Under review as a conference paper at ICLR 2026

COMMUNICATION-EFFICIENT FL VIA
MODEL-AGNOSTIC PROJECTION OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated learning (FL) enables collaborative model training across distributed
clients without sharing sensitive data. However, communication overhead remains
a significant bottleneck, particularly for large-scale models. Low-rank decomposi-
tion techniques address this by approximating each layer’s weights or gradients
with a product of low-rank matrices, thereby reducing the communication cost in
FL. While effective, these methods are constrained by the layer’s architecture and
shapes, limiting their flexibility and performance. We propose Model-Agnostic
Projection Optimization (MAPO), a novel method that reshapes and factorizes the
full model gradient into a fixed reconstruction matrix and a trainable projection
vector, avoiding layer-wise decomposition and architecture constraints. MAPO
directly optimizes the projection in a randomly sampled subspace, with all clients
generating the reconstruction matrix via a shared random seed, incurring no addi-
tional communication overhead for synchronization. By decoupling the gradient
from architectural constraints through reshaping and enabling communication-
free exploration of dynamic subspaces via seed sharing, MAPO provides a more
flexible and efficient low-rank representation. Empirical results demonstrate the
effectiveness of MAPO in various FL settings.

1 INTRODUCTION

Federated Learning (FL) is a distributed framework that enables model training across many clients
without centralizing data. In each communication round, clients download a global model, update
it using local data, and send modifications back to the server, which aggregates them (e.g., via
FedAvg (McMahan et al.l[2017)). While this iterative process enables collaborative learning, frequent
transmission of model updates incurs significant communication overhead, limiting FL applications,
particularly with large models or resource-constrained clients.

Communication-Efficient Federated Learning (CEFL) literature (Jia et al.||2025)) proposes a vast range
of strategies to reduce communication load. Konecny|(2016)) categorizes them into sketched updates,
which compress the total model update after optimization (e.g., subsampling, quantization, random
projection), and structured updates, which restrict the trainable parameters to a lower-dimensional
subspace before optimization (e.g., random masks, weight-sharing, and low-rank decomposition).

Low-rank decomposition is a widely used approximation technique that expresses model gradients
or parameters as the product of low-rank matrices (Sainath et al.,[2013). Parameter decomposition is
particularly effective for Parameter-Efficient Fine-Tuning (PEFT), where auxiliary low-rank adap-
tation modules (LoRA) are added to each layer to reduce the computation and storage overhead
of full-model fine-tuning (Hu et al.l [2021). Although LoRA alleviates communication burdens in
FL, constraining model parameters to a low-rank subspace can degrade performance. In contrast,
gradient decomposition preserves full-rank model representations during inference and restricts only
the gradients to a low-rank form during backpropagation (Wang et al., 2018b; Jaderberg et al., 2014;
Lebedev et al., 2014; Denil et al.,|2013)). A visual comparison is shown in Figurem

Challenges. While CEFL methods for gradient decomposition (Vogels et al., 2019; |[Zhao et al.,
2023bj |Park & Klabjan, [2024; /Guo et al.,[2024a; |Hu et al., 2024}, parameter decomposition (Yao
et al.| [2021; [Hyeon-Woo et al.,|2021; |Jeong & Hwang,,2022; |[Hameed et al.| [2023; Zhao et al.,[2023a)),
or LoRA variants (Sun et al.,[2024} [Zhang et al., [2023} Zhu et al.| 2024; |Hao et al.| 2024;|Guo et al.,
2024b) offer notable benefits, they face several key challenges:
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Figure 1: Comparison of various decomposition methods, from left: no decomposition, low-rank parameter
decomposition, frozen model with low-rank adapter (LoRA), low-rank gradient decomposition, and MAPO.

