

View

Online


Export
Citation

CrossMark

RESEARCH ARTICLE |  APRIL 02 2020

Conditions for the genesis of early afterdepolarization in a
model of a ventricular myocyte 
Zhikun Chu; Dongping Yang  ; Xiaodong Huang 

Chaos 30, 043105 (2020)
https://doi.org/10.1063/1.5133086

Articles You May Be Interested In

A model of cardiac ryanodine receptor gating predicts experimental Ca2+-dynamics and Ca2+-triggered
arrhythmia in the long QT syndrome

Chaos (September 2017)

Dynamical analysis of early afterdepolarization patterns in a biophysically detailed cardiac model

Chaos (July 2021)

Slow [Na+]i dynamics impacts arrhythmogenesis and spiral wave reentry in cardiac myocyte ionic model

Chaos (August 2017)

D
ow

nloaded from
 http://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/1.5133086/14624075/043105_1_online.pdf

https://pubs.aip.org/aip/cha/article/30/4/043105/211456/Conditions-for-the-genesis-of-early
https://pubs.aip.org/aip/cha/article/30/4/043105/211456/Conditions-for-the-genesis-of-early?pdfCoverIconEvent=cite
https://pubs.aip.org/aip/cha/article/30/4/043105/211456/Conditions-for-the-genesis-of-early?pdfCoverIconEvent=crossmark
javascript:;
javascript:;
javascript:;
javascript:;
https://doi.org/10.1063/1.5133086
https://pubs.aip.org/aip/cha/article/27/9/093940/341943/A-model-of-cardiac-ryanodine-receptor-gating
https://pubs.aip.org/aip/cha/article/31/7/073137/342211/Dynamical-analysis-of-early-afterdepolarization
https://pubs.aip.org/aip/cha/article/27/9/093907/341753/Slow-Na-i-dynamics-impacts-arrhythmogenesis-and
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2063251&setID=592934&channelID=0&CID=754911&banID=520996571&PID=0&textadID=0&tc=1&adSize=1640x440&matches=%5B%22inurl%3A%5C%2Fcha%22%5D&mt=1684289725962467&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fcha%2Farticle-pdf%2Fdoi%2F10.1063%2F1.5133086%2F14624075%2F043105_1_online.pdf&hc=4ab97f62e631fb38c89141854cbd19d11b3ae908&location=


Chaos ARTICLE scitation.org/journal/cha

Conditions for the genesis of early
afterdepolarization in a model of a ventricular
myocyte

Cite as: Chaos 30, 043105 (2020); doi: 10.1063/1.5133086

Submitted: 23 October 2019 · Accepted: 17March 2020 ·
Published Online: 2 April 2020 View Online Export Citation CrossMark

Zhikun Chu,1 Dongping Yang,2,3,4,a) and Xiaodong Huang1,a)

AFFILIATIONS

1Department of Physics, South China University of Technology, Guangzhou 510640, China
2Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
3Quanzhou Institute of Equipment Manufacturing, Haixi Institute, Chinese Academy of Sciences, Quanzhou 362200, China
4School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia

a)Author to whom correspondence should be addressed:yangdempe@gmail.com and schuangxd@scut.edu.cn

ABSTRACT

Early afterdepolarization (EAD) is a major arrhythmogenic factor in the long QT syndrome (LQTS), whose conditions for genesis have
puzzled people for several decades. Here, we employ the phase I Luo–Rudy ventricular myocyte model to investigate EAD using methods from
nonlinear dynamics and provide valuable insights into EAD genesis from a physical perspective. Two major results are obtained: (i) Sufficient
parametric conditions for EAD are analytically determined and then used to analyze in detail the effects of the physiological parameters. (ii)
The normal form of the Hopf bifurcation that leads to EAD is derived and then used to determine whether the Hopf bifurcation is subcritical
or supercritical for EAD genesis and the corresponding amplitude and period of the EAD oscillation. Our work here paves the way for further
studies of more complicated multi-scale dynamics of EAD and may lead to effective treatments for LQTS arrhythmias.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5133086

Long QT syndrome (LQTS) is a kind of disease with a high risk of
causing arrhythmia. It is characterized by an extraordinary pro-
longation of the QT interval in an electrocardiogram. It is due
to the prolongation of the action potential (AP) of the ventricu-
lar myocytes. Along with the AP prolongation, a type of triggered
activity called early afterdepolarization (EAD) may occur, which
appears as a secondary membrane voltage oscillation during the
repolarization phase of an AP. It may trigger abnormal exci-
tations in cardiac tissue and, thus, is regarded as one of the
major arrhythmogenic factors in LQTS. Several electrophysiolog-
ical mechanisms have been proposed, but none are fully accepted.
The nonlinear dynamics are well understood and supported by
electrophysiological experiments. EAD is produced by a dual
Hopf–homoclinic bifurcation. This paper explores the sufficient
parametric conditions for EAD, which are not yet fully known.
Moreover, we consider the normal form of the Hopf bifurcation
for EAD, which can reveal the characteristics of the amplitude and
period, as this has not yet been derived. Our results shed light
on the effects of the parameters on generating and modulating
EAD. This work may help in providing a better understanding

of the more complicated multi-scale dynamics of EAD and in
developing effective treatments for LQTS.

I. INTRODUCTION

Long QT syndrome (LQTS) is a kind of disease with a high risk
of causing arrhythmia. QT is defined as the time interval between
the beginning of the QRS complex (contraction of the ventricle) and
the end of the T wave (repolarization of the ventricle) in an electro-
cardiogram (ECG). QT is a rough measure of the action potential
duration (APD) of the ventricular myocytes. See the normal action
potential (AP) and ECG in Fig. 1(a). LQTS is characterized by the
extraordinary prolongation of the QT interval, which is actually due
to the prolongation of the APD. Along with the APD prolongation, a
type of triggered activity called early afterdepolarization (EAD) may
occur,1–3 which is recognized as an oscillation of the secondary mem-
brane voltage during the repolarization phase of an AP [see the red
trace in Fig. 1(a)]. Then, in a tissue substrate with dispersed repolar-
ization, the myocytes with EAD may serve as a depolarizing source

Chaos 30, 043105 (2020); doi: 10.1063/1.5133086 30, 043105-1

Published under license by AIP Publishing.

D
ow

nloaded from
 http://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/1.5133086/14624075/043105_1_online.pdf

https://aip.scitation.org/journal/cha
https://doi.org/10.1063/1.5133086
https://doi.org/10.1063/1.5133086
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5133086
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5133086&domain=pdf&date_stamp=2020-04-02
http://orcid.org/0000-0003-0634-2995
http://orcid.org/0000-0003-1524-5919
mailto:yangdempe@gmail.com
mailto:schuangxd@scut.edu.cn
https://doi.org/10.1063/1.5133086


Chaos ARTICLE scitation.org/journal/cha

FIG. 1. (a) Example traces of a nor-
mal AP and an EAD oscillation. The ECG
beneath shows the definition of the QT
interval. (b) PVC in a 1D cell cable with
dispersed repolarization. From top to bot-
tom, each trace represents the AP of a cell
within the cable. Extra contractions were
detected in the ECG, as shown by the red
arrows. PVCs may be followed by TdP, an
ECG for which is shown on the right of (b).
The TdP mechanism is not fully clear.

and induce premature ventricular contractions [PVCs; see Fig. 1(b)
for a graph and clinical ECG] via a sink–source mismatch or spa-
tial instability.4–9 PVCs may induce reentry and then the so-called
torsade de pointes9,10 [TdP; see the corresponding ECG on the right
of Fig. 1(b)], leading to syncope or fatal fibrillation. However, the
detailed mechanism of TdP is not yet clearly known. Therefore, EAD
is considered to be the major cause of arrhythmias in LQTS, and its
mechanism and treatments are being explored.

In electrophysiology, it is well known that inward currents
(e.g., the sodium and calcium currents) depolarize while the out-
ward ones (e.g., the potassium current) repolarize the membrane
voltage. Hence, it has been hypothesized that the voltage increase
during EAD oscillations is due to a net inward current, which
is caused by a reduction of the outward currents or an increase
of the inward currents.11 However, the results of some experi-
ments are not consistent with this theory.12–14 This challenge could
be solved using nonlinear dynamics. In Ref. 15, the authors ana-
lyzed a ventricular myocyte model (the phase I Luo–Rudy model16)
using nonlinear dynamics and proposed that EAD emerges via the
dual Hopf–homoclinic bifurcation, indicating that the bifurcation
requires the conductance and kinetics to satisfy certain conditions.
This proposal was later supported by various experimental and
theoretical results.17,18

Thus, here we consider some unanswered problems relating to
EAD:

1. The sufficient parametric conditions leading to EAD are not
understood. Note that the Hopf bifurcation is just a necessary
rather than a sufficient condition for EAD. For example, the the-
ory of Tran et al.15 has not answered why and how modulations
of the channel parameters could lead to or eliminate EAD. The
sufficient parametric conditions that would allow us to prevent
EAD requires further investigation.

