ϕ(s, a)⊤ ϕ(s, a)

ϕ(s, a)⊤ 1

. For s ∈ Sh, we have
∣∣Q̂k(s, a)∣∣ =

|ϕ(s, a)⊤q̂k,h| ≤ H
γ by the definition of q̂k,h, and ∥ŵk,h∥2 ≤ K2, which implies

∣∣B̂k(s, a)∣∣I{s ∈
Zh} ≤ 2K2.

Therefore,

E

[
K∑
k=1

H∑
h=1

E⋆h
[〈

Γ̂̂Γ̂Γk,h − B̂̂B̂Bk,h,HHH⋆(s)−HHH⋆(s)
〉
I{Eh}

]]

=
1

K3
E

[
K∑
k=1

H∑
h=1

E⋆h
[〈

Γ̂̂Γ̂Γk,h − B̂̂B̂Bk,h,HHHmin(s)−HHH⋆(s)
〉
I{Eh}

]]
(by the definition ofHHH⋆(s))

=
1

K3
E

[
K∑
k=1

H∑
h=1

E⋆h
[〈
Q̂k(s, ·)− B̂k(s, ·), πmin(·|s)− π⋆(·|s)

〉
I{Eh}

]]
≤ O (H)

D.3.4 BOUND stability-1 IN EQ. (36)

To bound stability-1, we first introduce a useful identity in Lemma 30. This is first proposed in
Zimmert and Lattimore (2022) and restated in Liu et al. (2023a).

Lemma 30 (Lemma 25 in Liu et al. (2023a)). LetGGG =

G+ gg⊤ g

g⊤ 1

 andHHH =

H + hh⊤ h

h⊤ 1

,

we have
DF (GGG,HHH) = DF (G,H) + ∥g − h∥2H−1 ≥ ∥g − h∥2H−1
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Lemma 31 (Lemma 12 in Liu et al. (2023a)). Define Σk,h = Es∼µk
h
Ea∼πk(·|s)

[
ϕ(s, a)ϕ(s, a)⊤

]
.

If γ = 5d log(6dHK/δ)
τ , for any k, h, with probability 1− δ, we have

Σ̂k,h =
1

τ

∑
(s,a,s′)∈Dk,h

ϕ(s, a)ϕ(s, a)⊤ + γI ⪰ 1

2
Es∼µk

h
Ea∼πk(·|s)

[
ϕ(s, a)ϕ(s, a)⊤

]
=

1

2
Σk,h.

Lemma 32. If γ = 5d log(6dHK/δ)
τ , then

stability-1 ≤ ηH2E

[
K∑
k=1

H∑
h=1

E⋆hEa∼πk(·|s)

[
∥ϕ(s, a)∥2

Σ̂−1
k,h

I{Eh}
]]
.

Proof. In this proof, we define

• ϕ(s, π) = Ea∼π(·|s) [ϕ(s, a)]

• Cov(s, π) = Ea∼π(·|s)
[
(ϕ(s, a)− ϕ(s, π)) (ϕ(s, a)− ϕ(s, π))⊤

]
• Cov(s, π) = Ea∼π(·|s)

[
ϕ(s, a)ϕ(s, a)⊤

]
Let Ek [·] be the expectation conditioned on history up to episode k − 1. Consider a fixed s ∈ Sh
and any policy π. Let

HHH(s) = Ea∼π(·|s)

ϕ(s, a)ϕ(s, a)⊤ ϕ(s, a)

ϕ(s, a)⊤ 1

 .
We have

Ek
[〈
HHHk(s)−HHH(s), Γ̂̂Γ̂Γk,h

〉
− D(HHH(s),HHHk(s))

2η

]
≤ Ek

[
⟨ϕ(s, πk)− ϕ(s, π), q̂k,h⟩ −

∥ϕ(s, πk)− ϕ(s, π)∥2Cov(s,πk)−1

2η

]
(Lemma 30)

≤ Ek

[
∥ϕ(s, πk)− ϕ(s, π)∥Cov(s,πk)−1 ∥q̂k,h∥Cov(s,πk)

−
∥ϕ(s, πk)− ϕ(s, π)∥2Cov(s,πk)−1

2η

]
≤ η

2
Ek
[
∥q̂k,h∥2Cov(s,πk)

]
(AM-GM inequality)

≤ η

2
Ek

∥∥∥∥∥Σ̂−1
k,hϕ(sk,h, ak,h)

H∑
t=h

ℓkt

∥∥∥∥∥
2

Cov(s,πk)

 (Cov(s, π) ⪰ Cov(s, π))

≤ ηH2

2
Ek
[
ϕ(sk,h, ak,h)

⊤Σ̂−1
k,h Cov(s, πk)Σ̂

−1
k,hϕ(sk,h, ak,h)

]
=
ηH2

2
Ek
[
Tr
(
ϕ(sk,h, ak,h)ϕ(sk,h, ak,h)

⊤Σ̂−1
k,h Cov(s, πk)Σ̂

−1
k,h

)]
=
ηH2

2
Tr
(
Σk,hΣ̂

−1
k,h Cov(s, πk)Σ̂

−1
k,h

)
≤ ηH2 Tr

(
Cov(s, πk)Σ̂

−1
k,h

)
(Lemma 31)

= ηH2Ea∼πk(·|s)

[
∥ϕ(s, a)∥2

Σ̂−1
k,h

]
Taking expectation and adding indicator for s, and then summing over all k, h finish the proof.
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D.3.5 BOUND stability-2 IN EQ. (36)

