
THIS IS THE AUTHOR’S VERSION OF AN ARTICLE SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

FICNN: A Framework for the Interpretation of
Deep Convolutional Neural Networks

Hamed Behzadi-Khormouji José Oramas

Abstract—With the continue development of Convolutional Neural Networks (CNNs), there is a growing concern regarding
representations that they encode internally. Analyzing these internal representations is referred to as model interpretation. While the
task of model explanation, justifying the predictions of such models, has been studied extensively; the task of model interpretation has
received less attention. The aim of this paper is to propose a framework for the study of interpretation methods designed for CNN
models trained from visual data. More specifically, we first specify the difference between the interpretation and explanation tasks
which are often considered the same in the literature. Then, we define a set of six specific factors that can be used to characterize
interpretation methods. Third, based on the previous factors, we propose a framework for the positioning of interpretation methods. Our
framework highlights that just a very small amount of the suggested factors, and combinations thereof, have been actually studied.
Consequently, leaving significant areas unexplored. Following the proposed framework, we discuss existing interpretation methods and
give some attention to the evaluation protocols followed to validate them. Finally, the paper highlights capabilities of the methods in
producing feedback for enabling interpretation and proposes possible research problems arising from the framework.

Index Terms—Model Interpretation, Deep Learning, Deep Neural Networks, Convolutional Neural Network, Interpretable Model,
Interpretable Machine Learning, Framework

F

1 INTRODUCTION

In recent years, there have been an increasing interest
towards understanding features internally encoded by Con-
volutional Neural Networks (CNNs) deployed in critical
applications, e.g. Covid-19 detection from X-Ray Images [1],
pedestrian detection [2], etc.

This task of analyzing the features encoded internally
in a model has been referred to by the interpretation and
explanation terms, interchangeably [3], [4], [5]. While [4]
and [5] indicate existing discordant definitions regarding
interpretation and explanation in the literature, these works
do not elaborate on the differences between them. Moreover,
these works follow the common practice of using these
terms interchangeably. [4] suggests semi-interpretability as a
transition between local interpretability methods, that take as
input a single image and justify predictions from it (model
explanation); and global interpretability methods, which ex-
plain the network/model as a whole (model interpretation).
In addition, it considers any feedback related to these tasks
as an explanation. In contrast, [6], [7] refer to the same tasks
as local explanation and global explanation, respectively.

As can be noted, despite surveying a common set of
existing methods, these studies consider different perspec-
tives to define the explanation and interpretation tasks. As a
result, there is no unified agreement on the exact definition
of specific terms which lends itself to confusion. To address
this weakness, we will begin by providing a specific defi-
nition for model explanation and model interpretation tasks as
follows:
Definition 1 (Model Interpretation). Given a set of internal

representation R from an existing [pretrained] model

• University of Antwerp - imec, IDLab - Department of Computer Science,
Sint-Pietersvliet 7, Antwerpen, 2000, Belgium.
E-mails: {Hamed.behzadikhormouji, jose.oramas}@uantwerpen.be

Interpretation Feedback

Synthetic Image

Aggregated Visualization Exemplar Images

Images Patches
Interpretation Module

AI System

Internal Representation

AI System

Explanation Module

Output

Output PredictionInput

Explanation Feedback

"Dog"

Model Interpretation

Model Explanation

Dataset

Fig. 1. Model Interpretation (top) investigates internal encoded features
being critical for model functioning. Model explanation (down) indicates
characteristics of an input sample affecting model decisions.

F and training data D, the main goal of the model
interpretation task is to determine what a model has
actually learned. That is, what informative characteris-
tics or features from the training data D that the model
encodes into the internal representation R. In practice,
this is related to producing insights into what internal
relevant features within R are critical for model func-
tioning (Fig. 1 top).

Definition 2 (Model Explanation). Given a specific input

ar
X

iv
:2

30
5.

10
12

1v
1 

 [
cs

.C
V

] 
 1

7 
M

ay
 2

02
3



THIS IS THE AUTHOR’S VERSION OF AN ARTICLE SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

example xi, a model F , and an output prediction fi pro-
duced by the model F , the model explanation task aims
at justifying why a given prediction/decision fi has been
made for that input by the model. In practice, this relates
to indicating what characteristics of the input example
were taken into account by the model for making the
produced prediction (Fig. 1 down).

To date, a considerable number of surveys/taxonomies
have been put forward along the research line of model ex-
planation [8], [9], [10], [11], [12]. [9] debates on the definition
of explanation along with the evaluation protocols followed
by methods from this research line. This is complemented by
the proposal of fundamental concepts that could assist their
categorization. [12] conducts a meta survey on the existing
model explanation surveys. More recently, [7] discussed the
shortcomings of existing taxonomies from this research line
and proposed a new one.

In comparison to the model explanation research line,
less attention has been paid to the model interpretation
methods [3], [4], [5]. There are also some studies about inter-
pretation of Generative Adversarial Networks (GANs) [13],
[14]. In this study, we focus on methods for visual in-
terpretation of convolutional neural networks. Despite the
fact that these works have investigated some aspects re-
lated to the model interpretation task, they suffer from
the following weaknesses. The first weakness is related to
the non-standard use of terminology which was mentioned
earlier. As a second weakness, they encompass both model
explanation and interpretation methods as interpretation
methods. However, these two groups tasks have different
characteristics and goals. Third, a side-effect introduced
by the wide coverage of both explanation and interpreta-
tion methods is that these surveys need to rely on very
coarse factors in order to be able to position the covered
methods with respect to each other. For example, [4] de-
fines local/global interpretability factors indicating whether the
method provides the output for a given individual sample
or whole of the dataset. As another example, [4] and [5]
define a factor indicating whether the method is applied
during the training phase or after the model being trained.
This factor is refereed by different terminologies namely pas-
sive/active methods [4] and Specific/Agnostic models [5]. Finally,
as fourth weakness, existing surveys consider a small range
of interpretation methods. This constitutes a significant gap
given the growing number of interpretation-related efforts
occurring in recent years.

To address these weaknesses, we propose a framework
for categorizing model interpretation methods. The frame-
work introduces a set of six specific factors targeting the
interpretation capabilities that these methods provide. Then,
these factors are used as axes for the positioning of existing
interpretation methods. First, among these factors we con-
sider feedback modality as the means used by interpretation
methods to provide feedback on the extracted insights, i.e.
the relevant features. Second, we further analyze the level
of semanticity of the provided feedback. This is a factor
usually overlooked in existing surveys. Third, we cover a
wider range of the interpretation methods, giving attention
to the latest methods and diagnose active research lines.
Finally, we conduct a discussion within and across the

groups defined by the proposed factors. In doing so, we
uncover research gaps in each group as well as in the visual
model interpretation research line as whole. Additionally,
we suggest some potential solutions for addressing the
identified gaps.

This paper is organized as follows: Section 2 intro-
duces the framework. In this section, a set of six factors
are defined. This is followed by the grouping of covered
interpretation methods on the proposed factors and their
detailed description. Section 3 provides a discussion over
the covered model interpretation methods respective to each
defined factor. Furthermore, we touch on the evaluation pro-
tocols followed for the validation of each method. Section 4
provides an overview on the surveys in both, model ex-
planation and interpretation, research lines which are used
for positioning our work. Finally, the paper is concluded in
Section 5.

2 A FRAMEWORK FOR MODEL INTERPRETATION
METHODS

We begin this section by describing the factors that will
serve as axes for the categorization of model interpretation
methods. Then, based on these factors we gradually catego-
rize the methods. At the end of this section, we summarize
the factors of the discussed interpretation methods in Ta-
ble 1.

Our framework characterizes existing interpretation
methods based on the following factors.

• Interpretation Capability Integration. This factor
describes the point on which interpretation capabil-
ities are added to a given base model. Two options
are possible. On the one hand, interpretation capabil-
ities can be provided after the base model has been
trained, i.e. in a Post-Hoc manner [15], [16], [17], [18],
[19], [20]. On the other hand, specific mechanisms
can be added to the base model at design time, i.e.
prior training, so that the resulting model is inter-
pretable post-training. Thus, producing a model that
is interpretable-by-design or inherently-interpretable [21],
[22], [23], [24], [25].

• Task Specificity. This factor refers to whether the
interpretation mechanism depends, i.e. task-specific,
or not, i.e. task-agnostic, on characteristics related to
the task addressed by the based model. For the case
of the classification task this factor could indicate
whether the interpretation mechanisms are depen-
dent on each individual class of interest (class-specific)
[15], [22], [18], [23], [20], [24] or whether it is general
across the dataset (class-agnostic) [16], [21], [17], [19].

• Feedback Semanticity. A concept can be defined as
an idea associated with properties that are semanti-
cally meaningful for humans [26]. In computer vision
problems, this semantically meaningful property can
be presented in different forms such as annotation
masks with text labels [16], bounding box with as-
signed captions [27], or part-level annotations [28].
This factor describes whether the feedback provided
by a given interpretation method can be associated
to a semantically meaningful concept [16], [17], [29].



THIS IS THE AUTHOR’S VERSION OF AN ARTICLE SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

This also includes whether such meaningful seman-
tics can be assigned/mapped to the internal units of
the base model.

• Annotation Dependance. This factor describes the
level of annotation required by the interpretation
methods in order to operate. For the case of the
image classification task [30], some methods depend
on image-level annotations [15], [31] originally used
to train the base model, while others on additional
detailed pixel-level annotations [16], [17], [29].

• Architecture Coverage. This factor indicates the level
to which the architecture of the base model being in-
terpreted is considered when analyzing the encoded
representation. In this regard, interpretation methods
may consider the whole architecture [15], [16], [17] or
focuses only on specific parts from it [21], [22], [18],
[19], [23], [20], [24].

• Feedback Modality. This factor describes the modal-
ity being used by interpretation methods to provide
feedback from the insight extracted from the infor-
mation internally encoded in the base model. This
modality can be a quantitative measurement such
as contribution of identified relevant features on the
model performance [32] or different forms of visu-
alization. We refer to this as interpretation visualiza-
tion. Examples of different visualizations of the inter-
pretation feedback are synthetic images [33], [34], av-
erage of visualizations [15], extracted superpixel [18],
image patches [19], [20], heatmap visualization [22],
[35], [36], or examples of input images [23].

In what follows, using the proposed framework, we first
divide existing efforts based on the Interpretation Capability
Integration factor, i.e. as either Post-Hoc or Interpretable-by-
Design. Then, the rest of the factors will be discussed within
each of these two categories.

2.1 Post-Hoc Interpretation Methods
2.1.1 Class-Specific
Class-Specific methods provide interpretability, as the name
suggests, at the level of classes. Put it differently, the meth-
ods identify features in the latent representation for each of
the classes of interest. There is a group of post-hoc interpre-
tation methods that apply the approach of internal represen-
tation inversion. These methods aim to generate synthetic
images from the internal representations to show visually
the features encoded by the models. These methods can be
classified as Class-Specific [37] [38] or Class-Agnostic [34]. The
Class-Agnostic methods will be discussed in Section 2.1.2.

