
Published in Transactions on Machine Learning Research (04/2024)

INSPIRE: Incorporating Diverse Feature Preferences in
Recourse

Prateek Yadav praty@cs.unc.edu
Peter Hase peter@cs.unc.edu
Mohit Bansal mbansal@cs.unc.edu
UNC-Chapel Hill

Reviewed on OpenReview: https: // openreview. net/ forum? id= 6yzIuqKGnq

Abstract

Most recourse generation approaches optimize for indirect distance-based metrics like di-
versity, proximity, and sparsity, or a shared cost function across all users. A shared cost
function in particular is an unrealistic assumption because users can have diverse feature
preferences (FPs), i.e. the features they are willing to act upon to obtain recourse. In this
work, we propose a novel method, INSPIRE to incorporate diverse feature preferences in
both recourse generation and evaluation procedures by focusing on the cost incurred by a
user when opting for a recourse. To achieve this, we first propose an objective function,
Expected Minimum Cost (EMC) based on two key ideas: (1) the user should be comfortable
adopting at least one solution when presented with multiple options, and (2) we can pro-
vide users with multiple options that cover a wide variety of FPs when the user’s FPs are
unknown. To optimize for EMC, we propose a novel discrete optimization algorithm, Cost-
Optimized Local Search (COLS), that is guaranteed to improve the quality of the recourse
set over iterations. Next, we propose a cost-based evaluation procedure that computes user
satisfaction by simulating each user’s cost function and then computing the incurred cost for
the provided recourse set. Experiments on popular real-world datasets demonstrates that
our method is more fair compared to baselines and satisfies up to 25.9% more users. We
also show that our method is robust to misspecifications of the cost function distribution.1

1 Introduction
Over the past few years, ML models have been increasingly deployed to make critical decisions related to
loan approval (Siddiqi, 2012), allocation of public resources (Chouldechova et al., 2018), and hiring decisions
(Ajunwa et al., 2016). These decisions have real-life consequences for the involved users. As a result, there
is a growing emphasis on explaining these models’ decisions (Poulin et al., 2006; Ribeiro et al., 2018) and
providing recourse for unfavorable decisions (Voigt & dem Bussche, 2018). A recourse is an actionable
plan that allows a user to change the decision of a deployed model to a desired alternative (Wachter et al.,
2017). Recourses are often presented to users as a set of counterfactuals (CFs), where each CF details the
changes to the user’s state vector (i.e., their feature vector). Recourses are desired to be actionable, and
feasible. Actionable means that only features that can be changed by the user are requested to be changed.
A recourse is feasible if it is actionable and easy to adopt for the user.

To achieve these objectives, prior work used indirect feature distance-based objectives like proximity, sparsity,
and feature diversity. For instance, Mothilal et al. (2020) and Wachter et al. (2017) encourage proximity by
minimizing the distance between the user’s state vector and the counterfactuals (CFs) with the assumption
that proximal CFs are easier to adopt. Whereas, sparsity quantifies the number of features that require modi-
fication to implement a recourse (Mothilal et al., 2020). In contrast to these, feature diversity (Mothilal et al.,
2020; Cheng et al., 2021) provides a user with multiple CFs that change diverse subsets of features assuming

1Our code is available at https://github.com/prateeky2806/EMC-COLS-recourse.

1

https://openreview.net/forum?id=6yzIuqKGnq
https://github.com/prateeky2806/EMC-COLS-recourse


Published in Transactions on Machine Learning Research (04/2024)

that users are more likely to find at least one feasible solution. Any of these objectives alone is not sufficient
to provide feasible recourse to the user and it is hard and subjective to decide what combination of them will
lead to a satisfied user. Moreover, these objectives do not account for individual user preferences which should
be of primary focus. For instance, if a user prefers to change features f1 and f2, then providing them with re-
courses that change undesirable features makes them infeasible even if they are proximal, sparse, and diverse.

To address this, some recourse methods define and use cost functions. A cost function, C(f, i, j) denotes the
cost of changing a feature f from value i to j. The methods of Ustun et al. (2019); Rawal & Lakkaraju (2020);
Karimi et al. (2020c;d) assume that all the users share a single cost function. They define this cost function
and then for each user, they optimize the same cost function to generate CFs with low overall costs under this
function. Next, they evaluate the cost of CFs under the same cost function. We question the utilization of a
single cost function for all users, as it may not accurately reflect the preferences of a diverse user population.

: Sampled Cost Functions
: True Cost Function 

: 
: 
: 

Figure 1: Diagram showing the intuition behind the Ex-
pected Minimum Cost Objective. The axes represent an ab-
stract cost function space where squares denote cost func-
tion samples that are the same color if they have similar
underlying FPs and hence form a cluster. We aim to find
a recourse set where each CF (here, {s1, s2, s3}) does well
for certain types of FPs represented by clusters of cost func-
tions. The shaded big circles each represent a single CF si

that caters to the enclosed cost functions. Here the user’s
ground-truth cost function (grey circle) is served well by s1.

We argue that it is crucial to assume that each
user has a different cost function in order to ef-
fectively cater to the unique characteristics of
individual users. However, as noted by Rawal
& Lakkaraju (2020), in most practical cases it
is difficult for a user to specify their feature
preferences or cost function. Therefore, we as-
sume that these are not provided and we only
assume access to the user’s state vector. To
overcome this limitation, we propose a novel
method, INSPIRE (Incorporating diverSe fea-
ture Preferences In RecoursE) that generates
a diverse set of cost functions to capture vari-
ous feature preferences (FPs) a user might pos-
sess and utilizes them to provide a recourse
set containing multiple CFs to the user. IN-
SPIRE provides each user with a recourse set
that is constructed such that the likelihood
of having at least one feasible solution adher-
ing to the user’s personal feature preference
is maximized. INSPIRE focuses on and im-
proves upon four major components – (1) the
procedure to generate diverse cost functions
with underlying FPs, (2) the recourse objec-
tive function, (3) the recourse generation algo-
rithm, and (4) the evaluation procedure.

We build on the cost functions defined in Us-
tun et al. (2019) to propose three distributions,
Dstep, Dperc, and Dmix that can be used to
sample cost functions with different underlying FPs that users in a population might possess. These dis-
tributions generate cost functions based on steps needed and percentile changes (Ustun et al., 2019) in the
feature values (§4.1). Next, we propose a novel objective function, Expected Minimum Cost (EMC) that ap-
proximately optimizes the cost a user will incur when their FPs are unknown. The EMC objective encourages
diversity in the solution set with respect to the different FPs a user might possess. This is done by ensuring
that each CF is a good CF under some particular cluster of cost functions representing similar FPs (see Figure
1). We minimize the EMC of the generated recourse set with respect to multiple sampled cost functions from
one of the proposed distributions (§4.2). Hence, if the user’s ground-truth cost function is well represented by
any of the clusters, then we will have some counterfactual that is feasible (actionable and low-cost) for them
(See Figure 1). In order to efficiently optimize for EMC, we propose a genetic algorithm (Mitchell, 1998)
based optimization method, Cost-Optimized Local Search (COLS) (§4.3). COLS guarantees a monotonic
reduction in EMC of the recourse set, leading to large empirical reductions in the user-incurred cost.

2



Published in Transactions on Machine Learning Research (04/2024)

Lastly, we propose a novel cost-based evaluation procedure to compare different methods that accounts
for the individuality of the users by having different cost functions for each user (§4.4). We simulate an
evaluation cost function for each user and then assess the fraction of satisfied users based on whether their
incurred cost of recourse is below a certain satisfiability threshold k. Even though the cost functions are
simulated, this setup can be used to rank different methods to assess their recourse generation abilities. We
also report coverage, which is the fraction of users with at least one actionable recourse (Rawal & Lakkaraju,
2020). Moreover, we evaluate all methods on existing indirect metrics from the literature like diversity,
proximity, sparsity, and validity (§5.1).

To evaluate the effectiveness of EMC and COLS, we run experiments on two popular real-world datasets:
Adult-Income (Dua & Graff, 2017) and COMPAS (Larson et al., 2016). We compare our method with multi-
ple popular and recent baseline methods like DICE (Mothilal et al., 2020), FACE (Poyiadzi et al., 2020), and
Actionable Recourse (AR) (Ustun et al., 2019). We show that our method satisfies up to 25.89% more users
than strong baseline methods while covering up to 22.35% more users across datasets. We also perform im-
portant ablations to show the advantages of using the EMC objective and the COLS optimization procedure.
Next, we perform a fairness analysis of methods across demographic subgroups to show that our method is
fairer than baseline methods. Finally, we evaluate the robustness of our method to various types of distribu-
tion shifts that can occur between the evaluation cost functions distribution and the distributions used in the
EMC objective (see Section 5). We find that our method is robust to multiple types of distribution shifts and
leads to an improvement of at least 11% even in such scenarios. Our primary contributions are listed below.

1. We conceptualize a novel method, INSPIRE that accounts for diverse feature preferences while generat-
ing and evaluating recourse options. INSPIRE provides the flexibility for future researchers to further
innovate on all of its four components.

2. We propose a new objective function, Expected Minimum Cost that approximately optimizes the cost
a user will incur when their FPs are unknown using diverse samples from a distribution.

3. We propose a discrete optimization method, Cost-Optimized Local Search which generates recourses
that lead to higher user satisfaction while being fairer.

4. We propose an evaluation procedure that allows us to compare different methods on individual user
satisfaction by simulating users’ evaluation cost functions.

2 Related Work

Here, we distinguish our approach based on our recourse objectives, optimizer, and evaluation. We point
readers to Venkatasubramanian & Alfano (2020) for a philosophical basis of algorithmic recourse and to
Karimi et al. (2020b) for a comprehensive survey of the existing recourse methods.

Objectives: The most prominent family of objectives for recourse includes distance-based objectives
(Wachter et al., 2017; Karimi et al., 2020a; Dhurandhar et al., 2018; Mothilal et al., 2020; Rasouli & Yu,
2021). These methods primarily seek recourses that are close to the original data point. In DICE, Mothilal
et al. (2020) provides users with a set of counterfactuals while trading off between proximity and feature di-
versity. A second category of methods uses other heuristics based on the data distribution (Aguilar-Palacios
et al., 2020; Gomez et al., 2020) to come up with counterfactuals. FACE constructs a graph from the given
data and then tries to find a high-density path between points in order to generate counterfactuals (Poyiadzi
et al., 2020). Lastly, the works closest to ours are the cost-based objectives, which capture feasibility in terms
of the cost of recourse: (1) Cui et al. (2015) define a cost function specifically for tree-based classifiers, which
compare the different paths that two data points follow in a tree to obtain a classifier-dependent measure of
cost. (2) Karimi et al. (2020c;d) take a causal intervention perspective on the task and define cost in terms
of the normalized distance between the user state and the counterfactual. (3) Ustun et al. (2019) define cost
in terms of the number of changed features and frame recourse generation as an Integer Linear Program. (4)
Rawal & Lakkaraju (2020) infer global cost function from pairwise comparisons of features that are drawn
from simulated users. However, they take a different approach to the recourse generation problem, which
is to find a list of rules that can apply to any user to obtain a recourse, rather than especially generating
recourses for each user as in this work. Importantly, all of these works assume there is a known and single
cost function that is shared by all users.

3



Published in Transactions on Machine Learning Research (04/2024)

Optimization: Several recourse methods use gradient-based optimization to generate counterfactuals close
to a user’s data point (Wachter et al., 2017; Mothilal et al., 2020). Some recent approaches use tree-
based techniques (Rawal & Lakkaraju, 2020; von Kügelgen et al., 2020; Kanamori et al., 2020) or kernel-
based methods (Dandl et al., 2020; Gomez et al., 2020; Ramon et al., 2020), while others employ some
heuristic (Poyiadzi et al., 2020; Aguilar-Palacios et al., 2020) to generate counterfactuals. A few works use
autoencoders to generate recourses (Pawelczyk et al., 2020; Joshi et al., 2019), while (Karimi et al., 2020a)
and (Ustun et al., 2019) utilize SAT and ILP solvers, respectively. In contrast to these methods, we also
suspect that ideas from distributionally robust optimization (Rahimian & Mehrotra, 2019) can also be used
to come up with alternative objective functions or even better ways to optimize the EMC objective.