2. How the channel conductance and kinetics affect the amplitude
and frequency of EAD oscillations is not fully understood. In
the Hopf bifurcation theory, only the stability of the equilib-
rium was analyzed, and the characteristics of the amplitude and
period were not addressed. Moreover, in our previous work,19

we generally found using several ionic models that an enhance-
ment of the inward currents reduces the EAD amplitude, in
contrast with the intuition that the inward currents should
facilitate EAD oscillations. Thus, these phenomena need to be
explained so that we can develop effective ways to reduce the
risk of these arrhythmias.

3. Although the essence of the Hopf bifurcation in EAD genesis is
known, its normal form has not yet been derived. Each type of
bifurcation has a normal form equation describing the dynami-
cal properties around the critical point, which can be derived by
a well-developed and detailed procedure.20–22 The procedure has
been widely applied to various kinds of complex system, such
as the Rayleigh–Bénard convection,23 brain dynamics,24 and the
spatiotemporal dynamics of cardiac alternans.25 The normal
form of EAD may provide more insights into its dynamical
properties, such as the type of the Hopf bifurcation (subcritical
or supercritical), as well as the parametric modulations of the
amplitude and period.

In the present paper, we analyze the phase I Luo–Rudy model
(LR1)16 to investigate (i) the sufficient conditions for EAD gen-
esis and (ii) the normal form of the Hopf bifurcation describing
the amplitude and frequency around its critical point. Methods
from nonlinear dynamics are applied, such as stability analysis,
bifurcation theory, and perturbation analysis. Based on the present
approach, we can analyze more complex models (e.g., models incor-
porating intracellular ionic cycling), which may help in exploring
practical arrhythmogenesis.

II. MODEL AND METHODS

For the LR1 model, the differential equation of the membrane
voltage V is

Cm

dV

dt
= −(INa + Isi + IK + IK1 + Ib + IKp),

which typically involves three time scales in a normal cardiac AP:

1. The sodium current (INa) activates and inactivates very rapidly,
causing the fast upstroke of the AP.
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2. The L-type calcium channel (LCC) current (Isi) activates and
inactivates much more slowly than INa and has a key role in
maintaining the long AP plateau.

3. The time-dependent potassium channel (KC) current (IK) acti-
vates even more slowly and eventually overcomes the inward
currents, repolarizing the cell back to its resting potential.

During EAD oscillations, INa and IKp are close to 0 and ignorable,
leading to a four-dimensional system,

Cm

dV

dt
= −Gsidf(V − Esi) − GKXi(V)x(V − EK)

− GK1K1∞(V)(V − EK1) − Gb(V − Eb) = −I, (1a)

dd

dt
=

d∞(V) − d

ατd(V)
, (1b)

df

dt
=

f∞(V) − f

βτf(V)
, (1c)

dx

dt
=

x∞(V) − x

γ τx(V)
. (1d)

Note that the above model equations are used in the theoretical anal-
ysis. For numerical simulations, INa is added back to generate an
AP, but IKp is omitted because it has little effect on AP behaviors.
We use the model in this way throughout the work, unless specified
otherwise.

In the model, V is the transmembrane voltage, d and f are the
gating variables of the LCC, x is the gating variable for the KC, Cm is
the membrane capacitance and is fixed to be 1 µF, G and E with sub-
scripts represent the channel conductances and the corresponding
Nernst potentials, Xi(V), K1∞(V), y∞(V) (y represents any gating
variable), and τy(V) are functions of V, which are given explicitly in
the paper of Luo and Rudy.16 Finally, α, β , and γ are the coefficients
of the corresponding time constants, representing their variability in
real myocytes.

The time constant τx is much larger than τd and τf so that
the system consisting of Eqs. (1a)–(1c) is regarded as a fast subsys-
tem. Following the method of Keener26 for analyzing the fast–slow
dynamics, x can be regarded as the bifurcation parameter. The Hopf
bifurcation occurs in the three-variable fast subsystem. By solving
the steady state of the fast subsystem and calculating the eigenvalues
of the associated Jacobian matrix, the critical condition for the Hopf
bifurcation is15,19

H(V, x) =
1

τf

(

1

τf

− a

) (

1

τd

− a + sfc

)

+
1

τd

(

1

τd

− a

) (

1

τf

− a − sdb

)

= 0, (2)

where a = ∂I/∂V, b = ∂I/∂d, c = ∂I/∂f, sd = ∂d∞(V)/∂V, and
sf = ∂f∞(V)/∂V. When H < 0, the stable focus becomes unstable.
Equation (2) is valid for the present three-variable subsystem, and it
would have to be adapted for more complicated models.

The numerical strategy is as follows. The explicit Euler method
is used to simulate Eq. (1a), and the Rush–Larsen method27 is

used for Eqs. (1b)–(1d). The time step is 1t = 0.01 ms. A pulse
stimulus of 2 ms duration and 30 µA/cm2 magnitude is delivered
to excite the cell. The control parameters are Gsi = 0.13 ms/cm2,
GK = 0.282 ms/cm2, and α = β = γ = 1. The other parameters are
the same as those in Ref. 15. Unless specified otherwise, the param-
eters are set to these control values. Around the bifurcation point,
τx varies little and can be regarded as a constant so that we set
τx = 640 ms.

III. PARAMETRIC CONDITIONS FOR EAD GENESIS

This section investigates the sufficient parametric conditions
for EAD, which is one of the targets of the present work.

A. Dynamical description of EAD genesis

We start by briefly introducing a concrete physical description
of the EAD dynamics. Since d and f vary fast relative to x and thus
can reach their steady states within the period that x remains nearly
constant. In this way, the quasi-steady state current (IQSS) of the sys-
tem can be obtained by setting Eqs. (1b) and (1c) equal to 0, and
Eq. (1a) becomes

dV

dt
= −Gsid∞f∞(V − Esi) − GKXix(V − EK)

− GK1K1∞(V − EK1) − Gb(V − Eb)

= −IQSS(V, x), (3)

where x is regarded as a time-independent parameter and the func-
tion −IQSS(V, x) determines the evolution of V. IQSS is called the cen-
tral manifold. Its dependence on V at x = 0.1 is shown in Fig. 2(a).
IQSS has three zeroes, corresponding to three quasi-steady states of
the fast subsystem, namely, r, s, and p. r is the homeostasis state,
which has nothing to do with EAD, s is the saddle, and p is a
focus whose stability depends on x. The dependence of the quasi-
steady states on x is shown in Fig. 2(b). As x increases, the p state
experiences a Hopf bifurcation and becomes an unstable focus (the
uppermost branch transitions from solid to dashed), around which
a limit cycle is formed and EAD can emerge. The bifurcation point
is denoted as p∗. As x increases further, s and p collide and annihilate
via a saddle-node bifurcation.

Figure 2(a) is actually the nullcline of the fast subsystem,
whereas the nullcline of the slow subsystem can be obtained by set-
ting Eq. (1d) equal to 0, leading to x = x∞(V), as shown by the
cyan curves in Figs. 2(c), 2(e), and 2(g). The intersections of these
two nullclines are the steady states of the whole system. The steady
states on the branches p and r are always stable and that on branch
s is unstable. Only the steady state on branch p is relevant, and it is
labeled q in Fig. 2 as it represents the global steady state of the whole
system.

Now, we can introduce the dynamical diagram of the whole
system based on the properties of the fast subsystem and the relative
positions of p∗ and q, as well as the orbit of AP. In the coordinate
space (x, V), we denote p∗ as (xp∗ , Vp∗ ), and the orbit of AP as the
function x(V), where V evolves with time. There are three dynamical
scenarios relevant to EAD, as discussed in detail in the following.
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FIG. 2. Scenarios for different AP behaviors (generated by the LR1 model). (a) IQSS as a function of V . Gsi = 0.165, x = 0.1. (b) The nullcline of the fast subsystem.
Gsi = 0.165. p∗ denotes the bifurcation point. (c) and (d) EAD. The cyan curve is x = x∞(V). Gsi = 0.13. γ = 4.1 and 2 for the red and blue traces, respectively. (e) and
(f) The genesis of RFp. Gsi = 0.18. γ = 2 and 0.8 for the red and blue traces, respectively. (g) and (h) The genesis of RFs. Gsi = 0.14. γ = 0.138 and 0.06 for the red and
blue traces, respectively. s∗ is the point right beneath p∗ on branch s.