An example of the internal representation inversion in
Class-Specific category is [37]. The method designs an image
reconstruction loss function to reveal class-relevant features
learned by a model. We refer to this method as Class Scoring
Model. The proposed approach tries iteratively to estimate
a natural image from an initially randomized image such
that the output score of the given class for that image is
maximized. The resulting image depicts content relevant to
a target class learned by the model.

[38] extended the Class Scoring Model [37] and Fea-
ture Inversion [33] (discussed in Sec. 2.1.2) by adding a
non-parametric patch prior to their regularization term to

improve the reconstructed images. Also, they consider the
activations from fully connected layers, while the Feature
Inversion and the Class Scoring Model utilize the activa-
tions from convolutional filters and output logits in their
optimization procedure, respectively. As output, the Class
Scoring Model [37] and [38] generate visualizations of inter-
nal representations. The visualizations reveal some patterns
similar to those present in the dataset seen by the model,
which are understandable by humans. However, the visual-
izations produced by these methods suffer from noise and
unclear patterns that lend themselves to confirmation bias
and introduce subjectivity.

Another example of this category is [39]. It conducts
association rule mining via the Apriori algorithm [40], as a
means to identify frequent visual patterns encoded within
a model. To do so, it utilizes the activations computed by
a fully-connected layer from cropped image patches fed
to the model. These patches are then grouped into two
categories: the target class and the background (including
patches from other classes) which is followed by the creation
of a binary transaction database from them. Each transaction
contains the indices of neurons in the fully-connected layer,
along with an extra item indicating the index of one of the
two categories (binary transaction database). Finally, visual
patterns are identified by extracting frequent itemsets of
the indices in the fully-connected layer from the transaction
dataset.

Aiming to identify internal relevant features of each class
of interest, VEBI [15], opposite to [39], utilizes the feature
maps produced by all layers of a CNN model. VEBI enables
model interpretation through two steps: 1) class-specific
relevant feature identification, and 2) visual feedback gen-
eration. The identification of relevant features is formulated
as a µ-LASSO problem where indicators ωc are obtained
for the aggregated internal activations produced by each
image xi from a given class c. Visual feedback of these
relevant features is produced via average visualizations
produced from image crops extracted from regions where
the identified relevant features have high activation.

In contrast to [15], TCAV [41] proposes Concept Activa-
tion Vectors (CAV) that enables model interpretation with
a partial coverage of the architecture that defines the base
model. To compute CAVs, the dataset is re-grouped to
define a binary setting in which one group is composed by
images illustrating visual patterns of interest in one class
(target class), and the other by a set of random images as
other class. Then, a linear classifier is trained to classify the
activations of these images as computed by the neurons
of a given layer. The resulting classifier, called CAV, is a
vector with the same length as the number of neurons
in the layer serving as input. This vector highlights the
representation of the class of interest in the considered layer.
Then, the method uses the CAVs and directional derivatives
to calculate the sensitivity of the target class to the CAV. To
do so, it computes the difference between output logits of
the target class for the original activations and the modified
activations, i.e., the summation of the CAV activations and
the original activations. This quantitatively measures the
sensitivity of the model with respect to the representation
of any class in the given layer of interest. Finally, visual
feedback is provided via examples of the target class whose



THIS IS THE AUTHOR’S VERSION OF AN ARTICLE SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

activations of the target convolutional layer has higher
similarity to the obtained CAV.

In contrast to VEBI [15] and similar to TCAV [41],
ACE [18] enables model interpretation with a partial cover-
age of the architecture that defines the base model. It utilizes
the k-means algorithm to cluster the feature maps of a given
layer for a subset of image superpixels belonging to a given
class. The superpixels corresponding to each cluster refer to
similar visual patterns depicted in the input images.

Instead of applying a clustering approach as in ACE, In-
vertible Concept-based Explanation (ICE) [42] extends ACE
by decomposing the feature maps computed from the last
convolutional layer via Non-negative Matrix Factorization
(NMF) [43]. Following NMF, the feature maps A∈Rh×w×d

are decomposed into three components namely dimension-
reduced feature maps A′∈<h×w×d′

, dimension reducer ma-
trix V ∈<d′×d and the residual error U . During the training
phase, the reducer matrix V is trained on the images from a
given class in order to decrease the complexity of the feature
maps’ channels d. Afterwards, the parameters of the reducer
matrix are fixed and considered as class-relevant vector
bases representing directions for different representations in
the latent space. At test time, given computed feature maps
for a set of test images, the reducer matrix is applied to
generate new feature maps with lower number of channels
(i.e., A′∈<h×w×d′

) for each feature maps pertaining to an
image. Then, Global Average Pooling is applied on each
channel of the new feature map and the resulting value is
considered as its score. The images with higher scores are
selected. Then, for each selected image, the channel with
the highest score is chosen and binarized. The binarized
map is resized to the size of the image and overlaid over
it to illustrate the extracted visual pattern. The fidelity of
the learned reducer matrix is evaluated by measuring the
effect that using inverted feature maps, computed via NMF,
have on classification accuracy. In addition, the consistency
of the patterns depicted in the generated visualizations is
evaluated in a user study.

Concept Attribution [44] identifies class-specific internal
units in two stages. In the first stage, it learns a global input
feature occluder for a given class which changes the predic-
tion on the image with the lowest input feature perturbation.
In the second stage, it aims to assign a class-specific weight
to each convolutional filter via the obtained global input
feature occluder. To do so, it aggregates the difference be-
tween activations computed from the original input images
and the modified (occluded) ones. These differences are then
considered as the weights of their respective convolutional
filters. To enable visualization of the filters with the highest
score, it utilizes the technique of internal representation
visualization [45] to synthesize images which maximise
the activations generated by these filters. These synthetic
images illustrate the features encoded by the identified filter.

[31] provides interpretation by extracting class-specific
subnetworks which include critical internal units relevant to
a given target class. Here we refer to this method as Critical
Subnetworks. To do so, the method assigns gates/weights
to each internal convolutional filter in the base model.
These gates are expected to represent importance weights of
those filters for a given class. During the training phase of
these gates, the output feature maps are multiplied by their

corresponding gate resulting in new feature maps which are
passed to the higher layers. The method learns these gates
by minimizing binary cross-entropy (BCE) loss such that
the extracted subnetwork has an accuracy close to that of
original network while it deactivating class-irrelevant filters.
In addition, to extract each subnetwork for a given class, a
binary dataset is created including images from the target
class (i.e., positive class) and images from the rest of the
classes (i.e., negative class).

[20] has proposed a framework, called PACE, which is
defined by a set of autoencoders whose latent representation
vectors are trained specifically with respect to each class
of interest. The encoder components transform the feature
maps of the input images computed by a part of the model
(i.e., one convolutional layer), into the latent space vectors.
Then, the decoder components project the vectors back to
the space of the convolutional feature map. The learning
of relevant features per class occurs in these latent space
vectors. This is achieved by measuring the similarity matri-
ces between representations of the latent space vectors and
the encoder representations. The similarity matrices w.r.t the
learned representations of a given class can be treated as
explanation masks to recognize the relevant region in the
input images after suitable resizing.

Discussion. While VEBI [15] and PACE [20] utilize
the images of all classes to identify/learn relevant fea-
tures in the latent representations, the Class Scoring
Model [37], [38], [39], TCAV [41], ACE [18], Critical Subnet-
works [31], ICE [42], and Concept Attribution [44] require to
be run in separate stages considering image examples from
one class at a time.

In addition, regarding the Annotation Dependency factor,
the Class Scoring Model [37], [39], VEBI [15], TCAV [41],
Critical Subnetworks [31] and PACE [20] rely only on image-
level labels. In contrast, [38], ACE [18], ICE [42], and Con-
cept Attribution [44] are completely independent of any
image label and/or pre-defined annotations.

Furthermore, regarding the Feedback Modality factor, the
methods utilize different modalities to enable interpretation
of the internally-encoded representations. For example, gen-
erating synthetic images depicting the internal representa-
tions in the Class Scoring Model [37] and [38], creating av-
erage visualizations of image crops w.r.t an internal unit in
VEBI [15]. ICE [42] highlights regions of input images using
binarized heatmaps. Other works provide visualizations in
the form of similar visual patterns in the dataset (i.e. exem-
plars) such as image patches in [39], PACE [20], clusters of
superpixels in ACE [18], synthesised images maximizing the
activations in TCAV [41] and Concept Attribution [44]. Also,
providing examples of the dataset in TCAV [41] is another
modality to provide interpretation feedback. Examples of
the feedback modality of each method can be seen in Fig. 3,
5-7.

Regarding the Feedback Semanticity, none of the methods
guarantees that the provided interpretation feedback will
have a semantic meaning.

Regarding the Architecture Coverage factor, while
VEBI [15], Concept Attribution [44], and Critical Subnet-
works [31] enable interpretation by considering the feature
maps of all the convolutional layers, the other reviewed
works only consider the feature maps of a small part of



THIS IS THE AUTHOR’S VERSION OF AN ARTICLE SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

the model, thus reducing the level of interpretation of
the model. Furthermore, with the exception of [38], [39],
VEBI [15], and Critical Subnetworks [31], none of the dis-
cussed works are able to link the internal units of the base
model with the identified/learned relevant representations,
thus reducing their intelligibility.

2.1.2 Class-Agnostic
In contrast to Class-Specific methods, Class-Agnostic methods
enable interpretation by identifying relevant latent elements
without exploiting or imposing class-specific constraints.

Early works of this category followed the internal rep-
resentation inversion approach, more specifically Feature
inversion [33] and Network Inversion [34]. [33] put forward
the feature inversion approach to reconstruct an image from
the internal representation of a given convolutional filter.
The resulting image aims to reveal features learned by a
convolutional filter. To do so, the method applies an internal
representation reconstruction loss function which considers
the Euclidean distance between internal representations of
a given image and the reconstructed one plus a regularizer
enforcing a natural image prior. This loss function is mini-
mized using the gradient descent technique.

Different from Feature Inversion [33] which minimizes
an internal representation reconstruction error for a spe-
cific target image in the dataset, the Network Inversion
method [34] minimizes an image reconstruction error. To
do so, the loss function in Network Inversion measures
the intensity difference between an original image and the
reconstructed one by a network. The network is fed by the
internal representation of a given convolutional layer and
outputs a reconstructed image which is the input to the de-
fined loss function. In this method, the network weights are
trained in such a way that the loss error between the original
images and their reconstructed counterparts is minimized.

The methods explained above namely; Feature Inver-
sion [33] and Network Inversion [34] have studied the
encoded features by generating visualizations from inverted
internal representations. There are other Class-Agnostic Post-
Hoc methods proposing different methodologies to interpret
the encoded features. For instance, even thought it is not a
model interpretation method per se, the methodology used
by [46] for investigating the emergence of object detectors
in models is quite related. More concretely, given a convo-
lutional filter, the method, first, collects the images that are
highly activated by that convolutional filter. Second, given
each of the images in the set, the method randomly selects
multiple patches of the images and pushes them through the
model. Third, the difference between activations produced
by the original image and its patches is computed and
considered as discrepancy map. Next, the average of all dis-
crepancy maps are calculated. Finally, a region of interest is
highlighted by the average map for all the collected images.
Also, in this work, convolutional filters are annotated by a
semantic label in a user-based procedure.