Given F (X) = − log det(X), D2F (X) = X−1 ⊗ X−1 where ⊗ is the Kronecker prod-

uct. For any matrix A =
[
a1 a2 · · · an

]
, let vec(A) =


a1
...

an

 which vectorizes ma-

trix A to a column vector by stacking the columns A. The second order directional derivative
for F is D2F (X)[A,A] = vec(A)⊤

(
X−1 ⊗X−1

)
vec(A) = Tr(A⊤X−1AX−1). We define

∥A∥∇2F (X) =
√

Tr(A⊤X−1AX−1) and ∥A∥∇−2F (X) =
√
Tr(A⊤XAX). It is a pseudo-norm,

and more discussion can be found in Appendix D of Zimmert et al. (2022). In the following analysis,
we will only use one property of this pseudo-norm which is similar to the Holder inequality. It is
standard and also appears as Lemma 8 in Liu et al. (2023a).

Lemma 33. For any two symmetric matrices A,B and positive definite matrix X ,

⟨A,B⟩ ≤ ∥A∥∇2F (X)∥B∥∇−2F (X)

Proof. Since (X ⊗X)−1 = X−1 ⊗X−1, from Holder inequality, we have

⟨A,B⟩ = ⟨vec(A), vec(B)⟩ ≤ ∥vec(A)∥X−1⊗X−1∥vec(B)∥(X−1⊗X−1)−1 = ∥A∥∇2F (X)∥B∥∇−2F (X)

Lemma 34 gives a general argument to bound stability-2 with arbitraryBBB ∈ R(d+1)×(d+1). Similar
theorems are also stated in Lemma 34 of Dann et al. (2023b) and Lemma 27 of Liu et al. (2023a).

Lemma 34. For any matrixBBB ∈ R(d+1)×(d+1), for any state s, given
√
Tr(HHHk(s)BBBHHHk(s)BBB) ≤ m,

if η ≤ 1
16m ,

max
HHH∈Hs

⟨HHHk(s)−HHH,−BBB⟩ −
DF (HHH,HHHk(s))

η
≤ 8η∥BBB∥2∇−2F (HHHk(s))

= 8ηTr (HHHk(s)BBBHHHk(s)BBB) .

Proof. For anyHHH ∈ Hs, define

G(HHH) = ⟨HHHk(s)−HHH,−BBB⟩ −
DF (HHH,HHHk(s))

η

and λ = ∥BBB∥∇−2F (HHHk(s)). Since
√
Tr(HHHk(s)BBBHHHk(s)BBB) ≤ m and η ≤ 1

16m , we have

ηλ = η∥BBB∥∇−2F (HHHk(s)) = η
√
Tr(HHHk(s)BBBHHHk(s)BBB) ≤ ηm ≤ 1

16
.

Let HHH ′ be the maximizer of G. Since G(HHHk(s)) = 0, we have G(HHH ′) ≥ 0. It suffices to show
∥HHH ′ −HHHk(s)∥∇2F (HHHk(s)) ≤ 8ηλ because from Lemma 33 it leads to

G(HHH ′) ≤ ∥HHHk(s)−HHH ′∥∇2F (HHHk(s))∥BBB∥∇−2F (HHHk(s)) ≤ 8ηλ∥BBB∥∇−2F (HHHk(s)) = 8η∥BBB∥2∇−2F (HHHk(s))

To show ∥HHH ′ − HHHk(s)∥∇2F (HHHk(s)) ≤ 8ηλ, it suffices to show that for all UUU such that ∥UUU −
HHHk(s)∥∇2F (HHHk(s)) = 8ηλ, G(UUU) ≤ 0. This is because given this condition, if ∥HHH ′ −
HHHk(s)∥∇2F (HHHk(s)) > 8ηλ, then there is a UUU in the line segment between HHHk(s) and HHH ′ such
that ∥UUU −HHHk(s)∥∇2F (HHHk(s)) = 8ηλ. From the condition, G(UUU) ≤ 0 ≤ min{G(HHHk(s)), G(HHH

′)}
which contradicts to the concavity of G.

Now consider any UUU such that ∥UUU −HHHk(s)∥∇2F (HHHk(s)) = 8ηλ. By Taylor expansion, there exists
UUU ′ in the line segment between UUU andHHHk(s) such that

G(UUU) ≤ ∥UUU −HHHk(s)∥∇2F (HHHk(s))∥BBB∥∇−2F (HHHk(s)) −
1

2η
∥UUU −HHHk(s)∥2∇2F (UUU ′)
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We have ∥UUU ′−HHHk(s)∥∇2F (HHHk(s)) ≤ ∥UUU −HHHk(s)∥∇2F (HHHk(s)) = 8ηλ ≤ 1
2 . From the Equation 2.2

in page 23 of Nemirovski (2004) (also appear in Eq.(5) of Abernethy et al. (2009)) and log det is a
self-concordant function, we have ∥UUU −HHHk(s)∥2∇2F (UUU ′) ≥

1
4∥UUU −HHHk(s)∥2∇2F (HHHk(s))

. Thus, we
have

G(UUU) ≤ ∥UUU−HHHk(s)∥∇2F (HHHk(s))∥BBB∥∇−2F (HHHk(s))−
1

8η
∥UUU−HHHk(s)∥2(HHHk(s))−1 = 8ηλ2− (8ηλ)2

8η
= 0.