Evaluation: Besides ensuring recourse validity, the most prominent approaches to evaluate recourses rely
on distance-based metrics. In DICE, Mothilal et al. (2020) evaluate recourses according to their proximity,
sparsity, and feature diversity. Meanwhile, several works directly consider the cost of the recourses, using
a single known cost function as a metric, meaning that all users share the same cost function. In contrast,
Rawal & Lakkaraju (2020) estimate a single rank order amongst the feature from simulated pairwise feature
comparisons from experts. For all these methods, a single cost function is used for both recourse generation
and evaluation, i.e. the solutions are optimized and tested on the same cost function (Cui et al., 2015;
Karimi et al., 2020c;d; Rawal & Lakkaraju, 2020). In contrast, we evaluate recourse methods by simulating
user-specific cost functions that can vary greatly across users to capture their preferences.

3 Problem Statement

Features Types. We assume a dataset with features F = {f1, f2, ...fh}. Features can be mutable,
conditionally mutable, or immutable, according to the causal processes that generate them. For example,
Race is an immutable feature (Mothilal et al., 2020), Age and Education are conditionally mutable (cannot
be decreased), and number of work hours is mutable (can both increase and decrease). Following (Ustun
et al., 2019), continuous features are always discretized into appropriately sized bins. Moreover, the feature
values can be ordered or unordered, e.g., Workclass can be business, private, government, etc and none of
these feature values are more difficult then the other to achieve.

Cost Function. In this work, we assume that each user has an inherent feature-preference (FP) that is
an ordering of the features with respect to the ease of changing them, and different users will likely have
different FPs. We quantify these user FPs via feature-scores denoted by p = [pf1 , . . . , pfh ], which sum to
1 and each pfi ∈ [0, 1] represents the willingness of the user to change feature fi. A cost function C(f, x, y)
takes into account the user FPs and provides an elaborate cost of changing a feature f from x to y and lies
in [0, 1] ∪ {∞}. Here, 0 means that the transition has no associated cost, whereas 1 means it is maximally
difficult, and ∞ means that it is infeasible under the cost function.

Transition Costs. Given a cost function C and two state vectors si, sj , the cost of transition from si → sj

is the sum of the cost of changing individual features. Hence, Cost(si, sj ; C) =
∑

f∈F C(f, sf
i , sf

j ), where sf

is the value of feature f in the state vector s. Cost can be greater than 1 when changing multiple features.

User Definition. A user is defined as a tuple u = (su, C∗u), where su is the user’s current state vector of
length |F| containing their feature values and C∗u is their ground-truth cost function. See Appendix Table
8 for examples of su and FPs. Next, we define the cost incurred by a user when acting on a recourse set S.
As a rational user will select the least costly option, the cost they will incur is the minimum transition cost
across all CF in the recourse set, defined as,

MinCost(su,S; C∗u) = min
sj∈S

Cost(su, sj ; C∗u). (1)

Problem Definition. For a user u, our goal is to find a recourse set Su such that there exists at least one
low-cost CF with the desired outcome. Hence, if the user’s ground-truth cost function C∗u is provided then
we can provide them with a good recourse by directly optimizing for,

Su = arg min
S

MinCost(su,S; C∗u) s.t. ∃ si ∈ S and F (si) = 1, (2)

4



Published in Transactions on Machine Learning Research (04/2024)

where F is the underlying ML model assigning a decision and 1 is the desired class user wants to achieve.
In general, F (si) can take multiple different values denoting different class a user can be categorized into.
In our experiments, we restrict to two classes as Actionable recourse (Ustun et al., 2019) method only works
with two classes. Moreover, we note that in practice it is difficult for a user to precisely quantify their FP
and cost function. Therefore, in most practical scenarios C∗u is not provided, and hence we use the EMC
objective account for user FPs (§ 4.1,§ 4.2).

4 INSPIRE: Integrating Diverse Feature Preferences in Recourse

To generate recourse for a user, we utilize their state vector as the sole input. We begin by using our
proposed distributions (§4.1) to sample multiple potential cost functions that may align with the FPs of
the user. Subsequently, we compute our EMC objective for the candidate recourse set with respect to
the sampled cost functions (§4.2). Then, our COLS optimization method generates an updated candidate
recourse set (§4.3). Then this process is repeated iteratively to arrive at a final candidate recourse set,
which is evaluated through our proposed evaluation procedure (§4.4).

4.1 Characterising Feature Preferences and Cost Function Distributions

This section aims to enhance the existing ways of defining cost functions by incorporating FPs by scaling the
cost of transition with feature scores. Recent works like Ustun et al. (2019) argue that users in a population
fundamentally quantify the transition cost of changing a feature f from x to y as being proportional to –
(1) the difference in percentile of x and y, i.e. to |Qf (x)−Qf (y)|, where Qf (.) is the CDF of the feature f
in the target population (Ustun et al., 2019), and (2) the number of steps between to go from x to y (Ustun
et al., 2019). For instance, when changing the education feature from Bachelors to Ph.D. the percentile
might be appropriate as very few people have Ph.D. degrees as compared to Bachelors leading to a higher
cost. In contrast, when changing the number of working hours from 30 to 35 users might associate a fixed
cost for every additional hour as opposed to percentile differences. We call these the Percentile and the Step
based transition cost. In Algorithm 2, and 3, we define procedures to sample cost function that adheres
to percentile and step-based transition costs respectively. Moreover, these algorithms assign different costs
based on feature properties – like being ordered or unordered, if the feature is ordered then can it both just
increase, just decrease, or both increase and decrease, and if the feature is mutable, conditionally mutable,
immutable. For Example, if a feature is ordered and can only increase then transition to any lower value
leads to an infinite cost whereas transitioning to a higher value depends on either the percentile difference
(percentile cost) or the number of steps (step cost) between the initial and final feature value. More details
can be found in Algorithm 2, and 3. We note that both of these costs are monotonic, i.e., more drastic
changes have higher associated costs and are useful depending on the scenario. However, these functions
assign equal importance to all the features which is suboptimal.

Therefore, to incorporate the notion of FP in costs, we use the feature scores, p (see §3) to scale these costs.
We scale the transition costs of each feature f by (1− pf ), i.e Cost(f, ., .) ∗ (1− pf ), resulting in a decreased
cost for preferred features and vice-versa. This creates cost functions adhering to feature score p.

Ideally, we want the user to provide us with the feature scores p but Rawal & Lakkaraju (2020) highlighted
that even for experts, it is hard to specify their feature scores. Hence, to generate diverse cost functions,
we want a procedure to sample feature scores p which can represent diverse FPs that users in a population
might possess. Therefore, in Algorithm 4, we propose a feature score sampling procedure with minimal
assumptions. We first randomly sample a subset of FPs and then for the selected features, we sample the
feature scores p from a Dirichlet distribution. Note, that this procedure is very customizable, and in cases
where users can specify their FPs or feature scores, we can skip this step.

Next, we combine the feature score sampling procedure (Algorithm 4) with percentile (Algorithm 2) and step
(Algorithm 3) based cost function generation procedures respectively and call themDperc, Dstep distributions.
Finally, we propose Dmix (Algorithm 5) as our most general distribution that takes a convex combination of
both step and percentile-based costs using a cost-type weight α. Hence, given a state vector s and feature
scores p, we can use any of these three distributions to generate a cost function with an underlying FP. Note

5



Published in Transactions on Machine Learning Research (04/2024)

that these distributions are using existing concepts of step and percentile-based cost functions along with
feature score-based scaling. This allows us to cover a much larger space of cost functions compared to past
works that assume a single fixed cost function.

4.2 Expected Minimum Cost Objective Function

As noted by Rawal & Lakkaraju (2020), in most practical scenarios the user’s true cost-function C∗u is hard
to obtain thus we cannot exactly minimize for Equation 2. Hence, we propose the Expected Minimum Cost
(EMC) objective function that utilizes samples of cost functions that depict a variety of underlying FPs that
may be close to the user’s true cost function, in order to generate a recourse set with at least one low-cost
CF for all of these sampled cost functions (see Figure 1). Give a state vector s, a recourse set S, and a
distribution Dtrain, we compute EMC as follows,

EMC(s,S) = ECi∼Dtrain
[MinCost(s,S; Ci)] ≈

1
M

M∑
i=1

min
sj∈S

Cost(s, sj ; Ci). (3)

We employ Monte Carlo Estimation (Robert & Casella, 2010) to approximate the expectation by sampling
M cost functions {Ci}M

i=1 from Dtrain and then expand MinCost using Equation 1. Next, for the user u, we
obtain the recourse set Su by minimizing the EMC objective as follows,

Su = arg min
S

EMC(su,S) s.t. ∃ s ∈ S and F (s) = 1, (4)

4.3 Cost Optimized Local Search (COLS)

Algorithm 1 Cost-Optimized Local Search Algorithm
Input: A state vector s, {Ci}M

i=1 ∼ Dtrain cost distributions
Output: Sbest, a set with N generated counterfactuals.
function COLS(s, {Ci}M

i=1, Budget, hamDist)
Initialize

// Perturb s, N times.

Sbest ∈ RN×d ← pertubCFS(s, hamDist)
// Incurred costs for Sbest.

Cb ← getCostMatrix(s,Sbest; {Ci}M
i=1)

t = 0; maxIter = Budget//N
while t < maxIter do
St ∈ RN×d ← pertubCFS(Sbest, hamDist)
C ∈ RN×M ← getCostMatrix(s,St; {Ci}M

i=1)
t += 1

// Bij = Change in cost when Sbest[i]← St[j]. See Algorithm 6.

B ∈ RN×N ← computeBenefits(Cb, C) ▷ See App. Code Block
1

// If any swaps lead to cost-benefit then greedily select which
pairs to swap between Sbest and St given B such that the
cost can only reduce. See App. Code Block 2

replaceIndices← getReplaceIdx(B)
// Swap these pairs and update Cb.
forall originalIdx, replaceIdx ∈ replaceIndices do
Sbest[originalIdx] = S[replaceIdx]

end
Cb ← getCostMatrix(s,Sbest; {Ci}M

i=1)
end
return Sbest, Cb

end

To generate a recourse set Su for a user u,
we optimize for EMC as shown in Equa-
tion 4. We propose two simple, and effi-
cient genetic algorithms (Mitchell, 1998) for
discrete search (Pirlot, 1996), namely Cost-
Optimized Local Search (COLS) and Parallel
Cost-Optimized Local Search (P-COLS) pre-
sented in Algorithm 1. COLS maintains a
best set Sbest which will be the final recourse
provided to the user. We initialize all the el-
ements of S0 as su. At each iteration t, a
candidate set St is generated by locally per-
turbing each element of the best set with a
Hamming distance of two, i.e. making small
changes to two features at once. For fea-
tures with no ordering, we uniformly select
any other potential value, whereas, for fea-
tures with a natural ordering we select values
that are closest to the original values. Then
we assess the validity of the generated CFs
and do not use invalid CFs to compute met-
rics or in any subsequent steps. However,
for simplicity for the pseudocode, we omit
such details. Then St is evaluated against
the EMC objective as defined in Equation
3. For efficient implementation, we store the
costs of all the N CFs with respect to all the
M cost functions Ci. Instead of making a direct comparison of EMC for the best-set-so-far Sbest

t−1 and the
candidate set St, we evaluate whether any CFs from the candidate set St would improve the EMC of the best

6



Published in Transactions on Machine Learning Research (04/2024)

set Sbest
t−1 if we swapped out individual CFs. Specifically, if the benefit of replacing si ∈ St with sj ∈ Sbest is

positive, i.e., reduces EMC of Sbest then we make the replacement (see Algorithm 6 to see how we estimate
benefit). Algorithm 6 initializes the benefit matrix B with zeros. For each sampled cost function (there are
M of them), the algorithm finds the indices of the best and second-best counterfactuals. Then we consider
all pairs of counterfactuals (p, q pairs), p from Sbest

t−1 and q from St and checks the benefit of replacing one
with another. For each counterfactual, the algorithm checks all cost functions where the pth counterfactual is
the cheapest. If the cost of the pth counterfactual in C is greater than that in Cb, the benefit of replacement
is the difference in costs (Cb

pr − Cqr). Otherwise, the benefit is calculated as the cost of the second-best
counterfactual from Cb minus the minimum of the current cost and the cost of the second-best counterfactual
in Cb for the rth cost function. We then greedily replace the CFs in Sbest

t−1 with cfs from St to obtain Sbest
t

which has either similar or better cost than Sbest
t−1 . See Algorithm 1 or Code Block 2 for details. The ability

to assess the benefit of each candidate CF is critical because it allows us to constantly update the best set
using CFs from a candidate set instead of waiting for an entire candidate set with lower EMC. For objectives
like feature diversity, evaluating the benefit is expensive (see Appendix B.1). Moreover, for COLS we can
guarantee that the EMC of the best set will monotonically decrease over time, which is formalized below:
Theorem 4.1 (Monotonicity of COLS Algorithm). Given the best set, Sbest

t−1 ∈ RN×d, the candidate set
at iteration t, St ∈ RN×d, the matrix Cb ∈ RN×M and C ∈ RN×M containing the incurred cost of each
counterfactual in Sbest

t−1 and St with respect to all the M sampled cost functions {Ci}M
i=1, there always exist a

Sbest
t constructed from Sbest

t−1 and St such that

EMC(su,Sbest
t ; {Ci}M

i=1) ≤ EMC(su,Sbest
t−1 ; {Ci}M

i=1)

For the proof of the theorem, please refer to Appendix B.2.2.