1) The layer-wise decomposition that adheres to the structural constraints (e.g., fully connected
or convolutional), requiring architecture-dependent implementation for each layer decomposition.
2) Given a decomposition AW; € IR%1* %2 ~ B; A;, where A; € IR"*% and B; € IR™*", the number
of transmitted parameters is C = | A;| + |B;| = r(d1 + ds) for r € IN, restricting the communication
rate to multiples of (dy + da), imposing a rigid communication granularity as C € (d; + dg)IN.
3) Given M number of clients and (A7, B) denoting the low-rank decomposition of layer i from
client 7, averaging these low-rank matrices is not equivalent to full-rank aggregation as:

1o 2 42 MMy . L5 2 my Lo 2 M
M(BiAi+BiAi+ + B;" A; )#M(Bz +B;+--+B; )M(Ai+Ai+ + A7)

4) Although fixing all { A] jj‘il matrices to the same values can mitigate the aggregation problem and
improve the communication granularity to C € d; IN, as shown in FA-LoRA (Sun et al.,[2024) and
EvoFed (Rahimi et al.,[2024)), it restricts the model’s ability to explore richer subspaces, often leading
to suboptimal solutions (Guo et al.| 2024b)). Thus, we aim to answer the following key question:

How can we develop an architecture-independent model-wide decomposition that offers flexibility on
communication rate, address the low-rank averaging problem, and suboptimality of freezing A?

Key Ideas. We propose a novel Model-Agnostic Projection Optimization (MAPO) that streamlines
gradient projection and addresses its challenges while being computationally lighter than layer-wise
methods. Our key ideas are described as follows:

(i) Firstly, MAPO reimagines low-rank gradient projection by treating the entire model gradient as a
single matrix rather than layer-by-layer decomposition. It eliminates architecture-specific constraints
by merging the flattened gradients of all layers, constructing the universal gradient vector AW € IR®.

(ii) Secondly, given any communication budget £, MAPO pads AW with zeros so the length becomes
divisible by k. Afterwards, padded AW will be reshaped to AW’ € IR**14/F1 which further can be
decomposed it intoa A € IR'™ [d/k] and B € IRF*! matrices, as AW’ = BA.

(iii) Lastly, instead of relying on a fixed A, MAPO explores new subspaces in each federated round
through reinitialization of A, mitigating the risk of suboptimal convergence. Synchronization of A is
achieved efficiently via a shared seed, removing the need to transmit A.

Summary of Contributions. By integrating (i) model-level decomposition, (ii) flexible communica-
tion rate, and (iii) subspace exploration, MAPO offers a flexible trade-off between communication
cost and performance while remaining more efficient than low-rank decomposition methods. Figure 3]
illustrates the distinction between MAPO and other paradigms. Our main contributions are:

* We introduce model-agnostic optimization of gradient projections that enhances communication
and computation efficiency, boosts performance through exploration, and offers more flexibility
in balancing communication and error rate.

» We provide a theoretical analysis of MAPO convergence behavior and establish its computational
efficiency compared to layer-wise factorization with the same communication and error rates.

* We conduct extensive experiments across diverse datasets, model architectures, and baselines,
demonstrating that MAPO surpasses existing methods in full training and fine-tuning scenarios.

2 BACKGROUND AND RELATED WORKS

In this section, we review key CEFL approaches in relation to MAPO. We begin with sketched update
techniques that project model updates into subspaces, outlining their limitations. Then, we examine
structured update methods, particularly projection optimization, highlighting the unique opportunities
and challenges introduced by operating within a fixed subspace.
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2.1 SKETCHED UPDATE VS. STRUCTURED UPDATE
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Sketched update includes techniques such as sparsification (Konecny,
2016), quantization (Bernstein et al.,[2018}; |Lin et al.,|2018; Reisizadeh
et al.| 20205 Sun et al., [2020), gradient subspace projection (Azam et al.,
2021;|0h et al., [2022} |Park & Choti, [2023)), and random subspace projec- »
tion (Shi & Eryilmaz, 2021; Rahimi et al.,|2024)). They aim to compress
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The subspace projection process (Shi & Eryilmaz, [2021; |Woodruff, [2014;
Li et al., 2018) defines a random matrix A € IRP*%, and finds the
projection vector B € IRP, which minimizes the reconstruction error