Taking the analysis above a bit deeper, [47] identifies
sparse sets of internal units encoding visual attributes. To
do so, it utilizes activation maps of all the images in the
dataset produced by all the layers of a CNN model. Then,
it formulates a µ-LASSO problem to learn an indicator
ωj for each annotated visual attribute j. The indicator ωj

represents the indices of internal units encoding the visual
attribute j. Being the method that served as inspiration to
VEBI [15], led to both methods having some similarities.
However, the main difference between [47] and VEBI, lies in
the fact that the former is independent of class labels related
to the original classification task. Therefore, it is capable
of identifying class-agnostic units which represent visual
attributes.

Linear Probes [32] investigates the dynamics of con-
volutional layers. Feature maps are extracted from each
convolutional layer, and a linear classifier is fitted to each
layer separately in order to determine the class label. This is
done in order to investigate the linear separability of each
layer. By studying the accuracy of each classifier, it was
observed that the degree of linear separability of the feature
maps of the layers increases as we reach the deeper layers.

Different from the Linear Probes that map an internal
representation to a class label, [48] proposed a Reversed
Linear Probing approach that maps concept labels into a
quantized internal representation. To do so, first, the method
utilizes the k-means algorithm to cluster the internal repre-
sentations of a given convolutional layer, pertained to the
input images, in order to quantize the representations into
cluster indices. Second, in order to introduce the concepts
in the form of discrete attribute vectors (i.e., presence or
absence of a concept), the method utilizes a set of pre-
trained models. The output prediction, the predicted classes,
of all the pre-trained models for a given input image are
concatenated to form an attribute vector. As a result, there
is an attribute vector, as concept label, and a cluster indices
vector for each image and its internal representation. Finally,
the method trains a linear model to map attribute vectors,
as concepts, to cluster indices as the quantized form of the
internal representations for the given images. Consequently,
it can analyze the concepts encoded in the internal repre-
sentation of a given input image. Hence, an image is linked
with the concepts vector predicted by the linear model for
its corresponding quantized representation.

Both Linear Probing and Reversed Linear Probing pro-
vide interpretation in the form of a set of classifiers to
understand the internal representations. However, they are
not able to assign a human-understandable concept to the
internal units, thus reducing the level to which they enable
interpretation of the base models.

[49] enables interpretation by assigning a quantitative
factor, called Selectivity Index, to each convolutional filter in
a given pre-trained model. The Selectivity Index is defined
based on the activations produced by a convolutional filter
for a pre-defined number of cropped images whose activa-
tions are higher than other cropped images in the dataset.
The patches of the images used for each convolutional filter
covers a variety of class labels. Hence, the Selectivity Index
can be used to quantitatively analyze each convolutional
filter either in a Class-Specific or Class-Agnostic manner. This
is done by calculating the relative frequency of each class via
activations of its image patches in the set. To measure this
frequency, first the relative activation of the image patches
w.r.t a filter is obtained. It is defined by the fraction of
the activations of the patch from the maximum activation
computed by the filter from all the patches in the set.
Second, a normalized summation of the relative activations



THIS IS THE AUTHOR’S VERSION OF AN ARTICLE SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

of the image patches for each class is computed individually.
Finally, the number of classes whose summation of relative
frequency is higher than a threshold is selected as class
label(s) for the investigated filter. In this line, each internal
unit can be linked to either a specific class label or multiple
class labels. The average of the extracted patches of the
images for each unit is then calculated to show the patterns
learned by that convolutional filter.

Different from the above mentioned methods, there is
a group of the Class-Agnostic Post-hoc methods that mea-
sure the alignment between internal representations and
annotation masks. One example of this groups is Network
Dissection [16]. This method is usually applied in conjunc-
tion with the Broden dataset which is composed by images
from several existing datasets. This provides Broden with
a vast variety of semantic concepts and their correspond-
ing annotation masks for texture, objects, and object-parts.
Using this external dataset, the dissection method measures
the alignment between thresholded feature maps computed
in the convolutional filters of a given base model with
annotation masks from Broden. Then, the semantic label
whose annotation masks have the highest overlap with
the feature maps is assigned to the filter that produced
the activations. As a result, a list is produced indicating
the classes/semantic concepts from the Broden dataset that
were matched by the internal activations of a given base
model.

Inspired by Network Dissection, [17] proposed Net2Vec,
a method for quantifying and interpreting the level to which
meaningful semantic concepts are encoded by filters in
CNNs. Different from Network Dissection which aims to
link a single unit with an annotated semantic concept, in
Net2Vec this assignment is done in a many-to-one man-
ner. More specifically, the feature map Mk(xi) produced
by the weighed sum of multiple k filters are linked to a
single concept. Compositional Explanations [29] extended
Network Dissection to find logical compositions of abstract
concepts encoded by the convolutional filters of the last
convolutional layer. The intuition is that a convolutional
filter may not be just a detector for one concept, but rather
a composition of complex detectors characterizing multiple
concepts. This is also different from Net2Vec which finds a
combination of convolutional filters encoding only one con-
cept. Compositional Explanations modified the Intersection-
over-Union step, used by Network Dissection to measure
overlap w.r.t. semantic concepts, to consider logical compo-
sition operations such as disjunction (Or), conjunction (And),
and negation (Not) across different concepts. The resulting
method is different from Network Dissection where only
logical conjunction (And) between an internal representation
and one concept is considered. Therefore, Network Dissec-
tion assigns each internal unit to a single concept, while
Compositional Explanations assigns a convolutional filter
to a composition of pre-defined concepts. Since, the problem
of finding the best logical composition of concepts requires
an exhaustive search, the method utilizes the Beam search
algorithm to find an approximated solution to the problem.

[19] proposed an interpretation method, which is in-
spired by topic modeling methods [50] [51]. Thus, through-
out this paper, we refer to it as Topic-based interpretation. The
method from [19] discovers topics within the activations

of a given layer which are shared across all the classes
of interest. These topics at the same time represent visual
patterns in the dataset. However, the visual patterns covered
by the identified topics do not necessarily possess a semantic
meaning. Thus reducing their interpretation capability.

Similar to PACE [20], from the Post-Hoc Class-Specific
category, [52] utilizes generative models to provide a level
of interpretation for the encoded features. More specifically,
it applies a discrete variational autoencoder (DVAE) on the
feature maps of a given layer to learn a binary compressed
representation that drives the predictions made by the base
model. Given the binary nature of the compressed represen-
tation, the method applies an intervention mechanism such
as a flip on the encoder output to modify the reconstructed
image. Then, the originally reconstructed image is qualita-
tively compared with the modified one to detect whether
there is any bias in the representations internally learned
by the model. While this method is capable of generat-
ing visualizations from learned compressed representations,
these visualizations do not necessarily possess a semantic
meaning.

Discussion. Regarding the Annotation Dependency factor,
[47] depends on annotations of visual attributes, while
the attributes used in Reversed Linear Probing [48] are
in the binary vectors created by concatenating class labels
predicted from a set of models. Network Dissection [34],
Net2Vec [17], and Compositional Explanations [29] require
expensive pixel-level annotations for their respective pro-
cedures. This dependency enables these methods to link
internal units with a semantic meaning. In contrast, Linear
Probes [32], Selectivity Index [49], Topic-based interpreta-
tion [19], and [52] utilize image-level class labels in their
interpretation procedure.

Regarding the Feedback Modality factor utilized in the
methods, Feature Inversion [33] and Network Inversion [34]
are able to generate a synthetic image for each given input
image. This is similar to those of Class Scoring Model [37]
and [38], which can illustrate the patterns learned by inter-
nal units. Unlike these methods, Network Dissection [34],
Net2Vec [17], and Compositional Explanation [29] highlight
the regions for a set of input images whose activations, com-
puted by the given convolutional filter(s), have the highest
overlap with the annotations of a given semantic concept. In
addition, [46] and Topic-based interpretation [19] produce
visualizations of the image patches corresponding to the
learned relevant features. Selectivity Index [49] generates
visualizations from the average of images patches corre-
sponding to the identified internal relevant units. On the
contrary, instead of producing image patch visualizations,
[47], Reversed Linear Probing [48], and [52] present a set
of image exemplars containing similar patterns respective
to identified internal units, learned clusters and decoders,
respectively. Using a different modality, Linear Probes [32]
reports the accuracy of the learned classifiers as the feed-
back of analyzing the linear separability of the internal
representations encoded in the layers. With the exception of
Network Dissection [16], Net2Vec [17], and Compositional
Explanation [29], none of the above mentioned methods
guarantee or provide a quantitative procedure that the
highlighted/extracted regions in the image data necessarily
possess a semantic meaning. Examples of the feedback



THIS IS THE AUTHOR’S VERSION OF AN ARTICLE SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

modality of each method can be seen in Fig. 3-7.
Taking the capability of providing semantic feedback

(i.e., Feedback Semanticity factor) into account, it was ob-
served that [46], [47], Network Dissection [16], Net2Vec [17],
and Compositional Explanations [29] effectively address
the task of linking internal units of a base model with
semantic meaning. This capability was not possible in the
methods from Sec. 2.1.1. Moreover, excepting these works,
none of other reviewed works in the Post-Hoc Class-Agnostic
category are able to associate semantic labels to the internal
units of a given pre-trained model, nor assigning a semantic
labels to the provided feedback, i.e., the generated visual-
ization feedback of the interpretation.

Finally, regarding Architecture Coverage factor, [47] con-
siders feature maps produced from all convolutional layers
to provide interpretation. Along this line, [46], Network Dis-
section [16], and Net2Vec [17], although, provide insights for
each convolutional filter and layer, respectively, they should
be run separately on one or small sets of the filters at each
time. The possible reason is that their methodology is able to
provide interpretation for limited parts of a model instead of
considering their relation. In contrast, other reviewed works
in this category cover partially the representations in the
architectures. Hence, these methods are not able to provide
a complete interpretation of the base models.

2.2 Interpretable-by-Design Methods

Methods belonging to this category, follow the idea of
designing learning algorithms so that the resulting model
after training has specific properties that make it inter-
pretable/explainable without the need of additional [post-
hoc] processes. Similar as before, we group the discussion of
methods from this type based on the Task Specitivity factor.
Then, additional factors are discussed gradually within each
group.

2.2.1 Class-Specific
One of the early deep Class-Specific Interpretable-by-Design
methods was proposed by [53] with their proposal of Cap-
sule Networks. Each layer contains a group of neurons
called capsule. The activity vector of these capsules encodes
spatial information as well as the probability of an object
or object-part being present. This is done by introducing
an iterative routing-by-agreement mechanism which pre-
serves the spatial relations among encoded features. In this
mechanism, lower-level capsules model lower-level features
coming from the input and link its output to capsules in
the following layers. In order to determine which higher
capsule should be routed to, the method defines a weight
matrix representing the agreement relation between the
lower capsules and the higher ones. Therefore, the lower
capsule computes a prediction vector of the higher capsule
by multiplying its own output by the weight matrix. Al-
though, in theory, the method is expected to preserve the
spatial relations among the encoded features, it does not
provide any feedback modality to illustrate the learned spa-
tial relations, nor measuring their alignment with semantic
concepts.

