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ABSTRACT

Current multimodal large language models (MLLMs) often underperform on
mathematical problem-solving tasks that require fine-grained visual understand-
ing. The limitation primarily arises from inadequate perception of geometric
primitives during image-level contrastive pre-training (e.g., CLIP). Current ef-
forts to enhance MLLM performance have focused on scaling up mathematical
visual instruction datasets and employing stronger LLM backbones, yet these ap-
proaches often neglect persistent visual recognition errors in MLLMs. In this
paper, we systematically evaluate the visual grounding capabilities of state-of-
the-art MLLMs and uncover a negative correlation between their visual grounding
accuracy and problem-solving performance. Notably, even advanced models like
GPT-4o demonstrate a significant error rate (70%) when identifying geometric
entities, highlighting that fine-grained visual understanding remains a crucial bot-
tleneck in visual mathematical reasoning. To address this, we propose a novel ap-
proach, SVE-Math (Selective Vision-Enhanced Mathematical MLLM), featuring
a geometric-grounded vision encoder and a feature router that dynamically adjusts
the contribution of hierarchical visual feature maps. Our model recognizes accu-
rate visual primitives and generates precise visual prompts tailored to the language
model’s reasoning needs. In experiments, SVE-Math-Deepseek-7B outperforms
other 7B models by 7.7% on MathVerse and is compatible with GPT-4V on Math-
Vista. Despite being trained on smaller datasets, SVE-Math-7B matches the per-
formance of models trained on significantly larger datasets, evaluated on GeoQA.
Our findings provide critical insights for future research, highlighting the need for
more effective integration of fine-grained visual understanding in MLLMs. We
will release model weights, code, and instructions upon acceptance.

1 INTRODUCTION

Visual information plays a crucial role in mathematical problem-solving, where diagrams and vi-
sual representations are integral to understanding and reasoning. While Large Language Models
(LLMs) have demonstrated impressive capabilities in textual mathematical reasoning (Yu et al.,
2023; Ying et al., 2024; Azerbayev et al., 2023), their proficiency often diminishes when tasks re-
quire integrating visual data. The challenge intensifies when precise comprehension of geometric
primitives—basic elements such as lines, circles, angles, boundaries, and junctions—is necessary to
solve complex mathematical problems. Recent advancements in Multimodal Large Language Mod-
els (MLLMs) (Chen et al., 2022a; Liang et al., 2023; Kazemi et al., 2023; Gao et al., 2023a; Zhang
et al., 2024b; Shi et al., 2024) have shown promise in addressing visual mathematical reasoning by
incorporating both textual and visual inputs. These models typically rely on large-scale mathemat-
ical visual instruction datasets (Zhang et al., 2024b; Shi et al., 2024; Kazemi et al., 2023), which
require MLLMs (OpenAI, 2023a;c; Su et al., 2023) to generate diverse descriptions for question-
answer pairs involving geometric elements. While these approaches enhance the reasoning capa-
bilities of MLLMs in the mathematical domain, they come with certain limitations. Constructing
such datasets is time-consuming, labor-intensive, and requires substantial financial and human re-
sources, often involving the use of advanced models like GPT-4o (OpenAI, 2023c) to generate di-
verse prompts for synthetic datasets.

Moreover, despite these efforts, even the most advanced MLLMs still exhibit notable shortcomings
in accurately perceiving and grounding basic geometric primitives in mathematical diagrams. Our
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Figure 1: Analysis of MLLMs’ performance in mathematical visual reasoning tasks from GeoQA
test set. GPT-4o misperceived visual information in approximately 70% of cases involving geomet-
ric entities (Fig. 1a). Providing optimal geometric information enhances model performance, while
redundant visual cues lower top-1 accuracy—even below the baseline achieved with only textual
questions. (Fig. 1c). Model performance is sensitive to the accuracy of visual cues and a significant
decrease ( 13.6%) in GPT-4o’s top-1 accuracy is observed when provided with inaccurate bounding
box locations and shape names (Bbox+Shape) (Fig. 1b).

systematic analysis reveals that visual recognition errors are prevalent and significantly impact the
performance of MLLMs on mathematical reasoning tasks. We tasked LLMs with describing geo-
metric entities in meticulously collected 100 images from the Geo170K dataset (Gao et al., 2023a),
and then manually reviewed its responses to categorize the correct descriptions and error types. As
demonstrated in Fig. 1a, we observed that GPT-4o misperceived visual information in approximately
70% of cases involving geometric entities. Correcting these visual perception errors led to a 12%
overall accuracy improvement on corresponding mathematical questions (refer to Fig. 5a in the Ap-
pendix). This finding highlights that misunderstanding visual details remains a critical bottleneck in
the mathematical reasoning capabilities of MLLMs.

To mitigate above challenges, we propose a
novel approach termed SVE-Math (Selective
Vision-Enhanced Mathematical MLLM) that
diverges from the current trend of scaling
up mathematical visual instruction datasets.
Instead, we focus on enhancing the fine-
grained visual perception capabilities of the
model by training an auxiliary visual encoder,
GeoGLIP (Geometric-Grounded Language-
Image Pre-training), specifically tailored to
recognize geometric primitives. Although ex-
isting mathematical datasets lack bounding
box or pixel-level annotations, the training
data generation process is simple yet highly
efficient, e.g., through the Matplotlib Python
library. Moreover, training protocols for such
visual-centric tasks are relatively straightfor-
ward compared to those for LLMs.