Accuracy

|AW — BA||,, where d denotes the total number of model parameters OB Toound 0
and p < d is compressed length: 10 AR A WIEN 3 Far amater
B* = argmin |AW — BA|, ; B*~AWAT(AAT)™.
Belrr g o — Mapo
As the matrix A is considerably large (p x d), various methods propose £ « Iy
novel designs for A to adapt it for large-scale models. Notably, defining = — parme
A as a subset of seen gradient vectors results in a significantly lower S ”Ro‘.i’?.d‘:‘:: e,

rank of A that suffices for an effective projection (Azam et all 2021} MNIST Accuracy with 2-Parameter
Park & Choil, [2023). More recently, EvoFed (Rahimi et al,[2024) utilizes
evolutionary strategies to evolve A, improving its representation capacity.
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Sketching Limitations. Although sketched methods benefit from a full- M/»f/f e
rank training, their shortcoming is blindness to the loss surface £(W;D) m: Sparse |
and alternative solutions besides AW that can be reconstructed from the o et
projection subspace. They typically perform well, given a sufficiently
large subspace, bgt as the compression rate increases, the projection = e varying number
vector reconstruction ends up far off from AW. In contrast, subspace . (rainable parameters.
optimization directly finds the steepest direction within the subspace, leading to a more effective loss
reduction. Figure[2]illustrates a centralized MNIST training, showing the performance degradation of
sketched techniques, such as EvoFed and sparsification, compared to MAPO. As sparsity increases,
MAPO continues to converge, even having 2 or 4 trainable parameters out of 11,274.
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Figure 2: MNIST perfor-

Structured update techniques reduce the number of trainable parameters and communication cost
by constraining the weights or gradients to a low-rank subspace by structural modification such as
pruning (Han et al.|[2015; He et al.,[2017; |Luo et al.,2017; |Zhang et al., 2018]), weight—sharing (Chen
et al., 2015} Courbariaux et al., 2016 |Ullrich et al.,|2017)), low-rank gradient (Vogels et al.,2019;Zhao
et al.,2023b} [Park & Klabjan, [2024;|Guo et al.| 20244} Hu et al.| [2024)), and parameter decomposition
(Yao et al.} 2021; [Hyeon-Woo et al.} 2021; Jeong & Hwang, [2022; [Hameed et al.,|2023};|Zhao et al.,
20234), including LoRA and its variants (Hu et al.| 2021;|Zhang et al.l 2023} |Sun et al., 2024} Zhu
et al.| 2024} Hao et al}[2024). Although parameter decomposition techniques reduce the model size
and representation, resulting in subpar performance for general training, as shown in Figure [2| for
Factorized-FL (Jeong & Hwang, |2022)). Therefore, CEFL generally adopts a gradient decomposition
direction. In particular, gradient decomposition methods with a fixed A, also known as projection
optimization (Denil et al.| [2013}; |Jaderberg et al., 2014} |Lebedev et al., 2014; Wang et al.,|2018b).

Prior works on gradient decomposition relied on each layer’s shape and architecture, producing a
unique A; and B; matrices for each layer, limiting the feasibility of sharing a projection matrix A
across layers. MAPO overcomes this limitation by evenly partitioning the whole model gradient
vector AW € IR? into k segments {AW/}¥_, € IR¥*[4/k1 allowing the use of a shared random
reconstruction matrix A € IR'*[%/*1 across all partitions, maintaining the benefits of model-wide
projection while substantially reducing memory costs.

2.2 PARAMETER-EFFICIENCY VS. COMMUNICATION-EFFICIENCY

Despite their apparent similarities, parameter decomposition and gradient decomposition methods
differ fundamentally in assumptions and objectives. Parameter decomposition directly imposes a low-
rank structure on the model parameters, effectively replacing the original model with a compressed
version. Although this reduces the total number of parameters and computation, it still requires
transmitting all parameters at each communication round, resulting in no relative reduction in
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Figure 3: Step-by-Step illustration of methodology based on propositions, demonstrating how each step will
contribute to designing MAPO factorization and differing from LoRA architecture.

communication per parameter. In contrast, gradient decomposition methods maintain the original
model architecture and computational complexity but substantially reduce communication overhead
by transmitting compressed updates that are significantly smaller than the whole model.

In this work, to ensure a fair assessment of communication efficiency, we evaluate MAPO against
gradient-based compression baselines under consistent model architectures. Additional experiments
with parameter decomposition and LoRA-based methods are provided in Appendices |B|and |C|for
completeness. Key methodological distinctions among related works are summarized in Table%

Table 1: Summary of CEFL methods and objectives. The column “Comm. Flex” indicates support
for arbitrary bitrates, and “Agg. Eq.” denotes equivalence between low-rank and full-rank averaging.

