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Figure 1. Artistic meshes generated by TreeMeshGPT. Our method offers a novel sequencing approach for artistic mesh generation
using autoregressive Transformer decoder by retrieving the next token from a dynamically growing tree structure. In our experiment with
7-bit discretization, TreeMeshGPT supports meshes with up to 5,500 triangular faces under strong point cloud conditioning.12

Abstract

We introduce TreeMeshGPT, an autoregressive Transformer
designed to generate high-quality artistic meshes aligned
with input point clouds. Instead of the conventional next-
token prediction in autoregressive Transformer, we pro-
pose a novel Autoregressive Tree Sequencing where the next
input token is retrieved from a dynamically growing tree
structure that is built upon the triangle adjacency of faces
within the mesh. Our sequencing enables the mesh to ex-
tend locally from the last generated triangular face at each
step, and therefore reduces training difficulty and improves
mesh quality. Our approach represents each triangular face
with two tokens, achieving a compression rate of approxi-
mately 22% compared to the naive face tokenization. This
efficient tokenization enables our model to generate highly
detailed artistic meshes with strong point cloud condition-
ing, surpassing previous methods in both capacity and fi-

1TreeMeshGPT supports a higher face count with finer discretization
as it preserves the required manifold connectivity condition.

2Our code is available at: https://github.com/sail-sg/
TreeMeshGPT.

delity. Furthermore, our method generates mesh with strong
normal orientation constraints, minimizing flipped normals
commonly encountered in previous methods. Our experi-
ments show that TreeMeshGPT enhances the mesh genera-
tion quality with refined details and normal orientation con-
sistency.

1. Introduction

In recent advancements in 3D generation, representations
such as voxels, point clouds, and implicit functions are of-
ten utilized [17, 35]. After the generation process, these
representations are converted into meshes using techniques
like Marching Cubes [19], which result in dense, over-
tessellated triangular meshes. However, these dense meshes
are unsuitable for applications that require real-time render-
ing, such as gaming and virtual reality. Although many
mesh down-sampling algorithms can reduce the number
of triangles, they also degrade mesh quality and produce
messy, unstructured wireframes. In contrast, skilled artists
can create highly compact meshes with minimal triangles
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while preserving the object’s sharp details. Additionally, the
wireframes created by artists are more regular, aesthetically
pleasing, and better aligned with the object’s feature or se-
mantic boundaries, which facilitates further human interac-
tions, such as editing and animation. However, the process
of manually creating artist-quality meshes is highly time-
consuming and labor-intensive.

This laborous process highlights the need for automated
methods that can replicate the quality of artist-created
meshes without requiring extensive manual effort. Me-
shAnything [3] seeks to bridge the gap between advance-
ments in 3D generation and artist-quality mesh creation by
adding point cloud condition to the artistic mesh generation
Transformer initially proposed by MeshGPT [28]. Point
clouds are chosen as the condition because they are either
the direct output or can be obtained conveniently from the
generated Marching Cubes meshes of the advanced 3D gen-
eration techniques.

MeshAnything [3] represents each triangular face with 9
latent tokens, leading to long sequences and limiting artis-
tic mesh generation to 800 faces due to the Transformer’s
quadratic complexity. This constraint poses challenges for
real-world applications, which often require meshes with
significantly higher face counts to accurately represent com-
plex objects and environments. In the subsequent works,
MeshAnything V2 [4] and EdgeRunner [29] leverage tri-
angle adjacency to create shorter sequences to represent
the same meshes. Consequently, they are able to gener-
ate meshes with up to 1,600 and 4,000 faces, respectively.
However, many real-world applications demand meshes
with higher face count to accurately represent detailed sur-
face topology. Additionally, challenges remain in generat-
ing high-quality meshes free from artifacts such as gaps,
missing components, and flipped normals.

To further improve tokenization efficiency and mesh
quality, we introduce TreeMeshGPT. Unlike previous meth-
ods that rely on conventional next-token prediction in
autoregressive Transformers, TreeMeshGPT introduces a
novel Autoregressive Tree Sequencing approach. Instead
of sequentially predicting next tokens, our method retrieves
the next token from a dynamically growing tree structure
built upon triangle adjacency within the mesh. This strat-
egy allows the mesh to expand locally from the last gener-
ated triangular face at each step, and thus reducing training
difficulty and enhancing mesh quality. Our approach rep-
resents each triangular face with two tokens, achieving a
compression rate of 22% compared to the naive face to-
kenization of 9 tokens per face. This efficient tokeniza-
tion technique pushes the boundary of artistic mesh gener-
ation. With 7-bit discretization, it enables the generation of
meshes with up to 5,500 triangles under a strong point cloud
condition of 2,048 tokens. Furthermore, our method gen-
erates meshes with strong normal orientation constraints,

minimizing flipped normals commonly encountered in Me-
shAnything [3] and MeshAnythingV2 [4].