Question:
As shown in the figure, AB
parallel to CD, then the degree
of angle BED is?
Choices:
A: 40° B: 80° C: 90° D: 100°

It is known that AB parallel to
CD, ∠ ABE=20°, ∠ CDE=60°.
Since parallel lines have equal
corresponding interior angles, we
have ∠BED = ∠CDE + ∠ABE =
80°. Therefore, the answer is B

Given AB parallel to CD, we need 
to find ∠BED. Since ∠ABE, 
∠BED, and ∠CED form a straight 
line, their sum is 180°. Substituting 
∠ABE=20° and ∠CED=60°, we 
h av e  2 0 ° +∠B E D +6 0 °=1 8 0 ° . 
Solving gives ∠BED=100°. Thus, 
the answer is D.

▷ GPT-4o struggles to accurately perceive mathe-
matical elements, which impairs its ability to nar-
rate their relationships for the reasoning process
in LLMs. By integrating GeoGLIP, SVE-Math ef-
fectively grounds geometric elements and their po-
sitional relations (e.g., ∠CDE), enabling accurate
reasoning. See Appendix for more examples.

By incorporating GeoGLIP into existing MLLMs, we enable the models to open their eyes to the
essential visual components of mathematical problems before engaging in reasoning.

Our hypothesis and design are inspired by observations as shown in Fig. 1b and Fig. 1c. Specifically,
instructing MLLMs with fine-grained visual information, such as junction points and object loca-
tions, improves top-1 accuracy compared to providing only worded questions. However, providing
all visual cues for solving a math question decreases accuracy, e.g., a 4.2% decrease in GPT-4o’s
performance. These ‘apples-to-apples’ comparisons highlight that relevance is key—excessive in-
formation interferes with problem-solving (see § A.5 for a case study). Moreover, their performance
is highly sensitive to the accuracy of visual cues. Providing inaccurate instructions, such as randomly
generated box locations, significantly decreases performance. Given the inherent uncertainty in de-
tecting geometric primitives by GeoGLIP, our initial approach utilizes global pyramid feature maps,
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which capture information ranging from geometry-rich to semantic-rich representations. Their con-
tributions are dynamically modulated by the feature router mechanism, resulting in the so-called
visual soft prompts.

Our proposed SVE-Math has several key advantages. First, by enhancing the visual encoder to per-
ceive geometric primitives, we directly tackle the root cause of geometrical visual recognition errors
in mathematical reasoning tasks. Second, SVE-Math is efficient and practical, as it does not rely
on the creation of large-scale instruction datasets or extensive human annotations. Third, our pro-
posed auxiliary visual encoder and connector can be seamlessly integrated into any existing MLLM,
enhancing its performance without modifying the reasoning components of language models.

We evaluate SVE-Math on several public mathematical benchmarks, and experimental results
demonstrate its superior performance compared to models of the same or even larger sizes. Specif-
ically, our model outperforms other 7B-parameter models and achieves comparable results to ad-
vanced 13B-parameter MLLMs, all while using a smaller-scale dataset for visual training (40K) and
60K + 110K for alignment and instruct learning, compared to the large 588K + 834K dataset used in
MAVIS (Zhang et al., 2024b). These results highlight the effectiveness of our approach and under-
score the importance of accurate visual perception in mathematical visual reasoning. In summary,
our contributions are as follows:

• We systematically identify and analyze the impact of visual recognition errors on the math-
ematical reasoning performance of MLLMs, highlighting the critical role of accurately
perceiving geometric primitives.

• We propose a novel method, SVE-Math, that enhances the visual perception capabilities
of MLLMs by integrating a geometric-awareness visual encoder trained on small-scale
box/pixel-level annotations, avoiding the need for large-scale instruction datasets.

• We design a connector mechanism featuring a feature router that effectively integrates the
relevant geometric visual information into the language model, improving performance
without altering the reasoning components.

• GeoGLIP integrates seamlessly with diverse LLM backbones without requiring modifica-
tions to their reasoning components. Extensive experiments demonstrate that SVE-Math
outperforms existing models of comparable and larger sizes on mathematical benchmarks.

2 RELATED WORK

Multimodal Large Language Models for Mathematics. Large Language Models (LLMs) have
recently garnered significant attention, with much research focused on text-based mathematical
problem-solving, expanding mathematical datasets and utilizing data augmentation (Yu et al., 2023;
Yue et al., 2023b; 2024; Luo et al., 2023). Meanwhile, advancements in vision-language align-
ment models, such as CLIP (Radford et al., 2021) and BLIP (Li et al., 2022a), have significantly
progressed multimodal tasks, leading to the development of Multimodal Large Language Models
(MLLMs) (Bai et al., 2023; Gemini Team, 2023; Ye et al., 2023a; Lin et al., 2023; Gao et al., 2024;
Hu et al., 2024). With the rise of instruction-following LLMs, LLaVA (Liu et al., 2024b) adopts a
linear layer to directly project visual tokens into LLMs, while MiniGPT-4 (Zhu et al., 2023) resam-
ples visual tokens into fixed-length tokens, reducing the computation cost.