Full-rank  Agg. Fixed Arch- Comm  Personalized
Inference  Eq. PEFT Subspace  Agnostic Flex

Method Scope Target

Model Update

Quantization (Reisizadeh et al.| 2020 Model ~ Update
EvoFed (Rahimi et al.1[2024] Model  Update

Factorized-FL (Jeong & Hwang,

2022 Layer  Parameter

SN IUX XXX\ NN
AN N RN NN
XX NN X X XX
N> A% X% N\ % X%
N X XXX X\NSN
AR R N NN
* XN X X N X XX

LoRA (Hu et al.| 2021} Layer  Adapter
FA-LoRA ( |m Layer Adapter
SA-LoRA (Guo et al.[[2024b] Layer  Adapter
FedLoRU (Park & Klabjan| Layer  Gradient
MAPO (Ours Model  Gradient

3 PROPOSED METHOD

In this section, we introduce MAPO and its application in FL. We first present the MAPO factor-
ization technique and discuss its key properties regarding communication efficiency and error rate.
Subsequently, we detail how MAPO can be effectively integrated into the FL training process.

3.1 MODEL-AGNOSTIC PROJECTION OPTIMIZATION (MAPO)

MAPO Description. MAPO provides model-agnostic factorization of the global model gradient
AW € IR?, avoiding architecture-specific constraints and enabling subspace exploration during
optimization. As illustrated in Figure MAPO reshapes the universal gradient AW € IR?*! into
AW’ e IRF*14/k1 which is then decomposed into a reconstruction vector A € IR'*[4/¥1 and a
projection vector B € IRF*1. It is equivalent to partitioning AW into k segments and sharing a
fixed reconstruction matrix A across all partitions. This design preserves model-wide projection
benefits while substantially reducing memory overhead. Figure[3]shows a step-by-step visualization
analogous to Propositions 3.4]to[3.6]

MAPO Properties. MAPO aims to construct an expressive subspace, enabling a small B to
encode sufficient information for updating the model efficiently. First, we formally define the
concepts of communication overhead rate and reconstruction error rate in the context of matrix
factorization in Definitions [3:2] and [3.3] Using these definitions, Proposition [3.4] establishes that
reshaping a single layer preserves both the factorization error and communication rates. Extending
this, Proposition [3.5] demonstrates that vectorizing multiple layers into a single matrix similarly
maintains these properties. Finally, this leads to the proof of Proposition [3.6] which introduces a
computationally and communication-efficient, model-agnostic factorization method as an alternative
to traditional layer-wise gradient projection techniques. Appendix [ presents the formal proofs.

Lemma 3.1 (Gaussian Matrices are Full Rank). Let A € IR™*"™ be a random matrix with entries

drawn independently from a Gaussian distribution N'(0, 02). Then, A is almost surely of full rank,
i.e., rank(A) = min(m, n), as the probability of A being rank deficient is zero. This result follows

from standard properties of random matrices (Vershynin) 2018} 2012).
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Figure 4: Application of MAPO to communication-efficient FL.

Definition 3.2 (Communication Overhead Rate). Let AW; € IR > be the update matrix of a
model. Suppose the factorization of AW; as AW; = B; A;, where A; € IRY*% is a fixed random
matrix and B; € IR¥*Y is a trainable matrix with ¢ < min(dy, dy) being the factorization rank.
The communication overhead rate CO ... is defined as the ratio of the size of B; to the size of AW :

_ osize(By) q
COTate o SiZQ(AWi) o d2.

Definition 3.3 (Reconstruction Error Rate). Using the same factorization as Definition[3.2] the
reconstruction error rate is the expected ratio of the reconstruction error to the original model update.
Given full-rank random reconstruction (Lemma[3.1)), it is expressed as:

Ea, [|AW: — BiAil5] _ o
[AW;]3 dy’

Proposition 3.4 (Single-Vector Factorization). Let AW;, A;, and B; be factorizations of a single
layer of the network as in Definition By reshaping AW, into AW € IRV 192 the factorization
of AW/ = B! Al where A, € IRP*%192 and B} € IRY*P can achieve the same reconstruction error
and communication overhead to the conventional factorization of AW; when p = qd;.