In summary, our contributions are as follows:
• We propose a novel Autoregressive Tree Sequencing

technique that efficiently represents two tokens per trian-
gular face.

• Our proposed tokenization enables the training of a 7-bit
discretization artistic mesh generative model with strong
point cloud condition, capable of generating high-quality
meshes with up to 5,500 faces.

• Extensive experiments show that our model can generate
higher quality meshes and can generalize to real-world
3D scans.

2. Related Work
2.1. Mesh Extraction
Constructing a mesh from other 3D representations has
been a research focus for decades. Among many success-
ful methods [1, 15, 19], Marching Cubes [19] is the most
widely used. It divides a scalar field into cubes and ex-
tracts triangles to approximate the isosurface. It is sim-
ple yet robust, producing watertight and 2-manifold re-
sults. Many improvements such as Dual Contouring [12]
and Dual Marching Cubes [24] have been developed to en-
hance its capabilities. Another well-known method is Pois-
son reconstruction [13], which uses point clouds and nor-
mals as boundary conditions to solve a scalar field defined
in 3D space, then applies Marching Cubes to extract the
mesh. However, these approaches often focus on represent-
ing shapes with dense, over-tessellated meshes, resulting in
messy, unstructured wireframes. This makes them unsuit-
able for downstream workflows that require efficient and
structured meshes, such as real-time rendering, animation
rigging, and editing. The dense, over-tessellated meshes not
only increase computational load but also lack the regular-
ity and semantic alignment necessary for the downstream
processes.

2.2. 3D Generation
After the great success of 2D image generation [26], 3D
generation has become a promising research direction. This
field focuses on generating 3D assets for industries such as
gaming, film, and AR/VR. Due to the limited availability of
3D data, early methods [11, 21, 25, 27] relied on optimizing
underlying representations to mimic conditioning from 2D
images or multi-view 2D images.

With the introduction of large-scale datasets [6, 7], feed-
forward 3D generation techniques, such as those in [10, 18,
36], have become feasible. These techniques significantly
improve generation speed compared to optimization-based
methods. However, the resulting meshes often suffer from
lower quality and lack diversity.
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Inspired by the success of 2D diffusion models in image
generation, many researchers have attempted to apply dif-
fusion techniques directly to 3D data [5, 23, 32, 38]. For
instance, CLAY [38], a transformer-based 3D latent diffu-
sion model, achieves state-of-the-art results in high-quality
shape generation. Despite these advances, these generation
methods often require post-conversion for downstream ap-
plications, which remains a non-trivial challenge.

2.3. Autoregressive Mesh Generation
To address these limitations, recent approaches have lever-
aged autoregressive models for direct mesh generation [2,
22, 28, 33]. MeshGPT [28] was the first to tokenize a
mesh through face sorting and compress it using a VQ-
VAE [16, 30], followed by an autoregressive transformer
to predict the compressed token sequence. This method en-
ables the generation of meshes with direct supervision from
artist-created topology information, which is often absent in
previous approaches.

Subsequent works [2, 3, 33] explored more efficient rep-
resentations and incorporated input conditioning, such as
point clouds and images. However, these methods are
limited to generating meshes with fewer than 800 faces
due to the long sequence lengths and the quadratic com-
putational cost of transformers. MeshAnythingV2 [4] and
EdgeRunner [29] introduced more compact mesh tokeniza-
tion techniques that leverage triangle adjacency, increasing
the maximum face count to 1,600 and 4,000, respectively.
Meshtron [9] proposes hourglass architecture and sliding
window inference to scale up face count capacity while
using the naive tokenization [2]. In a concurrent work,
BPT [34] proposes a compact tokenization using block-wise
indexing and localized patch aggregation. These methods
rely on the next-token prediction commonly used in large
language models (LLMs) and autoregressive image genera-
tion. In contrast, we offer a novel sequencing strategy based
on a dynamically growing tree structure, aiming to increase
the maximum face count and improve the overall quality of
the generated meshes.

3. Method

3.1. Autoregressive Tree Sequencing
Tokenization plays a crucial role in autoregressive mod-
els, particularly in complex tasks like 3D mesh generation,
where both the quality and efficiency of tokenization sig-
nificantly affect model performance and scalability. In the
context of mesh generation, tokenization involves encod-
ing vertices, edges, or faces into sequential tokens that the
model can process step-by-step. Drawing insights from
LLMs, previous autoregressive mesh generation methods
follow next-token prediction strategy that explicitly uses
each output as the input for the subsequent step.