P-COLS: The P-COLS method is a variant of COLS that starts multiple parallel runs of COLS with
different initial sets. With a given computational budget, each run is allocated a fraction of the total budget.
The recourse set of the run with the least EMC value is provided to the user.

4.4 Evaluation Procedure and Cost Based Metrics

Given that users’ ground-truth cost functions C∗u are unknown, it is hard to computationally compare different
methods for user satisfaction and metrics like diversity, proximity, and sparsity do not directly measure this.
To address this issue, for every user u, we propose to simulate an evaluation cost function C#

u from a distribu-
tion Dtest. We can use Equation 1 to compute the incurred cost under C#

u which can be used to rank order dif-
ferent recourse methods. Note that, no method is allowed to use C#

u when generating recourse and this is ex-
clusively kept for comparing methods. The effectiveness of this evaluation procedure increase as the distribu-
tion Dtest becomes more expressive in terms of accounting for user FPs as it would align better with real users.

Given a set of users U , each user u ∈ U is provided with a recourse set Su. We compute the MinCost of
Su given the user’s state vector s and their evaluation cost function as MinCost(su,Su; C#

u ). Given this
MinCost, we report multiple aggregated versions of it for comparing other methods.

Population Average Cost: We report the Population Average Cost (PAC), that is the average cost of
recourse for users in the population, defined as PAC = 1

|U|
∑

u∈U MinCost(su,Su; C#
u ).

User Coverage: Next, we follow Rawal & Lakkaraju (2020) and define Coverage (Cov) that counts the
fraction of users in the population who were provided with at least one actionable recourse. Given a set of
users U and the recourse sets {Su}u∈U provided to them, Coverage is defined as,

Cov(U , {Su}u∈U ) = 1
|U|

∑
u∈U

1{MinCost(su,Su; C#
u ) <∞}.

Fraction of Users Satisfied (FS@k): Finally, we note that PAC cannot be used to assess individual users’
satisfaction. Hence, we go a step further and introduce a new cost-based metric that directly aggregates
based on each user’s satisfaction. We say that a user is satisfied if the MinCost is below a certain acceptability

7



Published in Transactions on Machine Learning Research (04/2024)

Table 1: Recourse method performance across various cost and distance metrics (Section 5.1). The numbers
reported are averaged across 5 different runs. "-" means that higher or lower values are not necessarily better
when looking at individual metrics.

Data Method Metrics
Cost Metrics Indirect Metrics

FS@1(↑) PAC(↓) Cov(↑) Div(-) Prox(-) Spars(-) Val(↑)

Adult-Income

DICE 2.47 1.37 8.32 3.90 65.80 47.20 97.90
Face-Eps 15.23 0.76 22.60 4.75 92.22 74.98 100.0
Face-Knn 25.30 0.74 35.00 8.62 89.07 71.85 100.0

Act. Recourse 49.93 0.55 56.85 18.38 74.68 73.57 78.67
COLS 72.57 0.38 76.07 25.77 80.22 76.48 97.15

P-COLS 75.82 0.40 79.20 25.57 81.67 78.00 94.78

COMPAS

DICE 0.40 0.54 0.40 11.30 65.00 32.00 98.90
Face-Eps 12.20 0.29 12.20 2.50 94.20 60.60 100.0
Face-Knn 12.20 0.29 12.20 2.60 94.10 60.60 100.0

Act. Recourse 65.80 0.40 66.60 11.87 80.53 74.07 44.23
COLS 82.23 0.24 82.23 29.32 77.82 70.05 95.48

P-COLS 83.73 0.24 83.73 29.38 78.48 71.30 92.78

threshold k. Formally, we define the fraction of users satisfied at a satisfiability threshold k as:

FS@k(U , {Su}u∈U ) = 1
|U|

∑
u∈U

1{MinCost(su,Su; C#
u ) < k} (5)

Reporting FS@k is similar to reporting accuracy as opposed to test loss. This is better for comparing
methods because it aggregates at an example level before performing averaging. In reality, the k can vary
from user to user but we keep k fixed across users in our experiments because the goal of any method is to
find low-cost recourses regardless of k. Moreover, any fixed k can be used to rank-order different methods.
In deployment scenarios, reasonable values of k can be estimated by doing a user survey.

5 Experiments

5.1 Experimental Setup

Dataset: We use the Adult-Income (Dua & Graff, 2017) and COMPAS (Larson et al., 2016) datasets with
Open Data Commons PDDL license. The Adult-Income dataset is based on the 1994 US Census data and
contains 12 features. The model has to predict whether an individual’s income is over $50, 000. COMPAS
contains 7 features and was collected by ProPublica and contains information about the criminal history of
defendants for analyzing recidivism. The model needs to decide bail based on predicting which applicants
will recidivate in the next two years. These datasets are anonymized to prevent privacy. We preprocess both
datasets based on a previous analysis where categorical features are binarized (Pawelczyk et al., 2021).2 Our
black-box model is an Multi-Layer Perceptron with 2-layers. Please refer to Appendix Tables 10 and 11 for
experiments with logistic regression and Appendix A.3 and Table 5 for further experimental details.

Baselines: We compare our methods COLS and P-COLS with DICE (Mothilal et al., 2020), FACE-Knn
and FACE-Epsilon (Poyiadzi et al., 2020), and Actionable Recourse (Ustun et al., 2019). Importantly, we
control for compute across methods by restricting the number of forward passes to the black-box model,
which are needed to decide if a counterfactual produces the desired class. For most big models, this is the
rate-limiting step for each method. We ran our experiments on a local server using a single Nvidia 1080 Ti
GPU. We set a fixed budget of 5000 model queries, a set size |S| = 10, and the number of cost function
samples M = 1000 for all methods. For a description of the objective function and other details of these
baselines refer to Appendix B.1.1, B.2.3.

Distance Based Recourse Metrics: We also report indirect metrics like feature diversity, proximity,
sparsity, and validity that are used in past works. We report the average of these metrics in percent-
age across all users. These metrics are a proxy for user satisfaction and any individual metric might not

2 The code for the Actionable Recourse method (Ustun et al., 2019) requires binary categorical variables.

8



Published in Transactions on Machine Learning Research (04/2024)

Table 2: Ablation on Search algorithms and objective functions.
Search Alg. Objective Cost Metrics Indirect Metrics

FS@1(↑) PAC(↓) Cov(↑) Div(-) Prox(-) Spars(-)
LS Sparsity 10.1 1.304 29.0 42.7 66.2 55.8
LS Proximity 9.7 1.275 27.0 42.1 67.5 55.0
LS Diversity 0.3 2.393 7.6 53.3 50.8 35.6
LS EMC 49.8 0.597 59.1 37.8 73.3 67.5

COLS EMC 68.8 0.391 72.6 27.1 77.5 73.5

strongly correlate with the satisfaction of a user. For example, a recourse might have really high diver-
sity but low proximity resulting in the recourse being infeasible. For a single user, Proximity is defined
as prox(x,S) = 1− 1

|S|
∑|S|

i=1 dist(x,Si), where Si is a counterfactual. Sparsity (Mothilal et al., 2020) is
defined as spar(x,S) = 1− 1

|S|∗d
∑|S|

i=1
∑|x|

j=1 1{xj ̸=Sij}. Feature diversity (Mothilal et al., 2020) is defined as
div(S) = 1

Z

∑|S|−1
i=1

∑|S|
j=i+1 dist(Si,Sj), where Z is the number of terms in the double summation. Validity

is defined as val(Y ) = |{unique si∈S : f(si)=+1}|
|S| .

Sampling Cost Functions for Real World Practitioner: Real-world practitioners can design a system
where they can ask each user to provide either the features (Fp) that they find easy to change (which can be
converted to preference scores using Algorithm 4 or directly provide a preference score (p) for each feature if
they can. Given this our Algorithm 5 can be used to sample cost functions that are a better estimate of the
user’s real cost function. Note that these cost functions are still estimates and try to capture different ways
a user can think of cost, i.e. in terms of percentiles or steps (absolute change in feature). The practitioner
can use these more aligned samples to optimize the EMC objective to generate better recourse for the user.

Evaluation Details: By default, we use Dmix distribution to obtain the cost function sample for the EMC
objective (i.e Dtrain = Dmix) and the evaluation cost function C#

u (i.e Dtest = Dmix). We use Dmix because
it is the most expressive distribution and can combine percentile and step-based costs. Hence, it is more
likely to generate samples close to the user’s true cost function. See Figure 1 and Section 4.4 to understand
why this is important. Note that, this is a significantly better procedure than past works (see §2) which
uses a single cost function both during training and evaluation. In our evaluations, the cost samples {Ci}M

i=1
used during training to optimize for EMC are different from C#

u which is used for evaluation even if they
come from the same distribution. Moreover, in Section 5.2;Q3,4,5, we perform distribution shift experiments,
where Dtrain ̸= Dtest and show that even in such cases INSPIRE generates the best quality recourse.

5.2 Research Questions

Q1. Which Recourse Method Satisfies the Most Users?

In this experiment, we compare different recourse methods on our cost-based evaluation procedure and other
indirect metrics. We report the average performance over five random seeds in Table 1. We observe that
COLS and P-COLS, which optimize for EMC, achieve 22.64% and 25.89% higher user satisfaction (FS@1)
while covering 19.28% and 22.42% more users compared to the strongest baseline on Adult-Income and
COMPAS, respectively. We provide results for additional values of k ∈ {0.5, 1, 2, 3} for FS@k in Appendix
Table 12. Meanwhile, other methods that optimize for a combination of other indirect objectives, perform
worse on user cost-based metrics that directly model user satisfaction. Interestingly, we find that COLS and
P-COLS solutions exhibit high feature diversity, proximity, and sparsity. This implies that – (1) the Dmix

distribution is generating cost functions that model diverse FPs and COLS along with EMC allowing us to
obtain the highest diversity even compared to other methods that directly optimize for it, and (2) proximity,
sparsity, and diversity emerge as necessary metrics even under our cost-based evaluation procedure but they
are not sufficient to satisfy users with preferences as shown by other methods performance on cost-metrics.
This is because it is non-trivial to find the right balance when optimizing for these metrics.

Q2. Is the Performance Improved by the COLS Optimization Method or the EMC Objective?

We perform ablations to understand the impact of the COLS optimization and the EMC objective. We run
a basic local search (LS) to optimize for feature diversity, proximity, and sparsity along with validity. We

9



Published in Transactions on Machine Learning Research (04/2024)

Table 3: Robustness to distribution shift. EMC used Dmix to sample cost function for recourse generation
while evaluation cost functions are log-percentile shift cost functions from the AR (Ustun et al., 2019).