Different from Capsule Networks, which introduce
a new module/component (capsule layers) for inducing

model interpretability, [54] proposes Interpretable Convo-
lutional Filters. This method adds a new term to the train-
ing loss, called filter loss, to regularize the representations
learned by each convolutional filter in a given layer. This
filter loss pushes a convolutional filter to focus its activation
on a specific spatial location of a class. To do so, it defines
a set of masks with the same spatial resolutions of the
feature maps computed by a given filter. Each mask follows
a Gaussian distribution in a specific location as the ideal
distribution of activations computed by that filter. Then,
the filter loss is defined as the negative mutual information
between a set of feature maps computed by the filter and the
masks of the target class. Minimizing this loss guarantees
that the convolutional filter encodes a distinct ”part” of a
class. Moreover, it constrains the activations of a filter to a
single part of an object, rather than repetitively appear on
different regions covering the object.

Taking the Interpretable Convolutional Filter [54] into
account, [55] enables interpretation of a CNN through the
construction of class-specific decision trees along with the
modification of the last convolutional layer to focus on the
object parts. The decision tree is constructed based on a
bottom-up hierarchical clustering approach. Here, we refer
to this method as Interpretable CNN Decision Tree. In order
to simplify the construction of the tree, the method re-trains
the last convolutional layer using the filter loss proposed
in [54] prior to following the procedure for constructing
the tree. This step fine-tunes the last convolutional layer to
recognize specific object parts. Next, the receptive fields of
each convolutional filter are computed. Then the part from
the images which frequently appears in the receptive filed
is considered as the part label for the filter.

Regarding the construction of the tree, in the first step,
each node encodes the specific rationale for the prediction
for each image. In the second step, in an iterative manner,
two nodes with the highest similarity are merged to create
a new node in the second level of the tree. Then, for each
new node, a linear loss function is defined to learn a sparse
weight vector representing the convolutional filters. The
resulting sparse vector shows the contribution of the filters
to the predictions at a specific level of the tree for the set
of images merged in the newly created node. Therefore,
each node of the tree encodes the internal representations of
the convolutional layer into elementary concepts of object
parts. The method additionally measures the contribution
of each of the parts to the prediction at each level of the
tree using the learned sparse vector. Hence, each node in
each level of the tree is considered as a partial description
of the decision mode of the CNN on that level of the tree
for a given prediction. Finally, given a testing image the
CNN computes an output score for the prediction. Then, the
decision tree estimates the decision mode of the prediction
at each level. Since each node in the tree has encoded a
set of convolutional filters such that each one represents a
specific part, thus each estimated decision mode explains
the contribution value of the parts, presented at that level, to
the prediction. In addition, it is able to highlight the image
examples as well as image patches encoded in each node
via visualizations of the receptive field whose convolutional
filter indices have been indexed in that node.

Different from Interpretable Convolutional Filter [54]



THIS IS THE AUTHOR’S VERSION OF AN ARTICLE SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

and Interpretable CNN Decision Tree [55] which use a loss
term to steer the last convolutional layer to learn inter-
pretable representations, [22] has introduced a network ar-
chitecture which includes a new interpretable module. The
architecture called prototypical-part network (ProtoPNet),
includes a prototype layer between the last convolutional
layer and the fully connected layers. This layer includes
class-specific trainable vectors which are responsible for
learning prototypical parts of their target class.

During the training phase, given an input image, the
model is able to identify several parts of the input with
high similarity with trainable prototypical vectors of some
classes. To do so, the method follows an iterative training
algorithm composed by two stages. In the first stage, keep-
ing the classifier parameters fixed, the method optimizes
jointly the parameters of the convolutional filters and the
prototypical vectors in the prototype layer. The proposed
loss function computes L2 distance between the feature
maps of the last convolutional layer and each prototypical
vector in order to cluster the representation of the images
around the similar prototypical parts of the their ground-
truth classes. In the second stage, keeping the parameters of
the convolutional filters and the prototype layer fixed, the
method optimizes the parameters of the classifier in order
to classify the input images via the learned prototypical
vectors. Moreover, the method can generate a heatmap
visualization of the learned prototypical parts for each input
image.

Instead of learning prototypical parts of the input images
in ProtoPNet [22], Concept Whitening [23] put forward a
built-in module that is composed by whitening and orthog-
onal transformations. These operations aim at aligning the
latent space of the internal units with similar visual patterns
emerging in a predefined set of images. In this method, two
types of data are considered for the training phase. First,
D = {xi, yi}ni=1 is a dataset that includes n samples and
their labels for training the based model. Second, the m aux-
iliary datasetsD1, D2, D3, ..., Dm(Dm ⊂ D) where each one
contains instances that depict a common visual pattern for
optimizing the orthogonal transformation matrix. Similar to
the ProtoPNet training algorithm [22], Concept Whitening
has a training algorithm including two stages. In the first
stage, the parameters of the base model are optimized. In the
second stage, keeping the base model’s parameters fixed,
the parameters of the transformation module are optimized
to separate the latent spaces of the last convolutional layer
such that each direction in the latent space encodes a specific
visual part in the dataset.

Inspired from ProtoPNet, [24] combined the prototype
layer structure of ProtoPNet and Attention-based MIL pool-
ing. Their method, known as ProtoMIL, is capable of learn-
ing representations for a bag of instances.

[35] have proposed TesNet architecture to improve the
diversity and discriminative properties of the prototype
layer in ProtoPNet. To do so, first, an orthonormal con-
strain is added to the loss function to push prototypical
vectors, within prototype layer, from different classes apart
from each other. Second, the method applies Projection
Metric [56], a distance metric on the Grassmann manifold,
to separate the prototypes of each pair of classes. These
two constraints help to minimize the correlation between

prototypes within and between each pair of classes. This
method utilizes as same two-stage training algorithm as that
of ProtoPNet [22].

Different from existing case-based and prototype-based
methods namely; Case-based reasoning [21], ProtoPNet [22],
Proto Tree [57], and TesNet [35], which use spatially rigid
prototypes, Deformable ProtoPNet [36] have recently pro-
posed the use of spatially flexible prototypes. This property
enables prototypical vectors withing prototype layers to
adaptively change their relative spatial positions w.r.t to the
input images. As a result, the prototypical vectors will be
robust to variations in pose and context, i.e., detect object
features with a higher tolerance to spatial transformations,
as well as improve the richness of their visualizations. This
spatial flexibility property is defined by an offset function
which adds some offset to the location of input patches of
feature maps, thus enabling each prototypical part to move
around when it is applied on a spatial location. Moreover,
following a similiar orthogonality loss as in TesNet [35],
Deformable ProtoPNet defines an orthogonality loss be-
tween all the prototypical vectors within a class to avoid
overlapping between them. This is different from TesNet
which applies this property among each pair of prototypical
vectors in a class-agnostic manner.

Discussion. Regarding the Annotation Dependency fac-
tor, Capsule Networks [53], Interpretable Convolutional
Filter [54], Interpretable CNN Decision Tree [55], Pro-
toPNet [22] and its Class-Specific extensions namely, Pro-
toMIL [24], Tesnet [35], and Deformable ProtoPNet [36] as
well as its Class-Agnostic extension ProtoTree [57] (reviewed
in Sec. 2.2.2) depend only on image-level labels. In contrast,
CW [23] requires, in addition to the image label, an extra
dataset for the procedure of latent space alignment, i.e.,
training the transformation module.

Furthermore, it should be noted that ProtoPNet [22] and
the extensions mentioned above apply a built-in module
after the convolutional layers to provide flexibility in the
feature learning process taking place in those layers. In a
similar, in the context of capsule networks, specific com-
ponents are present between capsule layers that determine
the way activations are routed across layers. In contrast,
CW [23] enforces each convolutional filter of a given layer
to align its latent representation to specific input images.
Complementary to the previous efforts, Interpretable Con-
volutional Filter [54] defines a loss term to regularize the
representations of convolutional filters, instead of injecting
a direct transformation module.

Regarding the Feedback Modality, the output of each
prototypical vector in the ProtoPNet [22], ProtoMIL [24],
TesNet [35], and Deformable ProtoPNet [36] can be visu-
alized for the input images which have the closest patch
to those encoded by the prototypical vectors. This visual-
ization can be generated in two forms: image patch and
heatmap visualization. The heatmap visualization is gen-
erated by superimposing the output of the similarity map
computed between a feature map and a prototypical vector
on the input image. In addition, these methods highlight
the patches of input images whose feature maps have the
closest distance (highest similarity) to one of the learned
prototypical vectors. Fig. 5-7 show examples of the feedback
modality in each of the discussed method in this category.



THIS IS THE AUTHOR’S VERSION OF AN ARTICLE SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

In contrast, CW [23] provides only exemplar images,
illustrating similar patterns, which produce the highest
activation for a given convolutional filter. Moreover, Inter-
pretable Convolutional Filter [54] and Interpretable CNN
Decision Tree [55] compute the receptive fields from a spa-
tial locations in the feature maps with the highest activation
value from the filters to highlight the encoded visual parts
in the filters. This is done in order to show how each convo-
lutional filter have been aligned to a specific visual pattern.
Interpretable CNN Decision Tree [55], additionally, illustrate
the examples of the dataset showing similar patterns.

Different from the above, Capsule Networks [53] do not
provide any feedback from learned representations in the
capsule layers. A common practice to produce visualizations
of the representation is by attaching a decoder and recon-
structing the image when a given part of the representation
is ablated.

Regarding the Feedback Semanticity, prototype-based
methods only generate visualization of the learned proto-
types. With the exception of Interpretable Convolutional
Filter [54] that takes advantage of Network Dissection [16]
to quantitatively evaluate the semantic meanings of filters
representations, there is no guarantee that the extracted
patterns align w.r.t semantic concepts.

Finally, concerning the Architecture Coverage factor, these
methods only provide partial interpretability. The capsule
units in the capsule layer in Capsule Networks [53], the
interpretable filters in the last convolutional layer in Inter-
pretable Convolutional Filter [54] and Interpretable CNN
Decision Tree [55], prototype layer in ProtoPNet [22], Pro-
toMIL [24], TesNet [35], and Deformable ProtoPNet [36] as
well as filters wrapped by the transformation module in
CW [23] are the only units that become interpretable - the
features encoded in the rest of the units that define the
architecture (convolutional and fully-connected layers) are
still opaque.