Our approach differs from those methods by using a tree-
based traversal scheme to grow the mesh during the genera-
tion process. Specifically, in TreeMeshGPT, the input to the
Transformer decoder are directed mesh edges, represented
as I = {(vn1 , vn2 )}Nn=1 ∈ RN×6, where each (vn1 , v

n
2 ) de-

notes a pair of dequantized vertices for the generation at step
n. At each step, the Transformer decoder makes a local-
ized prediction to either add a new vertex vn3 to expand the
mesh by connecting to the initial pair of vertices (vn1 , v

n
2 ) or

predict [STOP] label indicating that no further expansion
should occur from the input edge. TreeMeshGPT leverages
a tree traversal process to construct the sequential input-
output pairs for the autoregressive generation, described as
follows (Note: the sequence order description below omits
auxiliary tokens for simplicity).
Sequence order: We utilize a half-edge data structure with
depth-first-search (DFS) traversal to construct the sequen-
tial input-output pairs, (I,O) = {(In, on)}Nn=1, accompa-
nied by a dynamic stack S to manage the traversal process.

The traversal process starts from a directed edge in a
mesh, in which we determine if this edge has an opposite
vertex that forms a triangle, is a boundary, or if the triangle
has already been visited. When a new triangle is formed,
the output on is defined as the opposite vertex vn3 . Two
new edges are created by connecting vn3 to the initial edge’s
vertices In = (vn1 , v

n
2 ), resulting in edges (vn3 , v

n
2 ) and

(vn1 , v
n
3 ). These edges are directed in a counter-clockwise

orientation on the potential next adjacent faces, as enforced
by the half-edge data structure. The newly created edges are
then pushed onto the stack S for continued traversal:

S := S⊙ (vn1 , v
n
3 ) and S := S⊙ (vn3 , v

n
2 )

where ⊙ represents the operation of pushing the edge
(vi, vj) onto the top of stack S. Conversely, if the input
edge is a boundary or if adding a new vertex forms a pre-
viously visited triangle, the output on is set to the [STOP]
label. In this case, no new vertex or edge is added.

The input for the next step, n+1, is obtained by popping
the top edge from the stack:

In+1 = (vn+1
1 , vn+1

2 ) := top(S), S := S \ top(S)

where top(S) retrieves the current top edge of the stack S,
and S := S \ top(S) updates S by removing this top edge.
We initialize the stack with a directed edge at the lowest po-
sition of the mesh and its twin. The traversal then proceeds
until all triangles are visited. A simple illustration of this
sequencing process is provided in Figure 2.

Note that a mesh may consist of multiple connected com-
ponents. A component begins from an initial edge, expands
as edges are added to a stack, and is considered fully tra-
versed once the stack is empty. When there are multiple
components in a mesh, the traversal of the first component
starts from the edge with the lowest position in the mesh
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Figure 2. Illustration of the sequence order in our Autoregressive Tree sequencing. a). A small subset of a triangular mesh. [STOP]
indicates boundary. b). An equivalent tree representation of the mesh. In this tree, each node is represented as a directed edge from a
pair of vertices. The root is initialized with two child nodes: (v0, v1) and its twin (v1, v0). A DFS traversal then proceeds to create the
input-output sequence. c). Dynamic stack from the DFS traversal. The stack is initialized with (v0, v1) and its twin (v1, v0). The input
In is always obtained from the top of the stack. Thus, I1 = (v0, v1) at step 1. The opposite vertex of I1 is v2 and consequently, o1 is set
to v2. Two new edges are then formed by connecting the opposite vertex to the initial pair of vertices: (v2, v1) and (v0, v2). The direction
is enforced to be counter-clockwise on the potential next adjacent faces. At step 2, I2 = (v2, v1). Since I2 is a boundary, o2 is set to
[STOP] label and no new edge is added to the stack. Step 3 and onwards follow the same traversal process. d). Transformer decoder
sequence. The sequence in the Transformer decoder follows the input-output pairs from the tree traversal. The auxiliary tokens to initialize
the generation of a connected component and the [EOS] are also added to the input-output sequence.

and continues until no edge remains in the stack. Each sub-
sequent component begins from the next available edge po-
sitioned at the lowest among the remaining unvisited faces.