1. Scenario 1: EAD oscillations

Figure 2(c) presents two possible orbits passing the p branch.
The red trace enters the basin of p before it bifurcates so that it is
attracted to the stable focus and ramps on branch p until it expe-
riences a Hopf bifurcation at p∗ to generate EAD. The blue trace
reaches p after the bifurcation so that it is repelled by the unstable
focus and thus, EAD does not occur. The corresponding APs are
plotted in Fig. 2(d). In this scenario, q is on the unstable section of
branch p. EAD genesis requires that q is on the right of p∗, while the
AP orbit should reach p before it bifurcates. As a result, the sufficient
condition for EAD can be expressed as

x∞(Vp∗) > xp∗ and x(Vp∗) < xp∗ . (4)

2. Scenario 2: Repolarization failure due to the p state

Here, q is on the stable section of branch p, as shown in
Fig. 2(e), which also shows two orbits. The red one reaches branch p
before it bifurcates and resides at the q state permanently, resulting
in repolarization failure (RF). The blue one passes branch p via its
unstable section and, thus, shows normal repolarization (NR). See
the corresponding APs in Fig. 2(f). The condition for the emergence
of this scenario is that q and the AP orbit should both be on the left
of p∗. Therefore, the sufficient condition for RF due to the p state
(RFp) is

x∞(Vp∗) ≤ xp∗ and x(Vp∗) < xp∗ . (5)

3. Scenario 3: RF due to the saddle s

This scenario happens in a system with small γ , where the gate
x varies fast. Therefore, the orbit evolves much faster along the x-
axis and may escape the basin of the p state and enter the manifold

regime of the saddle s. Then, the orbit may proceed in two possi-
ble ways. One is toward the resting state r, leading to NR, which is
presented as the blue traces in Figs. 2(g) and 2(h). The other one is
toward the q state, where it stays permanently, resulting in RF due
to the saddle s (RFs), shown as the red traces. This scenario is irrel-
evant to p∗. The critical state between NR and RFs is when the orbit
just reaches the point right beneath p∗ on branch s [denoted as s∗ in
Fig. 2(g)], i.e., x(Vs∗) = xp∗ . If the orbit passes through the above of
s∗, RFs occurs. Hence,

x(Vs∗) < xp∗ (6)

is a sufficient condition for RFs.
In the following, we will analytically find concrete expressions

for Eqs. (4)–(6), which naturally lead to the parameter constraints
for the various dynamical scenarios.

B. Parameter constraints

Although the parameter constraints can be directly explored by
brute numerical simulations, more insights can be gained from an
analytically closed form. In the present work, approximations are
employed to simplify the formulations (Appendix A), rendering the
analytically closed form available. In the following, we consider two
kinds of parameters: (i) the ionic conductances and (ii) the kinetics
of LCC (i.e., α and β).

1. The ionic conductances

Here, we consider only the conductance parameters Gsi and GK,
which are known to be responsible for EAD dynamics. α and β are
fixed at 1.
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2. Scenario 1: EAD

The condition for this scenario is given in Eq. (4), which
requires expressions for (i) the Hopf bifurcation point (xp∗ , Vp∗) and
(ii) the AP orbit x(V). These are derived as follows.

First, by approximating the nonlinear functions as polynomi-
als and employing the Lagrangian interpolation method,28 p∗ can be
found directly from Eq. (2) and expressed as the following form:

Vp∗ = A2G
2
si + A1Gsi + A0,

xp∗ =
B2G

2
si + B1Gsi + B0

GK

.
(7)

A detailed calculation for An and Bn (n = 0, 1, 2) is given in
Appendix A.

Second, the orbit of the whole system in the x vs V phase plane
is determined by the following two dynamical equations:

dx

dt
=

x∞(V) − x

γ τx

,
dV

dt
= −I,

where τx = 640 ms and x∞(V) can be approximated as a linear func-
tion of V, since it appears as a straight line around q [Fig. 2(c)], i.e.,
x∞ = mV + n with m = 0.0186 and n = 0.96, leading to

dx

dV
=

mV + n − x

−Iγ τx

. (8)

As EAD occurs around branch p where the ionic current is
close to 0, −I can be linearly approximated as Ip(Vp) (by a Taylor
expansion)

−I(V) ≈ Ip(Vp)

= −I[Vp + δV, d∞(Vp) + δd, f∞(Vp) + δf]

= −I[Vp, d∞(Vp), f∞(Vp)]

−
∂I

∂V

∣

∣

∣

∣

p

δV −
∂I

∂d

∣

∣

∣

∣

pδd −
∂I

∂f

∣

∣

∣

∣

p

δf

= −aδV − bδd − cδf, (9)

where δV, δd, and δf are small constant deviations from the quasi-
steady state p. Thus, Eq. (8) becomes a linear differential equation. It
describes the orbit near Vp and its solution is

x(V) = mV + n − mFp + (x0 − mV0 − n + mFp)e
−(V−V0)/Fp , (10)

where Fp = Ip(Vp)γ τx and V0 and x0 are the initial values of V and x,
respectively. Since x(V) is solved around the p state, the initial state
should vary with p. Thus, it is reasonable to take x0 = xp − 1x and
V0 = Vp − 1V with 1x and 1V being constants. As a result, x(V)

becomes

x(V) = mV + n − mFp

+ [(xp − 1x) − m(Vp − 1V) − n + mFp]e
−(V−Vp+1V)/Fp .

(11)

By substituting V = Vp = Vp∗ and xp = xp∗ into Eq. (11) and using
x∞ = mV + n, the condition Eq. (4) for EAD genesis becomes

x∞(Vp∗) > xp∗ , (12)

xp∗ > x1, (13)

with

x∞(Vp∗) = m(A2G
2
si + A1Gsi + A0) + n, (14)

x1 = m(Vp∗ − Fp∗) + n +
(−1x + m1V)e−1V/Fp∗

1 − e−1V/Fp∗ , (15)

where Fp∗ = Ip∗γ τx with Ip∗ = Ip(Vp∗), which is independent of GK.
Thus, x1 is a function of Gsi and γ , and it is independent of GK.

3. Scenario 2: RFp

The condition for this scenario requires the simultaneous ful-
fillment of Eq. (13) and

x∞(Vp∗) ≤ xp∗ , (16)

with x∞(Vp∗) being given by Eq. (14).

4. Scenario 3: RFs

This scenario relies on the condition in Eq. (6). x(Vs∗) can
be obtained by replacing Vp and Fp with Vs and Fs = Is(Vs)γ τx in
Eq. (11), respectively, and substituting x = xp∗ and V = Vs = Vs∗

into Eq. (11). In this way, Eq. (6) becomes

xp∗ > x2, (17)

with

x2 = m(Vs∗ − Fs∗) + n +
(−1x + m1V)e−1V/Fs∗

1 − e−1V/Fs∗
, (18)

which is a function of Vs∗ and also independent of GK. Vs∗ can be
solved by setting IQSS = 0 in Eq. (3) and using xp∗ from Eq. (7).

5. The kinetics

We need to express xp∗ and Vp∗ as functions of the kinetic
parameters. Gsi and GK are fixed to the control values. Following the
same method used for the conductances, the Hopf bifurcation point
can be given as

Vp∗ = C2β
2 + C1β + C0,

xp∗ = D2β
2 + D1β + D0,

(19)

where Cn and Dn (n = 0, 1, 2) are functions of α. Their formulations
are given in Appendix A.

C. Effects of the parameters on the AP behavior

Some important effects of the parameters can be explained and
predicted based on the above analytically closed forms for various
scenarios. The relevant discussions are as follows.