2.2.2 Class-Agnostic
One example of this category is the Case-based reasoning
through prototypes as proposed in [21]. The method uti-
lizes an autoencoder to reduce the dimensionality of the
input and to learn useful features for prediction. This is
followed by a prototype layer which introduces a set of
prototypical vectors shared across classes. This is oppo-
site to ProtoPNet [22] which aims to learn representations
which are very close or identical to an exemplar from the
training set. We mentioned ProtoPNet as a Class-Specific
Interpretable-by-Design method, since the method enforces
the network to learn prototypical parts that are specific
to each class by involving the distances to the specific
prototypical vectors in classification task. In contrast, in [21]
the distances to all the prototypical vectors will contribute
to the probability prediction for each class. To make the
class-specific prototypical vectors shareable among classes,
ProtoPShare [58] extends ProtoPNet [22] by introducing
a data-dependent similarity metric. This metric identifies
similar learned prototypical vectors among classes, this is
followed by a pruning step in order to reduce the number
of prototypical vectors. More specifically, after the prototype
layer is trained, the introduced data-dependency similarity
computes the inverse of the distance between outputs of

each pair prototypical vectors for all training images. Then,
one of the similar/closest prototypical vectors is removed,
and the weights of the remaining prototypical vectors are
shared among both classes. Finally, the classifier part is fine-
tuned.

Different from Case-based reasoning [21], ProtoP-
Net [22], ProtoMIL [24], TesNet [35], Deformable ProtoP-
Net [36], and ProtoPShare [58] that use a prototype layer,
followed by a fully-connected layer as a classifier, Pro-
toTree [57] utilizes a decision tree located after the final
convolutional layer to learn a binary tree classifier of pro-
totypical vectors shared among classes. Each node inside
the tree is a trainable prototypical vector which is trained
through a prototype learning procedure [22]. Following this
procedure, leave nodes learn class distributions. Hence, a
path from the root to a leave represents the classification
rule. Additionally, during the training phase each internal
node (a prototypical vector) can generate a visualization for
the training input sample which has the highest similarity
(i.e., lowest L2 distance) w.r.t. it. Therefore, ProtoTree is
able to provide a hierarchical visualization of the decision-
making process followed by the model.

Discussion. Regarding the Annotation Dependency factor,
similar to the Class-Specific Interpretable-by-Design methods,
these methods are independent of any external annotations,
and only rely on class labels.

Regarding the Feedback Modality factor, ProtoTree [57]
and ProtoPShare [58] are able to generate heatmap visualiza-
tions of the relevant units, i.e. learned prototypical vectors,
as well as to extract image patches for the images which
have the closest patch to one of the learned prototypical
vectors in the tree. In contrast, Case-based reasoning [21]
does not provide a feedback visualization from the learned
representations. It uses only the reconstructed input images
as means of visualization. Fig. 7 shows examples of the feed-
back modality in the ProtoTree and ProtoPShare methods.

Regarding the Feedback Semanticity factor, it can be noted
that similar to the Class-Specific Interpretable-by-Design meth-
ods, Case-based reasoning [21], ProtoPShare [58], and Pro-
toTree [57] do not guarantee any alignment w.r.t. semantic
concepts. The focus of these methods lies on justifying the
prediction made by the model through the representations
encoded in the prototype layer.

Finally, concerning the Architecture Coverage factor, sim-
ilar to ProtoPNet [22], ProtoMIL [24], TesNet [35], and De-
formable ProtoPNet [36] the Class-Agnostic Interpretable-by-
Design methods namely, Case-based reasoning [21], ProtoP-
Share [58], and ProtoTree [57] still suffer from the weakness
of partial interpretability of the base model.

3 DISCUSSION

In this section, we provide a discussion of the different type
of interpretation methods over the defined factors (Table 1).
Here, we further extend the focused category-specific dis-
cussions provided earlier in Section 2 by addressing the
overarching trends observed in Fig. 2. In this figure, the
horizontal axis shows the qualitative properties while the
vertical axis illustrates the number of works, covered in
this study, which fall within a given property. The red and
blue color indicate the Post-Hoc and Interpretable-by-Design
categories, respectively.



THIS IS THE AUTHOR’S VERSION OF AN ARTICLE SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

TABLE 1
An integration of the different aspects of the related works in terms of qualitative properties. The column Feedback Semanticity categorizes

different feedback modalities into five categories: (1) Synthetic Images (SI), (2) Image Patches (IP), (3) Exemplar Images (EI), (4) Average Images
Patches (AIP), and (5) Heatmap Visualization (HV).

Methods Interpretation Capability Task Specificity Annotation Dependency Feedback Modality Feedback Semanticity Architecture Coverage Explanation
Integration Capability

Class Scoring Model [37] Post-Hoc Class-Specific Independent SI No Partial No
[38] Post-Hoc Class-Specific Independent SI No Partial No
[39] Post-Hoc Class-Specific Independent IP No Partial No
TCAV [41] Post-Hoc Class-Specific Independent SI No All No
VEBI [15] Post-Hoc Class-Specific Independent AIP No All Yes
ACE [18] Post-Hoc Class-Specific Independent IP No Partial No
Concept Attribution [44] Post-Hoc Class-Specific Independent SI No All No
Critical Subnetworks [31] Post-Hoc Class-Specific Independent EI No All Yes
ICE [42] Post-Hoc Class-Specific Independent IP No Partial No
PACE [20] Post-Hoc Class-Specific Independent IP No Partial No
[46] Post-Hoc Class-Agnostic Independent IP Yes All No
[47] Post-Hoc Class-Agnostic Dependent EI Yes All No
Feature Inversion [33] Post-Hoc Class-Agnostic Independent SI No Partial No
Network Inversion [34] Post-Hoc Class-Agnostic Independent SI No Partial No
Linear Probes [32] Post-Hoc Class-Agnostic Independent - No All No
Network Dissection [16] Post-Hoc Class-Agnostic Dependent IP Yes All No
Net2Vec [17] Post-Hoc Class-Agnostic Dependent IP Yes All No
Compositional Explanations [29] Post-Hoc Class-Agnostic Dependent IP Yes Partial No
Selectivity Index [49] Post-Hoc Class-Agnostic Independent AIP Yes All No
Topic-based interpretation [19] Post-Hoc Class-Agnostic Independent IP No Partial No
Revers Linear Probing [48] Post-Hoc Class-Agnostic Dependent EI No Partial No
[52] Post-Hoc Class-Agnostic Independent SI No Partial No

Capsule Network [53] Interpretable-by-Design Class-Specific Independent - No Partial No
Interpretable Convolutional Filter [54] Interpretable-by-Design Class-Specific Independent IP Yes Partial No
Interpretable Decision Tree [55] Interpretable-by-Design Class-Specific Independent EI/IP Yes Partial No
ProtoPNet [22] Interpretable-by-Design Class-Specific Independent HV/IP No Partial No
CW [23] Interpretable-by-Design Class-Specific Independent EI No Partial No
ProtoMIL [24] Interpretable-by-Design Class-Specific Independent HV No Partial No
TesNet [35] Interpretable-by-Design Class-Specific Independent HV/IP No Partial No
Deformable ProtoPNet [36] Interpretable-by-Design Class-Specific Independent IP No Partial No
Case-based reasoning through prototype [21] Interpretable-by-Design Class-Agnostic Independent – No Partial No
ProtoPShare [58] Interpretable-by-Design Class-Agnostic Independent HV/IP No Partial No
ProtoTree [57] Interpretable-by-Design Class-Agnostic Independent HV/IP No Partial No

3.1 Interpretation Capability Integration

This factor describes interpretability capabilities are injected
at design time, i.e. Interpretable-by-Design, or in a Post-
Hoc manner. According to Table 1, the history of methods
following a Post-Hoc approach is much older than that of
Interpretable-by-Design approaches. Also, as can be seen in
Fig. 2, the majority of the reviewed interpretation methods
have followed the Post-Hoc approach. Possible reasons for
such a trend could be the following. First, the interpretation
of deep models was identified as a problem of interest
following the seminal work of [59] and the remarkable
results it obtained in the ImageNet ILSVRC’12 challenge.
As such, initial interpretation efforts were formulated for
scenarios where the base models were already in place, i.e
after the training phase. Second, the methodology followed
by these methods do not need to touch the original model
or its training procedure. Hence, these methods do not
affect the inner-workings and performance of already pre-
trained methods. This reduces the design complexity of the
algorithms in this approach which makes it simpler than
Interpretable-by-Design approaches.

The methods following the Post-Hoc modality provide
interpretations through a model approximation strategy.
This raises questions regarding the fidelity or faithfulness of
the provided interpretation feedback. More specifically, this
issue is related to the level to which the provided interpreta-
tion feedback are faithful to the representations learned by
the model. Moreover, due to their characteristic of operating
on top of an existing model, Post-Hoc methods tend to
require additional computations than their Interpretable-by-

Design counterparts. As consequence of these weaknesses,
the Interpretable-by-Design research line has recently become
very active. The methods following this approach are able
to reveal, to some level, the inference procedure followed
by the model. However, the additional built-in modules and
specific representation learning algorithms used by this type
of methods increase their design complexity.

3.2 Task specificity
In this section, we discuss the Task Specificity factor ad-
dressed by the model interpretation methods. As can be
noted in Figure 2, the number of proposed methods in each
of the Class-Specific and Class-Agnostic categories are roughly
the same. However, it can be observed that the number of
Class Agnostic Post-Hoc methods is sligthly higher than that
of Class-Specific Post-Hoc. Moreover, we notice an opposite
trend for the Interpretable-by-Design category. The reason for
such trend lies on the methodology and goal of each of these
categories. The majority of Class-Specific Post-Hoc methods,
such as [18], [31], [37], [39], [42], [44], need to be run in
separate stages considering a limited set of examples from
one class at a time. This makes these methods computation-
ally expensive. In contrast, Class-Agnostic Post-Hoc methods
follow algorithms that do not require this splited processing
of the data.

In the Interpretable-by-Design side, Class-Agnostic meth-
ods, have the inherent weakness of not being able to di-
rectly link the provided interpretation feedback with the
classes of interest. To cope with such limitation, recently, the
Interpretable-by-Design research line has been more headed



THIS IS THE AUTHOR’S VERSION OF AN ARTICLE SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

Annotation 
Dependency

In
ve

st
ig

at
ed

 R
es

ea
rc

h 
W

or
ks

Feedback 
Modality

Feedback
Semanticity

Architecture
Coverage

Explanation 
Capability

Fig. 2. Statistics of investigated visual model interpretation methods over different proposed qualitative factors.

towards learning class-relevant interpretable representa-
tions. Consequently, this group of methods provide better
insights on the learned representations and their relation-
ship w.r.t. the classes of interest. This characteristic is im-
portant for fine-grained classification problems where the
subtle differences among the categories are of interest.

3.3 Annotation dependency and feedback semanticity

This section investigates the capability of the interpretation
methods in providing semantic feedback as well as their
dependency on annotations.

According to Fig. 2, the Feedback Semanticity and Annota-
tion Dependency factors follow, more or less, similar trends.
There are several observations that can be made from here.

First, while majority of the visual model interpretation
methods are not able to provide semantic feedback, they are
also independent of any additional external annotations.