Generation process: To initialize the generation of a mesh
component, an auxiliary token [SOS] ∈ RD is used as the
input to predict the first vertex v1. For the next step, a sec-
ond auxiliary token [SOS2] ∈ RC , concatenated with the
embedded representation of v1, serves as input to predict the
second vertex v2. Once these initial vertices are predicted,
the mesh generation proceeds through our Autoregressive
Tree Sequencing with a stack initialized by (v1, v2) and its
twin (v2, v1). When the stack is empty—indicating the cur-
rent component is complete—a new component is initial-
ized by reintroducing the [SOS] and [SOS2] tokens. Af-
ter all components have been generated, the sequence is ter-
minated with an [EOS] label.

The final mesh is constructed by gathering the faces
formed from the initial input vertex pairs and their pre-
dicted opposite vertices: M =

⋃N
n=1(v

n
1 , v

n
2 , v

n
3 ) for the

generation steps where In /∈ {[SOS],[SOS2]} and on /∈
{[STOP],[EOS]}}.

Input embedding: We employ a positional embedding
function from [37] to encode each vertex into a high-
dimensional space, capturing its positional information
across multiple frequency bases. This embedding function
PosEmbed(.) : R3 → RC maps 3D coordinates to a C-
dimensional embedding. For each edge, the embeddings of
its vertex pair are concatenated, creating a representation in
R2C , which is subsequently passed through an MLP to map
it to the Transformer’s hidden dimension, R2C → RD.

Vertex prediction: In prior works on mesh generation,
each vertex is represented as a sequence of three tokens
corresponding to its quantized x-, y-, and z-coordinates.
Specifically, to predict a single vertex’s position, those mod-
els generates each coordinate independently as separate to-
kens in sequence. This approach leads to longer sequences,
as each vertex requires three distinct tokens. In contrast,
our method predicts the vertex’ quantized x-, y-, and z-
coordinates in one sequence length by using hierarchical
MLP heads. This hierarchical approach maintains the se-
quential nature in predicting the x-, y-, and z-coordinates.
Further details can be found in the supplementary mate-
rial. As shown in the ablation study (Section 4.5), our hi-
erarchical MLP heads result in easier coordinate sampling
compared to prediction heads that predict the x-, y-, and
z-coordinates simultaneously.

Advantages: Our Autoregressive Tree Sequencing ap-
proach adds only two sequence steps per triangular face as
each face introduces two new nodes during the tree traver-
sal process. Additionally, since most meshes consist of only
a few connected components, our method requires minimal
auxiliary tokens. This efficient sequencing achieves a com-
pression rate of approximately 22% for most meshes com-
pared to naive tokenization, which uses 9 tokens per face.
Our compression rate is thus approximately double that of
methods like MeshAnythingV2 [4] and EdgeRunner [29].
Additionally, by using a dynamic stack to manage the in-
put sequence, our method allows the Transformer to focus
solely on making localized predictions at each step, hence
improving training efficiency. Furthermore, our method
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generates mesh with strong normal orientation constraints,
minimizing flipped normals commonly encountered in Me-
shAnything [3] and MeshAnythingV2 [4].
Loss function: We aim to train the Transformer decoder
θ to maximize the likelihood of generating the sequence of
outputs {on}Nn=1 given the input sequence {In}Nn=1:

N∏
n=1

P (on | I≤n; θ). (1)

To this end, given the ground truth and predicted val-
ues with teacher-forcing across all steps, denoted by O =
{Ox,Oy,Oz} and Ô = {Ôx, Ôy, Ôz}, respectively,
where each O. represents the discretized vertex coordinate
along a specific axis, we use a loss function defined as the
sum of cross-entropy losses for each coordinate:

L = LCE(Ox, Ôx) + LCE(Oy, Ôy) + LCE(Oz, Ôz). (2)

To incorporate stopping conditions, we add the [STOP]
and [EOS] labels to the class selection on the height axis,
extending it with two additional classes beyond the dis-
cretized coordinate classes.

4. Experiments
4.1. Dataset
We use Objaverse [7] meshes as our training dataset. To
ensure high-quality meshes, we select meshes that meet
the half-edge traversal requirement, i.e., they are manifold
and have no flipped normal. All meshes are preprocessed
by centering and normalizing them within a cube spanning
[−0.5, 0.5]. We apply 7-bit discretization, remove any du-
plicate triangles, and choose meshes with less than 5,500
faces. Additionally, we perform orthographic projections
and exclude meshes where one of the projections has ex-
tremely small area or contains more than one cluster. Af-
ter filtering, we retain a total of 75,000 meshes, of which
1,000 are reserved for validation, with the remainder used
for training. To increase data diversity, we apply the follow-
ing augmentations:
• Scaling: Each axis is scaled independently by a factor

randomly chosen from the range [0.75, 0.95].
• Rotation: We first apply a 90◦ or −90◦ rotation along the
x- or y-axis with a probability of 0.3. Afterward, we per-
form a rotation around the z-axis with an angle uniformly
sampled from [−180◦, 180◦].