Lemma 35. GivenBk(s, a) = β∥ϕ(s, a)∥2
Σ̂−1

k,h

+α
(
1− 1

4H

)
∥ϕ(s, a)∥2

Λ−1
k,h

+ϕ(s, a)⊤wk,h defined

in Eq. (25) for s ∈ Sh, if η ≤ 1

3328H2( β
γ +αρ2)

, we have

stability-2 ≤ 1

2H
E

[
K∑
k=1

H∑
h=1

E⋆hEa∼πk(·|s) [Bk(s, a)I{Eh}]

]
+ Õ

(
(dBmax)2

α
K

)
.

Proof. We can decompose the bonus matrix in the following form and consider stability separately

B̂̂B̂Bk,h =

βΣ̂−1
k,h + αΛ−1

k,h
1
2 ŵk,h

1
2 ŵ

k⊤
h 0

 =

βΣ̂−1
k,h + αΛ−1

k,h 0

0 0


︸ ︷︷ ︸

B̂̂B̂B1
k,h

+

 0 1
2 ŵk,h

1
2 ŵ

k⊤
h 0


︸ ︷︷ ︸

B̂̂B̂B2
k,h

.

Then we have

stability-2 = E

[
K∑
k=1

H∑
h=1

E⋆h
[(

max
HHH∈Hs

⟨HHHk(s)−HHH,−B̂̂B̂Bk,h⟩ −
DF (HHH,HHHk(s))

2η

)
I{Eh}

]]

≤ E

[
K∑
k=1

H∑
h=1

E⋆h
[(

max
HHH∈Hs

⟨HHHk(s)−HHH,−B̂̂B̂B1
k,h⟩ −

DF (HHH,HHHk(s))

4η

)
I{Eh}

]]

+ E

[
K∑
k=1

H∑
h=1

E⋆h
[(

max
HHH∈Hs

⟨HHHk(s)−HHH,−B̂̂B̂B2
k,h⟩ −

DF (HHH,HHHk(s))

4η

)
I{Eh}

]]

For any matrix A ∈ Rd×d with all non-negative eigenvalues, we have

Tr
(
A2
)
=

d∑
i=1

λi(A
2) ≤

(
d∑
i=1

λi(A)

)2

= Tr (A)
2

Since both ϕ(s, a)ϕ(s, a)⊤ and βΣ̂−1
k,h + αΛ−1

k,h are positive semi-definite, the eigenvalues of

ϕ(s, a)ϕ(s, a)⊤
(
βΣ̂−1

k,h + αΛ−1
k,h

)
are all non-negative. Thus, for any s ∈ Zh, we have√

Tr
(
HHHk(s)B̂̂B̂B1

k,hHHHk(s)B̂̂B̂B1
k,h

)
≤

√
Tr

((
Ea∼πk(·|s)

[
ϕ(s, a)ϕ(s, a)⊤

(
βΣ̂−1

k,h + αΛ−1
k,h

)])2)
≤ Tr

(
Ea∼πk(·|s)

[
ϕ(s, a)ϕ(s, a)⊤

(
βΣ̂−1

k,h + αΛ−1
k,h

)])
= Ea∼πk(·|s)

[
β∥ϕ(s, a)∥2

Σ̂−1
k,h

+ α∥ϕ(s, a)∥2
Λ−1

k,h

]
≤ β

γ
+ αρ2. (∥ϕ(s, a)∥Λ−1

k,h
≤ ρ for s ∈ Zh)

Thus, from Lemma 34, if η ≤ 1

64H( β
γ +αρ2)

, we have

E

[
K∑
k=1

H∑
h=1

E⋆h
[(

max
HHH∈Hs

⟨HHHk(s)−HHH,−B̂̂B̂B1
k,h⟩ −

DF (HHH,HHHk(s))

4η

)
I{Eh}

]]

33



≤ 8η

K∑
k=1

H∑
h=1

E⋆h
[
Tr
(
HHHk(s)B̂̂B̂B

1
k,hHHHk(s)B̂̂B̂B

1
k,h

)
I{Eh}

]
≤ 1

8H

K∑
k=1

H∑
h=1

E⋆h

[√
Tr
(
HHHk(s)B̂̂B̂B1

k,hHHHk(s)B̂̂B̂B1
k,h

)
I{Eh}

]

≤ 1

8H

K∑
k=1

H∑
h=1

E⋆hEa∼πk(·|s)

[(
β∥ϕ(s, a)∥2

Σ̂−1
k,h

+ α∥ϕ(s, a)∥2
Λ−1

k,h

)
I{Eh}

]
. (37)

Now consider B̂̂B̂B2
k,h, for any s ∈ Zh, we have√

Tr
(
HHHk(s)B̂̂B̂B2

k,hHHHk(s)B̂̂B̂B2
k,h

)
=
√

2Tr
(
(ŵk,h)⊤Ea∼πk(·|s) [ϕ(s, a)]Ea∼πk(·|s) [ϕ(s, a)

⊤] ŵk,h + (ŵk,h)⊤Ea∼πk(·|s) [ϕ(s, a)ϕ(s, a)
⊤] ŵk,h

)
≤ 2

√
Ea∼πk(·|s)

[
(ϕ(s, a)⊤ŵk,h)

2
]
≤ 2

(
1 +

1

2H

)
Bmax
h ≤ 26H

(
β

γ
+ αρ2

)
. (by Eq. (30))

Similarly, from Lemma 34, if η ≤ 1

3328H2( β
γ +αρ2)