Second, there is a small group of methods that pro-
vide semantic feedback. To do so, these methods use addi-
tional annotations of different forms. For example, Network
Dissection [16], Net2Vec [17], and Compositional Explana-
tion [29] utilize pixel-level annotations for pre-defined object
classes in the dataset. [47] and Reversed Linear Probing [48],
on the other hand, rely on image-level attribute annotations.

Third, all the Interpretable-by-Design methods are inde-
pendent of any external annotations. This limits them from
providing any semantically-meaningful feedback. Consid-
ering this, extending existing methods to provide semantic
feedback and their quantitative evaluation w.r.t. those pro-
vided by Post-Hoc methods can be another research problem
in the field. Also, the most recently proposed methods in the
Post-Hoc category do not explore systemically the seman-
tics of their provided interpretation. Hence, developing the
methods in this category to provide semantic feedback is
still an open problem.

3.4 Feedback Modality

This factor describes the form of the feedback provided
by a given interpretation method. Based on the discussion

conducted in Section 2, we can categorize different feed-
back modalities into five categories: (1) Synthetic Images
(SI) (Fig. 3), (2) Image Patches (IP) (Fig. 4 and 5), (3)
Exemplar Images (EI) (Fig. 6), (4) Average Images Patches
(AIP) (Fig. 7.a and b), and (5) Heatmap Visualization (HV)
(Fig. 7.c-f). Statistics on the use of these modalities is pre-
sented in Fig. 2. As can be seen, Exemplar Images (EI) and
Images Patches (IP) are the most used modality to visualize
the interpretation feedback among the visual model inter-
pretation methods.

Considering the Post-Hoc category, none of the meth-
ods produces heatmap visualizations as part of their pro-
vided interpretation feedback. Also, while generating Image
Patches (IP) is the most used feedback modality, Average
Image Patches (AIP) is the second less common feedback
modality used by the methods. This suggests that the iden-
tified/learned relevant features might not be analyzed with
an appropriate level of depth. This observations arises from
the difference between these two types of feedback modal-
ity. While IP-based feedback usually highlights the patches
with the highest response, the AIP counterpart stress the
consistency among the patches.

Regarding the Interpretable-by-Design category, it is no-
ticeable that none of the methods uses Synthetic Images (SI)
or Average of Images Patches (AIP) as their feedback modal-
ity. Using these modalities to shed light on the features
learned by the Interpretable-by-Design methods can provide
a deeper intuition on them. As can be seen in Fig. 2, the
majority of the Interpretable-by-Design methods can generate
Image Patches. Therefore, visualizing the average of images
patches, for example in prototype-based methods, can re-
veal whether the learned prototypical vectors consistently
align around a specific visual pattern. Moreover, utilizing
the activation maximization technique [43] at test time to
generate synthetic images whose feature maps have closest
distance (highest similarity) to a given learned prototypical
vector can provide a general conceptual intuition on the
encoded visual pattern. Furthermore, in the case that a
method is not able to generate image patches nor a heatmap
visualization, e.g. Concept Whitening [23], the activation



THIS IS THE AUTHOR’S VERSION OF AN ARTICLE SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

a

b

c

d

e

f

g

Fig. 3. Example of Synthetic Images (SI) feedback modality illustrated in a) [38], b) Class Scoring Model [37], c) [52], d) Network Inversion [34], e)
TCAV [41], f) Feature Inversion [33], g) Concept Attribution [44].

maximization technique [43] can be an alternative approach.
Concept Whitening [23] tries to separate the direction of
different encoded features in the latent space. As mentioned,
the method illustrates only exemplar images for each di-
rection in the latent space. Therefore, there is no guarantee
that a clear and consistent visual pattern is illustrated in
the exemplar images provided as interpretation feedback.
Therefore, generating synthetic images for each direction
can provide a better intuition on the encoded features in
each direction of the latent space. This would ease the
qualitative assessment on whether the latent space direc-
tions have encoded distinctive visual patterns. Similarly, the
activation maximization technique [43] can be applied on
the trained capsules layers in Capsule Networks [53]. Since
the Capsule Networks aim at learning class-specific capsules
using routing-by-agreement mechanisms, one can generate
a synthetic image whose internal representation maximizes
the output probability vectors of capsules relevant to a given
class. Then, the relationship among the learned features can
be evaluated from the synthetic images.

3.5 Explanation capability
This section discusses whether the insights extracted via
interpretation methods could be further exploited for model
explanation purposes. More specifically, to justify the pre-
diction made by the model for a specific input. While

this capability is not a necessary requirement for model
interpretation methods, its existence would further extend
the value and applicability of the interpretation method that
possess it. This explanation capability can be in a form of
a visualization, e.g. as proposed in [15], [31]. We refer to
this visualization modality as explanation feedback based
on the relevant units extracted by the interpretation method
for each input image respective to the decision made by the
model. This is different from interpretation visualization in
the Feedback Modality factor where the interpretation meth-
ods provide interpretation feedback, i.e., visual feedback of
the identified/learned relevant features, regardless of the
predictions made by the model.

The statistics of the Explanation Capability factor are
presented in Fig. 2. From here we can draw the following
observations and analysis.

It is noticeable that only two of the Post-Hoc inter-
pretation methods, namely VEBI [15] and Critical Sub-
network [31], are able to explain the predictions of the
model based on the insights extracted by the interpretation
method.

VEBI generates visual explanations by computing visual
explanations for the relevant features (identified by the
interpretation procedure) related to the class label predicted
for a given input.

Critical Subnetwork follows a Grad-Cam-like



THIS IS THE AUTHOR’S VERSION OF AN ARTICLE SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

a

b

c

d

Fig. 4. Example of Images Patches feedback modality illustrated in a) [46], b) Network Dissection [16], c) Net2Vec [17], and d) Compositional
Explanation [29].

method [60] to generate visual explanations.
Given an extracted Class-Specific subnetwork, Critical

Subnetwork computes the gradient of the output of the
predicted class only w.r.t the convolutional filters identified
as class-relevant units. Then, the gradient maps pertaining
to each class-relevant convolutional filters are considered for
visualization.

Regarding Interpretable-by-Design methods, it can be seen
that none of them generate visual explanations. Therefore,
enhancing these methods with this capability could be point
of action for future work. This capability, specifically for
prototype-based methods, enables the discovery of critical
learned Class-Specific or Class-Agnostic prototypical vectors
which can be used for justifying the decision-making pro-
cess of a model. For example, gradients of the model output
w.r.t class-specific prototypical vectors can be computed to
produce a saliency map that highlight important region(s)
in the provided input.

3.6 Architecture coverage
In this section, we focus the discussion on the portion
of the architecture from where insights are extracted by

interpretation methods. Studies have revealed that different
features are encoded in units/neurons located at different
levels of the architecture.

Hence, the produced interpretation feedback should ide-
ally be in accordance with features encoded in all the layers
or parts of the architecture of the model being interpreted.
The statistics illustrated in Fig. 2 show that only a small
set of interpretation methods, which are Post-Hoc, provide
interpretation by considering all the convolutional layers of
a given architecture. Table 1 shows that recent Class-Specific
and Class-Agnostic Post-Hoc methods have a partial coverage
of the architecture of the base model. Here a common
practice is to focus on the last convolutional layer of a given
architecture. Hence, the produced interpretation feedback is
limited to a small part of the model. Furthermore, none of
the Interpretable-by-Design methods consider the represen-
tations encoded in all the layers. Here again, a common
practice is to focus on the representations encoded at the
last convolutional layer. This, in turn, reduces the level of
insights they are capable of producing in their interpretation
feedback. In this regard, extending Interpretable-by-Design
methods, for example investigating the possibility of apply-



THIS IS THE AUTHOR’S VERSION OF AN ARTICLE SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

a

b

c

d

e

f

g

h i

j

k

Fig. 5. Example of Image Patches feedback modality illustrated in a) Topic-based interpretation [19], b) PACE [20], c) ACE [18], d) ProtoPNet [22],
e) Interpretable Convolutional Filter [54], f) Interpretable CNN Decision Tree [55], g) ICE [42], h) TesNet [35], i) Deformable ProtoPNet [36], j)
ProtoTree [57], and k) [39].

ing the prototype layers in all the parts of the architecture,
can be a potential research direction in this field.

3.7 Evaluation protocol
In this section, we discuss the evaluation protocols followed
by the discussed methods to assess the performance of
the produced interpretation feedback. These protocols cover
both qualitative and quantitative evaluation.

According to our study, we have observed that, with
the exception of Network Dissection [16] and its extensions
namely; Net2Vec [17] and Compositional Explanation [29],
the other visual interpretation methods only provide quali-
tative examples as interpretation feedback (Section 3.4).

In the cases where a quantitative evaluation is con-
ducted, the methods follow different approaches and goals
to quantify the produced interpretation feedback.

User-based evaluation is one of the approaches con-
ducted in [46], ACE [18], and PACE [20]. These user-studies
are based on questionnaires which include questions about
the occurrence of a semantic concept in the visual feedback
provided by a given interpretation method. Then, a group of
users are asked to assign scores to the presented visualiza-
tions. These scores aim to indicate the level of agreement of
the users w.r.t. the predefined concepts. Finally, the interpre-
tation capability of a method is quantified by aggregating
the collected scores.

A group of methods, namely Class Scoring Model [37],
Feature Inversion [33], and Network Inversion [34] report
the representation reconstruction error as a quantitative
metric to measure the performance of the produced inter-
pretation feedback.

In other cases where the aim is to quantify the seman-
ticity of the internal representation, the alignment between
annotation masks and internal activations is measured.
This is specifically performed in Network Dissection [16],
Net2Vec [17], Compositional Explanation [29], and Inter-
pretable Convolutional Filters [54].

In some methods, such as [52] and TCAV [41], the cosine
similarity between the representation internally-encoded by
the base model and the representation learned/identified
by the interpretation methods is measured. In other cases,
namely Linear Probing [32], classifiers are trained on the
internal representations of each layer, separately. Similarly,
in Reversed Linear Probing [48] and CW [23] classifiers
are trained on the representations defined by the learned
relevant components to measure separability of the learned
representations. Then, the classification accuracy of these
two groups of classifiers are compared for as part of the
evaluation.

Worth noting is that these classifiers are different from
the base model being interpreted.