Building on these advancements, researchers have started to explore visual mathematical problem-
solving using MLLMs. Unified frameworks like UniGeo (Chen et al., 2022a), UniMath (Liang et al.,
2023), and GeomVerse (Kazemi et al., 2023) expand multimodal mathematical datasets and improve
MLLM performance in geometry and diverse tasks. Leveraging current datasets, G-LLaVA (Gao
et al., 2023a) constructed the Geo170K dataset, enhancing geometric problem-solving and surpass-
ing GPT-4V (OpenAI, 2023c) on the MathVista benchmark (Lu et al., 2023) with only 7B parame-
ters. GeoGPT4V (Cai et al., 2024a) further improved model performance on MathVista and Math-
Vision (Wang et al., 2024) by creating a high-quality geometric problem dataset using GPT-4 and
GPT-4V. MAVIS (Zhang et al., 2024b) specializes in mathematical tasks with a three-stage training
pipeline including a math-specific vision encoder, while Math-LLaVA (Shi et al., 2024) introduced
MathV360K, a large-scale dataset with high-quality images and diverse question-answer pairs to
improve multimodal mathematical reasoning. These math-specific MLLMs have shown promising
performance across several benchmark datasets (Yue et al., 2023a; Zhang et al., 2024a).
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Figure 2: The diagram presents the architecture of SVE-Math, highlighting key innovations in the
geometric-grounded vision encoder (GeoGLIP) and the feature router. Fine-grained visual under-
standing is achieved through a feature pyramid (attention maps displayed on the left), capturing
hierarchical visual features ranging from geometry-rich to semantic-rich information. The feature
router dynamically adjusts the contribution of these features to generate visual soft prompts. These
prompts are then combined with CLIP visual tokens and textual inputs before being fed into the
language model (LLM), enabling accurate visual perception and enhanced mathematical reasoning.

Despite these advancements, MLLMs still face challenges in multimodal mathematical tasks, par-
ticularly due to limitations in visual perception. While CLIP remains a common choice for many
mathematical MLLMs and is known to benefit multimodal tasks, its limitations have also been iden-
tified. For instance, (Tong et al., 2024) examines ‘CLIP-blind pairs’, revealing that visually distinct
images are often misinterpreted as similar, highlighting systematic shortcomings in CLIP’s visual
perception. These findings underscore the need for more specialized visual encoding methods tai-
lored to mathematical contexts, as well as more rigorous evaluations of MLLMs’ visual capabilities.

Open-Set Object Detection. Open-set object detection identifies arbitrary classes using existing
bounding box annotations and language generalization. Methods like OV-DETR (Zareian et al.,
2021), ViLD (Gu et al., 2022), DetCLIP (Yao et al., 2022), and Grounding DINO (Liu et al., 2024c)
integrate language models with detection frameworks to improve category-specific detection. How-
ever, these models often struggle with small-scale object detection due to insufficient fine-grained
visual understanding. GLIP (Li et al., 2022b) addresses this limitation by integrating textual infor-
mation with visual region features early in the pipeline via a language-aware deep fusion mechanism,
enhancing region-level embeddings. GLIP improves detection of smaller objects and demonstrates
strong zero-shot capabilities. While GLIP’s potential has been explored in various fields (Surı́s
et al., 2023; Peng et al., 2023; Li et al., 2023), its application to mathematical reasoning, particu-
larly in precise geometric entity description and fine-grained detail identification in mathematical
diagrams, remains largely unexplored. Our work extends these concepts, developing a geometric-
grounded language-image pre-training model (GeoGLIP) tailored for the unique demands of visual
mathematical reasoning.

Junction and Boundary Detection. Junction and boundary detection are crucial in image process-
ing and object recognition (Dollar et al., 2006; Maire et al., 2008; Parida et al., 1998), and can play
a pivotal role in mathematical reasoning with geometric diagrams. Junctions represent points where
lines intersect, and boundaries delineate object shapes. Traditional methods like Canny edge detec-
tion (Canny, 1986) and the Hough Transform (Duda & Hart, 1972) struggle with complex diagrams
and fine-grained details required for accurate mathematical reasoning. Recent deep learning ap-
proaches, such as junction detection networks (Huang et al., 2018), detect key points by considering
surrounding regions. Boundary detection models like Field of Junctions (FoJ) (Verbin & Zickler,
2021) use a bottom-up approach with ‘generalized M-junctions’ to detect contours and junctions.

3 METHODS

3.1 OVERVIEW

SVE-Math integrates visual understanding of geometric primitives with textual analysis to enhance
the model’s capability in solving mathematical problems involving visual elements. As illustrated in
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Fig. 2, our pipeline builds upon the LLaVA-1.5 (Liu et al., 2023b) architecture (refer to §A.1), intro-
ducing key innovations in the GeoGLIP and visual feature connector. Feature maps from different
layers of the GeoGLIP encoder are processed through the connector, where a feature router optimally
integrates the feature pyramid into visual soft prompts by leveraging geometric information. These
visual prompts are then fused with CLIP vision tokens, either along the sequence dimension or the
channel dimension, and aligned with text embeddings via projection layers for visual understand-
ing. Since channel-wise fusion offers better computational efficiency and comparable performance
to sequence-based fusion in our experiments, we set channel-wise fusion as the default approach.