≤ 1
256HBmax , then for all h ∈ [H] and any state

s ∈ Zh, we have

max
HHH∈H

〈
HHHk(s)−HHH,−B̂̂B̂B2

k,h

〉
− DF (HHH,HHHk(s))

4η

≤ 8ηTr
(
HHHk(s)B̂̂B̂B

2
k,hHHHk(s)B̂̂B̂B

2
k,h

)
≤ 32ηEa∼πk(·|s)

[(
ϕ(s, a)⊤ŵk,h

)2]
= 32ηEa∼πk(·|s)

[(
ϕ(s, a)⊤wk,h + ϕ(s, a)⊤ (ŵk,h − wk,h)

)2]
≤ 64ηEa∼πk(·|s)

[(
ϕ(s, a)⊤wk,h

)2]
+ 64ηEa∼πk(·|s)

[(
ϕ(s, a)⊤ (ŵk,h − wk,h)

)2]
((a+ b)2 ≤ 2a2 + 2b2)

≤ 1

4H
Ea∼πk(·|s)

[
ϕ(s, a)⊤wk,h

]
+

1

H
Ea∼πk(·|s)

[∣∣ϕ(s, a)⊤ (ŵk,h − wk,h)
∣∣]

(see the explanation below)

≤ (CιdB
max)2

Hα
+

1

4H
Ea∼πk(·|s)

[
ϕ(s, a)⊤wk,h

]
+

1

4H
Ea∼πk(·|s)

[
α ∥ϕ(s, a)∥2Λ−1

k,h

]
.

(Lemma 22 and AM-GM)

where in the second-last inequality, we use the condition of η and that

|ϕ(s, a)⊤wk,h| ≤
(
1 +

1

H

)
sup
s′∈Sh

Ŵ (s′)I{s′ ∈ Zh+1} ≤ Bmax, (by Eq. (31))

|ϕ(s, a)⊤(ŵk,h − wk,h)| ≤ |ϕ(s, a)⊤ŵk,h|+ |ϕ(s, a)⊤wk,h| ≤
(
2 +

1

2H

)
Bmax. (by Eq. (30))

Thus,

E

[
K∑
k=1

H∑
h=1

E⋆h
[(

max
HHH∈Hs

⟨HHHk(s)−HHH,−B̂̂B̂B2
k,h⟩ −

DF (HHH,HHHk(s))

4η

)
I{Eh}

]]

≤ 1

4H

[
K∑
k=1

H∑
h=1

E⋆hEa∼πk(·|s)
[
ϕ(s, a)⊤wk,hI{Eh}

]]

+
1

4H

[
K∑
k=1

H∑
h=1

E⋆hEa∼πk(·|s)

[
α ∥ϕ(s, a)∥2Λ−1

k,h
I{Eh}

]]
+ Õ

(
(dBmax)2

α
K

)
. (38)
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Combining Eq. (37) and Eq. (38), we see that if η ≤ 1

3328H2( β
γ +αρ2)

, then

stability-2

≤ 1

8H
E

[
K∑
k=1

H∑
h=1

E⋆hEa∼πk(·|s)

[(
β∥ϕ(s, a)∥2

Σ̂−1
k,h

+ α∥ϕ(s, a)∥2
Λ−1

k,h

)
I{Eh}

]]

+
1

4H
E

[
K∑
k=1

H∑
h=1

E⋆hEa∼πk(·|s)
[
ϕ(s, a)⊤wk,hI{Eh}

]]

+
1

4H
E

[
K∑
k=1

H∑
h=1

E⋆hEa∼πk(·|s)

[
α ∥ϕ(s, a)∥2Λ−1

k,h
I{Eh}

]]
+ Õ

(
(dBmax)2

α
K

)

≤ 1

2H
E

[
K∑
k=1

H∑
h=1

E⋆hEa∼πk(·|s) [Bk(s, a)I{Eh}]

]
+ Õ

(
(dBmax)2

α
K

)
.

Lemma 36. If η ≤ 1

3228H2( β
γ +αρ2)

and γ = 5d log(6dHK/δ)
τ and Bmax

h ≤ α
225 log( dK

δ )Hd2
and

ηH2 ≤ 3
4β, then we have

E

[
K∑
k=1

H∑
h=1

E⋆h [⟨Qk(s, ·)−Bk(s, a), πk(·|s)− π⋆(·|s)⟩ I{Eh}]

]

≤ Õ
(
d2H3

τβ
K +

d2H2(Bmax)2

α
K +

dτ

η

)
+

K∑
k=1

H∑
h=1

E⋆hEa∼π⋆(·|s) [bk(s, a)I{Eh}] +
1

H

K∑
k=1

H∑
h=1

E⋆hEa∼πk(·|s) [Bk(s, a)I{Eh}]

where bk(s, a) is defined in Eq. (24).