In various cases [47], [15], [31] a quantitative evaluation
is conducted to investigate the relevance of the units iden-
tified by the interpretation methods. However, such evalua-
tion is designed with different approaches closely related to
the proposed methodology. For instance, [47] and VEBI [15]
apply a neuron-perturbation approach where the identified
relevant units are systematically occluded by zeroing their
output. Then, examples are pushed through the perturbed
model and the changes in classification accuracy are tracked.
The assumption here, is that the occlusion of the relevant
units should lead to significant drops in classification per-



THIS IS THE AUTHOR’S VERSION OF AN ARTICLE SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 15

a

b

c d

e

Fig. 6. Example of Images feedback modality illustrated in a) Critical Subnetwork [31], b) [47], c) Reversed linear Probing [48], d) Interpretable CNN
Decision Tree [55], and e) Concept Whithening [23].

a

c

b

d

e

f

g

Fig. 7. a and b show example of Average of Image Patches (AIP) feedback modality illustrated in VEBI [15] and Selectivity Index [49]. The other
images show the example of Heatmap Visualization (HV) feedback modality presented in c) ProtoPNet [22], d) ProtoTree [57], e) TesNet [35], f)
ProtoPShare [58], and g) ProtoMIL [24].

formance. Critical Subnetwork [31] and Interpretable CNN
Decision Tree [55] compare the output accuracy between
the original model and the extracted one, i.e. the extracted
subnetwork or constructed decision tree, respectively. In this
regard, the topic-based interpretation method [19] proposes
the ConceptShAP metric, adapted from Shapley Values [61],
to measure the completeness score of the learned topics for
a model prediction. TCAV [41] measures the sensitivity of
the output logits of the model by considering the differ-
ence between the output logit for the original activations
and the activations aggregated by the obtained CAV. In
this line, ACE [18], Concept Attribution [44], and CW [23]
have adapted TCAV to assign an importance score to their

produced interpretation feedback w.r.t. the model accuracy.

As can be seen, there is a clear diversity among the eval-
uation protocols followed by previous efforts. Furthermore,
the followed protocols are tailored to the inner-workings of
each interpretation method. This makes a uniform quantita-
tive comparison among existing model interpretation meth-
ods problematic. To address this problem, [62] has recently
proposed an evaluation protocol that aims at the quan-
titative comparison of visual model interpretation meth-
ods. More specifically, the proposed method measures the
alignment between heatmaps produced from relevant units
identified by model interpretation methods and additional
annotated semantic elements. These annotations have differ-



THIS IS THE AUTHOR’S VERSION OF AN ARTICLE SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 16

ent levels of semanticity, e.g. objects, parts, colors, textures,
and come from the same dataset used to train the model
being interpreted.

4 RELATED WORK

4.1 Model Explanation methods

Model explanation methods aim to justify the prediction
made by a model for a specific input [8], [63], [64]. Up
to now, this research line has been significantly explored,
thus introducing a wide terminology and a variety of ap-
proaches [4]. Recently, [12] conducted a meta-study on the
latest 20 most cited taxonomies/surveys, covering up to
50 model explanation methods, in order to highlight the
essential aspects of the state-of-the-art in model explanation.
Compared to the model explanation research line, a system-
atic study of model interpretation methods has remained
non-existent.

Different from the above mentioned surveys, [65] dis-
cusses issues such as faithfulness raising in model expla-
nation methods in high stakes applications. Accordingly, it
encourages policy makers towards using interpretable ma-
chine learning models instead of following post-hoc expla-
nation procedures. Furthermore, the work investigates some
challenges in the design of interpretable machine learning.
These challenges include architecture design, optimization
algorithm construction, and scarcity of domain experts for
the analysis of the feedback provided by interpretable ma-
chine learning models in high-stakes applications.

Here, we have provided a framework to classify vi-
sual model interpretation methods according to the defined
axes/factors. The proposed framework reveals the strengths
and drawbacks of current model interpretation efforts. It
also sheds light on possible research gaps in this line of
research that can be explored further.

4.2 Model Interpretation Methods

Model interpretation methods aim to analyze the internal
representations learned by the model. One of the early re-
lated taxonomies in this research line was published in 2018
by [3], a review on several research directions in the area
of visual interpretability of CNN models. These directions
cover some works in the following areas: (1) visualizing
the internal representations, (2) diagnosing representation
flaws in CNNs, (3) disentangling internal representations
into graphical models, (4) developing the architecture of
CNNs to include built-in modules, such as R-CNN and
Capsule Networks, to process different patterns in the in-
ternal representations. Although this was the first time that
some of these research lines were reviewed, there are some
gaps in that study. First, it is important to note that while it
provides insights into the works proposed along each direc-
tion, it did not specify which were the factors to be studied
over methods nor accomplished a comparison/discussion
between works w.r.t their qualitative properties. Second,
it considers model explanation methods as part of the
research line of visual model interpretation. As stated ear-
lier explanation methods have a different goal than their
interpretation counterparts. Third, it covers works along the
direction of diagnosing representation flaws in CNNs, such

as bias detection in the learned representations. While a very
important problem, detecting bias can be considered as a
task that can be assisted by model interpretation methods
but not a goal of interpretation methods per se.

Another survey in this research line, [4] has proposed a
taxonomy to categorize methods based on three axes namely
(1) relation between interpretation methods and the model
being interpreted, (2) type of explanations provided by the
covered methods, and (3) local vs. global interpretability.
Most recently, [5] put forward a new survey on model
interpretation to classify methods based on three axes: (1)
representations of interpretations, e.g., the input feature
importance or the influece of the training samples, (2) type
of the base model that the interpretation method is used
for, e.g., differentiable models, GANs, and NLP models, and
(3) relation between interpretation methods and the model
being interpreted (similar to [4]).

Although these works have provided a comprehensive
survey of existing methods, they suffer from some weak-
nesses as well. First, from the point of terminology, these
works use frequently the terms of explanation and inter-
pretation interchangeably, which lends itself to confusion.
Second, they cover a wide variety of explanation methods.
Moreover, since [5] considers a variety of deep models,
it provides a few examples of interpretation methods for
each type of deep model. Hence, there are plenty of visual
model interpretation methods that had not been covered by
these surveys. Furthermore, it considers the methods using
attention mechanisms for explaining deep models as inter-
pretation methods. However, as [66] has showed, purely
focusing on attention mechanisms might not be sufficient
for this task.

In recent years, research along the visual model interpre-
tation line has gained significant momentun. This in turn
led to works introducing new methodologies in the field.
Hence, in this work, we have provided a framework with
specific factors which could serve as axes for positioning
existing and future methods. More important, we provide
a clear definition for the model interpretation task and
covered in our study the methods compatible with it. We
also provide inter-category and intra-category discussion in
order to give deeper insights on the interpretation capability
of existing methods. We expect this could serve as a foun-
dation for the model interpretation research line and could
help reveal active and passive areas of research. In these
regard, we stress some of the research gaps in each category.

5 CONCLUSION

In recent years, research on methods for analyzing the
representations internally encoded by Convolutional Neural
Networks (CNNs) has been increased significantly. This in-
creased interest, next to the continuously growing literature
on the model explanation task, has produced the side effect
of an increasing number of works with confusing use of
terminology, e.g. ”interpretation” vs ”explanation”. This not
only leads to ambiguity and confusion but also hinders
the identification of unexplored research areas/problems
in the field. Here, we aim at making a clear distinction
between these two tasks, i.e. model explanation and model



THIS IS THE AUTHOR’S VERSION OF AN ARTICLE SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 17

interpretation, and conducted a detailed study of works
addressing the latter.

A key contribution of our study of interpretation meth-
ods is the proposed framework, defined by six qualitative
factors, that can serve for the categorization of current
and future interpretation methods. Accordingly, this docu-
ment complements the description of existing interpretation
methods with their positioning based on the proposed fac-
tors.

Following the proposed framework, we highlighted sev-
eral directions (e.g. reduced feedback semanticity, partial
model coverage, etc. ) where research on model interpre-
tation has received low attention. At the same time, we
draw several pointers that could be followed to address
such weaker directions. Finally, we discussed the evaluation
protocols followed by each of the covered methods.

ACKNOWLEDGMENTS

This work is supported by the UAntwerp BOF DOCPRO4-
NZ Project (id 41612) ”Multimodal Relational Interpretation
for Deep Models”.

REFERENCES

[1] G. Singh and K.-C. Yow, “An interpretable deep learning model for
covid-19 detection with chest x-ray images,” IEEE Access, vol. 9,
pp. 85 198–85 208, 2021.

[2] P. Feifel, F. Bonarens, and F. Koster, “Reevaluating the safety
impact of inherent interpretability on deep neural networks for
pedestrian detection,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops, June
2021, pp. 29–37.

[3] Q.-s. Zhang and S.-C. Zhu, “Visual interpretability for deep
learning: a survey,” Frontiers of Information Technology & Electronic
Engineering, vol. 19, no. 1, pp. 27–39, 2018.

[4] Y. Zhang, P. Tiňo, A. Leonardis, and K. Tang, “A survey on neural
network interpretability,” IEEE Transactions on Emerging Topics in
Computational Intelligence, 2021.

[5] X. Li, H. Xiong, X. Li, X. Wu, X. Zhang, J. Liu, J. Bian, and D. Dou,
“Interpretable deep learning: Interpretation, interpretability, trust-
worthiness, and beyond,” Knowledge and Information Systems, pp.
1–38, 2022.

[6] A. B. Arrieta, N. Dı́az-Rodrı́guez, J. Del Ser, A. Bennetot, S. Tabik,
A. Barbado, S. Garcı́a, S. Gil-López, D. Molina, R. Benjamins et al.,
“Explainable artificial intelligence (xai): Concepts, taxonomies,
opportunities and challenges toward responsible ai,” Information
fusion, vol. 58, pp. 82–115, 2020.

[7] A. Søgaard, “Shortcomings of interpretability taxonomies for deep
neural networks,” Advances in Interpretable Machine Learning and
Artificial Intelligence (AIMLAI), 2022.

[8] F. Grün, C. Rupprecht, N. Navab, and F. Tombari, “A taxonomy
and library for visualizing learned features in convolutional neural
networks,” Proceedings of the Workshop on Visualization for Deep
Learning at International Conference on Machine Learning (ICML),
New York, USA, 48, 2016.

[9] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Ka-
gal, “Explaining explanations: An overview of interpretability of
machine learning,” in 2018 IEEE 5th International Conference on data
science and advanced analytics (DSAA). IEEE, 2018, pp. 80–89.

[10] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and
D. Pedreschi, “A survey of methods for explaining black box
models,” ACM computing surveys (CSUR), vol. 51, no. 5, pp. 1–42,
2018.

[11] H. Behzadi-Khormouji and H. Rostami, “Fast multi-resolution oc-
clusion: a method for explaining and understanding deep neural
networks,” Applied Intelligence, vol. 51, no. 4, pp. 2431–2455, 2021.

[12] G. Schwalbe and B. Finzel, “XAI method properties: A (meta-
)study,” 2021. [Online]. Available: https://arxiv.org/abs/2105.
07190

[13] M. Kahng, N. Thorat, D. H. Chau, F. B. Viégas, and M. Wattenberg,
“Gan lab: Understanding complex deep generative models using
interactive visual experimentation,” IEEE transactions on visualiza-
tion and computer graphics, vol. 25, no. 1, pp. 310–320, 2018.

[14] D. Bau, J.-Y. Zhu, H. Strobelt, B. Zhou, J. B. Tenenbaum, W. T.
Freeman, and A. Torralba, “Gan dissection: Visualizing and un-
derstanding generative adversarial networks,” in Proceedings of the
International Conference on Learning Representations (ICLR), 2019.

[15] J. Oramas, K. Wang, and T. Tuytelaars, “Visual explanation by in-
terpretation: Improving visual feedback capabilities of deep neural
networks,” In International Conference on Learning Representations
(ICLR), 2019.