3.2 GEOMETRIC-GROUNDED LANGUAGE-IMAGE PRE-TRAININ

Our proposed GeoGLIP extends GLIP (Li et al., 2022b) to perform shape grounding, boundary and
junction detection tasks with no human annotations. The architecture of GeoGLIP is shown in Fig. 7
of the Appendix. For shape grounding, we follow the same pipeline structure as the original GLIP
model for bounding box detection (refer to §A.1 for pipeline details) but train it on the mathematical
domain. Unlike the grounding task, which prioritizes semantic-rich visual information for localizing
objects based on text inputs, boundary and junction detection require finer visual details. In general,
feature pyramids encode information at different levels: higher-resolution features capture more
geometric details, while lower-resolution features capture more semantic information. We employ
a cross-resolution mixture to inject low-resolution features into high-resolution features, thereby
improving visual understanding. Training details are provided in § A.6.1, and the training datasets
are discussed in § A.3. Visualization results can be seen in Figures 9 and 10 of the Appendix.

Boundary and junction detection. GLIP-T utilizes Swin-Tiny as its backbone, producing a five-
level feature pyramid {F i

geo}i∈{1,2,3,4,5}, where each level’s resolution is progressively downscaled
by a factor of 2. To enrich the high-resolution features with semantic information, we first pass
the high-resolution tensor F 2

geo (as the Query) and the low-resolution tensor F 4
geo (as the Key and

Value) to a Multi-Head Self Attention (MHSA) module. The resulting feature maps are upsampled
by a factor of 2 and element-wise added to F 1

geo, producing F 1∗

geo. The rationale behind this design is
to fully integrate the hierarchical object concepts at various scales produced by the downsampling
layers with the high-resolution spatial information encoded by the initial embedding layer. Taking
F 1∗

geo as input, we then adopt two decoders for boundary and junction detection (see Fig. 8).

The boundary decoder consists of two successive perception blocks, each comprising an upsam-
pling operation using nearest-neighbor interpolation, followed by a 3 × 3 convolution (Conv2d),
batch normalization (BN2d), and ReLU activation. The final output is resized to the original image
resolution using bilinear upsampling.

A junction represents the intersection of lines, determined by the intersection coordinates and the
orientations of the lines. Accordingly, our junction decoder has two branches. The first branch
estimates the confidence of a junction falling within each grid cell of the original image (using a
60 × 60 grid) and its relative position to the cell’s center coordinates. The second branch predicts
the orientations of the intersecting lines and their confidence in falling into one of 15 evenly spaced
bins within each grid cell, where each bin covers 24 degrees, ensuring the full 360-degree range is
divided evenly (15 bins × 24 degrees = 360 degrees). In the junction decoder, the input F 1∗

geo is first
processed through a perception block, where it is upsampled to a resolution of 60 × 60. Then, two
separate Conv2D units predict the cell confidence and location, with output sizes of 60 × 60 × 1
and 60× 60× 2, respectively. Additionally, two other Conv2D units predict the bin confidence and
orientation, both producing outputs of 60 × 60 × 15. For further details, refer to training step 1 in
§A.6.1 and the illustration in Fig. 8 of the Appendix.

3.3 CONNECTOR DESIGN

Recall our hypothesis that selecting key visual cues enhances mathematical visual problem-solving,
while redundant information can hinder it. To manage the contribution of each feature and enhance
the model’s capacity, we propose a dynamic feature router R. The router R is implemented as a
simple Multi-Layer Perceptron (MLP) that takes as input the concatenation of the spatially averaged
pooled feature maps from each level of GeoGLIP (F̄ i

geo ∈ R1×256) and the CLIP feature map (F̄clip ∈
R1×1,024). It calculates the routing weights per feature ({wi}i∈{1,2,3,4} ∈ R1×4), functioning as a
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Figure 3: Process for generating synthetic data with box- and pixel-level annotations, used to tranin
our GeoGLIP visual encoder. ‘Text’ is a random string of alphanumeric characters with a length
between 1 and 10, placed alongside other geometric objects, i.e., circles and rectangles. Refer to
Fig. 6 in the Appendix for the detailed flow chart.
soft router (Puigcerver et al., 2024). Alternative types of routers, such as sparse routers and constant
routers, are also discussed in Sec. 4. The soft router’s process is defined as:

F̂ i
geo = wi ·MLP ⊚ G ⊚ F i

geo, wi = σ ⊚R([F̄ i
geo, F̄clip]), (1)

where F i
geo is resized (G) to match the spatial dimensions of Fclip and processed by an MLP to

align its channel dimensions. The scalar routing weights wi are then applied to the respective
features. The final F̂geo is generated either by element-wise addition of the weighted features F̂geo =∑4

i=1 F̂
i
geo, where the weights wi are normalized using the SoftMax function (i.e.,

∑4
i=1 w

i = 1),
or by channel-wise concatenation of the weighted features, where the weights are processed through
a Sigmoid function, depending on the fusion strategy with Fclip.