Proof. Since η ≤ 1

3328H2( β
γ +αρ2)

, adding up the bound in Lemma 28, Lemma 29, Lemma 32, and

Lemma 35 following the decomposition in Eq. (36), we get

ftrl ≤ Õ
(
dτ

η
+H +

d2(Bmax)2

α
K

)
+ ηH2

K∑
k=1

H∑
h=1

E⋆hEa∼πk(·|s)

[
∥ϕ(s, a)∥2

Σ̂−1
k,h

I{Eh}
]

+
1

2H

K∑
k=1

H∑
h=1

E⋆hEa∼πk(·|s) [Bk(s, a)I{Eh}] . (39)

From the decomposition in Eq. (35) and Lemma 26, Lemma 27, and Eq. (39), under the specified
conditions, we have

E

[
K∑
k=1

H∑
h=1

E⋆h [⟨Qk(s, ·)−Bk(s, a), πk(·|s)− π⋆(·|s)⟩ I{Eh}]

]
≤ bias-1 + bias-2 + bias-3 + ftrl

≤ Õ
(
d2H3

τβ
K +

d2H2(Bmax)2

α
K +

dτ

η

)
+

(
β

4
+ ηH2

) K∑
k=1

H∑
h=1

E⋆hEa∼π⋆(·|s)

[
∥ϕ(s, a)∥2

Σ̂−1
k,h

I{s ∈ Zh}
]

+
1

H

K∑
k=1

H∑
h=1

E⋆hEa∼πk(·|s) [Bk,h(s, a)I{Eh}]
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≤ Õ
(
d2H3

τβ
K +

d2H2(Bmax)2

α
K +

dτ

η

)
+

K∑
k=1

H∑
h=1

E⋆hEa∼π⋆(·|s) [bk(s, a)] +
1

H

K∑
k=1

H∑
h=1

E⋆hEa∼πk(·|s) [Bk,h(s, a)I{Eh}]

where in the last inequality we use β
4 + ηH2 ≤ β.

D.4 FINAL STEPS

Lemma 37. Let s ∈ Sh. We have

Bk(s, a) ≤ rk(s, a) +
(
1 +

1

H

)
Es′∼P (·|s,a)Ea′∼πk(·|s′) [Bk(s

′, a′)I{s′ ∈ Zh+1}]

where we define

rk(s, a) = bk(s, a) + Es′∼P (·|s,a)Ea′∼πk(·|s′)

[
α∥ϕ(s′, a′)∥2

Λ−1
k,h+1

I{s′ ∈ Zh+1}
]
+

2(CιdB
max)2

α
.

Proof. Since Bk(s, a) ≥ 0, we have∣∣∣B̂+
k (s, a)−Bk(s, a)

∣∣∣ ≤ ∣∣∣B̂k(s, a)−Bk(s, a)∣∣∣
=
∣∣∣ α
4H
∥ϕ(s, a)∥2

Λ−1
k,h

+ ϕ(s, a)⊤ (ŵk,h − wk,h)
∣∣∣

≤ (CιdB
max)2

α
+ α∥ϕ(s, a)∥2

Λ−1
k,h

. (by Lemma 22)

Thus,

ϕ(s, a)⊤wk,h

=

(
1 +

1

H

)
Es′∼P (·|s,a)Ea′∼πk(·|s)

[
B̂+
k (s

′, a′)I{s′ ∈ Zh+1}
]

≤
(
1 +

1

H

)
Es′∼P (·|s,a)Ea′∼πk(·|s′) [Bk(s

′, a′)I{s′ ∈ Zh+1}]

+ Es′∼P (·|s,a)Ea′∼πk(·|s′)

[
α∥ϕ(s′, a′)∥2

Λ−1
k,h+1

I{s′ ∈ Zh+1}
]
+

2(CιdB
max)2

α
,

and

Bk(s, a)

= bk(s, a) + ϕ(s, a)⊤wk,h

≤ bk(s, a) +
(
1 +

1

H

)
Es′∼P (·|s,a)Ea′∼πk(·|s′) [Bk(s

′, a′)I{s′ ∈ Zh+1}]

+ Es′∼P (·|s,a)Ea′∼πk(·|s′)

[
α∥ϕ(s′, a′)∥2

Λ−1
k,h+1

I{s′ ∈ Zh+1}
]
+

2(CιdB
max)2

α

= rk(s, a) +

(
1 +

1

H

)
Es′∼P (·|s,a)Ea′∼πk(·|s′) [Bk(s

′, a′)I{s′ ∈ Zh+1}] .

Theorem 38. Suppose the parameters are properly chosen so that all conditions in Lemma 36 holds
(see the proof for the final parameters). Then the regret of Algorithm 3 has the following guarantee

E [RK ] ≤ Õ
(
d

3
2H3K

3
4

)
.
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Proof. By Lemma 23, we have for s ∈ Sh,

Bk(s, a) ≥ bk(s, a) +
(
1 +

1

H

)
Es′∼P (·|s,a)Ea′∼πk(·|s′) [Bk(s

′, a′)I{s′ ∈ Zh+1}]− Õ
(
d2(Bmax)2

α

)
.

Combining this with Lemma 36, we see that the two conditions of Lemma 21 are satisfied with
f = Õ

(
d2(Bmax)2

α

)
and g = Õ

(
d2H3

τβ K + d2H2(Bmax)2

α K + dτ
η

)
. Thus, by directly applying

Lemma 21, we have

reg-term ≤ Õ
(
d2H3

τβ
K +

d2H2(Bmax)2

α
K +

dτ

η

)
+

(
1 +

1

H

)
E

[
K∑
k=1

Ea∼πk(·|s1) [Bk(s1, a)]

]
To bound the last term, below we use induction to show that for s ∈ Sh, the following holds:

Ea∼πk(·|s) [Bk(s, a)] ≤
(
1 +

1

H

)H−h

V πk(s; rk)

for the rk defined in Lemma 37.