Data Method FS@1(↑) PAC(↓) Cov(↑)

Adult-Income
Act. Recourse 56.42 0.49 61.21

COLS 71.32 0.43 74.89
P-COLS 73.68 0.42 77.11

COMPAS
Act. Recourse 70.26 0.35 76.31

COLS 80.51 0.29 81.68
P-COLS 82.13 0.26 83.24

use a basic local search because there is no efficient way to guarantee reductions in the diversity objective
by swapping out single elements from the solution set that is required for using COLS (see Appendix B.1).
To quantify the usefulness of COLS, we also optimize EMC using a basic local search.

The results in Table 2 suggest that optimizing for the indirect distance metrics is sub-optimal for user
satisfaction. For proximity, sparsity, and feature diversity objectives, the FS score and coverage are very
low, while they perform well on their respective metrics. The low FS score for distance metrics is expected
as they ignore user preferences and hence can edit features that are not preferred making the generated
recourses infeasible under the user’s evaluation cost function. We find that EMC with LS outperforms all
distance objectives on all cost-based metrics, suggesting that the EMC is a better objective. Meanwhile, the
19% difference in the performance of EMC with LS and COLS can be attributed to our cost optimization
(§4.3) that allows COLS to efficiently search the solution space.

Q3. Robustness to Using Different Distribution for Training and Evaluation Cost Functions

Next, we test the robustness of our method in cases where the evaluation cost functions C#
u for the users

are not from the training distribution used in EMC, i.e. Dtrain ̸= Dtest. We set Dtrain = Dmix and use log-
percentile shift cost function from Actionable recourse (Ustun et al., 2019) as the evaluation cost function.
The log-percentile shift cost function is defined as cost(f, x, y) = log( 1−Qf (y)

1−Qf (x) ), where Qf is the CDF of
feature f across the population. This leads to a scenario where train and evaluation time cost functions are
from a completely different distribution.

In Table 3, we compare with our strongest baseline, Actionable Recourse (AR) (Ustun et al., 2019) which
also uses the log-percentile shift cost function during training as an objective. Hence, we observe that the
performance of AR improves by 6.49% and 4.46% on Adult-Income and COMPAS datasets respectively when
using the log-percentile cost function during evaluation (see Table 1). Moreover, we find that COLS and
P-COLS still outperform the AR baseline by 17.26% and 11.87% on Adult-Income and COMPAS datasets
respectively. We observe only a slight decrease in the performance of COLS and P-COLS even in this case of
a complete distribution shift. This demonstrates the robustness of our method which arises from - (1) This
ability of the distribution Dmix to capture a wide variety of plausible cost functions, and (2) The effective
exploration of the search space when using COLS with EMC objective.

Q4. Robustness to Misspecification in cost-type weight

Design: Our Dmix distribution samples cost by taking an α-weighted combination of linear and percentile
costs. These two cost have different underlying assumptions about the how users view the cost of transition
between the states. We want to test the robustness of our method in terms of misspecification in users
disposition to these types of cost. We perform a robustness analysis where the users cost function has a
different α mixing weight as compared to the Monte Carlo samples we use to optimize for EMC. This creates
a distribution shift in the user cost function distribution (Dtest) and the Monte Carlo sampling distribution
(Dtrain) used in EMC. We vary the user and Monte Carlo distributions α-weights within the range of 0 to 1
in steps of 0.2. At the extremes values of α = 0, 1, the shifts are very drastic as the underlying distribution
changes completely. In the case when monte carlo α weight is 0 and user α weight is 1 then Dtrain = Dperc

and Dtest = Dstep, simlarly for the other case we get Dtrain = Dstep and Dtest = Dperc. Please note that the
distribution Dstep and Dperc have completely different underlying principles and are two completely different
distributions. Hence, the corners of the heatmap represent drastic distribution shifts.

Results: In Figure 2, we show a heatmap plot to which demonstrates the robustness of our method. The
color of the block corresponding to Monte Carlo alpha, αmc = x and the users alpha, αuser = y represents the

10



Published in Transactions on Machine Learning Research (04/2024)

0.0 0.2 0.4 0.6 0.8 1.0
User -weight

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M
on

te
 C

ar
lo

 
-w

ei
gh

tLinear vs Percentile Cost Robustness

70

72

74

76

78

80

Figure 2: This figure shows the performance of
the method on FS@k when recourses are generated
with Monte Carlo cost samples from a distribution
with α-weight varying between 0 and 1, where the
user costs follow different α-weight values varying
between 0, 1. Performance is robust to misspecifi-
cation of α. Refer to Section 5.2 for more details.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Distribution Shift

95

96

97

98

99

100

Bi
nn

ed
 F

S@
1

Methods Robustness to Distribution Shifts
COLS

Figure 3: In this plot we show the fraction of users
satisfied vs the distance between the train and test
distributions. The results demonstrate that as the
distance increases the performance drops a bit and
then plateaus, which means that the method is ro-
bust to this kind of distribution shift. Please refer
to Section 5.2 for more details.

fraction of users that were satisfied when αmc = x and αuser = y. This means that if the user thought of costs
only in terms of the Linear step involved but the recourse method used samples with only percentile-based
cost, still the recourse set can satisfy almost the same number of users. In Figure 3, the corners correspond
to these extreme cases described above, the user satisfaction for the top left corner (Dtrain = Dperc and
Dtest = Dstep) is similar to the bottom left corner (Dtrain = Dstep and Dtest = Dstep). Similarly, things
happen for the opposite case which is denoted by the top-right (Dtrain = Dperc and Dtest = Dperc) and
bottom-right (Dtrain = Dstep and Dtest = Dperc) corners. This means that even when a complete distribution
shift occurs the performance user satisfaction remains similar. This can be attributed to the hierarchical
step for user preference sampling in the procedure because the preference values can be arbitrary and they
scale the raw percentile and linear cost hence the distribution models diverse types of transition costs.

This means that our methods are robust to misspecification in the train and test distributions.
The almost consistent color of the grid means that there is very slight variation in the Fraction of
Satisfied users when the model is tested on out-of-distribution user cost types.

Q5. Are Solutions Robust to Misspecified Feature Scores?

Design: In Section 4.1 and Algorithm 4, we define the procedure our distributions use to generate feature
scores p, assuming random FPs. However, in a population, FPs for users may be clustered in form of
subsets of features. For example, to increase income, a subgroup of users might prefer to edit their work
hours whereas another subgroup might prefer a combination of occupation type and education level as it is
easier to change the occupation after attaining a higher degree. Hence, the feature score p for users in a
population might be clustered. This is a potential distribution shift in the types of feature scores we generate
vs what might exist in real world. Therefore, we consider a scenario where Dtrain = Dmix but Dtest has these
clustered feature scores. Hence, the evaluation cost functions C#

u are generated from a different distribution.

For users in the Adult-Income data, we use COLS to optimise for EMC using Monte Carlo samples from
Dmix (Algorithm 5). To obtain user’s evaluation cost functions that differ from this distribution, we first
generate 500 different feature subsets indicating which features are editable, where each subset corresponds
to a binary vector concentration representing a user having specific preferences for some features over others
(see Sec. 4.1 and Alg. 4). Since having different editable features induces a different distribution over cost
functions, we obtain a measure of distribution shift for each of the 500 concentration vectors by taking an l2
distance between the vector and its nearest neighbor in the space of concentration vectors used to generate
the recourses. We use the nearest neighbor because the most outlying concentration vectors are least likely
to be satisfied by the recourse set. In other words, the likelihood that a user is satisfied depends on the

11



Published in Transactions on Machine Learning Research (04/2024)

minimum distance between their concentration vector and its nearest neighbor in the cost samples used at
recourse generation time. Therefore, when the minimum distance increases, there is a greater distribution
shift between the user’s cost functions and those obtained from Dmix. Finally, we measure how many users
are satisfied for a given degree of distribution shift.

Results: Figure 3 shows a binned plot of FS@1 against our measure of distribution shift. We observe that
as the distance between the distributions increases, the fraction of users satisfied decreases slightly and then
plateaus. Even at the maximum distance we obtain, performance has only dropped about 3 points. This
implies that our method is robust to distribution shift in the cost distribution in terms of which
features people prefer to edit. We attribute this to the fact that our Dmix (1) assumes random feature
preferences that subsume these skewed preferences and (2) provides multiple recourse options, each of which
can cater to different kinds of preferences. Hence, we achieve a good covering of the cost function space.

Q6. Fairness of Recourse Methods Across Subgroups

Table 4: Fairness analysis of recourse methods for Gender-
based subgroups. DIR: Disparate Impact Ratio; M: Male,
F: Female.

Method Gender FS@1 Cov DIR-FS DIR-Cov

DICE F 0.0 0.0 - -M 4.7 15.6

Face-Eps F 12.5 22.1 1.504 1.118M 18.8 24.7

Face-Knn F 29.9 36.3 0.719 0.89M 21.5 32.3

Act. Recourse F 53.8 58.7 0.881 0.959M 47.4 56.3

Random F 7.8 34.6 0.859 0.792M 6.7 27.4

COLS F 72.7 76.2 0.994 0.992M 72.3 75.6

P-COLS F 76.5 80.2 1.004 1.0M 76.8 80.2

Next, we assess if the recourse methods provide
equitable solutions across subgroups based on
demographic features like Gender and Race.
This is important because we want to ensure
that recourse methods are not further induc-
ing bias towards any particular group because
it directly affects the life of users. We adapt
existing fairness metrics for disparate impact
across population subgroups (Feldman et al.,
2015) for the recourse outcomes we study,
which we denote by the Disparate Impact Ra-
tio (DIR). Given a metric M, DIR is a ratio
between metric scores across two subgroups.
DIR-M = M(S=1)/M(S=0). We use either
Cov or FS@1 asM. Under the DIR metric, the
maximum fairness score that can be achieved
is 1, though this might not be achievable depending on the black-box model. We run experiments on the
Adult-Income dataset, with a budget of 5000 model queries and |S| = 10.

We present the gender and race based subgroup results in Table 4 and Appendix Table 6 respectively. We
observe that our methods are typically more fair than baselines on both Gender and Race-based subgroups
while providing recourse to a larger fraction of people in both subgroups. In particular, we find that our
method achieves a score very close to 1 on DIR-FS and DIR-Cov implying a very high degree of fairness.
We attribute the fairness of our method to (1) the fact that COLS does not depend on the data distribution,
and (2) the use of diverse cost functions to generate recourse.

Additional Research Questions: We summarize the additional research questions from Appendix here:

1. We present the computational complexity and runtimes in Appendix A.3.2.
2. Using a larger compute budget improves the performance (Figure 4);
3. We can provide high-quality solutions to the user even with as few as 3 CFs (Figure 5);
4. We can achieve high FS@k with as few as 20 Monte Carlo samples (Figure 7);
5. Our method works for other black-box classification models as well (Table 11);
6. We also present some qualitative examples of recourses provided by our method in Table 8.

6 Discussion and Conclusion
Our novel method INSPIRE provides a way to incorporate FPs in the recourse generation and evaluation
process. INSPIRE lays a foundation for future works to build more complex distributions to better represent
the population by designing non-linear transition costs or modifying the COLS procedure to account for the
causal relationships between features while accounting for individual user preferences. We show that our
method achieves much higher rates of user satisfaction than comparable baselines and is robust to distribution
shifts. Additionally, we provide an Ethics and Reproducibility statement in Appendix A.1 and A.2.

12



Published in Transactions on Machine Learning Research (04/2024)

References
Carlos Aguilar-Palacios, Sergio Muñoz-Romero, and José Luis Rojo-Álvarez. Cold-start promotional sales

forecasting through gradient boosted-based contrastive explanations. IEEE Access, 2020.

Ifeoma Ajunwa, Sorelle Friedler, Carlos E Scheidegger, and Suresh Venkatasubramanian. Hiring by algo-
rithm: Predicting and preventing disparate impact. Available at SSRN, 2016.

Furui Cheng, Yao Ming, and Huamin Qu. Dece: Decision explorer with counterfactual explanations for
machine learning models. IEEE Transactions on Visualization and Computer Graphics, 27:1438–1447,
2021.

Alexandra Chouldechova, Diana Benavides-Prado, Oleksandr Fialko, and Rhema Vaithianathan. A case
study of algorithm-assisted decision making in child maltreatment hotline screening decisions. In Confer-
ence on Fairness, Accountability and Transparency, pp. 134–148, 2018.