4.2. Implementation Details

Point cloud conditioning: Following previous ap-
proaches [3, 4, 29], we adopt point cloud conditioning to
provide practical guidance for the generation process. To
achieve this, we sample a point cloud from the input mesh
surface and apply a lightweight encoder [3, 4, 37, 38].
Specifically, we sample 8192 points, denoted as X ∈

R8192×3, from the mesh surface. A cross-attention layer
is then used to encode these points into a latent code:

Z = CrossAtt
(
Q,PosEmbed(X)

)
(3)

where Q ∈ R2048×C represents query embeddings with a
shorter sequence length of 2048 and hidden dimension of C,
PosEmbed(.) is the same input embedding function in our
Autoregressive Tree Sequencing, and Z ∈ R2048×L is the
resulting latent code. The latent code Z is then prepended to
the initial [SOS] token in the Transformer decoder to pro-
vide point cloud-based conditioning for mesh generation.

Architecture details: Our model employs a Transformer
decoder with 24 layers, 16 attention heads, and a hidden
dimension of 1024 and adds the sinusoidal positional en-
coding [31] to encode the token position. We apply a full
self-attention for the latent code condition and a causal self-
attention mask for the autoregressive decoder. PyTorch’s
FlexAttention is used to implement this attention mask ef-
ficiently. Additionally, we adopt fp16 mixed-precision to
optimize computational speed and memory efficiency. We
set the hidden dimension C of the positional embedding
(PosEmbed) to 512 and use 7-bit quantization to discretize
the coordinate output into 128 classes.

Training details: We use AdamW [14, 20] with a learning
rate of 10−4, β1 = 0.9 and β2 = 0.99 as the optimizer. Our
model is trained with 8× A100-80GB GPUs for 5 days with
an effective batch size of 128.

Sampling strategy: We use a multinomial sampling strat-
egy with a top-k of 5 during the generation process. Em-
pirically, we find that adjusting the temperature at different
stages achieves an optimal balance between diversity and
generation quality. Specifically, we set the temperature to
1 when the stack length is below 10, reduce it to 0.4 when
the stack length is below 30, and further decrease it to 0.2
beyond that.

Inference adjustment: We find that a few adjustments
during inference can improve the generation performance.
First, we keep track of the generated faces for each step. If
our model predicts a vertex that would form a triangle that
is a duplicate to the previously generated faces, we adjust
the prediction to [STOP] and retrieve the next input from
the top of the stack. This checking operation is fast since
the faces are of discrete tensor.

Additionally, we observe that our model often struggles
to predict the [EOS] label in longer sequences. In these
cases, while the [EOS] label consistently appears among
the top 5 logits, it is rarely sampled. To address this, we ap-
ply an addition factor to the logit of [EOS], incrementally
increasing this factor each time [EOS] appears in the top
5 logits. To avoid early [EOS] prediction after this adjust-
ment, we bypass multinomial top-k sampling for [EOS]
and select it only when it becomes the highest logit.
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4.3. Results on Objaverse Dataset
4.3.1. Qualitative Results
We present the qualitative results of mesh generation con-
ditioned on input point cloud in Figure 3, comparing our
method with MeshAnything [3] and MeshAnythingV2 [4]
as the baselines. As shown, our method demonstrates a
notable improvement to generate meshes with higher face
counts and refined details.

4.3.2. Quantitative Results
We use the following metrics to assess the quality of the
generated meshes:
• Chamfer Distance (CD). It provides an indication of ge-

ometric accuracy by measuring the average closest-point
distance between points sampled from the source and ref-
erence meshes, computed bidirectionally. Lower values
of CD indicate better geometric accuracy.

• Normal Consistency (NC). It evaluates the surface ori-
entation alignment between the source and reference
meshes. Specifically, it measures the cosine similarity
between the normals of each face in the source mesh
and the nearest face in the reference mesh, computed
bidirectionally. Higher NC values signify better normal
alignment. We also report absolute Normal Consistency
(|NC|), which disregards the sign, focusing solely on the
magnitude of similarity. The mathematical details are
provided in the supplementary materials.

Objaverse evaluation set: We ran the evaluation on 200
samples in our validation set with 1 generation seed for each
model. The quantitative results presented in Table 1, indi-
cate that our model generates meshes more faithful to the
ground truth meshes compared to the baselines. The NC
values of MeshAnything [3] and MeshAnythingV2 [4] are
relatively low due to flipped normals, which leads to incon-
sistencies in the sign of the normals. In contrast, our method
generates meshes with consistent normal orientation.