Next, we explore strategies for fusing the soft prompts F̂geo with Fclip, either sequence-wise or
channel-wise. In the sequence-wise method, additional tokens are added after the CLIP tokens,

Seq.-wise Cha.-wise

P Projector �𝐹𝐹𝑔𝑔𝑔𝑔𝑔𝑔 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

PP P

extending the sequence length. In contrast, channel-wise fusion
combines all visual tokens along the channel dimension, main-
taining the same sequence length. To enable the subsequent
LLM to understand these visual components, the fused visual
tokens are then fed into projection layers, which project the vi-
sual modality into the LLM’s embedding space. Following the
LLaVa-1.5 approach, we employ highly effective MLP projec-
tors (linear layer + GELU + linear layer, a.k.a., mlp2x gelu)
for this task. In the sequence-wise approach, two separate projectors are applied for CLIP and soft
prompts, respectively. For example, the projection matrices for the two linear layers, per projector,
Φ1 and Φ2, have sizes of 1, 024× 4, 096 and 4, 096× 4, 096, where 4, 096 corresponds to the text
embedding dimension. In the channel-wise approach, a single projector (Φ1 ∈ R5,120×4,096 and
Φ2 ∈ R4,096×4,096) is used to process the combined visual tokens.

3.4 TRAINING SAMPLES FOR VISUAL-CENTRIC GEOGLIP

To enable GeoGLIP to perceive fine-grained mathematical elements, we supervise its training using
datasets with box- and pixel-level annotations. The model is trained with a classical detection loss
Ldet (Eq. 2), a junction loss Ljunc (Eq. 3), and a boundary loss Lbodr (the ℓ2 loss between predicted
heatmap values and ground truth values). The detection loss Ldet is applied to the shape grounding
task, using synthetic images and FigureQA Kahou et al. (2018) training data annotated with bound-
ing boxes and shape names (left panel of Fig. 3) . These annotations are stored in a COCO-style
JSON file for seamless integration with standard GLIP. See §A.3 for details on the synthetic data
engine and dataset statistics (Figures 5b and 5c).

For boundary and junction detection tasks, we leveraged off-the-shelf models (Huang et al., 2018;
Verbin & Zickler, 2021) to extract junctions and boundaries as ground truth. In addition to our
synthetic sampels, we incorporated the public dataset Geo170K Chen et al. (2021b) and generated
the corresponding ground truth. Specifically, junction labels include intersection coordinates and
line orientations. As noted, each grid cell and bin are responsible for predicting the coordinates
and the orientations, and we have 60 × 60 cells&15 bins per cell. The labels are formatted as
JPij = (xij , cij , {θijk, cθijk}Kk=1), where xij denotes the junction center coordinates, cij ∈ {0, 1}
indicates the presence of a junction, θijk is the angle of the k-th bin, and cθijk ∈ {0, 1} is the indicator
for that bin (right panel of Fig. 3).
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Table 1: Results on testmini set of MathVerse with the accuracy metric. The highest results for
closed-source and open-source MLLMs are highlighted in red and blue respectively.

Model Base
LLM

All
Text

Dominant
Text
Lite

Vision
Intensive

Vision
Dominant

Vision
Only

Acc Acc Acc Acc Acc Acc

Baselines

Random Chance - 12.4 12.4 12.4 12.4 12.4 12.4
Human - 67.7 71.2 70.9 61.4 68.3 66.7

LLMs

ChatGPT (Ouyang et al., 2022) - 26.1 33.3 18.9 - - -
GPT-4 (OpenAI, 2023b) - 33.6 46.5 46.5 - - -

Closed-source MLLMs

Qwen-VL-Plus (Bai et al., 2023) - 11.8 15.7 11.1 9.0 13.0 10.0
Gemini-Pro (Gemini Team, 2023) - 23.5 26.3 23.5 23.0 22.3 22.2
Qwen-VL-Max (Bai et al., 2023) - 25.3 30.7 26.1 24.1 24.1 21.4
GPT-4V (OpenAI, 2023c) - 39.4 54.7 41.4 34.9 34.4 31.6

Open-source MLLMs

LLaMA-Adapter V2 (Gao et al., 2023b) LLaMA-7B (Touvron et al., 2023a) 5.7 6.2 5.9 6.1 4.2 6.1
ImageBind-LLM (Han et al., 2023) LLaMA-7B 9.2 11.4 11.3 8.9 11.2 3.4
mPLUG-Owl2 (Ye et al., 2023b) LLaMA-7B 5.9 6.6 6.3 6.3 5.6 4.9
SPHINX-Plus (Gao et al., 2024) LLaMA2-13B 12.2 13.9 11.6 11.6 13.5 10.4
SPHINX-MoE (Gao et al., 2024) Mixtral-8×7B (Jiang et al., 2024) 15.0 22.2 16.4 14.8 12.6 9.1
G-LLaVA (Gao et al., 2023a) LLaMA2-7B 16.6 20.9 20.7 17.2 14.6 9.4
InternLM-XC2. (Dong et al., 2024) InternLM2-7B (Cai et al., 2024b) 16.5 22.3 17.0 15.7 16.4 11.0
LLaVA-1.5 (Liu et al., 2023a) Vicuna-13B 7.6 8.8 7.6 7.4 7.4 6.9
ShareGPT4V (Chen et al., 2023b) Vicuna-13B 13.1 16.2 16.2 15.5 13.8 3.7
Math-LLaVA (Shi et al., 2024) Vicuna-13B 19.0 21.2 19.8 20.2 17.6 16.4
LLaVA-NeXT (Li et al., 2024) LLaMA3-8B (Team, 2024) 19.3 24.9 20.9 20.8 16.1 13.8
SVE-Math-7B LLaMA2-7B 21.2 26.4 23.2 22.9 18.0 15.4
SVE-Math-8B LLaMA3-8B 23.4 29.3 23.4 23.1 21.1 20.3
SVE-Math-Deepseek-7B Deepseek-math-7B (Team, 2023) 24.3 31.1 26.9 25.6 19.3 17.5

Table 2: Results on testmini set of MathVista with the accuracy metric. The highest results for
closed-source and open-source MLLMs are highlighted. * means model trained on MathV360k.