Proposition 3.5 (Multi-Layer Factorization). Ler AW;, A;, and B; be single-vector factorization
of i-th layer of the N-layered network as in Proposition By concatenating the reshaped weights
AW; into AW’ € IRY™4, where d = vazl did. The factorization of AW' = B'A’ where
A" € IRP*? and B' € IR P can achieve the same reconstruction error and communication
overhead to the single-vector factorization applied to each AW; when p = Nqd,.

Proposition 3.6 (MAPO Factorization). Let AW, A, B, and rank p be a multi-layer factorization
of a network as defined in Proposition By reshaping AW € IR*® into AW’ € IRF*[4/*1 and
the factorization of AW’ = B' A’ where A' € IR**14/¥1 and B' € IR**', we can achieve the same
reconstruction error and communication overhead to the multi-layer factorization of AW when
k = p, while reducing the memory by a factor of k°.

3.2 APPLICATION TO COMMUNICATION-EFFICIENT FEDERATED LEARNING

This subsection explains how our method, outlined in Section[3.1] is utilized in FL. The procedure
pseudo-code is provided in Algorithm [I] and visualized in Figure 4]

Matrix Construction and Broadcasting. To ensure consistency across the network, the server and
all clients start from an identical condition at each round. We guarantee identical model parameters
W, and reconstruction matrix A; by broadcasting a random seed 7, and the aggregated projection
vector B; at the beginning of round ¢. The initial aggregated projection vector is set to By = 0.

In the first round (¢t = 0), all clients and the server initialize the model WW° using the same seed.
The reconstruction matrix A° € IR'* [@/F1 is drawn from Gaussian A ~ A/(0, I), and the client 5’s
projection vector BY%i e RF*1 jgsetto 0 forall 1 < 7 < M, where M is the total number of clients.

In subsequent rounds (¢ > 1), clients update their local model W* using the previous round’s matrix
A'~1, the model parameters W'~1, and the broadcasted projection vector B' as follows:

Wt =W 4 vee(B' A" ) 0., (1)

where vec(+) and (-)[o.q denotes vectorization and truncating to the first d elements. Clients then
regenerate A* ~ N (0, I) using the seed r* and reset B! <— 0, ensuring A’ and W synchronization.
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Algorithm 1: Federated Learning with MAPO

Input :Initial random seed 7°, global model W°, reconstruction matrix A, projection vector B’
Output : Final global model W7

Initialize all clients and server with the same seed r°;

Initialize WO € R%, A € R[¥/F B% 0 ¢ R¥*;

for each communicationround¢ =1,..., 7 — 1do

Server: Broadcast Et& and seed '~ ! to all clients;
for each Client j =1, ..., M (in parallel) do

Receive B’ and rt=t

Update local model: W' < W*'~' + vee(B'A*"1)[0 : d;

Re-generate A" = N(0,0%14)|r' ™"

Initialize B*7 + 0 € R**";

for each local epoche =1,..., EF do
Compute gradient: VB"? < V. ; L7 (W' + vee(B* A™1)[0 : d], D?);
Update projection vector: B/ < BY — nVB%J;
Set BY «+ B

end

Send B*7 to the Server;

end

Server:

Re-generate A" = N(0,0%14)|r' ™"

Aggregate: B' + D e b; BY9, where S = >, bjs
Update global model: W't! < W' + vee(B' A 1)[0 : dJ;
Generate new seed 7' (e.g., r* = hash(r'~));

end
T.
return W~* ;

Local Projection Optimization. This step optimizes the projection B%J to minimizes the client loss
L(W! + vec(B" A1) (5.q, D7), where D7 denotes client j’s local dataset, and model weights are

derived as W' +vec(B"7 A") (g4 given the random matrix A*.

At each communication round ¢ > 1, after initializing A; and B%J, clients perform local training to
optimize B using their local data D’. The gradient of the projection vector is computed as:

VB" =V, (W' +vee(B“7 A" V) jg.q) for LI(W)= ﬁ > W), )
z€DI
where (W, z) is the loss function (e.g., cross-entropy loss) given model W and data point x.
Therefore, given the learning rate 7, only the projection B is updated using gradient descent as:
B « BY — gV B, 3)
After optimization: clients send their optimized projection vector B to the server. The low
dimensionality of B*/ compared to W* results in communication efficiency.