Base case (step H). for any s ∈ SH , we have

Ea∼πk(·|s) [Bk(s, a)] = Ea∼πk(·|s) [bk(s, a)] ≤ V
πk(s; rk)

Induction. Assume that for any s ∈ Sh+1,

Ea∼πk(·|s) [Bk(s, a)] ≤
(
1 +

1

H

)H−h−1

V πk(s; rk).

Then for any s ∈ Sh, we have

Ea∼πk(·|s) [Bk(s, a)]

≤ Ea∼πk(·|s)

[
rk(s, a) +

(
1 +

1

H

)
Es′∼P (·|s,a)Ea′∼πk(·|s′) [Bk(s

′, a′)]

]
(Lemma 37)

≤ Ea∼πk(·|s)

[
rk(s, a) +

(
1 +

1

H

)H−h

Es′∼P (·|s,a) [V
πk(s′; rk)]

]
(induction hypothesis)

≤
(
1 +

1

H

)H−h

Ea∼πk(·|s)
[
rk(s, a) + Es′∼P (·|s,a) [V

πk(s′; rk)]
]

(rk(s, a) ≥ 0)

=

(
1 +

1

H

)H−h

V πk(s; rk).

Since
(
1 + 1

H

)H
< e < 3, we have(

1 +
1

H

) K∑
k=1

Ea∼πk(·|s1) [Bk(s1, a)]

≤ 3

K∑
k=1

V πk(s1; rk)

= Õ

(
K∑
k=1

H∑
h=1

Es∼µk
h
Ea∼πk(·|s)

[
β∥ϕ(s, a)∥2

Σ̂−1
k,h

+ α∥ϕ(s, a)∥2
Λ−1

k,h

]
+

(dBmax)2

α
K

)

≤ Õ
(
βdHK + αdH +

(dBmax)2

α
K

)
.

Given that Bmax
h = 4H

(
1 + 1

H

)2(H−h+1)
(
β
γ + αρ2

)
, we have Bmax ≤ 36H

(
β
γ + αρ2

)
. Thus,

reg-term ≤ Õ
(
d2H3

τβ
K +

d2H4β2

αγ2
K + d2H4αρ4K +

dτ

η
+ βdHK + αdH

)
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We pick ρ = H− 1
2 d−

1
4K− 1

4 , β =
√
dK− 1

4 , α = HK
3
4 , τ = K

1
2 , δ = 1

K3 , γ =
5d log(6dHK4)

τ ,

η = K− 1
4

3328
√
dH2

. In that case, if
√
K ≥ 16200d

3
2H log

(
dK4

)
= Ω̃

(
d

3
2H
)

, all conditions in

Lemma 36 are satisfied and reg-term ≤ Õ(d 3
2H3K

3
4 ).

By Lemma 15, the initial pure exploration phase takes

K0 = Õ

(
dH
ρ2 + d4H4

ϵcov

)
= Õ

(
d

3
2H2K

3
4 + d4H4K

1
4

)
episodes, which contributes to an additional regret of HK0 = Õ(d 3

2H3K
3
4 ) (omitting lower-order

terms). Finally, the cost of ignoring states outside of Z is H3K− 3
4 as calculated in Eq. (20).

Combining all parts of regret finishes the proof.

E AUXILARY LEMMAS

E.1 UNIFORM CONCENTRATION VIA COVERING

Consider policy class

P(s) =

{
p : Ĉov(s, p) = argmin

HHH∈Hs

{⟨HHH,ZZZ⟩+ F (HHH)} , for ZZZ ∈ Z
}

(40)

where Z = [−K3,K3](d+1)×(d+1) ∩ S with S denoting the set of symmetric matrices. We define
the following function class.
Definition 39. For any h and any s ∈ Sh,

Vh (s; Σ,Λ, w, p) =

(
1 +

1

H

)
Ea∼p

[[
β∥ϕ(s, a)∥2Σ−1 + ϕ⊤(s, a)w + 2α∥ϕ(s, a)∥2Λ−1

]+ I{s ∈ Zh}
]
,

Vh = {V (s ; Σ,Λ, w, p) | λmin (Σ) ≥ γ, λmin (Λ) ≥ 1, ∥w∥ ≤ K2, p ∈ P(s)}.
where P(s) is defined in Eq. (40).

We propose the following two covering lemma. Lemma 40 is standard which argues the upper bound
of the cover number of a Euclidean ball. Lemma 41 inherits from Lemma 15 in Liu et al. (2023a).
Lemma 40 (Cover number of Euclidian Ball). For any ϵ > 0, the ϵ-covering of the Euclidean ball
in Rd with radius R > 0 is upper bounded by

(
1 + 2R

ϵ

)d
.

Lemma 41 (Covering for logdet policy class, Lemma 15 in Liu et al. (2023a)). For any s, there
exists an ϵ-cover P′(s) of P(s) with size log |P′(s)| = (d + 1)2 log 24(d+1)2

ϵ such that for any
p ∈ P(s), there exists an p′ ∈ P′(s) satisfying∥∥∥Ĉov(s, p)− Ĉov(s, p′)

∥∥∥
F
≤ ϵ.

Lemma 42 gives the covering number of function class Vh.
Lemma 42. Let Nϵ(Vh) be the ∥ · ∥∞ ϵ-covering number of function class Vh, for any h, we have

log (Nϵ(Vh)) ≤ d log
(
1 +

16K2

ϵ

)
+ d2 log

(
1 +

16
√
dβ

ϵγ

)
+ d2 log

(
1 +

16
√
dα

ϵ

)

+ (d+ 1)2 log

(
96(d+ 1)2

(
2βγ−1 + 2α+K2

)
ϵ

)
.