Model CD↓ NC↑ |NC| ↑
MeshAnything [3] 0.0115 0.223 0.853
MeshAnythingV2 [4] 0.0102 0.167 0.843
Ours 0.0070 0.798 0.880

Table 1. Quantitative results on Objaverse evaluation set.

Tokenization effectiveness: The previous trained models
and ours differ in dataset composition, point cloud condi-
tioning, and training settings. To accurately evaluate the ef-
fectiveness of different tokenization methods, we conduct a
controlled experiment on the subset of our filtered dataset of
24k samples with ≤500 faces. All factors except for the to-
kenizers are kept the same: 1). 16-layer Transformers with
768 hidden dimension and positional encoding. 2). Point

cloud condition of 2048 tokens. 3). Training until 40k steps
with an effective batch size of 128 and data augmentation.

Results on a test set of 200 samples, shown in Table 2,
strongly indicate our method provides highly effective in-
ductive bias. We use PivotMesh’s [33] pretrained VQ-VAE
since MeshAnything does not release their VQ-VAE en-
coder and noise resistant decoder fine-tuning code.

Tokenizer CD↓ NC↑ |NC| ↑ Sequence
Length↓

Naive [2] 0.0376 0.639 0.822 9Nf

VQ-VAE [33] 0.0352 0.673 0.815 6Nf

AMT [4] 0.0327 -0.069 0.768 ±4Nf

Ours 0.0100 0.734 0.874 2Nf + 2Nc

Table 2. Quantitative results on our controlled experiment. Nf

and Nc are the number of triangular faces and connected compo-
nents, respectively.

4.4. Results on GSO Dataset
We further conduct a quantitative evaluation on GSO
dataset [8], a dataset of real-world 3D scans to test the gen-
eralization capabilities of each model. In this experiment,
we observe that the baseline models and ours are sensitive
to the input point cloud, with results varying large on differ-
ent sampling seeds. To mitigate this variability, we generate
five samples for each model and select the mesh with the
lowest Chamfer Distance for evaluation.

For our model, we sample point clouds directly from
the meshes provided in the GSO dataset. However, direct
sampling from these high-resolution meshes often results
in reconstructions with extremely small faces. To address
this, we decimate the meshes to five target faces ranging
from 1000 to 2500 faces and then perform uniform sam-
pling on these decimated versions. For MeshAnything and
MeshAnythingV2, we sample the input point clouds from
Marching Cubes meshes derived from both the original
high-resolution and decimated (1500 faces) meshes using
an 8-level octree.

As shown in Table 3, our method achieves the best re-
sults across the evaluated metrics. Figure 4 presents qual-
itative comparisons, demonstrating that our model gener-
ates meshes more consistent with the input than the base-
lines. Additionally, Figure 5 compares our output with the
decimated mesh, highlighting that our model can generate
meshes with the topology of those created by 3D artists.

Model CD↓ NC↑ |NC| ↑
MeshAnything [3] 0.0105 0.453 0.869
MeshAnythingV2 [4] 0.0116 0.3269 0.865
Ours 0.0077 0.842 0.897

Table 3. Quantitative results on GSO dataset.
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GT Mesh MeshAnything [3] MeshAnythingV2 [4] Ours

#Face = 4130 #Face = 439 #Face = 2247 #Face = 3311

#Face = 4316 #Face = 800 #Face = 2246 #Face = 4545

#Face = 3718 #Face = 630 #Face = 2090 #Face = 5122

#Face = 3694 #Face = 576 #Face = 1998 #Face = 2708

#Face = 2442 #Face = 495 #Face = 2159 #Face = 2646

#Face = 3638 #Face = 584 #Face = 1769 #Face = 2114

#Face = 740 #Face = 235 #Face = 265 #Face = 301

Figure 3. Qualitative comparison on Objaverse dataset [7]. Our model is able to generate meshes with higher face counts and refined
details compared to the baselines. Results from the baselines use point clouds sampled from marching cube meshes with 8-level octree.
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GT Mesh MeshAnything [3] MeshAnythingV2 [4] Ours

#Face = 14430 #Face = 506 #Face = 2219 #Face = 2877

#Face = 15672 #Face = 634 #Face = 2161 #Face = 939

Figure 4. Qualitative comparison on GSO dataset [8].

Original Decimated Ours

Figure 5. Comparison between the decimated mesh and our
output. Our model is capable of generating meshes with the topol-
ogy of those created by 3D artists.