[16] B. Zhou, D. Bau, A. Oliva, and A. Torralba, “Interpreting deep
visual representations via network dissection,” IEEE transactions
on pattern analysis and machine intelligence, vol. 41, no. 9, pp. 2131–
2145, 2018.

[17] R. Fong and A. Vedaldi, “Net2vec: Quantifying and explaining
how concepts are encoded by filters in deep neural networks,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 8730–8738.

[18] A. Ghorbani, J. Wexler, J. Zou, and B. Kim, “Towards automatic
concept-based explanations,” Advances in Neural Information Pro-
cessing Systems (NeurIPS), vol. 32, 2019.

[19] C. Yeh, B. Kim, S. Ö. Arik, C. Li, P. Ravikumar, and T. Pfister,
“On concept-based explanations in deep neural networks,” In
International Conference on Learning Representations (ICLR), 2020.

[20] V. Kamakshi, U. Gupta, and N. C. Krishnan, “Pace: Posthoc
architecture-agnostic concept extractor for explaining cnns,” in
2021 International Joint Conference on Neural Networks (IJCNN).
IEEE, 2021, pp. 1–8.

[21] O. Li, H. Liu, C. Chen, and C. Rudin, “Deep learning for case-
based reasoning through prototypes: A neural network that ex-
plains its predictions,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 32, no. 1, 2018.

[22] C. Chen, O. Li, A. Barnett, J. Su, and C. Rudin, “This looks like
that: deep learning for interpretable image recognition,” Advances
in neural information processing systems (NeurIPS), vol. 32, 2019.

[23] Z. Chen, Y. Bei, and C. Rudin, “Concept whitening for inter-
pretable image recognition,” Nature Machine Intelligence, vol. 2,
no. 12, pp. 772–782, 2020.

[24] D. Rymarczyk, A. Kaczynska, J. Kraus, A. Pardyl, and B. Zielinski,
“Protomil: Multiple instance learning with prototypical parts
for fine-grained interpretability,” 2021. [Online]. Available:
https://arxiv.org/abs/2108.10612

[25] W. Xu, Y. Xian, J. Wang, B. Schiele, and Z. Akata, “Attribute
prototype network for zero-shot learning,” Advances in Neural
Information Processing Systems, vol. 33, pp. 21 969–21 980, 2020.

[26] J. Genone and T. Lombrozo, “Concept possession, experimental
semantics, and hybrid theories of reference,” Philosophical Psychol-
ogy, vol. 25, no. 5, pp. 717–742, 2012.

[27] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects
in context,” in European conference on computer vision (ECCV).
Springer, 2014, pp. 740–755.

[28] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie,
and P. Perona, “Caltech-UCSD Birds 200,” California Institute of
Technology, Tech. Rep. CNS-TR-2010-001, 2010.

[29] J. Mu and J. Andreas, “Compositional explanations of neurons,”
Advances in Neural Information Processing Systems(NeurIPS), vol. 33,
pp. 17 153–17 163, 2020.

[30] Y. Ma, B. Niu, and Y. Qi, “Survey of image classification algorithms
based on deep learning,” in 2nd International Conference on Com-
puter Vision, Image, and Deep Learning (CVIDL), B. H. bin Ahmad
and F. Cen, Eds., vol. 11911, International Society for Optics and
Photonics. SPIE, 2021, pp. 422 – 427.

[31] Y. Wang, H. Su, B. Zhang, and X. Hu, “Interpret neural networks
by extracting critical subnetworks,” IEEE Transactions on Image
Processing, vol. 29, pp. 6707–6720, 2020.

[32] G. Alain and Y. Bengio, “Understanding intermediate layers using
linear classifier probes,” In 5th International Conference on Learning
Representations (ICLR), page 68, Toulon, France, 2016.

[33] A. Mahendran and A. Vedaldi, “Understanding deep image repre-
sentations by inverting them,” in Proceedings of the IEEE conference
on computer vision and pattern recognition (CVPR), 2015, pp. 5188–
5196.

https://arxiv.org/abs/2105.07190
https://arxiv.org/abs/2105.07190
https://arxiv.org/abs/2108.10612


THIS IS THE AUTHOR’S VERSION OF AN ARTICLE SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 18

[34] A. Dosovitskiy and T. Brox, “Inverting visual representations with
convolutional networks,” in Proceedings of the IEEE conference on
computer vision and pattern recognition (CVPR), 2016, pp. 4829–4837.

[35] J. Wang, H. Liu, X. Wang, and L. Jing, “Interpretable image
recognition by constructing transparent embedding space,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), 2021, pp. 895–904.

[36] J. Donnelly, A. J. Barnett, and C. Chen, “Deformable protopnet:
An interpretable image classifier using deformable prototypes,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2022, pp. 10 265–10 275.

[37] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside con-
volutional networks: Visualising image classification models and
saliency maps,” International Conference on Learning Representa-
tions(ICLR), 2014.

[38] D. Wei, B. Zhou, A. Torrabla, and W. Freeman, “Understanding
intra-class knowledge inside cnn,” arXiv preprint arXiv:1507.02379,
2015.

[39] Y. S. Li, L. Liu, C. Shen, and A. Hengel, “Mining mid-level
visual patterns with deep cnn activations,” International Journal
of Computer Vision, vol. 121, February 2017.

[40] R. Agrawal, “Fast algorithms for mining association rules in large
databases,” VLDB, 1994, pp. 487–499, 1994.

[41] B. Kim, M. Wattenberg, J. Gilmer, C. Cai, J. Wexler, F. Viegas et al.,
“Interpretability beyond feature attribution: Quantitative testing
with concept activation vectors (tcav),” in International conference
on machine learning (ICML). PMLR, 2018, pp. 2668–2677.

[42] R. Zhang, P. Madumal, T. Miller, K. A. Ehinger, and B. I. Ru-
binstein, “Invertible concept-based explanations for cnn models
with non-negative concept activation vectors,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 35, no. 13, 2021, pp.
11 682–11 690.

[43] C. Olah, A. Satyanarayan, I. Johnson, S. Carter, L. Schubert, K. Ye,
and A. Mordvintsev, “The building blocks of interpretability,”
Distill, vol. 3, no. 3, 2018.

[44] W. Wu, Y. Su, X. Chen, S. Zhao, I. King, M. R. Lyu, and Y.-W. Tai,
“Towards global explanations of convolutional neural networks
with concept attribution,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 8652–
8661.

[45] M. Alexander, O. Christopher, and M. Tyka, “Inceptionism: Go-
ing deeper into neural networks,” in GoogleResearch Blog, 2015.
Retrieved: October 2018, 2018.

[46] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba,
“Object detectors emerge in deep scene cnns,” The International
Conference on Learning Representations (ICLR), 2015.

[47] V. Escorcia, J. Carlos Niebles, and B. Ghanem, “On the relation-
ship between visual attributes and convolutional networks,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 1256–1264.

[48] I. Laina, Y. M. Asano, and A. Vedaldi, “Measuring the inter-
pretability of unsupervised representations via quantized reverse
probing,” in International Conference on Learning Representations
(ICLR)., 2022.

[49] I. Rafegas, M. Vanrell, L. A. Alexandre, and G. Arias, “Under-
standing trained cnns by indexing neuron selectivity,” Pattern
Recognition Letters, vol. 136, pp. 318–325, 2020.

[50] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
Journal of machine Learning research, vol. 3, no. Jan, pp. 993–1022,
2003.

[51] T. L. Griffiths and M. Steyvers, “Finding scientific topics,” Proceed-
ings of the National academy of Sciences, vol. 101, no. suppl 1, pp.
5228–5235, 2004.

[52] I. Gat, G. Lorberbom, I. Schwartz, and T. Hazan, “Latent space
explanation by intervention,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 36, no. 1, 2022, pp. 679–687.

[53] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing be-
tween capsules,” Advances in Neural Information Processing Systems
(NeurIPS)., 2017.

[54] Q. Zhang, Y. N. Wu, and S.-C. Zhu, “Interpretable convolutional
neural networks,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2018, pp. 8827–
8836.

[55] Q. Zhang, Y. Yang, H. Ma, and Y. Wu, “Interpreting cnns via
decision trees,” in 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2019.

[56] M. Harandi, C. Sanderson, C. Shen, and B. C. Lovell, “Dictionary
learning and sparse coding on grassmann manifolds: An extrinsic
solution,” in Proceedings of the IEEE international conference on
computer vision (ICCV), 2013, pp. 3120–3127.

[57] M. Nauta, R. van Bree, and C. Seifert, “Neural prototype trees
for interpretable fine-grained image recognition,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2021, pp. 14 933–14 943.

[58] D. Rymarczyk, Ł. Struski, J. Tabor, and B. Zieliński, “Protopshare:
Prototypical parts sharing for similarity discovery in interpretable
image classification,” in Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining (KDD), 2021, pp.
1420–1430.

[59] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” Communications
of the ACM, vol. 60, no. 6, pp. 84–90, 2017.

[60] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-cam: Visual explanations from deep networks via
gradient-based localization,” in Proceedings of the IEEE international
conference on computer vision (ICCV), 2017, pp. 618–626.

[61] L. S. Shapley, “A value for n-person games,” Classics in game theory,
vol. 69, 1997.

[62] H. Behzadi-Khormouji and J. Oramas, “A protocol for evaluat-
ing model interpretation methods from visual explanations,” in
Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV), January 2023, pp. 1421–1429.

[63] S. A. Bargal, A. Zunino, V. Petsiuk, J. Zhang, V. Murino, S. Sclaroff,
and K. Saenko, “Beyond the visual analysis of deep model
saliency,” in xxAI-Beyond Explainable AI: International Workshop,
Held in Conjunction with ICML 2020, July 18, 2020, Vienna, Austria,
Revised and Extended Papers. Springer, 2022, pp. 255–269.

[64] L. A. Hendricks, R. Hu, T. Darrell, and Z. Akata, “Grounding
visual explanations,” in Proceedings of the European conference on
computer vision (ECCV), 2018, pp. 264–279.

[65] C. Rudin, “Stop explaining black box machine learning models
for high stakes decisions and use interpretable models instead,”
Nature Machine Intelligence, vol. 1, no. 5, pp. 206–215, 2019.

[66] S. Jain and B. C. Wallace, “Attention is not explanation,” in North
American Chapter of the Association for Computational Linguistics,
2019.


	1 Introduction
	2 A Framework for Model Interpretation Methods
	2.1 Post-Hoc Interpretation Methods
	2.1.1 Class-Specific
	2.1.2 Class-Agnostic

	2.2 Interpretable-by-Design Methods
	2.2.1 Class-Specific
	2.2.2 Class-Agnostic


	3 Discussion
	3.1 Interpretation Capability Integration
	3.2 Task specificity
	3.3 Annotation dependency and feedback semanticity
	3.4 Feedback Modality
	3.5 Explanation capability
	3.6 Architecture coverage
	3.7 Evaluation protocol

	4 Related Work
	4.1 Model Explanation methods
	4.2 Model Interpretation Methods

	5 Conclusion
	References