If βγ + 2α ≤ K2, then

log (Nϵ(Vh)) ≤ 4(d+ 1)2 log

(
400(d+ 1)2K2

ϵ

)
.
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Proof. Define

B (s, a;D,E,w) = ∥ϕ(s, a)∥2D + ∥ϕ(s, a)∥2E + ϕ⊤(s, a)w

and consider the following function classes

B =
{
B (s, a;D,E,w) | ∥D∥2 ≤ 2βγ−1, ∥E∥2 ≤ 2α, ∥w∥2 ≤ 2K2

}
,

Ṽ = {Ea∼p [B(s, a;D,E,w)] | B(s, a;D,E,w) ∈ B, p ∈ P(s)} .
For any V1 = Ea∼p1 [B(s, a;D1, E1, w1)] and V2 = Ea∼p2 [B(s, a;D2, E2, w2)], it holds that

|V1 − V2| = |Ea∼p1 [B(s, a;D1, E1, w1)]− Ea∼p2 [B(s, a;D2, E2, w2)]|
= |Ea∼p1 [B(s, a;D1, E1, w1)]− Ea∼p1 [B(s, a;D2, E2, w2)]|
+ |Ea∼p1 [B(s, a;D2, E2, w2)]− Ea∼p2 [B(s, a;D2, E2, w2)]| .

On the one hand, we have

|B (s, a;D1, E1, w1)−B (s, a;D2, E2, w2)|
=
∣∣∥ϕ(s, a)∥2D1

− ∥ϕ(s, a)∥2D2

∣∣+ ∣∣ϕ⊤(s, a) (w1 − w2)
∣∣+ ∣∣∥ϕ(s, a)∥2E1

− ∥ϕ(s, a)∥2E2

∣∣
=
∣∣ϕ(s, a)⊤ (D1 −D2)ϕ(s, a)

∣∣+ ∣∣ϕ⊤(s, a) (w1 − w2)
∣∣+ ∣∣ϕ(s, a)⊤ (E1 − E2)ϕ(s, a)

∣∣
≤ ∥D1 −D2∥2 + ∥w1 − w2∥2 + ∥E1 − E2∥2 (∥ϕ(s, a)∥2 ≤ 1)
≤ ∥D1 −D2∥F + ∥w1 − w2∥2 + ∥E1 − E2∥F .

Since for any matrix A ∈ Rd×d, ∥A∥F ≤
√
d∥A∥2, we consider a ϵ

4 net on {D ∈ Rd×d | ∥D∥F ≤
2
√
dβγ−1}, a ϵ

4 net on {w ∈ Rd | ∥w∥2 ≤ 2K2}, a ϵ
4 net on {E ∈ Rd×d | ∥E∥F ≤ 2

√
dα}. From

Lemma 40, the log size of these nets is

d log

(
1 +

16K2

ϵ

)
+ d2 log

(
1 +

16
√
dβ

ϵγ

)
+ d2 log

(
1 +

16
√
dα

ϵ

)
.

On the other hand, defineBBB2 =

D2 + E2
1
2w2

1
2w

⊤
2 0

, we have ∥BBB2∥2 ≤ 2βγ−1 + 2α+K2 and

|Ea∼p1 [B(s, a;D2, E2, w2)]− Ea∼p2 [B(s, a;D2, E2, w2)]|

=
∣∣∣〈Ĉov(s, p1)− Ĉov(s, p2),BBB2

〉∣∣∣
≤
∥∥∥Ĉov(s, p1)− Ĉov(s, p2)

∥∥∥
2
∥BBB2∥2

≤
(
2βγ−1 + 2α+K2

) ∥∥∥Ĉov(s, p1)− Ĉov(s, p2)
∥∥∥
F
.

Moreover, we construct a ϵ
4(2βγ−1+2α+K2) net on policy class P(s) based on Frobenius norm. From

Lemma 41, the log size of this net is

(d+ 1)2 log

(
96(d+ 1)2

(
2βγ−1 + 2α+ L

)
ϵ

)
.

Since clipping and adding more constraints will not increase the cover number, for any h, we have

logNϵ(Vh) ≤ logNϵ(Ṽ) ≤ d log
(
1 +

16K2

ϵ

)
+ d2 log

(
1 +

16
√
dβ

ϵγ

)
+ d2 log

(
1 +

16
√
dα

ϵ

)

+ (d+ 1)2 log

(
96(d+ 1)2

(
2βγ−1 + 2α+K2

)
ϵ

)
.

Lemma 43 shows the uniform concentration of all functions in V . It also appears as Lemma D.4 of
Jin et al. (2020b), Lemma D.7 of Sherman et al. (2023b) and Lemma 24 of Sherman et al. (2023a).
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Lemma 43. Let {xτ} be a stochastic process on state space S with corresponding filtration
{Fτ}∞τ=1. Let {ϕτ} be an Rd-valued stochastic process where ϕτ ∈ Fτ , and ∥ϕτ∥ ≤ 1. Fur-
ther, let Λn = λI +

∑n
τ=1 ϕτϕ

⊤
τ . Then for any δ > 0, with probability at least 1− δ, for all n ≥ 1

and any V ∈ V such that ∥V ∥∞ ≤ D, we have∥∥∥∥∥
n∑
τ=1

ϕτ (V (xτ )− E [V (xτ |Fτ−1)])