1. Gsi threshold for EAD genesis

In the early EAD theory,1,11 it was hypothesized that EAD is
due to a net inward current. Accordingly, one would expect that
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even though the inward current is small, as long as the outward one
is smaller than it, EAD would occur. However, the present theory
indicates that there is a lowest threshold calcium current for EAD,
as directly indicated by Eq. (7). As xp∗ > 0 must always be satisfied,
we have

Gsi > Gsi,c1, (20)

with

Gsi,c1 =
−B1 +

√

B2
1 − 4B2B0

2B2

. (21)

For the control parameter set, Gsi,c1 = 0.059, approximating well the
numerical result 0.061. Figure 3(a) is the Gsi vs γ phase diagram.
The green dashed vertical line indicates the lowest Gsi for EAD. If
Gsi < Gsi,c1, EAD is definitely prevented. Note that the threshold
LCC conductance Gsi,c1 is irrelevant to the KC conductance, and
this property is universal in other models (see the results shown in
Figs. 10–14 in Appendix C). Based on the finding for Gsi,c1, we sug-
gest that a specific drug that uniquely reduces the LCC conductance
may prevent EAD.

2. Requirement of γ for EAD genesis

If Gsi > Gsi,c1, EAD and RFp can occur. From Eqs. (12) and (13),
we see that EAD requires x1 < xp∗ < x∞(Vp∗), i.e.,

x1 <
B2G

2
si + B1Gsi + B0

GK

< m(A2G
2
si + A1Gsi + A0) + n. (22)

Here, x1 is a function of γ and Gsi, as expressed by Eq. (15). The
solutions for γ and Gsi are given by

γ > Rp and Gsi < Gsi,RFp, (23)

with

Rp =
1V

Ip∗τxln[1 + (m1V − 1x)/(xp∗ − m(Vp∗ − Fp∗) − n)]
, (24)

and

Gsi,RFp =
−T +

√
T2 − 4K

2
, (25)

where

T =
B1 − mGKA1

B2 − mGKA2

and

K =
B0 − mGKA0 − nGK

B2 − mGKA2

.

Rp depends on Ip∗ , xp∗ , and Vp∗ , which are functions of Gsi and GK.
Thus, it is a function of Gsi and GK. Gsi,RFp is a function of GK. There-
fore, if γ is larger than a certain value of Rp, then EAD could occur.
For given GK, Rp depends only on Gsi, which is plotted in Fig. 3(a)
as a black dashed curve. Moreover, given GK, Gsi,RFp becomes a con-
stant. For the control set, it is 0.155, plotted in Fig. 3(a) as the red
dashed line. We can see that the theoretical results coincide with the
numerical ones satisfactorily. Equation (23) provides a theoretical
estimate of the threshold γ of EAD for different parameter sets.

3. Calcium and potassium conductance constraints

for EAD genesis

If GK and Gsi satisfy certain constraints, then EAD occurs. The
constraints are derived as follows. Here, Eq. (22) leads to

GK,RFp < GK < GK,EAD, (26)

where

GK,RFp =
B2G

2
si + B1Gsi + B0

m(A2G
2
si + A1Gsi + A0) + n

, (27)

FIG. 3. Parametric conditions for the AP behaviors. The parameters shown on the axes were scanned and the others were set to their control values. The solid and dashed
curves represent the simulated and theoretical results, respectively. The black, red, and blue curves represent the critical conditions for EAD, RFp, and RFs, respectively, the
functions of which are denoted beside the curves in the corresponding colors. (a) Gsi vs γ phase diagram. (b) GK vs Gsi . (c) β vs α. In (b) and (c), RFs and the other two
states (EAD and RFp) appear at different values of γ , as indicated in Table I. Each theoretical curve requires five parameters to be determined: (δV , δd, δf , 1V ,1x). Here,
δV is fixed to be −0.2 mV, and all the other parameter values are listed in Table I. The two black triangles in (b) denote the parameter sets that we select to plot typical APs,
which are shown in Fig. 15(a) in Appendix C.
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TABLE I. Values of γ , δd, δf, 1V, and 1x for each panel in Fig. 3. They were determined somewhat empirically, but the qualitative results are robust against their values if

they satisfy specific conditions, which are given in Appendix B. Note that the boundary for scenario 2 (the red curve for RFp) is independent of these parameters and is given by

Eqs. (25), (27), and (39).

Scenario 1 (the black curve) Scenario 3 (the blue curve)

γ δd δf 1V 1x γ δd δf 1V 1x

A 0.05 −0.085 −24 0.0128 0.078 −0.295 −0.2 −0.006
B 3.5 0.012 −0.022 −18 0.018 0.04 0.079 −0.28 −0.8 −0.001
C 5 −0.05 0.012 −20 0.021 0.5 −0.05 0.02 −0.72 −0.0018

GK,EAD =
B2G

2
si + B1Gsi + B0

x1

. (28)

That means for a given Gsi, GK should be within a certain range to
cause EAD.

On the other hand, when GK is given, Eq. (26) becomes

Gsi,EAD < Gsi ≤ Gsi,RFp, (29)

where Gsi,EAD is a complex function of γ and GK and needs to be
determined numerically. Therefore, for EAD genesis, Gsi and GK

should simultaneously satisfy

Gsi,EAD < Gsi < Gsi,RFp,

GK,RFp < GK < GK,EAD.
(30)

That means the calcium and potassium currents should match in an
appropriate range to give rise to EAD. In Fig. 3(b), we plot GK,EAD

and GK,RFp as functions of Gsi, shown as the black and red dashed
curves, respectively. If we were to plot Gsi,EAD and Gsi,RFp as functions
of GK, we would get the same black and red dashed curves. There-
fore, violation of Eq. (30) can effectively prevent EAD. Thus, in the
EAD state, a decrease of Gsi or an increase of GK would return the
myocyte to NR. On the other hand, an increase of Gsi or a reduction
of GK that is too large may result in RFp.

Exposure to isoproterenol can increase both the LCC and KC
conductances simultaneously, which may trigger EAD,29,30 which is
responsible for the arrhythmogenesis of type 2 LQTS. Equation (30)
can explain this phenomenon. We hypothesize that any drug with
a similar effect may induce EAD. This finding may be useful for
evaluating drug effects.

4. Parametric condition for RFs

This behavior is seldom described in previous studies. It gen-
erally exists in various myocyte models when the kinetics of KC
(referred to as the Ks channel in other models) becomes fast, i.e.,
γ is small, as is shown in Figs. 10–14 in Appendix C.

First, just like EAD, there is a preliminary condition for the
occurrence of RFs. Here, γ > 0 so that γ → 0 (Fs∗ → 0) is the limit
case for RFs. Since we have

lim
Fs∗ →0

n + (−1x + m1V − n)e−1V/Fs∗

1 − e−1V/Fs∗
− mFs∗ = n.

Equation (17) implies

xp∗ ≥ mVs∗ + n. (31)

This is the preliminary condition for RFs. Thus, Gsi ≥ Gsi,c2

= 0.1167 when the other parameters are set to their defaults
[denoted by the blue arrow in Fig. 3(a)]. This value coincides
perfectly with the simulated value of 0.1161.

If Gsi ≥ Gsi,c2, the occurrence of RFs requires xp∗ > x2, i.e.,

B2G
2
si + B1Gsi + B0

GK

> x2, (32)

where x2 is a function of γ and Gsi [Eq. (18)]. Thus, we have

γ < Rs, (33)

where

Rs =
1V

Is∗τxln[1 + (m1V − 1x)/(xp∗ − m(Vs∗ − Fs∗) − n)]
. (34)

Moreover, from Eq. (32), we get

GK < GK,RFs, (35)

where

GK,RFs =
B2G

2
si + B1Gsi + B0

x2

. (36)

Rs and GK,RFs are plotted as the dashed blue curves in Figs. 3(a)
and 3(b) as functions of Gsi. The analytical results coincide well with
the numerical ones. Hence, a decrease of Gsi, an increase of GK, and
an increase of γ can violate Eqs. (32), (33), and (35), respectively, so
can prevent RFs. In a real ventricle, RFs may result in an ultralong
AP, which exacerbates the repolarization heterogeneity of the tissue
substrate,31,32 increasing the risk of PVC.8 Our findings for RFs may
help in controlling the ultralong AP.

5. Effects of the kinetics

Before the EAD bifurcation theory was proposed, the influence
of the kinetics was seldom considered. Here, we explicitly discuss the
dependence of EAD genesis on the kinetics.

For EAD genesis, Eqs. (12) and (13) imply

x1 < D2β
2 + D1β + D0 < m(C2β

2 + C1β + C0) + n, (37)

which gives

βRFp < β < βEAD, (38)

where

βRFp =
−T +

√
T2 − 4K

2
(39)
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and where

T =
D1 − mC1

D2 − mC2

and

K =
D0 − mC0 − n

D2 − mC2

.