Zhicheng Cui, Wenlin Chen, Yujie He, and Yixin Chen. Optimal action extraction for random forests and
boosted trees. In Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery
and data mining, pp. 179–188, 2015.

Susanne Dandl, Christoph Molnar, Martin Binder, and Bernd Bischl. Multi-objective counterfactual expla-
nations. In Thomas Bäck, Mike Preuss, André Deutz, Hao Wang, Carola Doerr, Michael Emmerich, and
Heike Trautmann (eds.), Parallel Problem Solving from Nature – PPSN XVI, pp. 448–469, Cham, 2020.
Springer International Publishing. ISBN 978-3-030-58112-1.

Amit Dhurandhar, Pin-Yu Chen, Ronny Luss, Chun-Chen Tu, Pai-Shun Ting, Karthikeyan Shanmugam,
and Payel Das. Explanations based on the missing: Towards contrastive explanations with pertinent
negatives. In Advances in Neural Information Processing Systems, 2018.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL https://archive.ics.uci.
edu/ml/datasets/adult.

Michael Feldman, Sorelle A. Friedler, John Moeller, C. Scheidegger, and S. Venkatasubramanian. Certifying
and removing disparate impact. Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2015.

Oscar Gomez, Steffen Holter, Jun Yuan, and Enrico Bertini. Vice: visual counterfactual explanations
for machine learning models. In Proceedings of the 25th International Conference on Intelligent User
Interfaces, pp. 531–535, 2020.

Shalmali Joshi, Oluwasanmi Koyejo, Warut D. Vijitbenjaronk, Been Kim, and Joydeep Ghosh. Towards real-
istic individual recourse and actionable explanations in black-box decision making systems. International
Conference on Learning Representations; Workshop on Safe ML, abs/1907.09615, 2019.

Kentaro Kanamori, Takuya Takagi, Ken Kobayashi, and Hiroki Arimura. Dace: Distribution-aware counter-
factual explanation by mixed-integer linear optimization. In Christian Bessiere (ed.), Proceedings of the
Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20, pp. 2855–2862. Inter-
national Joint Conferences on Artificial Intelligence Organization, 7 2020. doi: 10.24963/ijcai.2020/395.
URL https://doi.org/10.24963/ijcai.2020/395. Main track.

Amir-Hossein Karimi, G. Barthe, B. Balle, and Isabel Valera. Model-agnostic counterfactual explanations for
consequential decisions. International Conference on Artificial Intelligence and Statistics, abs/1905.11190,
2020a.

Amir-Hossein Karimi, Gilles Barthe, Bernhard Schölkopf, and Isabel Valera. A survey of algorithmic recourse:
definitions, formulations, solutions, and prospects. CoRR, abs/2010.04050, 2020b. URL https://arxiv.
org/abs/2010.04050.

Amir-Hossein Karimi, Bernhard Schölkopf, and Isabel Valera. Algorithmic recourse: from counterfactual
explanations to interventions. FAccT, 2020c.

13

https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/adult
https://doi.org/10.24963/ijcai.2020/395
https://arxiv.org/abs/2010.04050
https://arxiv.org/abs/2010.04050


Published in Transactions on Machine Learning Research (04/2024)

Amir-Hossein Karimi, Julius von Kügelgen, Bernhard Schölkopf, and Isabel Valera. Algorithmic recourse
under imperfect causal knowledge: a probabilistic approach. Advances in Neural Information Processing
Systems, 2020d.

A. Kulesza and B. Taskar. Determinantal point processes for machine learning. Found. Trends Mach. Learn.,
5:123–286, 2012.

Jeff Larson, Surya Mattu, Lauren Kirchner, and Julia Angwin. https://github.com/propublica/compas-
analysis, 2016.

Melanie Mitchell. An introduction to genetic algorithms. MIT press, 1998.

Hans Mittleman. Mixed integer linear programming benchmarks (miplib 2010). http://plato.asu.edu/
ftp/milpc.html, 2018.

Ramaravind K Mothilal, Amit Sharma, and Chenhao Tan. Explaining machine learning classifiers through
diverse counterfactual explanations. In Proceedings of the 2020 Conference on Fairness, Accountability,
and Transparency, pp. 607–617, 2020.

Martin Pawelczyk, Klaus Broelemann, and Gjergji Kasneci. Learning model-agnostic counterfactual explana-
tions for tabular data. In WWW, pp. 3126–3132, New York, NY, USA, 2020. Association for Computing
Machinery. ISBN 9781450370233. doi: 10.1145/3366423.3380087. URL https://doi.org/10.1145/
3366423.3380087.

Martin Pawelczyk, Sascha Bielawski, Johan Van den Heuvel, Tobias Richter, and Gjergji. Kasneci. CARLA:
A python library to benchmark algorithmic recourse and counterfactual explanation algorithms. In Thirty-
fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 1),
2021. URL https://openreview.net/forum?id=vDilkBNNbx6.

Marc Pirlot. General local search methods. European Journal of Operational Research, 92(3):493–
511, 1996. ISSN 0377-2217. doi: https://doi.org/10.1016/0377-2217(96)00007-0. URL https://www.
sciencedirect.com/science/article/pii/0377221796000070.

Brett Poulin, Roman Eisner, Duane Szafron, Paul Lu, Russell Greiner, David S Wishart, Alona Fyshe,
Brandon Pearcy, Cam MacDonell, and John Anvik. Visual explanation of evidence with additive classifiers.
In Proceedings Of The National Conference On Artificial Intelligence, volume 21, pp. 1822. Menlo Park,
CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2006.

Rafael Poyiadzi, Kacper Sokol, Raul Santos-Rodriguez, Tijl De Bie, and Peter Flach. Face: Feasible and
actionable counterfactual explanations. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and
Society, AIES ’20, pp. 344–350, New York, NY, USA, 2020. Association for Computing Machinery. ISBN
9781450371100. doi: 10.1145/3375627.3375850. URL https://doi.org/10.1145/3375627.3375850.

Hamed Rahimian and Sanjay Mehrotra. Distributionally robust optimization: A review. arXiv preprint
arXiv:1908.05659, 2019.

Yanou Ramon, David Martens, Foster Provost, and Theodoros Evgeniou. Counterfactual explanation algo-
rithms for behavioral and textual data. Advances in Data Analysis and Classification, 2020.

Peyman Rasouli and Ingrid Chieh Yu. Care: Coherent actionable recourse based on sound counterfactual
explanations, 2021.

Kaivalya Rawal and Himabindu Lakkaraju. Beyond individualized recourse: Interpretable and inter-
active summaries of actionable recourses. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Bal-
can, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 12187–
12198. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
8ee7730e97c67473a424ccfeff49ab20-Paper.pdf.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors: High-precision model-agnostic explana-
tions. In AAAI Conference on Artificial Intelligence, 2018.

14

https://github.com/propublica/compas-analysis
https://github.com/propublica/compas-analysis
http://plato.asu.edu/ftp/milpc.html
http://plato.asu.edu/ftp/milpc.html
https://doi.org/10.1145/3366423.3380087
https://doi.org/10.1145/3366423.3380087
https://openreview.net/forum?id=vDilkBNNbx6
https://www.sciencedirect.com/science/article/pii/0377221796000070
https://www.sciencedirect.com/science/article/pii/0377221796000070
https://doi.org/10.1145/3375627.3375850
https://proceedings.neurips.cc/paper/2020/file/8ee7730e97c67473a424ccfeff49ab20-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/8ee7730e97c67473a424ccfeff49ab20-Paper.pdf


Published in Transactions on Machine Learning Research (04/2024)

Christian P. Robert and George Casella. Monte Carlo Statistical Methods. Springer Publishing Company,
Incorporated, 2010. ISBN 1441919392.

Alexis Ross, Himabindu Lakkaraju, and Osbert Bastani. Learning models for algorithmic recourse. In
Advances in Neural Information Processing Systems, 2021.

Naeem Siddiqi. Credit Risk Scorecards: Developing and Implementing Intelligent Credit Scoring, volume 3.
John Wiley & Sons, 2012.

Berk Ustun, Alexander Spangher, and Yang Liu. Actionable recourse in linear classification. In Proceedings
of the Conference on Fairness, Accountability, and Transparency, FAT* ’19, pp. 10–19, New York, NY,
USA, 2019. Association for Computing Machinery. ISBN 9781450361255. doi: 10.1145/3287560.3287566.
URL https://doi.org/10.1145/3287560.3287566.

Suresh Venkatasubramanian and Mark Alfano. The philosophical basis of algorithmic recourse. In Proceedings
of the 2020 conference on fairness, accountability, and transparency, pp. 284–293, 2020.

Paul Voigt and Axel Von dem Bussche. 2018 reform of EU data protection rules. In European Commission,
2018.

Julius von Kügelgen, Amir-Hossein Karimi, Umang Bhatt, Isabel Valera, Adrian Weller, and Bernhard
Schölkopf. On the fairness of causal algorithmic recourse. NeurIPS AFCI Workshop, 2020.

Sandra Wachter, B. Mittelstadt, and Chris Russell. Counterfactual explanations without opening the black
box: Automated decisions and the gdpr. Cybersecurity, 2017.

A Appendix for INSPIRE: Incorporating Diverse Feature Preferences in Recourse

A.1 Ethics Statement

We hope that our recourse method is adopted by institutions seeking to provide reasonable paths to users
for achieving more favorable outcomes under the decisions of black-box machine learning models or other
inscrutable models. We see this as a “robust good," similar to past commentators Venkatasubramanian &
Alfano (2020). Below, we comment on a few other ethical aspects of the algorithmic recourse problem.

First, we suggest that fairness is an important value that recourse methods should always be evaluated along,
but we note that evaluations will depend heavily on the model, training algorithm, and training data. For
instance, a sufficiently biased model might not even allow for suitable recourses for certain subgroups. As a
result, any recourse method will fail to identify an equitable set of solutions for the population. That said,
recourse methods can still be designed to be more or less fair. This much is evident from our varying results
on fairness metrics using a number of recourse methods. What will be valuable in future work is to design
experiments that separate the effects on the fairness of the model, training algorithm, training data, and
recourse algorithm. Until then, we risk blaming the recourse algorithm for the bias of a model, or vice versa.

Additionally, there are possible dual-use risks from developing stronger recourse methods. For instance,
malicious actors may use recourse methods when developing models in order to exclude certain groups from
having available recourse, which is essentially a reversal of the objective of training models for which recourse
is guaranteed (Ross et al., 2021). We view this use case as generally unlikely, but pernicious outcomes are
possible. We also note that these kinds of outcomes may be difficult to detect, and actors may make bad-faith
arguments about the fairness of their deployed models based on other notions of fairness (like whether or
not a model has access to protected demographic features) that distract from an underlying problem in the
fairness of recourses.

A.2 Reproducibility Statement

To encourage reproducibility, we provide our source code, including all the data pre-processing, model
training, recourse generation, and evaluation metric scripts as supplementary material. The details about

15

https://doi.org/10.1145/3287560.3287566


Published in Transactions on Machine Learning Research (04/2024)

Table 5: Table containing data statistics and black-box model details. The binary version of the datasets
are take from (Pawelczyk et al., 2021) whereas the non-binary version are taken from (Mothilal et al., 2020).

Adult-Income Binary COMPAS Binary Adult-Income COMPAS

# Continuous features 3 4 2 3
# Categorical features 9 3 10 12
Undesired class ≤ 50k Will Recidivate ≤ 50k Will Recidivate
Desired class > 50k Won’t Recidivate > 50k Won’t Recidivate
Train/val/test 20088/2338/749 1415/229/491 13172/1569/748 5491/705/444
Model Type ANN(2, 20) ANN(2, 20) ANN(2, 20) ANN(2, 20)
Val Accuracy 82% 69% 81% 61%

the datasets and the pre-processing are provided in Appendix A.3.1. We also provide clear and concise
Algorithms 5, 2, 3 for our cost sampling procedures and our optimization method COLS in Algorithm 1.
Additionally, we also provide formal proof of the Theorem 4.1 stated in the main paper in Appendix B.2.2
along with the constructive procedure for the proof provided in Algorithm 1.