Model Base
LLM

All FQA GPS MWP TQA VQA

Acc Acc Acc Acc Acc Acc

Baselines

Random Chance - 17.9 18.2 21.6 3.8 19.6 26.3
Human - 60.3 59.7 48.4 73.0 63.2 55.9

Closed-source MLLMs

Qwen-VL-Plus (Bai et al., 2023) - 43.3 54.6 33.5 31.2 48.1 51.4
GPT-4V (OpenAI, 2023c) - 49.9 43.1 50.5 57.5 65.2 38.0

Open-source MLLMs

mPLUG-Owl2 (Ye et al., 2023b) LLaMA-7B 22.2 22.7 23.6 10.2 27.2 27.9
MiniGPT-v2 (Chen et al., 2023a) LLaMA2-7B (Touvron et al., 2023b) 23.1 18.6 26.0 13.4 30.4 30.2
G-LLaVA (Gao et al., 2023a) LLaMA2-7B 25.1 19.1 48.7 3.6 25.0 28.7
LLaVA-1.5 (Liu et al., 2023a) Vicuna-13B 27.7 23.8 22.7 18.9 43.0 30.2
SPHINX-Plus (Gao et al., 2024) LLaMA2-13B 36.7 54.6 16.4 23.1 41.8 43.0
SVE-Math*-7B LLaMA2-7B 37.4 31.9 53.9 29.0 41.4 30.8
SVE-Math*-Deepseek-7B Deepseek-math-7B (Team, 2023) 48.7 37.6 62.0 48.1 48.1 35.8

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Implementation Details. Our work follows a structured three-stage training pipeline, including
multi-task visual perception training for GeoGLIP, visual-language alignment, and mathematical
instruction tuning for MLLMs (refer to §A.6.1 for details). We fine-tuned our GeoGLIP model
using GLIP-T (Li et al., 2022b) as the pre-trained model, leveraging a combined dataset of 10,000
synthetic images, 20,672 images from FigureQA, and 9,426 images from the Geo170K training set.
Training is conducted on 8 A100 GPUs with a batch size of 32. The base learning rate is set to
1 × 10−5 for the language backbone and 1 × 10−4 for all other parameters, and it is decreased by
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a factor of 0.1 at 67% and 89% of the total training steps. We employ the same data augmentation
strategies as GLIP, including random horizontal flipping and aspect ratio-preserving resizing with a
minimum size of 800 pixels.

For multi-modal training, we freeze the GeoGLIP encoder. In Stage 2, we train only the projection
layers to align diagram-language pairs. In Stage 3, we unfreeze both the projection layer and the
LLM to perform comprehensive instruction-following tuning. We adopt LLaVA1.5-7B (Liu et al.,
2023b) as the backbone of our MLLM, utilizing LLAMA-2 (Touvron et al., 2023b) as the language
model and a pretrained vision transformer (CLIP ViT-L) (Radford et al., 2021) and our GeoGLIP
as the visual encoders. Images are padded to squaresand resized to 448 × 448 pixels with a white
background for processing by CLIP, and to 1000×1000 pixels for processing by GeoGLIP. We train
SVE-Math for one epoch for cross-modal alignment and two epochs for instruction tuning on the
Geo170K(Gao et al., 2023a) dataset, evaluating the model on GeoQA (Gao et al., 2023a) and the
minitest set of MathVerse (Zhang et al., 2024a). To further enhance model performance and evaluate
on MathVista (Lu et al., 2023), which encompasses a wider range of mathematical and visual tasks
including IQTest, PaperQA, and IconQA, we incorporate the open-source MathV360k (Shi et al.,
2024) dataset. We train our model on MathV360k using a batch size of 16 for one epoch with an
initial learning rate of 3× 10−5.

Evaluation Benchmarks. We assess our SVE-Math using three well-established public mathemat-
ical benchmarks, MathVerse (Zhang et al., 2024a), GeoQA (Gao et al., 2023a), and MathVista (Lu
et al., 2023)). MathVerse focuses on assessing multi-modal mathematical problem-solving with a
combination of text and diagram-based reasoning tasks. GeoQA emphasizes geometric reasoning,
where the model must interpret geometric shapes and solve related questions. MathVista includes a
diverse set of mathematical and visual tasks, providing a comprehensive evaluation across various
reasoning and problem-solving domains.

Evaluation Metrics. We adopt top-1 accuracy to evaluate our model on these benchmarks. Our
evaluation process follows the protocols defined by the respective datasets, where LLMs are used to
extract predicted answers from the model’s responses. Accuracy is determined by comparing these
predicted answers against the corresponding ground truths.