Here, βEAD is a complex function of α, and it needs to be determined
numerically.

The condition for RFs is

D2β
2 + D1β + D0 > x2, (40)

which gives

β < βRFs. (41)

Here, βRFs is a function of α and needs to be determined numeri-
cally. βEAD, βRFp, and βRFs are plotted as black, red, and blue dashed
curves in Fig. 3(c), respectively. Therefore, an increase of β violates
Eqs. (38) and (41) and may turn EAD and RFs into NR. α must have
the opposite effect as β because β is in the numerators of Eq. (19),
whereas α is in the denominators [also see Eq. (A6) in Appendix A]
so that β and α modulate Vp∗ and xp∗ conversely as well as the AP
behaviors.

6. Role of the initial state

The AP orbit depends on the initial state (V0, x0), as shown
by Eq. (10). Thus, it may alter the AP behavior, which suggests
a potential way for controlling the relevant arrhythmogenesis. In
this part, we discuss the role of the initial state in generating the
arrhythmogenic AP behaviors.

First, we will analyze EAD. From Eq. (10), we get

dx(Vp∗)

dV0

=
e−(Vp∗ −V0)/Fp∗

Fp∗
(x0 − mV0 − n) > 0,

dx(Vp∗)

dx0

= e−(Vp∗ −V0)/Fp∗ > 0,

dxp∗

dV0

=
dxp∗

dx0

= 0.

(42)

The reasons for the inequalities are

1. The point (x0, V0) must be on the left of the x∞ curve for EAD
[Fig. 2(c)] so that x0 < x∞(V0) = mV0 + n.

2. V repolarizes until it reaches p∗ so that dV/dt = −I ≈ Ip∗ < 0,
and thus, Fp∗ = Ip∗γ τx < 0.

Therefore, any perturbation reducing V0 or x0 before the plateau
phase of an AP can reduce x(Vp∗), leading to x(Vp∗) < xp∗ [i.e.,
Eq. (4)], as well as EAD. Figure 4(a) shows an example AP trace with
a transition from NR to EAD due to a negative voltage perturbation.

For RFs, we get

dx(Vs∗)

dV0

=
e−(Vs∗ −V0)/Fs∗

Fs∗
(x0 − mV0 − n) < 0,

dx(Vs∗)

dx0

= e−(Vs∗ −V0)/Fs∗ > 0.

(43)

FIG. 4. Influence of a perturbation on AP. (a) A negative perturbation of V trans-
forms NR into EAD. Gsi = 0.142 and γ = 2.4. The perturbation is an instant
pulse with a magnitude of −27.7 mV. (b) A positive perturbation transforms NR
into RFs. Gsi = 0.14 and γ = 0.14. The pulse magnitude is 20 mV.

In this case,

1. (x0, V0) must be on the right of the x∞ curve as it approaches s∗

[Fig. 2(g)] so that x0 > mV0 + n.
2. V repolarizes to approach s∗ so that dV/dt = −I ≈ Is∗ < 0, and

thus, Fs∗ = Is∗γ τx < 0.

Hence, an increase of V0 or a decrease of x0 can reduce x(Vs∗), facil-
itating x(Vs∗) < xp∗ [i.e., Eq. (6)], as well as RFs. Figure 4(b) shows
the effect of a positive voltage perturbation that transforms NR into
RFs.

It might seem that an increase of the voltage should facilitate
EAD, while a reduction would eliminate it. However, the theory
indicates the reverse. It has been reported that an increase of the
transient outward current (Ito) promotes EAD oscillations.12,19 The
puzzle is that Ito is an outward current, which tends to reduce the
voltage. The present theory provides a general and explicit explana-
tion for this. When Ito flows outward, V0 may be reduced, facilitating
EAD. Therefore, a perturbation delivered to the voltage (e.g., an
electric shock by an implanted defibrillator) or the KC gate (e.g., a
specific neurotransmitter) may transition an abnormal EAD or RF
state into a NR state, implying a potential method of treating EAD.

In summary, the conditions for the dynamical behaviors rel-
evant to EAD are listed in Table II. We stress that the present
theory is a phenomenological one. Its significance is that it reveals
the parametric dependence of the genesis of various arrhythmo-
genic behaviors. The generality of our analytical results is verified
by the updated myocyte models (shown in Appendix C). Therefore,
the present analytical conditions can be used to interpret the EAD
arrhythmogenesis and suggest treatments.

IV. THE NORMAL FORM OF EAD

The general normal form for the Hopf bifurcation is

dz

dt
= (λ + iω0)z + c|z|2z + O(|z|3), (44)

where z is a complex number describing the amplitude and fre-
quency of the limit cycle around the bifurcation point, λ is the largest
real part of the eigenvalue near the critical point, ω0 is the intrinsic
oscillatory frequency exactly at the critical point, and c is a model-
dependent coefficient determining whether the Hopf bifurcation
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TABLE II. Sufficient conditions for the various AP behaviors, organized hierarchically.

For example, the occurrence of EAD first requires Gsi >Gsi,c1, xp∗ < x∞(Vp∗ ), and

xp∗ > x(Vp∗ ). If all three conditions are satisfied, then EAD occurs.

Gsi > Gsi,c1

xp∗ < x∞(Vp∗) xp∗ > x∞(Vp∗)

xp∗ > x(Vp∗) xp∗ ≤ x(Vp∗) xp∗ > x(Vp∗) xp∗ ≤ x(Vp∗)

EAD NR RFp NR

xp∗ ≥ mVs∗ + n

xp∗ > x(Vs∗) xp∗ < x(Vs∗)

RFs NR

is subcritical [Re(c) > 0] or supercritical [Re(c) < 0]. The detailed
derivation of Eq. (44) for the LR1 model is cumbersome and can be
found in the supplementary material.

Since |z| � 1, then O(|z|3) can be omitted. Let z = Aeiω , where
A (a real number) denotes the amplitude and ω represents the
frequency around the critical point. Thus, Eq. (44) becomes

dA

dt
= λA + Re(c)A3, (45)

ω = ω0 + Im(c)A2, (46)

whose steady solution for A is given by dA/dt = 0, leading to

A =
√

−λ/ Re(c), (47)

in which λ < 0 is required for the subcritical bifurcation and λ > 0
for the supercritical one. It can be easily verified that this solution is
unstable in the subcritical case, which would grow to infinity. Thus,
in this case, the negative higher-order term needs to be included, and
Eq. (45) should be replaced by

dA

dt
= λA + Re(c)A3 − Re(g)A5, (48)

where Re(g) > 0 to confine A, leading to a stable limit cycle with
amplitude

A2 =

[

1 +

√

1 +
4 Re(g)λ

Re (c)2

]

Re(c)

2 Re(g)

≈
Re(c)

Re(g)
+

λ

Re(c)
(λ � 1) (49)

coexisting with the stable equilibrium. Thus, a bistable region is
formed. Typical examples of the two types of bifurcation are shown
in Fig. S1 in the supplementary material. Based on the analyses of
the normal form, we discuss two problems in Secs. IV A and IV B.

A. The type of the Hopf bifurcation

What type of Hopf bifurcation is EAD? This has not yet been
answered by the theory of Tran et al..15 We numerically calculate
Re(c) by using the approximate polynomials in the model to identify

FIG. 5. Bifurcation types and the corresponding development of EAD. γ = 10.
(a) α = β = 1. The EAD regions are green. (b) Gsi = 0.13 and GK = 0.282.
(c) Definitions of the maximum amplitude and the inter-EAD period within an AP.
Each bump is counted as one instance of EAD, and the time interval between suc-
cessive bumps is the inter-EAD period, denoted as T1, T2, etc. (d)–(f) Probability
distributions of the maximum amplitude, the inter-EAD period, and the number
of EAD occurrences, respectively. The parameters are assigned randomly within
certain ranges, as stated in the text. (g) and (h) The dependence of the bifurcation
type on the parameters. The upper and lower histograms in (h) are for α and β ,
respectively.

the bifurcation type. In the GK vs Gsi plane, we can see that large Gsi

yields the supercritical Hopf bifurcation, while GK has little effect on
changing the bifurcation type [Fig. 5(a)]. The β vs α plane is shown
in Fig. 5(b). The bifurcation type is not only a problem of theoret-
ical interest but also has medical significance. We can see that the
EAD amplitude and period, which are closely related to PVC and
the diagnosis of EAD using an ECG, are correlated with the bifur-
cation type. Therefore, the association between the bifurcation type
and the EAD characteristics needs to be elucidated.