4.5. Ablation Study

Decoder MLP head: We compare TreeMeshGPT trained
with MLP heads that predict the x-y-z coordinates simulta-
neously and our proposed hierarchical MLP. Predicting the
coordinate simultaneously leads to challenging sampling
that results in noisy and more incomplete meshes, as shown
in Figure 6. Running evaluation on the 200 validation sam-
ples used in Table 1 with this head yields CD = 0.0114, NC
= 0.724, |NC| = 0.847.

GT Mesh Simultaneous Hierarchical

Figure 6. MLP head ablation. Our hierarchical MLP maintains
the sequential nature of the x-y-z coordinates prediction that re-
sults in easier sampling compared to simultaenous prediction.

Tree traversal: We conduct an ablation study on smaller
Transformer architecture comparing DFS and breadth-first-
search (BFS) traversals in forming input-output sequences
for our Autoregressive Tree Sequencing. As shown in the
training perplexity plot in Figure 7, DFS traversal enables
more efficient Transformer training. This improvement
likely stems from the stronger local dependencies intro-
duced by DFS, where each step is more predictable based on
its immediate predecessors. In contrast, BFS traversal often

introduces dependencies between steps that are spatially or
structurally distant, and thus complicating the learning pro-
cess.

Figure 7. Training perplexity comparison Between BFS and
DFS traversals. DFS traversal shows a better training perplexity
compared to BFS. Shown in the plot is the perplexity for y−axis
vertex coodinate.

5. Conclusion
We present TreeMeshGPT, an autoregressive Transformer
designed to generate high-quality artistic meshes aligned
with input point clouds. TreeMeshGPT incorporates a novel
Autoregressive Tree Sequencing technique instead of the
conventional next-token prediction. Our Autoregressive
Tree Sequencing represents each face with two tokens, en-
abling a 7-bit discretization model that can generate up to
5,500 triangular faces with 2,048 point cloud latent tokens.
Experiments show that TreeMeshGPT can generate meshes
with higher quality compared to the previous methods.
Limitations: Our model has a similar failure mode to
the previous methods that the success rate decreases as the
sequence length increases. Additionally, while our model
has an improved capacity to generate meshes with higher
face counts, challenges persist in enforcing an optimal mesh
topology.
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Supplementary Material for
TreeMeshGPT: Artistic Mesh Generation with Autoregressive Tree Sequencing

In this supplementary document, we provide the implementation details of our network’s MLP heads in Section A. Then,
we provide the mathematical details of the Normal Consistency metrics in Section B. We then demonstrate the capability of
TreeMeshGPTto generate artistic meshes from text prompts through a multi-step process in Section C. Finally, we present
our 9-bit model supporting the generation of artistic meshes with up to 11,000 faces in Section D.

A. Vertex Prediction Heads

Transformer 
decoder

previous tokens

previous tokens

x ~ p(x | prev)

Transformer 
decoder

x ~ p(x | prev)

y ~ p(y | x, prev)

z ~ p(z | y, x, prev)

v = (x, y, z)
Transformer 

decoder

y ~ p(y | x, prev)

x

Transformer 
decoder

z ~ p(z | y, x, prev)

x y x

y

Figure 8. Sequential vertex prediction. a). Next-token prediction. b). Our hierarchical MLP heads.

To mimic the sequential nature in the prediction of vertex’s x-, y-, and z-coordinates in next-token prediction Transformer
(Figure 1a), we adopt hierarchical MLP heads (Figure 1b). Our hierarchical MLP heads contain three stages to the generate
each vertex’s x-, y-, and z-coordinates, where each coordinate is predicted sequentially based on the previous ones. In the
first stage of the hierarchical MLP, represented by gθ1, the initial coordinate (e.g., x-coordinate) of the vertex is predicted
based on the latent code c ∈ Rd from the Transformer decoder:

x ∼ p(x | prev) = gθ1(c). (4)

Here, ”prev” denotes all previously generated tokens, and c is the latent code output by the Transformer decoder, which
encapsulates information from these prior tokens. Next, the y-coordinate is predicted in the second stage of the MLP,
represented by gθ2:

y ∼ p(y | x, prev) = gθ2(Ex(x), c), (5)

where E∗ ∈ Rd denotes the learnable embeddings for the discretized coordinates of an axis and ∗ can represent x, y, or z.
For example, Ex(x) represents the embedding of the discretized x-coordinate, and similarly, Ey(y) and Ez(z) denote the
embeddings of the discretized y- and z-coordinates, respectively. This second stage conditions on both the latent code c and
the discretized coordinate embedding Ex. Finally, the z-coordinate is predicted in the third stage of the MLP, gθ3, which
takes as input the latent code c along with the embeddings of both previously predicted coordinates, Ex(x) and Ey(y):

z ∼ p(z | y, x, prev) = gθ3(Ey(y),Ex(x), c). (6)

In each stage, the input to the MLP gθ consists of the concatenation of the latent code c and the corresponding embeddings
E∗.