A.3 Experimental Setup

A.3.1 Datasets and Black-Box Model

In our experiments, we have two versions of the dataset, one with binary categorical features, whereas
the other with non-binary categorical features. In the main paper, we show results on the binarized version
(Table 1) as an important baseline, Actionable Recourse (Ustun et al., 2019), operates with binary categorical
features.3 The data statistics for all the datasets can be found in Table 5. In our experiments, for all the
datasets, the features gender and race are considered to be immutable (Mothilal et al., 2020), since we
perform subgroup analysis with these variables that would be rendered meaningless if users could switch
subgroups. Other features can either be mutable or conditionally mutable depending on semantics. These
constraints can be incorporated into the methods by providing a schema of feature mutability criterion.
Our black-box model is a multi-layer perceptron model with 2 hidden layers trained on the trained set and
validated on the dev set. The accuracy numbers are shown in Table 5. The test set which is used in the
counterfactual generation experiments only contains users which are classified to the undesired class by the
trained black-box model. Note that our method can operate with any type of model, the only requirement
is the ability to query the model for outcome given a user’s state vector.

A.3.2 Computational Complexity:

COLS is a local search-based method and runs for O( B
|S| ) iterations for each user to generate the recourse

set, where B is the budget (see section 5.1 - Baselines). The complexity of the cost optimization step in
COLS is O(|S|2 ∗M) per iteration. Values of |S| and M as low as 3 and 10 respectively work well in practice
(see Appendix B.2 and Figure 5, 7). Finally for the current implementation the wall clock time on the adult
dataset for each user with |S| = 10, M = 100, B = 5000 setting is COLS = 20s, Random = 7.5s, DICE =
7.5s, AR = 11s, Face-knn = 7s, Face-Eps = 6s (can be parallelized across users). Cost function samples can
be pre-computed once and saved for all experiments, this typically takes a few minutes (< 5 min) across all
users.

A.3.3 Recourse Generation and Evaluation Pipeline

To approximate the expectation in equation 3, our algorithm samples multiple cost functions {Ci}M
i=1 ∼

Dtrain, which are used in EMC to generate the recourse set for the user. In the generation phase, we use
Equation 4 as our objective. Note that, this objective promotes that the generated recourse set contains at
least one good CF for each of the cost samples, hence this set satisfies a large variety of samples from Dtrain.
This is achieved via minimizing the mean of the minimum cost incurred for each of the Monte Carlo samples

3The binary datasets can be downloaded from https://github.com/carla-recourse/cf-data, whereas the non-binary data can
be found on https://github.com/interpretml/DiCE.

16

https://github.com/carla-recourse/cf-data
https://github.com/interpretml/DiCE


Published in Transactions on Machine Learning Research (04/2024)

500 1000 2000 3000 5000 10000
Budget

0

20

40

60

80

FS
@

1
User Satisfaction vs # black-box access

D
FE
FK
AR
R
COLS
P-COLS

Figure 4: Figure showing the performance of differ-
ent recourse methods as the Budget is increased.
These are the average number across 5 different
runs along with the standard deviation error bars.
For some methods the standard deviation is very
low hence not visible as bars in the plot. It can be
seen that as the budget increases the performance
of COLS and P-COLS increases. Please refer to
Section A.4 for more details.

1 2 3 5 10 20 30
Number of Counterfactuals  | |

0

20

40

60

80

FS
@

1

User Satisfaction vs # Counterfactuals
D
FE
FK
AR
R
COLS
P-COLS

Figure 5: Figure showing the performance of differ-
ent recourse methods as the the number of counter-
facuals to be generated is increased. These are the
average number across 5 different runs along with
standard deviation error bars. We see that there is
a monotonic increase in the fraction of users satis-
fied as the size of the set increases. We also observe
that most of the performance can be obtained with
a small set size. Please refer to Section A.4 for more
details.

(Robert & Casella, 2010). Equivalently, the objective is minimized by a set of counterfactuals S where for
each cost function there exists an element in S which incurs the least possible cost. In practice the size of
set S is restricted, hence we may not achieve the absolute minimum cost but the objective tries to ensure
that the counterfactuals which belong to the set have a low cost at least with respect to one Monte Carlo
cost sample. The generation phase outputs a set of counterfactuals S which is to be provided to the users
as recourse options. Given this set Su, in the evaluation phase, we use the user’s simulated evaluation cost
functions which are not available in the generation phase to compare different methods, to compute the cost
incurred by the user MinCost(su,S; C#

u ) and calculate the metrics defined in the Section 5.1.

A.4 Additional Research Questions

Q7. Does Method Performance Scale with Available Compute?

Design: In this experiment on the Adult-Income dataset, we measure the change in performance of all the
models as the number of access to the black-box model (budget) increases. Ideally, a good recourse method
should be able to exploit these extra queries and use it to satisfy more users. We vary the allocated budget in
the set {500, 1000, 2000, 3000, 5000, 10000} and report the FS@1. We run the experiment on a random subset
of 100 users for 5 independent runs and then report the average performance with standard deviation-based
error bars in Figure 4.

Results: In Figure 4, we can see that as the allocated budget increases the performance of the
COLS and P-COLS increases and then saturates. This suggests that our method can exploit the ad-
ditional black-box access to improve the performance. Other methods like AR and Face-Knn also show
performance improvement but our method COLS and P-COLS consistently upper-bound their performance.
Our method satisfies approximately 70% of the user with a small budget of 500 and quickly starts
to saturate around a budget of 1000. This suggests that our methods are suitable even under tight
budget constraints as they can achieve good performance rapidly. For example, in a real-world scenario
where the recourse method is deployed and has to cater to a large population, in such cases there might
be budget constraints imposed onto the method where achieving good quality solution quickly is required.
Lastly, for DICE and Random search the performance on the FS@1 increase by a very small margin and

17



Published in Transactions on Machine Learning Research (04/2024)

Table 6: Fairness analysis of recourse methods for subgroups
with respect to Race. DIR: Disparate Impact Ratio; W:
White, NW: Non-White (Section 5.2).

Method Race FS@1 Cov DIR-FS DIR-Cov

DICE NW 0.0 0.0 - -W 3.1 10.4

Face-Eps NW 7.7 12.7 2.312 2.047W 17.8 26.0

Face-Knn NW 12.7 25.4 2.228 1.425W 28.3 36.2

Act. Recourse NW 46.5 54.9 1.101 1.056W 51.2 58.0

Random NW 4.9 28.9 1.571 1.076W 7.7 31.1

COLS NW 67.6 71.1 1.089 1.082W 73.6 76.9

P-COLS NW 72.5 74.6 1.07 1.092W 77.6 81.5

1 5 10 20 30 100 200 300 500 1000
Num MC Samples

55

60

65

70

75

80

FS
@

1

User Satisfaction vs # Monte Carlo Sample
COLS

Table 7: Figure showing the performance of
the COLS method as the number of Monte
Carlo samples increase. These are the av-
erage number across 5 different runs along
with standard deviation error bars. There
is a steep increase and then the performance
saturates. This implies that in practice we
do not need a large number of samples to
converge to the higher user satisfaction. Re-
fer to Section A.4 for more details.

then stays constant as these methods are trying to optimize for different objectives which don’t align well
with user satisfaction as demonstrated in Section 5.2.

Q8. Does providing more options to users help?

Design: In this experiment, we measure the effect of having flexibility to provide the user with more options,
i.e. a bigger set S. The question here is that can the methods effectively exploit this advantage and provide
lower cost solution sets to the user such that the overall user satisfaction is improved. In this experiment on
the Adult-Income dataset, we take a random subset of 100 users and fix the budget to 5000, Monte Carlo
cost sample is set to 1000 and then vary the size of the set S in the set {1, 2, 3, 5, 10, 20, 30}. We restrict the
size of the set to a maximum of 30 as beyond a point it becomes hard for users to evaluate all the recourse
options and decide which one to act upon. We run 5 independent runs for all the data points and plot
the mean performance along with standard deviation error bars. In Figure 5, we plot the fraction of users
satisfied @1 as the size of set S is increased.

Result: We observed that COLS and P-COLS monotonically increase the FS@1 metric as |S|
increases from 1 to 30. This is consistent with the intuition behind our methods (See Figure 1, section 4.2,
A.3.3 for more details). It is a fundamental property of our objective that as |S| increases towards M which
is 1000 in this case, then the quality of the solution set should increase and reach the best possible value that
can be provided under the user’s cost function. We note empirically that smaller set size |S| between 3 to
10 is enough in most practical cases to reach close to maximum performance. Additionally, even with
|S| ∈ {1, 2, 3} our methods significantly outperform all the other methods in terms of the number of users
satisfied. This property is useful in real-world scenarios where the deployed recourse method can provide as
little as 3 options while still satisfying a large fraction of users. Additionally, we also see improvement in
the case of AR and Face-Knn methods as |S| increases. Note that Randoms Search’s performance doesn’t
change as we increase the set size because the method doesn’t take local steps from the best set and samples
random points from a very large space, hence it is much harder to end up with low-cost counterfactuals.

Q9. Does increase the number of Monte Carlo samples help with user satisfaction?

Design: In this experiment, we want to demonstrate the effect of increasing the number of Monte Carlo
samples on the performance of our COLS method. We take a random subset of 100 users, a budget of 5000,
|S| = 10. We vary the number of Monte Carlo samples (M) in the set {1, 5, 10, 20, 30, 100, 200, 300, 500, 1000}

18



Published in Transactions on Machine Learning Research (04/2024)

Table 8: Table providing qualitative examples for two users from the dataset. We show each users state
vector, the features that user is willing to edit, the preference scores for those editable features, the recourses
provided and the cost of the generated recourses. In the first example we see that user highly prefers the
feature capital loss and the recourse which suggests edit to that has the lowest cost for the user. Whereas,
the recourse which makes changes to both Occupation and Capital Loss has the highest cost as its changing
multiple features. For the second user, we see that the most preferred feature is Education-Num but the
changes suggested in the recourse requires three steps 7-8-9-10, hence the cost for that recourse is not the
lowest but still relatively low. Whereas, the recourse suggesting smaller changes to Capital Loss which is the
second most preferred feature has the lowest cost for the user.

Feature Name State Vector Editable Features Preference scores Recourses Cost

Age 24 No 0 (
Capital Loss: 0 → 1

)
0.009Workclass Private No 0

Education-Num 10 No 0
Martial-Status Married No 0
Occupation Other Yes 0.055 (

Occupation: Other → Manager
)

0.378Relationship Husband No 0
Race White No 0
Gender Male No 0
Capital Gain 0 No 0 (

Occupation: Other → Manager
Capital Loss: 0 → 1

)
0.387Capital Loss 0 Yes 0.944

# Work Hours 40 No 0
Country US No 0

Age 45 No 0 (
Capital Loss: 0 → 1

)
0.071Workclass Private No 0

Education-Num 7 Yes 0.537
Martial-Status Married No 0 (

Capital Gain: 0 → 1
)

0.106Occupation Other No 0
Relationship Non-Husband No 0
Race White No 0 (

Education-Num: 7 → 10
)

0.187Gender Female No 0
Capital Gain 0 Yes 0.078
Capital Loss 0 Yes 0.240 (

# Work Hours: 32 → 70
)

0.695# Work Hours 32 Yes 0.142
Country US No 0

and compute the user satisfaction. We ran 5 different runs with different Monte Carlo samples and show the
average FS@1 along with the standard deviation in the Figure 7.
Results: We observe that as the number of Monte Carlo samples increases, the performance of
the method on the FS@1 metric monotonically increases. This supports the intuition underlying our
method (see Figure 1). That is, given a user with a cost function C∗u as we get more and more samples from
the cost distribution Dtrain the probability of having a cost sample similar to C∗u increases and hence the
fraction of satisfied users increase. It is important to note that empirically the method’s performance
approaches maximum user satisfaction with as low as 20 Monte Carlo samples. In real-world
scenarios, where the deployed model is catering to a large population this can lead to small recourse generation
time, hence making it more practical.

Q10. Qualitative examples of the recourses generated for some of the users.

In Table 8, we show a few examples of users along with their state vector, their editable features, their
preference scores along with the recourses provided to them and their cost.

Q11. Comparison of methods on Non Binary Dataset?