We gathered data for the maximum EAD amplitude (Amax),
the inter-EAD period (Ti), and the number of occurrences of the
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EAD oscillation (NEAD) separately for the sub- and supercritical
bifurcations. The definitions of the above quantities in an AP are
shown in Fig. 5(c). The APs were generated by randomly assign-
ing values to the four investigated parameters within certain ranges:
Gsi ∈ (0.07, 0.4), GK ∈ (0.1, 3.0), α ∈ (0.1, 2), and β ∈ (0.1, 2). Only
the APs with EADs were used, rather than those with NR and RF.
They were classified as sub- or supercritical depending on Re(c). The
distribution histograms are shown in Figs. 5(d)–5(f). We can see that
the maximum amplitude for the supercritical bifurcations is larger
than for the subcritical bifurcations, whereas there is no evident dif-
ference in their periods. The distribution of EAD occurrences for
the subcritical bifurcations is a little bit steeper than for supercritical
bifurcations, indicating that there were fewer EAD occurrences for
subcritical bifurcations.

The above phenomena can be explained as follows. First, we
see from Figs. 5(g) and 5(h) that Gsi is the deterministic parameter
for causing the bifurcation type to change, whereas GK, α, and β

have much less influence. These figures show the dependence of the
bifurcation type individually for the three parameters. The distribu-
tions of Gsi are very different for sub- and supercritical bifurcations,
whereas those for α and β show much less difference. Therefore, the
bifurcation type depends mostly on Gsi.

Next, we consider the nullcline of the fast subsystem, as shown
in Fig. 2(b) and the inset of Fig. 9(a) in Appendix B. As Gsi becomes
larger, the unstable section of branch p (the dashed section) is pro-
longed, and the mouth within branches p and s is enlarged [Fig. 9(a),
inset]. The unstable section of branch p allows for EAD oscilla-
tions. As this section gets longer, more EAD events can occur
within it, and thus, a larger amplitude may develop. Therefore,
the supercritical EADs have larger maximum amplitudes and more
occurrences of oscillation. Thus, we suggest that supercritical EADs

at high calcium conductance may have a higher risk of inducing
PVCs.

B. Influence of the parameters on the EAD amplitude

and period

First, we investigate the amplitude modulation based on
Eq. (45). To reveal the effects of the individual parameters on the
amplitude, we fix x to xf and calculate λ (let xf > xp∗ so that λ > 0).
Figure 6 shows λ and Re(c) and the resulting amplitude A2. Note
that for the subcritical bifurcation, λ/ Re(c) is plotted instead of
Re(c)/ Re(g) + λ/ Re(c) to represent A2. This is because it is very
difficult to determine the coefficient Re(g) of the higher-order term
in Eq. (49), whereas Re(c)/ Re(g) does not change much. Therefore,
λ/ Re(c) approximately indicates the variation of the amplitude. The
data around the lines separating the two types of bifurcation are
discarded because near these lines, Re(c) is very close to 0 and the
amplitude would approach infinity in theory. In this case, higher-
order terms would reduce the amplitude, but these have not been
taken into account in the present work. We can see that as Gsi and
α increase, the amplitude falls [see Figs. 6(a) and 6(c)]. In contrast,
as GK and β increase, the amplitude rises [see Figs. 6(b) and 6(d)].
The physical mechanism may be interpreted as follows. As any
parameter is varied, if xp∗ is increased, the fixed reference point xf

would become closer to xp∗ and λ would decrease, whereas if xp∗

is decreased, λ would be increased. On the other hand, the varia-
tion of Re(c) is several orders of magnitude smaller than that of λ.
So, λ basically determines the variation of the amplitude. Hence, an
increase of Gsi or α would increase xp∗ , resulting in a decrease of the
amplitude. In contrast, an increase of GK or β would decrease xp∗

and have the opposite effect.

FIG. 6. Parametric modulation of the
EAD amplitude as theoretically revealed
by the normal form. In each panel, the
upper traces are Re(c) and λ, whereas
the lower trace is the amplitude from the
normal form. λ was calculated using
constant x(xf ). The sub- and supercritical
cases are separated by the dashed
vertical lines. Data near the separating
lines were discarded because in this
range, higher-order terms are not neg-
ligible and Eq. (45) no longer describes
the actual dynamics accurately. (a)
GK = 1.0, xf = 0.253 and 0.358 for the
sub- and supercritical sides, respectively.
(b) Gsi = 0.2, xf = 0.371 for the sub-
critical side, and Gsi = 0.3, xf = 0.358
for the supercritical side. (c) Gsi = 0.13,
GK = 0.282, and β = 0.75, xf=0.163
(subcritical) and 0.133 (supercritical).
(d) Gsi = 0.13, GK = 0.282, and
α = 0.13, xf=0.261 (subcritical) and
0.142 (supercritical).
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FIG. 7. Parametric modulation of the
EAD frequency. The parameter set for
each panel is identical to the correspond-
ing one in Fig. 6. The data near the
lines separating the sub- and supercritical
cases are discarded. (a) Effect of Gsi . (b)
Effect ofGK. (c) Effect ofα. (d) Effect ofβ .

Next, we consider the inter-EAD period. Equation (46) gives
the period around the bifurcation point (T = 2π/ω). A2 has already
been obtained, and ω0 can be calculated from Eq. (S29) in the
supplementary material. Figure 7 shows the variations of Im(c) and
the resulting ω for the parameter values. Actually, ω0 varies little. In
the present model, Im(c) remains negative with a low rate of varia-
tion. Therefore, A determines ω. From Eq. (46), we can see that any
parameter variation that leads to an increase of A would reduce ω,
while a reduction of A would have the opposite effect. An increase of
Gsi or α would reduce A so that they shrink the inter-EAD period. In
contrast, an increase of GK or β prolongs it. These findings confirm
the results of our previous work,19 in which qualitatively identical
phenomena were generally found for several ventricular myocyte
models. Thus, the normal form explains these phenomena.

V. LIMITATIONS

The main limitation of the present study lies in the model used.
The LR1 model belongs to the first generation of models, which do
not consider the intracellular Na+, K+, and Ca2+ cycling dynamics.
This deficiency will be solved by the second- and third-generation
models. The reason for using LR1 in the present study is that it
is relatively simple and thus, suitable for analytical study, and it
can still reveal some fundamental and general properties of cardiac
myocytes. For example, Eq. (30) (which implies that an simulta-
neous increase of both LCC and KC currents can cause EAD) is
consistent with the isoproterenol physiological study.29 The EAD
parametric ranges used for Fig. 3 are qualitatively similar to that of
some other second-generation models (Figs. 10–14 in Appendix C).
Finally, Figs. 6 and 7 confirm and explain our previous numer-
ical results on the amplitude and period modulations in various
models.19 Hence, the results from the LR1 model are a good starting
point and may suggest some practical uses.

However, besides the transmembrane ionic currents, intracel-
lular ionic cycling also affects the membrane voltage via coupling
with the LCC, late Na+ channel, and sodium–calcium exchange
protein. Furthermore, recently, it has been reported that intracel-
lular Ca2+ cycling may show self-oscillation and trigger EAD.33

The association between EAD and intracellular ionic dynamics
is not clearly understood, despite some suggestive studies (e.g.,
Refs. 33–35). LR1 type models are incapable of studying such com-
plex effects, so we must turn to the newly developed multi-scale
models. The present method and conclusions may serve as a foun-
dation for future studies.

VI. SUMMARY

In the present paper, we investigated the conditions for the
genesis of some arrhythmogenic behaviors and their dynamical
properties. We obtained two main results: (i) the analytically closed
forms of the sufficient parametric conditions for all possible scenar-
ios (shown in Table II) and (ii) the normal form of LR1 for the Hopf
bifurcation. The following important insights were obtained from
the theoretical analyses:

(1) The effects of the conductances. (i) EAD genesis is not only
due to the net inward current but also needs a large enough calcium
current. The threshold LCC conductance is irrelevant to the KC con-
ductance. (ii) Both Gsi and GK need to be large enough to give rise to
EAD. Hence, the previous hypothesis that the reduced repolarized
reservoir facilitates EAD is not true. (iii) A general condition for RFs

was derived: an increase of LCC or a decrease of the KC currents
may facilitate this type of behavior.