In our experiments with the Objaverse dataset, where the z-axis represents the height axis, we predict the z-coordinate
first, followed by the y-coordinate and then the x-coordinate. Additional [STOP] and [EOS] labels are included in the
class selection for the z-coordinate. During training, the loss functions for the y- and x-coordinates are applied only when
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the ground truth z-coordinate is not one of these additional labels. Also, teacher-forcing is employed to supervise the y- and
x-coordinates by conditioning with the embeddings of the preceding ground truth coordinates.

B. Normal Consistency Metrics

This section details the calculation of our normal consistency metrics. Let Ms and Mr denote the source and reference
meshes, respectively, where each consists of triangular faces. The centroid csi of the i-th face in the source mesh Ms is given
by:

csi =
vs
i1 + vs

i2 + vs
i3

3
,

where vs
i1,v

s
i2,v

s
i3 are the vertices of the i-th triangular face of Ms. For each centroid csi , we find the closest face j on the

reference mesh Mr using the shortest point-to-face distance:

j = arg min
k∈Mr

d(csi , F
r
k ),

where F r
k is the k-th face in Mr and d(csi , F

r
k ) represents the shortest distance from the point csi to the face F r

k . The cosine
similarity between the normals of the i-th face in the source mesh (ns

i ) and the closest face (nr
j ) in the reference mesh is then

computed as:

Simi→j(n
s,nr) =

ns
i · nr

j

∥ns
i∥∥nr

j∥
.

This process is repeated bidirectionally. For the reverse direction, the centroid crk of the k-th face in Mr is computed to
find the corresponding closest face l in Ms. The Normal Consistency (NC) metric is the average cosine similarity across all
face pairs in both directions:

NC =
1

2|Ms|
∑

i∈Ms

Simi→j(n
s,nr) +

1

2|Mr|
∑

k∈Mr

Simk→l(n
r,ns), (7)

where |Ms| and |Mr| are the numbers of faces in the source and reference meshes, respectively and l =
argmini∈Ms d(c

r
k, F

s
i ). The absolute version (|NC|) that omits the flipping direction is then given as:

|NC| = 1

2|Ms|
∑

i∈Ms

|Simi→j(n
s,nr)|+ 1

2|Mr|
∑

k∈Mr

|Simk→l(n
r,ns)|. (8)

C. Generating Artistic Meshes from Text Prompts

We demonstrate the capability of our model to generate artistic meshes from text prompts through a multi-step process, shown
in Figure 9. We utilize the Luma AI Genie3 text-to-3D model to generate dense meshes from text prompts. These meshes are
typically over-tessellated, containing around 50,000 small triangles that make them unsuitable for downstream applications.
To generate artistic meshes, we first apply decimation to the dense meshes. Next, we sample point clouds from the decimated
meshes and use them as input conditions of TreeMeshGPT.

3https://lumalabs.ai/genie
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Ours

"knight helmet
with horns"

"anime cat 
with wings"

"cyberpunk car"

"stylized anthropomorphic 
mushroom"

Luma Genie
Output MeshText Prompt

Figure 9. Multi-step text-to-artistic mesh generation. Given a text prompt, we first generate a dense mesh using the Luma AI Genie
model. This dense mesh, typically containing around 50,000 triangles, is then decimated. A point cloud is sampled from the decimated
mesh and serves as the input condition for TreeMeshGPT, which generates the final artistic mesh.

D. 9-bit Model Supporting 10K+ Faces
In our model training with 7-bit discretization, we performed the discretization to the normalized manifold Objaverse meshes,
removed the duplicate triangles, and chose meshes with ≤5.5k faces as we found significant amount of these discretized
meshes with >5.5k faces contain small triangles that collapse or merge, thus violating the manifold condition required for
our sequencing approach.

These triangles collapses/merges occur less with finer discretization and we further train TreeMeshGPT with 9-bit dis-
cretization. Our 9-bit model supports the generation of up to 11,000 faces, taking 25 days of training with 8× A100-80GB
GPUs. Some of the qualitative results are shown in Figure 10. Compared to the 7-bit model, our 9-bit model can generate
artistic meshes with smoother surfaces, finer details, and higher number of faces.
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Figure 10. Qualitative results of our 9-bit model. The generated meshes contain up to 11,000 faces, demonstrating improved surface
smoothness and finer details compared to the 7-bit model. Inputs are point clouds sampled from Objaverse meshes.
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