4.2 MAIN RESULTS

Table 1 presents the comparison results on the testmini set of MathVerse, where SVE-Math-7B out-
performs all models using LLaMA2-7B as the base LLM by a significant margin (a 5.5% increase)
and achieves comparable top-1 accuracy to the most powerful open-source LLaVA-NeXT (Liu et al.,
2024a) with 8B size (19.3% vs. 21.2%). When using DeepSeek-Math-7B-Instruct Team (2023)
as the base LLM, our model’s performance further increases by an additional +3.1%. Notably,
even on the challenging MathVista benchmark, our model outperforms the advanced SPHINX-Plus-
13B (Gao et al., 2024), and is compatible with close-sourced GPT-4V OpenAI (2023c), as shown in
Table 2. This superior performance underscores the importance of fine-grained visual perception in
enhancing the mathematical reasoning capabilities of MLLMs.

Tables 3 and 4 present our model’s performance on plane geometry and function analysis tasks, re-
spectively. Compared to the second-best model, MAVIS (Zhang et al., 2024b), which is trained on
an 8× larger mathematical visual instruction dataset, SVE-Math with LLaMA2-7B as LLM demon-
strates better reasoning and generalization capabilities. Constructing large instruction datasets for
training MLLMs is labor-intensive and costly, whereas synthetic datasets for training traditional
visual-only tasks offer a more efficient solution. This positions our method as a promising alterna-
tive and orthogonal direction for mathematical visual reasoning tasks.

Notably, the effectiveness of geomatic soft visual prompts is evidenced by comparison SVE-Math-
7B with G-LLaVA in Tables 1-3. This comparison, conducted under controlled conditions, ensures
that both G-LLaVA and our model utilize the same LLM backbone (LLaMA2-7B) and the instruc-
tion training dataset, with +7.7% on MathVerse +12.3% on MathVista and +2.8 % on GeoQA.

4.3 ABLATION ANALYSIS

Effect of cross-resolution mixture. We designed four additional variants to demonstrate the
effectiveness of our cross-resolution mixture approach. Recall that we have five feature lev-
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Table 3: Comparison of geometric numerical
answer accuracies (%) on GeoQA.

Model Accuracy (%)

Random Chance 25.0
Frequent Guesses 32.1

Top-10 Accuracy
NGS (Chen et al., 2021a) 56.9
DPE-GPS (Cao & Xiao, 2022) 62.7
SCA-GPS (Ning et al., 2023) 64.1

Top-1 Accuracy
Geoformer (Chen et al., 2022b) 46.8
UniMath (Liang et al., 2023) 50.0
G-LLaVA (Gao et al., 2023a) 64.2
MAVIS-7B (Zhang et al., 2024b) 66.7
SVE-Math-7B 67.0
SVE-Math-Deepseek-7B 72.8

Table 4: Comparison of model performance on
FunctionQA of MathVista.

Model Accuracy (%)

Random Chance 22.5

Closed-source MLLMs
CoT GPT-4 (OpenAI, 2023b) 35.0
PoT GPT-4 (OpenAI, 2023b) 37.0
Multimodal Bard (Google, 2023) 45.5
GPT-4V (OpenAI, 2023c) 69.5

Open-source MLLMs
LLaVA (Liu et al., 2023b) 20.5
LLaMA-Adapter V2 (Gao et al., 2023b) 32.0
LLaVA-NeXT (Liu et al., 2024a) 33.7
SPHINX-MoE (Gao et al., 2024) 34.6
MAVIS-7B (Zhang et al., 2024b) 40.3
SVE-Math-7B 40.5
SVE-Math-Deepseek-7B 45.1

els {F i
geo}i∈{1,2,3,4,5} with different resolutions, each with different resolutions, ranging from

geometric-rich to semantic-rich information. The cross-resolution mixture aims to generate the
input F 1∗

geo for the boundary and junction decoders, with the expectation that F 1∗

geo captures more
informative visual information to benefit boundary and junction detection tasks.

Using boundary detection as an example, we first used the semantic-rich F 5
geo as input to the bound-

ary decoder. As shown in Fig. 4a, the decoder fails to generate clear boundaries, resulting in a
blurred output. Next, we used the geometric-rich F 1

geo, which performs better (Fig. 4b), showing
some visible boundaries. To further enhance the results, we applied a cross-resolution attention
mechanism (classic Multi-Head Self-Attention, MHSA) between F 2

geo and F 4
geo, improving bound-

ary detection as seen in Fig. 4d. Since boundary detection benefits from geometric-rich information,
we upsampled the cross-correlated features by a factor of 2 and added them element-wise with F 1

geo,
producing the best visualization results, especially for finer details (Fig. 4e). Finally, to assess the
importance of cross-resolution attention, we replaced it with element-wise addition. As expected,
the boundaries became blurred (Fig. 4c) due to the reduced receptive field. Replacing addition with
the attention mechanism yields similar boundary results but decreases object detection mAP from
95.3% to 92.4% on our synthetic test set. Therefore, our mixture process integrates both cross-
resolution attention and addition operations.