(2) The effects of the kinetics. (i) Large γ facilitates EAD while
small γ facilitates RFs. We estimated the threshold between these
states. (ii) The kinetics of LCC has a significant effect on EAD gen-
esis. An increase of α increases the risk of EAD, RFp, and RFs. An
increase of β has the opposite effect.
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(3) The influence of perturbations. We found that a reduction
of V and x before the plateau phase of an AP may induce EAD.
Moreover, an increase of V or a decrease of x at small γ may lead to
RFs. These findings may indicate possibilities for clinical treatments
for EAD.

(4) The normal form of EAD for the LR1 model was derived.
We found that Gsi is the deterministic parameter in changing the
bifurcation type. Both the maximum amplitude and the number of
occurrences of EAD for the supercritical bifurcation are larger than
for the subcritical bifurcation. Hence, EAD due to a supercritical
bifurcation may have a higher risk of causing arrhythmias.

(5) Using the normal form, we explained that an increase of
Gsi or α reduces the amplitude and period, whereas an increase
of GK or β has the opposite effect. These phenomena are associ-
ated with the variation of the bifurcation point xp∗ . Any parameter
change increasing xp∗ will shrink the amplitude and period, whereas
decreasing xp∗ will have the opposite effect.

The present theory could be used to interpret and modulate
EAD behavior. It could be extended to more complicated EAD
dynamics involving intracellular ionic cycling.

SUPPLEMENTARY MATERIAL

See the supplementary material for the detailed derivations of
the normal form shown in Eq. (44).
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APPENDIX A: FINDING (xp∗ ,Vp∗)

We will first derive the dependence of the Hopf bifurcation
point (xp∗ , Vp∗) on the ionic conductance parameters Gsi, GK, and
GK1.

Around the p state, which is relevant to EAD, the nonlinear
functions x∞, d∞, f∞, Xi, K1∞, τd, and τf can be approximated as
polynomials. Then, IQSS of Eq. (3) can be approximated as

IQSS(V, x) = GsiPsi(V) + GKxPK(V) + GK1PK1(V) + GbPb(V),
(A1)

where

Psi(V) = (0.027V + 1.155)(−0.033V − 0.309)(V − Esi),

PK(V) = (−0.0035V + 0.17)(V − EK),

PK1(V) = (0.0032V2 + 0.117V + 1.127)(V − EK1),

Pb(V) = (V − Eb).

Figure 8 compares the approximate and original formulations.
First, for the original model, there is little difference between the
versions with and without IKp, so IKp was neglected throughout the
present work. A comparison between the approximate and original
IQSS is shown in Fig. 8(a). Note that we need only the fitness around

FIG. 8. Comparison between the original and approximate formulations. (a) Com-
parison of IQSS. Gsi = 0.16, x = 0.4. (b) Bifurcation diagram. Gsi = 0.16. The
original and approximate bifurcation points p∗ are denoted by black and red
arrows, respectively. (c) Variation of approximate and practical xp∗ as Gsi is
changed.

the p and s states that are associated with EAD. The bifurcation
diagrams also coincide well [Fig. 8(b)]. Therefore, the approximate
formulations reveal well the bifurcation of the original model.

By setting IQSS = 0, we get from Eq. (A1),

x = −
GsiPsi(V) + GK1PK1(V) + GbPb(V)

GKPK(V)
, (A2)

which can be substituted into Eq. (2) to get Vp∗ at the Hopf bifurca-
tion point p∗,

Vp∗ = Q(Gsi, GK1),

with all parameters except Gsi, GK, and GK1 being replaced by their
control values. Note that GK is naturally eliminated, and thus, Vp∗

is independent of GK. The function Q(Gsi, GK1) is continuous and
smooth so that it can be expressed as a polynomial,

Q(Gsi, GK1) =
∞

∑

n=0

An(GK1)G
n
si, (A3)

where An(GK1) is a polynomial function of GK1. We assume the
terms with order higher than 2 can be ignored so that

Vp∗ ≈ A2G
2
si + A1Gsi + A0. (A4)

The rationality of this formulation was verified by the theoretical
results.

The Lagrangian interpolation method28 is applied to deter-
mine the coefficients An, as follows. First, we randomly choose
three values of Gsi within the physiologically reasonable range, say,
Gsi,i (i = 1, 2, 3). Then, we fix GK1 = GK1,1 and substitute Gsi,i into
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Eq. (2) to obtain numerically three true Vp∗ ,i values. Thus, Vp∗ can
be approximated as

Vp∗ =
(Gsi − Gsi,2)(Gsi − Gsi,3)

(Gsi,1 − Gsi,2)(Gsi,1 − Gsi,3)
Vp∗ ,1

+
(Gsi − Gsi,1)(Gsi − Gsi,3)

(Gsi,2 − Gsi,1)(Gsi,2 − Gsi,3)
Vp∗ ,2

+
(Gsi − Gsi,1)(Gsi − Gsi,2)

(Gsi,3 − Gsi,1)(Gsi,3 − Gsi,2)
Vp∗ ,3

= A2,1G
2
si + A1,1Gsi + A0,1.

In this way, the values of An,1 (n = 0, 1, 2), which depend on GK1,1,
can be determined. We repeat this process by fixing GK1 = GK1,2 and
GK1,3 to get, correspondingly, An,2 and An,3. Finally, the coefficients
An for n = 0, 1, 2 can be determined by the Lagrangian interpolation
as

An =
(GK1 − GK1,2)(GK1 − GK1,3)

(GK1,1 − GK1,2)(GK1,1 − GK1,3)
An,1

+
(GK1 − GK1,1)(GK1 − GK1,3)

(GK1,2 − GK1,1)(GK1,2 − GK1,3)
An,2

+
(GK1 − GK1,1)(GK1 − GK1,2)

(GK1,3 − GK1,1)(GK1,3 − GK1,2)
An,3

= r2,nG2
K1 + r1,nGK1 + r0,n,

in which r2,n, r1,n, and r0,n are known numbers. Thus, the coefficients
An for n = 0, 1, 2 can be explicitly expressed as

A2(GK1) = −147.51G2
K1 + 424.43GK1 − 328.02,

A1(GK1) = 72.85G2
K1 − 172.53GK1 + 125.02,

A0(GK1) = −7.03G2
K1 + 19.13GK1 − 34.63.

We substitute Eq. (A4) into Eq. (A2) and assume that xp∗ can
be approximated as a parabolic function of Gsi. Then, by using
Lagrangian interpolation again, xp∗ , can be obtained as

xp∗ ≈
B2G

2
si + B1Gsi + B0

GK

, (A5)

with

B2(GK1) = −2.43G2
K1 + 2.47GK1 − 0.71,

B1(GK1) = 0.45G2
K1 − 0.46GK1 + 1.74,

B0(GK1) = 0.004G2
K1 − 0.045GK1 − 0.07.

The agreement between the approximate and practical xp∗ on chang-
ing Gsi was assessed, as shown by Fig. 8(c). The approximate result
fits the original one perfectly.

An identical method was used for the kinetic parameters. The
bifurcation point is expressed as

Vp∗ = C2β
2 + C1β + C0,

xp∗ = D2β
2 + D1β + D0,

(A6)

with

C2(α) =
−8.23

α2
+

2.83

α
− 0.67,

C1(α) =
1.58

α2
+

20.81

α
− 2.19,

C0(α) =
0.34

α2
−

2.97

α
− 33.3

and

D2(α) =
0.84

α2
−

0.97

α
− 0.02,

D1(α) =
−0.58

α2
−

0.46

α
+ 1,

D0(α) =
−0.01

α2
+

0.62

α
.

APPENDIX B: DETERMINING 1V , 1x , δd , AND δf .

To obtain the theoretical curves in Fig. 3, the adjustable param-
eters 1V, 1x, δd, and δf must be chosen carefully. As long as they
satisfy certain conditions, the quality of the theoretical results are
robust against the variability of their values. The conditions are as
follows.

First, for EAD (i.e., scenario 1), 1x > 0 and 1V < 0 must be
satisfied, because the orbit approaches p∗ from upper left to lower
right in the x vs V plane, whereas for RFs (scenario 3), 1x < 0
and 1V < 0 must be satisfied because the orbit approaches s∗ from
upper right to lower left.