∥∥∥∥∥
2

Λ−1
n

≤ 4D2

(
d

2
log

(
n+ λ

λ

)
+ log

Nϵ(V)
δ

)
+

8n2ϵ2

λ

where Nϵ(V) is ∥ · ∥∞ ϵ- covering number of V with difference ϵ.
Lemma 44 (Lemma D.4 in Sherman et al. (2023b)). Let {ϕi}ni=1 ∈ Rd, {yi}ni=1 ∈ R, λ ∈ R and
set Λ =

∑N
i=1 ϕiϕ

⊤
i + λI , and ŵ = Λ−1

∑N
i=1 ϕiyi. Then for any w⋆ ∈ Rd

∥ŵ − w⋆∥Λ ≤

∥∥∥∥∥
N∑
i=1

ϕi (yi − ϕiw⋆)

∥∥∥∥∥
Λ−1

+
√
λ∥w⋆∥

E.2 FTRL REGRET BOUNDS

Lemma 45 (Standard FTRL bound). Let Ω ⊂ Rd be a convex set, g1, . . . , gT ∈ Rd, and η > 0.
Then the FTRL update

wt = argmin
w∈Ω

{〈
w,

t−1∑
τ=1

gτ

〉
+

1

η
ψ(w)

}
ensures for any u ∈ Ω and η0 > 0,

T∑
t=1

⟨wt − u, gt⟩ ≤
ψ(u)−minw∈Ω ψ(w)

η︸ ︷︷ ︸
Penalty

+

T∑
t=1

(
max
w∈Ω
⟨wt − w, gt⟩ −

Dψ(w,wt)

η

)
︸ ︷︷ ︸

Stability

.

Since we do not use standard FRTL but run the same policy π in 2τ episodes. We will introduce a
blocked FTRL regret bound in Lemma 46.
Lemma 46. Let K ∈ Z+, τ ≤ K,J = ⌈Kτ ⌉, and set Tj = {τ(j − 1) + 1, · · · , τj} for all j ∈ [J ].
Assume η > 0, let gk be a sequence of input, define

g(j) =
1

τ

∑
k∈Tj

gk,∀j ∈ [J ]

w(j+1) = argmin
w∈Ω

{〈
w,

j∑
τ=1

g(τ)

〉
+

1

η
ψ(w)

}
Then if wk ∈ Ω are such that wk = w(j) for all k ∈ Tj , j ∈ [J ], for any u ∈ Ω we have

K∑
k=1

⟨gk, wk − u⟩ ≤
τ(ψ(u)−minw∈Ω ψ(w))

η
+

K∑
k=1

(
max
w∈Ω
⟨wk − w, gk⟩ −

Dψ(w,wk)

η

)

Proof. By applying Lemma 45 on g(j), x(j), we get

J∑
j=1

⟨g(j), w(j) − u⟩ ≤
ψ(u)−minw∈Ω ψ(w)

η
+

J∑
j=1

(
max
w∈Ω
⟨w(j) − w, g(j)⟩ −

Dψ(w,w(j))

η

)
In addition,
J∑
j=1

⟨g(j), w(j) − u⟩ =
J∑
j=1

〈
1

τ

∑
k∈Tj

gk, wk − u

〉
=

1

τ

J∑
j=1

∑
k∈Tj

⟨gk, wk − u⟩ =
1

τ

K∑
k=1

⟨gk, wk − u⟩
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On the other hand,

J∑
j=1

(
max
w∈Ω
⟨w(j) − w, g(j)⟩ −

Dψ(w,w(j))

η

)
≤

J∑
j=1

max
w∈Ω

〈
w(j) − w,

1

τ

∑
k∈Tj

gk

〉
−
Dψ(w,w(j))

η


≤

J∑
j=1

max
w∈Ω

1

τ

∑
k∈Tj

⟨wk − w, gk⟩ −
1

τ

∑
k∈Tj

Dψ(w,wk)

η


≤ 1

τ

J∑
j=1

∑
k∈Tj

(
max
w∈Ω
⟨wk − w, gk⟩ −

Dψ(w,wk)

η

)

=
1

τ

K∑
k=1

(
max
w∈Ω
⟨wk − w, gk⟩ −

Dψ(w,wk)

η

)
Thus, we have

K∑
k=1

⟨gk, wk − u⟩ ≤
τ(ψ(u)−minw∈Ω ψ(w))

η
+

K∑
k=1

(
max
w∈Ω
⟨wk − w, gk⟩ −

Dψ(w,wk)

η

)

E.3 OTHER TECHNICAL LEMMAS

Lemma 47. Let xi be a sequence of vectors, pi a probability distribution and ai arbitrary scalars,
then ∥∥∥∥∥∑

i

piaixi

∥∥∥∥∥
2

≤

(∑
i

pi ∥xi∥2
)∑

j

pja
2
j

 .

Proof. ∥∥∥∥∥∑
i

piaixi

∥∥∥∥∥
2

=

∥∥∥∥∥∑
i

pia
2
i

xi
ai

∥∥∥∥∥
2

=

∥∥∥∥∥∑
i

pia
2
i∑

j pja
2
j

xi
ai

∥∥∥∥∥
2
∑

j

pja
2
j

2

≤
∑
i

pia
2
i∑

j pja
2
j

∥∥∥∥xiai
∥∥∥∥2
∑

j

pja
2
j

2

(Jensen’s)

=

(∑
i

pi ∥xi∥2
)∑

j

pja
2
j

 .
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