Key Factors in Connectors. Our connector bridges the soft visual prompts F̂geo with the CLIP
visual tokens FCLIP using either channel-wise or sequence-wise fusion methods. We examine two
key factors: the inclusion of all visual cues and the use of soft routing. Additionally, for sequence
fusion, we explore varying feature resolution sizes. All ablations are conducted on the GeoQA test
set. The summary is presented in Fig. 5b, with detailed top-1 accuracy listed in Fig. 5c. Specifically,
for smaller resolutions, we resize the pyramid features from GeoGLIP to lengths of 15%, 20%, 25%,
and 40% of the length of FCLIP, respectively, and then sequentially append them to FCLIP.

Next, we examine the impact of the number of projection experts. The default channel concatenation
setup utilizes a single expert with a mlp2x gelu. In the multi-expert ablation, where two sequen-
tial mlp2x gelu are applied, the top-1 accuracy drops from 66.98% to 64.32% (-2.66%), as shown
in Fig.5c. For sequence-wise fusion, which uses two separate projectors by default, we ablate shared
parameters across these projectors, making them act as a single-projection expert. Fig. 5c shows that
the multi-expert setup enhances sequence-wise performance compared to shared parameters (a.k.a.,
a single expert), boosting accuracy from 64.32% to 66.58% (+2.26%). We hypothesize that the im-
provement in sequence-wise fusion may stem from the added flexibility in handling heterogeneous
inputs, whereas in channel-wise fusion, it could introduce unnecessary complexity and redundancy.

Feature router types and impact of individual feature maps in GeoGLIP. We examine three
types of routers: constant, sparse, and the default soft router R. The constant router assigns equal
weights wi = 0.25 to each F i

geo, while the sparse router selects only one feature map of GeoGLIP
with wi ∈ {0, 1}. As expected, in the sparse router, F 1∗

geo with more geometric information, achieves
the highest accuracy. As shown in Table 5a, the soft router outperforms the others, demonstrating
its effectiveness for dynamic routing of multiple signals.
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Figure 4: Qualitative boundary visualization results. Semantic-rich features with the lowest resolu-
tion lead to blurred boundaries (Fig. 4a), while geometric-rich features with the highest resolution
improve clarity (Fig. 4b). The cross-resolution mixture yields the best results (Fig. 4e), compared
with using either element-wise addition (Fig. 4c) or MHSA alone (Fig. 4d). Zoom in for best view.

(a) (b) (c) (d) (e)

Table 5: Ablation results w.r.t. top-1 accuracy on GeoQA. Tab. 5a shows results for feature router
types; Fig. 5b highlights key factors for connector designs, with detailed accuracy in Fig. 5c.

Seq.-wise Cha.-wise

Constant R 63.9 62.8

Sparse R

F 1∗
geo → 64.2 → 64.9

F 3
geo → 61.1 → 61.8

F 4
geo → 61.9 → 62.3

F 5
geo → 61.9 → 61.6

Soft R 66.6 67.0

(a)

Baseline (G-LLaVA)

Seq.-wise Cha.-wise

All Visual Cues
Soft Router

Mul-Proj. Experts
Small Resolution

+ GeoGLIP + GeoGLIP

(b)

Shared param.

(c)

Necessity of CLIP. While GeoGLIP provides rich geometric visual features, the general visual
features provided by models such as CLIP are also crucial. We designed a variant that excludes
the CLIP visual encoder, relying solely on our soft prompts from the GeoGLIP visual encoder.
Accuracy dropped from 66.6% to 64.7% for sequence fusion and from 67.0% to 65.3% for channel
fusion. These results demonstrate that while CLIP may not perceive fine-grained visual details, its
general visual features still benefit text-visual alignment in MLLM training, making such models
indispensable in multi-modal mathematical reasoning.

Imapct of math-specific fine-tuning for GeoGLIP. We utilized the original hierarchical pyramid
features from the GLIP visual encoder. To ensure a fair comparison, we utilize the same resolution
feature maps: the first layer with the largest resolution and the last three layers with smaller resolu-
tions. This resulted in a drop from 67.0% to 65.3%, with only a minimal +1.1% improvement over
G-LLaVA. The slight improvement likely stems from integrating high-resolution vision features,
which are not sensitive to geometric details, as GLIP fails to detect basic geometric shapes (Fig. 9).

5 CONCLUSION

In this paper, we mitigate the limitations of current mathematical MLLMs by identifying the sig-
nificant bottleneck caused by their inability to accurately perceive geometric primitives, which are
crucial for mathematical reasoning involving visual elements. We proposed SVE-Math, a novel
vision-centric approach that enhances mathematical visual reasoning by integrating a geometric-
awareness visual encoder trained through multi-task objectives such as shape detection, junction
detection, and boundary detection. Our method avoids the labor-intensive process of building large-
scale mathematical visual instruction datasets, offering a more efficient and practical solution. By
designing a feature router that dynamically adjusts the contribution of each visual cue, we generate
soft prompts that guide the language model toward better mathematical reasoning without over-
whelming it with redundant or irrelevant visual data. Extensive experiments across three public
mathematical benchmarks demonstrate the effectiveness of SVE-Math, as SVE-Math outperforms
similarly sized 7B-parameter models and achieves comparable results to advanced 13B-parameter
MLLMs, despite being trained on smaller datasets. We believe our work introduces a new per-
spective on solving mathematical problems in a visual context, emphasizing the critical role of
fine-grained visual grounding and adaptive visual cueing mechanisms.
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