Second, consider δd and δf, which are associated with the
quality of Ip∗ and Is∗ . For Ip∗ , we have

Ip∗ = −aδV − bδd − cδf

≈ −bδd − cδf

= −Gsif∞(Vp∗ − Esi)δd − Gsid∞(Vp∗ − Esi)δf

= −Gsi(Vp∗ − Esi)
(

f∞δd + d∞δf
)

< 0, (B1)

dIp∗

dGsi

= −
(

Vp∗ − Esi + Gsi

dVp∗

dGsi

)

(f∞δd + d∞δf)

− Gsi

dVp∗

dGsi

(Vp∗ − Esi)

(

df∞

dVp∗
δd +

dd∞

dVp∗
δf

)

< 0, (B2)

dIp∗

dβ
= −Gsi

dVp∗

dβ
(Vp∗ − Esi)

(

df∞

dVp∗
δd +

dd∞

dVp∗
δf

)

− Gsi

dVp∗

dβ
(f∞δd + d∞δf) > 0, (B3)

dIp∗

dα
= −Gsi

dVp∗

dα
(Vp∗ − Esi)

(

df∞

dVp∗
δd +

dd∞

dVp∗
δf

)

− Gsi

dVp∗

dα
(f∞δd + d∞δf) < 0. (B4)

Note that the first term aδV in Ip∗ is much smaller than the other
two terms, so that it can be ignored, meaning δV has little effect on
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FIG. 9. Variation of Ip∗ and Is∗ as the
parameters are changed. The values at
the end of the curves are roughly Ip∗ and
Is∗ . The inset in each panel shows the
APs, which reach the critical points. The
blue and magenta curves are the null-
clines under different parameters. Note
that the kinetics do not affect the null-
cline. Different values of γ are used to
finely chose the APs, for the black and red
traces, respectively. (a) 5.72 and 2.41. (b)
0.181 and 0.467. (c) 3 and 6.32. (d) 0.149
and 0.1.

the results. Thus, we fix it to −0.2 mV throughout this work. If we
replace subscript p∗ with s∗, then we have

Is∗ < 0,
dIs∗

dGsi

> 0,
dIs∗

dβ
< 0,

dIs∗

dα
> 0. (B5)

The reasons for the above inequalities are as follows. Consider
dV/dt = −I ≈ Ip∗ and dV/dt ≈ Is∗ around p∗ and s∗, respectively.
Since V is always repolarizing to reach p∗ and s∗, then Ip∗ and Is∗

must be both smaller than 0. Equations (B2)–(B5) are based on
observations of the APs near the critical points p∗ and s∗, as illus-
trated in Fig. 9. We finely choose a specific AP that can reach the
critical point. When it is sufficiently close to the critical point, the
rate of change of the voltage dV/dt can roughly reveal the current
Ip∗ (or Is∗ ). Figure 9 shows dV/dt as the AP approaches the criti-
cal point for different parameters. We can see that as Gsi increases,
dV/dt falls near p∗ [Fig. 9(a)], whereas near s∗, it slightly increases
[Fig. 9(b)]. On the other hand, as β increases, dV/dt increases near
p∗, whereas it slightly decreases near s∗.

The results for α do not need to be calculated. dIp∗/dα

(dIs∗/dα) must have the opposite sign as dIp∗/dβ (dIs∗/dβ) because
dVp∗/dα (dVs∗/dα) and dVp∗/dβ (dVs∗/dβ) have the opposite signs
[in the expression for Vp∗ , α is in the denominators, whereas β is in
the numerators; see Eq. (A6)].

Therefore, the choices of δd and δf should simultaneously
satisfy Eqs. (B1)–(B5). If δd and δf are chosen in this way, the theo-
retical results in Eqs. (11)–(18) can reveal qualitatively well the real
conditions. Therefore, the present analytical forms are robust and
physically reliable.

APPENDIX C: RELEVANT RESULTS FROM OTHER

MODELS

We numerically investigated the AP dynamics in five other
updated ventricular myocyte models: (1) LRd for the guinea pig (by
Luo and Rudy36), (2) HUCLA for the rabbit (by Huang et al.8), (3)

FIG. 10. LRd model. The control values are PCa = 0.002 cm/s (permeability of
membrane to Ca2+, the modulation of which is equivalent to that of LCC conduc-
tance), GKs = 0.2 mS/µF (KC conductance), GKi = 0.75 mS/µF (conductance
of the K1 channel), and γ = 1. Each coordinate indicates the fold change of
the corresponding control value. (a) and (b) PCa vs γ . GKs = 0.2 mS/µF and
GKs = 0.3 mS/µF, respectively. (c) GKs vs PCa. The triangles indicate the param-
eter sets for plotting typical APs (black for EAD andwhite for NR), which are shown
in Fig. 15. (d) GKi vs PCa. (e) GKi vs GKs. (f) τf vs τd .
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FIG. 11. TP04 model. The control values are GCa = 0.0008 cm3/(µF s) (LCC
conductance), GKs = 0.036 nS/pF, GK1 = 5.405 nS/pF (conductance of the
K1 channel), and γ = 2. (a) and (b) GCa vs γ . GKs = 0.036 nS/pF and
GKs = 0.054 nS/pF, respectively. (c) GKs vs GCa. (d) GK1 vs GCa. (e) GK1 vs GKs.
(f) τf vs τd .

TP04 for humans (by ten Tusscher et al.37), (4) ORd for humans
(by O’Hara et al.38), and (5) GB for humans (by Grandi et al.39).
Figures 10–14 illustrate the parametric conditions for the behavior
of the models. In all the figures, each coordinate is the fold change of
the corresponding control value. As specific parameters are scanned,
the others are fixed to their control values, as stated in the captions.
For each model, we plot typical APs for NR and EAD (Fig. 15).

Although these models have different formulations and take
into account intracellular ionic cycling, which is not modeled in
LR1, the parametric conditions are similar to those of LR1 (with a
few differences). Panels (a) and (b) in each figure are produced by
different GKs values. We can see that the lowest LCC conductance
for EAD genesis is nearly unchanged as GKs varies, which was noted
in Sec. III C 1. In all the models, we can observe RFs at small γ .

FIG. 12. HUCLA model. The control values are GCaL = 300mmol/(cm,C) (LCC
conductance),GKs = 0.9 mS/µF,GK1 = 0.3 mS/µF, and γ = 1. (a) and (b)GCaL

vs γ . GKs = 0.9 mS/µF and GKs = 1.5 mS/µF, respectively. (c) GKs vs GCaL. (d)
GK1 vs GCaL. (e) GK1 vs GKs. (f) τf vs τd .

FIG. 13. ORd model. The control values are PCa = 0.0003 cm/s,
GKs = 0.008mS/µF, GK1 = 0.1908mS/µF, and γ = 1. (a) and (b) PCa

vs γ . GKs = 0.008mS/µF and GKs = 0.012mS/µF, respectively. (c) GKs vs
PCa. (d) GK1 vs PCa. (e) GK1 vs GKs. (f) τjCa vs τd . In this model, τjCa has the
major role in modulating the LCC kinetics.

However, also note that these models have some differences with
the LR1 model. The first is the RFp boundary in panels (a) and (b). In
LR1, this is a straight line, whereas in the other models, it is curved.
We think that this should be attributed to the stability of the q state.
In LR1, it is always globally stable. However, in the other models,
its stability depends on more complex factors, e.g., the intracellu-
lar calcium cycling. Second, RFs differs a little in the ORd and GB
models. In the RFs region, as γ becomes larger, EAD occurs rather
than NR. We hypothesize that in these models, the saddle is a saddle
focus in the high-dimensional phase space so that the orbit rotates
around the saddle as it leaves the point via the unstable manifold,
showing EAD-like voltage oscillations. We expect that all the differ-
ences are due to the complicated intracellular ionic dynamics, which
needs further investigation.

FIG. 14. GB model. The control values are PCa = 0.0001725 cm/s,
GKs = 0.01mS/µF, GKi = 0.195mS/µF, and γ = 1. (a) and (b) PCa vs
γ . GKs = 0.01 mS/µF and GKs = 0.02mS/µF, respectively. (c) GKs vs PCa. (d)
GKi vs PCa. (e) GKi vs GKs. (f) τf vs τd .
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FIG. 15. Typical APs of the models. The parameters are set to the control values
except GKs, which was varied so that EAD transitioned to NR. We plot APs with
three EADs to compare the typical EAD time scales of the different models. The
APDs are indicated on the panels. The α(GKs) values are (the first number is for
EAD and the second is for NR) (a) 0.92, 1.06; (b) 2, 4; (c) 2.2, 3; (d) 1.1, 1.6; (e)
0.56, 1.5; and (f) 2.8, 7.8. These parameter sets are indicated by triangles in the
corresponding GKs vs GCaL planes of Fig. 3(b) and Figs. 10–14.
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