In Table 9, we show the results on the non-binary version of the dataset. We observe similar performance
on and trends in these results as well. COLS and P-COLS performs the best in terms of user satisfaction.

Q12. Robustness to black-box model architecture families and randomness?

In this experiment we demonstrate the result of our model when we train the same ANN architecture with
different random seed (Table 10) and when we change the model family to a logistic regression classifier
(Table 11). These obtained results have similar trends and demonstrate the effectiveness and robustness of

19



Published in Transactions on Machine Learning Research (04/2024)

Table 9: Table comparing different recourse methods across various cost and distance metrics on Non-Binary
versions of the datasets (Section A.3.1).The numbers reported are averaged across 5 different runs. Variance
values have been as 89% of them were lower than 0.05, with the maximum being 0.86. FS@1: Fraction of
users satisfied at k = 1. PAC: Population Average Cost. Cov: Population Coverage. For all the metrics
higher is better except for PAC where lower is better.

Data Method Metrics

Cost Metrics Distance Metrics

FS@1 PAC(↓) Cov Div Prox Spars Val

Adult-Income - NB

DICE 6.28 1.45 27.01 53.01 57.02 47.80 86.20
Random 0.08 2.42 17.41 70.35 33.32 22.45 75.71

COLS 72.67 0.36 74.60 29.27 79.06 76.64 97.85
P-COLS 70.03 0.39 72.81 29.85 78.45 76.29 92.30

COMPAS - NB

DICE 14.86 1.02 25.45 27.88 82.38 69.44 99.86
Random 1.31 1.87 21.76 49.07 54.10 42.34 67.82

COLS 67.34 0.31 68.11 20.53 85.47 82.34 95.97
P-COLS 70.86 0.35 72.03 21.03 85.48 82.88 91.93

Table 10: Table comparing different recourse methods across various cost and distance metrics for a black-
box model with different seed but belonging to the same model family. The numbers reported are averaged
across 5 different runs.

Data Method Metrics

Cost Metrics Distance Metrics

FS@1 PAC(↓) Cov Div Prox Spars Val

Adult-Income

DICE 2.70 1.24 7.10 3.80 66.20 47.30 97.80
Face-Eps 13.32 0.79 19.88 5.43 91.97 74.80 100.00
Face-Knn 21.78 0.83 34.13 8.67 88.68 71.43 100.00

Act. Recourse 46.55 0.58 53.82 19.07 74.33 73.25 80.72
Random 5.71 1.42 28.24 48.93 55.10 39.30 78.73

COLS 75.12 0.36 77.40 25.43 81.00 77.70 98.28
P-COLS 75.76 0.38 79.14 25.54 81.84 78.38 95.10

COMPAS

DICE 0.90 0.88 1.50 12.50 63.90 30.70 99.30
Face-Eps 6.80 0.29 6.80 2.40 95.00 60.40 100.00
Face-Knn 6.80 0.29 6.80 2.40 94.90 60.30 100.00

Act. Recourse 56.24 0.45 58.48 9.72 80.12 73.62 39.10
Random 27.44 0.78 35.70 41.76 58.14 33.06 49.34

COLS 77.08 0.24 77.90 29.33 76.90 68.87 95.78
P-COLS 78.32 0.24 79.02 29.02 77.88 70.08 92.10

our methods COLS and P-COLS which consistently satisfy cover and satisfy more users with low average
population costs. In Table 10, we show the results when we train another black-box model with a different
seed to see the effect of having a different trained model from the same model family.

Q13. Additional results for different values of k in FS@k
In Table 12, we report the fraction of satisfied user metric FS@k for four different values of k ∈ {0.5, 1, 2, 3}.

These results are an extension of the results presented in Table 1.

B Appendix - Objective and Optimization

B.1 Proposed Method

B.1.1 Other Objectives

To obtain feasible a counterfactual set, past works have used various objective terms. We list objectives
below from methods we compare with.

1. DICE (Mothilal et al., 2020) optimizes for a combination of Distance Metrics like diversity and proximity.
They model diversity via Determinantal Point Processes (Kulesza & Taskar, 2012) adopted for solving subset

20



Published in Transactions on Machine Learning Research (04/2024)

Table 11: Table comparing different recourse methods across various cost and distance metrics for a logistic
regression black-box model. The numbers reported are averaged across 5 different runs.

Data Method Metrics

Cost Metrics Distance Metrics

FS@1 PAC(↓) Cov Div Prox Spars Val

Adult-Income

D 1.30 1.47 7.10 6.50 64.80 49.20 76.60
FE 2.82 0.99 5.46 9.44 83.08 65.90 100.00
FK 17.04 0.90 28.08 7.22 83.98 67.80 100.00
AR 44.40 0.62 52.62 21.74 74.00 72.92 87.58
R 3.60 1.59 24.10 48.14 54.76 38.94 79.46

COLS 67.93 0.39 69.97 27.83 78.40 74.43 99.13
P-COLS 69.17 0.40 71.57 27.20 79.30 76.70 95.67

COMPAS

D 0.00 - 0.00 11.10 63.10 29.20 100.00
FE 6.30 0.16 6.30 3.60 95.00 60.50 100.00
FK 6.30 0.16 6.30 3.60 95.00 60.50 100.00
AR 74.32 0.31 74.32 15.66 80.98 74.26 53.66
R 28.76 0.77 36.96 43.22 56.22 32.00 82.10

COLS 87.88 0.18 87.88 31.92 76.93 71.63 89.33
P-COLS 89.25 0.17 89.25 28.17 81.13 74.73 91.62

Table 12: Cost metrics for additional k values in FS@k for the results presented in the main Table 1.
Data Method Cost Metrics

FS@0.5 FS@1 FS@2 FS@3

Adult-Income

DICE 0.4 2.47 6.9 8.23
Face-Eps 7.32 15.23 22.57 22.6
Face-Knn 11.08 25.3 34.82 35

Act. Recourse 28.03 49.93 56.78 56.85
Random 0.82 6.27 28.5 31.68

COLS 53.4 72.57 76.05 76.07
P-COLS 53.42 75.82 79.18 79.2

COMPAS

DICE 0.2 0.4 0.4 0.4
Face-Eps 10.4 12.2 12.2 12.2
Face-Knn 10.4 12.2 12.2 12.2

Act. Recourse 42.47 65.8 66.6 66.6
Random 7.85 29.95 39.2 39.2

COLS 73.07 82.23 82.23 82.23
P-COLS 74.33 83.73 83.73 83.73

selection problems with diversity constraints. They use determinant of the kernel matrix given by the
counterfactuals as their diversity objective as defined below.

dpp_diversity(S) = det(K), whereKij = 1
1 + dist(si, sj)

Here, dist(si, sj) is the normalized distance metric as defined in Wachter et al. (2017) between two state vec-
tors. Proximity is defined in terms of the distance between the original state vector and the counterfacutals,
prox(x,S) = 1− 1

N

∑|S|
i=1 dist(x,Si), where Si is a counterfactual.

2. Actionable Recourse (Ustun et al., 2019) work under the assumption that all features have equal
preference scores for all the users. They define cost function based on the log-percentile shift is given by,

cost(s + a; s) =
∑

j∈JA

log 1−Qj(sj + aj)
1−Qj(sj)

21



Published in Transactions on Machine Learning Research (04/2024)

Algorithm 2 Sampling Cost Functions from Dperc

Input: State vector s, Feature Scores p
Output: Percentile based Transition Cost functions C.
function PerCost(s, p = None)

forall fi ∈ F do
// si value of feature fi in s.

if pfi = 0 then
C(fi, si, .) =∞
C(fi, si, si) = 0

else
if fi is ordered then

if fi can only increase then

C(fi, si, x) =


|getPercentile(x)− getPercentile(si)| ∀x > si

0 ∀x = si

∞ ∀x < si

else if fi can only decrease then

C(fi, si, x) =


|getPercentile(si)− getPercentile(x)| ∀x < si

0 ∀x = si

∞ ∀x > si

else if fi can both increase or decrease then

C(fi, si, x) =


|getPercentile(x)− getPercentile(si)| ∀x > si

0 ∀x = si

|getPercentile(si)− getPercentile(x)| ∀x < si

else if fi is unordered then
C(fi, si, .) = Uniform(0, 1)

if p is not None then
C(fi, si, .)← C(fi, si, .) ∗ (1− pfi)

end
return C

end

where Qj(.) is the cumulative distribution function of sj in the target population, JA is the set of actionable
features and aj is the action performed on the feature j.

B.2 Optimization Methods

Notation: We assume that we have a dataset with features F = {f1, f2, ...fk}. Each feature can either
be continuous Fcon ⊂ F or categorical Fcat ⊂ F . Each continuous feature f con

i takes values in the range
[rmin

i , rmax
i ], which we discretize to integer values. For a continuous feature fi, we define the range Q(fi) =

{k ∈ Z : k ∈ [rmin
i , rmax

i ]} and for a categorical feature fi, we define it as Q(fi) = {qfi

1 , qfi

2 , ..., qfi

di
}, where qfi

(.)
are the states that feature fi can take. Features can either be mutable (Fm), conditionally mutable (Fcm),
or immutable (F⊘), according to the real-world causal processes that generate the data. Mutable features
can transition from between any pair of states in Q(fi); conditionally mutable features can transition between
pairs of states only when permitted by certain conditions; and immutable features cannot be changed under
any circumstances. For example, Race is an immutable feature (Mothilal et al., 2020), Age and Education
are conditionally mutable (cannot be decreased under any circumstances), and number of work hours is
mutable (can both increase and decrease). Lastly, while continuous features inherently define an ordering
in its values, categorical features can either be ordered or unordered based on its semantic meaning. For
instance, Age is an ordered feature that is conditionally mutable (can only increase).

22



Published in Transactions on Machine Learning Research (04/2024)

Algorithm 3 Sampling Cost Functions from Dstep

Input: State vector s, Feature Scores p
Output: Number of Steps based Transition Cost functions C.
function StepCost(s, p = None)

for fi ∈ F do
if pfi = 0 then
C(fi, si, .) =∞
C(fi, si, si) = 0

else
if fi is ordered then

if fi can only increase then

C(fi, si, x) =


|{y | y>si∧y≤x}|
|{y | y>si}| ∀x > si

0 ∀x = si

∞ ∀x < si

else if fi can only decrease then

C(fi, si, x) =


|{y | y<si∧y≥x}|
|{y | y<si}| ∀x < si

0 ∀x = si

∞ ∀x > si

else if fi can both increase or decrease then

C(fi, si, x) =


|{y | y>si∧y≤x}|
|{y | y>si}| ∀x > si

0 ∀x = si
|{y | y<si∧y≥x}|
|{y | y<si}| ∀x < si

else if fi is unordered then
C(fi, si, .) = Uniform(0, 1)

if p is not None then
C(fi, si, .)← C(fi, si, .) ∗ (1− pfi)

end
return C

end

Algorithm 4 Sampling Random Feature Scores.
Output: Feature Scores p.
function sampleFeatureScores(Fp = {}, p = None)

if Fp is {} then
Fp ∼ RandomSubset(Fmutable)

if p is None then
concentration = [1 if f ∈ Fp else 0 for f in F ]
p ∼ Dirichlet(concentration)

return p
end

B.2.1 Hierarchical Cost Sampling Procedure

To optimize for EMC, we need a plausible distribution which can model users’ cost functions. We propose a
hierarchical cost sampling distribution which provides cost samples that are a linear combination of percentile
shift cost (Ustun et al., 2019) and linear cost, where the weights of this combination are user-specific.
Percentile shift cost for ordered features is proportional to the change in a feature’s percentile associated
with the change from an old feature value to a new one. E.g., if a user is asked to increase the number of
work hours from 40 to 70, then given the whole dataset, we can estimate the percentile of users working
40 and 70 hours a week. The cost incurred is then proportional to the difference in these percentiles. The
Linear cost for ordered features is proportional to the number of intermediate states a user will have to go
through while transitioning from their current state to the final state. E.g., if a user is asked to change their

23



Published in Transactions on Machine Learning Research (04/2024)

Algorithm 5 Sampling Cost Functions from Dmix.
Input: State vector s, feature scores p, Optional: cost-type mixing weight α
Output: Cost functions C.
function sampleCost(s, p, α = None)

if α is None then
α ∼ Uniform(0, 1)

▷ Get Step and Percentile cost.

C(Lin) ← LinCost(s, p)
C(P erc) ← P erCost(s, p)
C(Mix) ←− α ∗ C(Lin) + (1− α) ∗ C(P erc)

return C(Mix)

end

Algorithm 6 Algorithm for Theorem 4.1
Input: Cb, C ∈ RN×M matrices containing the costs with respect to all cost samples..
Output: B ∈ RN×N , matrix containing the benefits of replacing pairs from Sbest

t−1 × St

function computeBenefits(Cb, C)
Initialize

B ∈ RN×N ← 0

// Find the indices of the best and second best counterfactual in Sbest for each of the M cost function.

b1 ∈ RM = arg maxi Cb
ij

b2 ∈ RM = arg second maxiCb
ij

// Iterate over all pairs of counterfactuals.
forall p, q ∈ [N ]× [N ] do

// Iterate over cost functions for which pth counterfactual in Sbest has the minimum cost.
forall r ∈ {i ∈ [M ] | b1

i = p} do
if Cb

pr > Cqr then
// This replacement reduces the cost of Sbest by Cb

pr − Cqr.

Bpq+ = Cb
pr −Cqr

else
// Cb

b2
r,r

= cost of second best counterfactual in Sbest for rth cost function.

Bpq+ = Cb
pr −min(Cqr, Cb

b2
r,r)

end
end
return B

end

24



Published in Transactions on Machine Learning Research (04/2024)

Listing 1: Code to Compute Benefits

def computeBenefits(self, best_metrics, curr_metrics):
best_idx_per_cost = best_metrics.argsort(0)[0]
second_best_idx_per_cost = best_metrics.argsort(0)[1]
benefit_matrix = np.zeros((len(best_metrics), len(curr_metrics)))
for bb, best_met in enumerate(best_metrics):

for cc, curr_met in enumerate(curr_metrics):
ben = 0
for j in np.where(best_idx_per_cost == bb)[0]:

if best_met[j] > curr_met[j]:
ben += (best_met[j] - curr_met[j])

else:
ben += (best_met[j] - min(curr_met[j],

best_metrics[second_best_idx_per_cost[j]][j]))
benefit_matrix[bb, cc] = ben

return benefit_matrix

Listing 2: Code for getting pair to replace
def getReplaceIdx(benefit_matrix) -> List[Tuple]:

# If there is no benefit on any replacement then just return an empty list.
if (benefit_matrix > 0).sum() == 0:

return []
else:

# Greedily replace the current cfs with cf from the best-so-far set that leads to the most
benefit. Note that this can be a sub-optimal replacement strategy as it’s greedy but
works well in practice.

org = [] # Indices in the best-so-far cfs set.
new = [] # Indices of the current set.

# Iterate over each cfs of the N current set cfs
for cc in range(len(benefit_matrix)):

# Iterate over cfs from the best-so-far set in descending order of the benefit from
replacement.

for idx in benefit_matrix[:, cc].argsort()[::-1]:
# If best-so-far cf has not already been replaced and has a positive benefit then

add the indices to org and new list.
if idx not in org and benefit_matrix[idx, cc] > 0:

org.append(idx)
new.append(cc)

# create a list of tuples of (org, new) and return.
return list(zip(org, new))

education level from High-school to Masters then there are two steps involved in the process. First, they
need to get a Bachelors degree and then a Masters degree in which case, the user’s cost is proportional to 2
because of the two steps involved in the process.

B.2.2 Merging Counterfactual Sets

When searching for a good solution set, it would be useful to have the option of improving on the best set we
have obtained so far using individual counterfactuals in the next candidate set we see, rather than waiting
for a new, higher-scoring set to come along. While optimizing for objectives like diversity, which operate
over all pairs of elements in the set, it is computationally complex to evaluate the change in the objective

25



Published in Transactions on Machine Learning Research (04/2024)

function if one element of the set is replaced by a new one. To evaluate the change in objective in such cases,
we need iterate over all pairs of element in the best and the candidate set and then evaluate the objective
for the whole set again. The iteration over both the sets here is not the hard part but the computation that
needs to be done within. For our objective, we can compute costs for individual recourses rather than sets,
meaning we can do a trivial operation to compute the benefits of each pair replacement. But, if we wanted
to do this with diversity then for each pair of replacement we need to compute additional S distances for
each replacement because the distance of the new replace vector needs to be computed with respect to all
the other vectors, for each iteration of the nested loop. This quickly makes it infeasible to improve the best
set by replacing individual candidates with the best set elements. However, for metrics where it is easy to
evaluate the effect of individual elements on the objective function, we can easily merge the best set and any
other set St from time t to monotonically increase the objective function value.

In our objective function, EMC, we can compute the goodness of individual counterfactuals with respect to
all the Monte Carlo samples (Robert & Casella, 2010). Given a set of counterfactuals we can obtain a matrix
of incurred cost C ∈ RN×M , which specifies the cost of each counterfactual for each of the Monte Carlo
samples. We can use this to update the best set Sbest using elements from the perturbed set St at time t.
This procedure is defined in algorithm 6. It iterates over all pairs of element in si ∈ Sbest and sj ∈ St and
computes the change that will occur in the objective function by replacing si → sj . Note that we are not
recomputing the costs here. Given Sbest, St, Cb and C, we can guarantee that we will update the best set
Sbest in a way to improve the mean of the minimum costs incurred for all the Monte Carlo samples. This is
shown in algorithm 6 and the monotonicity of the EMC objective under this case can be formally stated as,
Theorem B.1 (Monotonicity of Cost-Optimized Local Search Algorithm). Given the best set, Sbest

t−1 ∈ RN×d,
the candidate counterfactual at iteration t, St ∈ RN×d, the matrix Cb ∈ RN×M and C ∈ RN×M containing
the incurred cost of each counterfactual in Sbest

t−1 and St with respect to all the M sampled cost functions
{Ci}M

i=1, there always exist a Sbest
t constructed from Sbest

t−1 and St such that

EMC(su,Sbest
t ; {Ci}M

i=1) ≤ EMC(su,Sbest
t−1 ; {Ci}M

i=1)

Proof. To prove this theorem, we construct a procedure that ensures that the EMC is monotonic. For this
procedure, we prove that the monotonicity of EMC holds. Check algorithm 6 for a constructive procedure
for this proof, which is more intuitive to understand.

We start off by noting that each element of Cb
ij is the cost of the ith counterfactual sb

i in the best set Sbest
t−1

with respect to the cost function Cj given by Cost(su, sb
i ; Cj). Similarly Cij = Cost(su, si; Cj) where si is

the ith candidate counterfactual. Note that, the EMC is the average of the MinCost with respect to all the
sampled cost function Cj . What this means is that given a pair of counterfactual from Sbest

t−1 ×St and for each
Cj , we can compute the change in the MinCost which we describe later. These replacements can lead to an
increase in the cost with respect to certain cost function but the overall reduction depend on the aggregate
change over all the cost functions. Given this, for each replacement candidate pair in Sbest

t−1 × St, we can
compute the change in EMC by summing up the changes in the MinCost across all cost functions Cj ; this is
called the cost-benefit for this replacement pair. The cost benefit can be negative for certain replacements
as well if the candidate counterfactual increases the cost across all the cost functions. The pairs with the
highest positive cost benefits are replaced to construct the set Sbest

t , if no pair has a positive benefit then we
keep set Sbest

t−1 = Sbest
t . Hence, this procedure monotonically reduces EMC. We now specify how the change

in MinCost can be computed to complete the proof.

To compute the change in MinCost for a single cost function Ci, first we find the counterfactual in Sbest
t−1 with

the lowest and second lowest cost which we denote by sb
l1

and sb
l2

. These are the counterfactuals which can
affect the MinCost with respect to a particular cost function Ci. This is true because when we replace the
counterfactual sb

l1
which has the lowest cost for Cj with a new candidate counterfactual si, there are two

cases. Either, Cb
l1j > Cij or Cb

l1j ≤ Cij . In case when the candidate si has lower cost for Cj than Cb
l1j ,

i.e. Cb
l1j > Cij , then the replacement reduces the cost by Cb

l1j −Cij . In case when the candidate cost for
Cj , Cij , is higher than the lowest cost in the best set Cb

l1j , i.e. Cb
l1j ≤ Cij , it means that this replacement

will increase the cost for Ci by Cb
l1j −min(Cij , Cb

l2j). Here, Cb
l2j is the second lowest cost counterfactual

for Ci. Note that the change in this case will be negative and also depend on the second best counterfactual

26



Published in Transactions on Machine Learning Research (04/2024)

because once the sb
l1

is removed from the set, the best cost for Ci will either be for sb
l2

or si, hence we take
the minimum of those two and then take the difference as the increase in cost. Please refer to Algorithm 6
for a cognitively easier way to understand the proof.

B.2.3 Other Methods

In this section, we describe some of the optimization methods used by relevant baselines.

1. DICE (Mothilal et al., 2020) perform gradient-based optimization in this continuous space while opti-
mizing for objective defined in Section B.1.1. Their final objective function is defined as

C(x) = arg min
c1,...,ck

1
k

k∑
i=1

loss(f(ci), y) + λ1

k

k∑
i=1

dist(ci, x)− λ2 dpp_diversity(c1, . . . , ck)

where ci is a counterfactual, k is the number of counterfactuals, f(.) is the black box ML model, yloss(.) is the
metric which minimizes the distance between models prediction and the desired outcome y. dpp_diversity(.)
is the diversity metric as defined in Section B.1.1 and λ1 and λ2 are hyperparameters to balance the com-
ponents in the objective. Please refer to Mothilal et al. (2020) for more details.

2. FACE (Poyiadzi et al., 2020) operates under the idea that to obtain actionable counterfactuals they
need to be connected to the user state via paths that are probable under the original data distribution aka
high-density path. They construct two different types of graphs based on nearest neighbors (Face-knn) and
the ϵ-graph (Face-Eps). They define geodesic distance which trades-off between the path length and the
density along this path. Lastly, they use the Shortest Path First Algorithm (Dijkstra’s algorithm) to get the
final counterfactuals. Please refer to (Poyiadzi et al., 2020) for more details.

3. Actionable Recourse (Ustun et al., 2019) tries to find an action set a for a user such that taking the
action changes the black-box models decision to the desired outcome class, denoted by +1. They try to
minimize the cost incurred by the user while restricting the set of actions within an action set A(x). The
set A(x) imposes constraints related to feasibility and actionability with respect to features. They optimize
the log-percentile shift objective (see Section B.1.1). Their final optimization equation is

min cost(a; x) s.t. f(x + a) = +1, a ∈ A(x)

which is cast as an Integer Linear Program (Mittleman, 2018) to provide users with recourses. Their publicly
available implementation is limited to a binary case for categorical features,4 hence we demonstrate results
on the binarized version of the dataset.

4Please refer to the this example where they mention about these restricted abilities https://github.com/ustunb/actionable-
recourse/blob/master/examples/ex_01_quickstart.ipynb

27

https://github.com/ustunb/actionable-recourse/blob/master/examples/ex_01_quickstart.ipynb
https://github.com/ustunb/actionable-recourse/blob/master/examples/ex_01_quickstart.ipynb

	Introduction
	Related Work
	Problem Statement
	INSPIRE: Integrating Diverse Feature Preferences in Recourse
	Characterising Feature Preferences and Cost Function Distributions
	Expected Minimum Cost Objective Function
	Cost Optimized Local Search (COLS)
	Evaluation Procedure and Cost Based Metrics

	Experiments
	Experimental Setup
	Research Questions

	Discussion and Conclusion
	Appendix for INSPIRE: Incorporating Diverse Feature Preferences in Recourse
	Ethics Statement
	Reproducibility Statement
	Experimental Setup
	Datasets and Black-Box Model
	Computational Complexity:
	Recourse Generation and Evaluation Pipeline

	Additional Research Questions

	Appendix - Objective and Optimization
	Proposed Method
	Other Objectives

	Optimization Methods
	Hierarchical Cost Sampling Procedure
	Merging Counterfactual Sets
	Other Methods