Server-Side Aggregation and Global Model Update. Upon receiving the projection vectors Bt
and their corresponding weights b/ = | D7| (e.g., batch sizes or number of local samples) from the
clients, the server aggregates them to form the global projection vector:

t 1 Moo M
B =g} VBY, for S=) b, )
j=1 j=1

This weighted averaging captures the collective contribution of all clients, proportional to their data
. L =t ) ..
sizes. The server then broadcasts the aggregated projection vector B to all clients. After receiving
=t . . . . .
B’, the server and all clients update their local models using the reconstruction matrix A* and the
L =t

aggregated projection vector B as: .

W' = W' 4 vee(B A" ) (0.4 (5)
This update integrates the clients’ optimized directions into their local models and ensures synchro-
nization across the network. This process is repeated until the global model converges.
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Table 2: Summary of datasets and models used in our experiments.

Dataset Client Distribution Train/Test # Classes Model # Parameters
MNIST (LeCun et al.|[1998) Non-IID (2 classes) 60K / 10K 10 CNN - 2 Layers 11,274
FMNIST (Xiao et al.|2017) Non-IID (2 classes) 60K / 10K 10 CNN - 2 Layers 11,274
CIFAR-10 (Krizhevsky et al./|2009) Non-IID (2 classes) 50K /10K 10 CNN - 4 Layers 1,146,634
CIFAR-100 (Krizhevsky et al..|2009)  Non-IID (10 classes) 50K / 10K 100 WideResNet 16d4w 2,854,420
TinyImageNet (University|[2015) Non-IID (10 classes) 100K / 10K 200 WideResNet 16d4w 2,880,120
Shakespeare (Caldas et al.[[2018) Distributed by Roles 14K / 2K 65 LSTM 814,957
Sentiment140 (Caldas et al.;2018) Distributed by Users 1.4M /200K 2 Transformer 2,221,570
GLUE Tasks (Wang et al.|2018a) Non-1ID differ per task  differ per task RoBERTa-Large 357,199,876

4 CONVERGENCE ANALYSIS

We analyze the convergence behavior of FL. with MAPO.
Assumption 4.1. For each j, L7 (v) is B-smooth, i.e.,

(u)=V LI (v)| < Bllu—v| for any u, v.

Assumption 4.2. Variance of the stochastic gradient of D7 is bounded for each client j, i.e.,

‘ . 2

E| ]vgf(W) - VﬁJ(W)H | <o?
Assumption 4.3. Bounded clients’ gradient dissimilarity: ﬁZ]M:l |VLi(w)-veLw H <o}
Assumption 4.4. At each communication round t, the server selects a subset Sy C [M] with
|S¢| = m < M clients uniformly and the sampling variance is o2, = pa where p = %

Theorem 4.5. Let Assumptions tod.4\hold, and suppose ny < 7 /3(1 + : Then, after T' communi-
cation rounds each with E local steps, the following bound holds:

R 2] _ E[L(WO)] — L~ L T
i ; ntlE[HV/:(Wt)H } <SS pE T2+ 589 (0f + o) + o)

where Hy = Z;‘F:_Ol 0, € is the JL distortion parameter, and L* is the minimum of L(W).

With a decreasing learning rate satisfying > ;o 7 — 00, > oo N7 < 00 (€.8., N = 7 for some

constants no > 0, ¢ > 0), the term Hr = tho 1y grows unbounded, while the weighted sum
Zt o 17 remains finite. Therefore, the right-hand side of Theorem s bound satisfies

E[L(WO)] — £* 1=
=T A F 0, =0 asT — oo,
Hy H tzgm

confirming convergence to a stationary point, as the gradient norm average satisfies

T—1

1
— E[|VL(WVY|? 0
iy 2 MENVEWOIF] =

As shown above, the convergence bound is influenced by the factor € 4+ 5 + fe, and becomes tightest
when € = 0, i.e., in the absence of reconstruction error. The proof is located in Appendix [J|

5 EXPERIMENTAL SETUP

We evaluate MAPO across diverse model architectures, tasks, and baselines. The benchmarks span
five image classification datasets, MNIST (LeCun et al., [ 1998), FMNIST (Xiao et al., 2017), CIFAR-
10, CIFAR-100 (Krizhevsky et al.,|2009), and TinyImageNet (University, [2015), as well as sequential
tasks, including next-character prediction on Shakespeare and sentiment analysis on Sentiment140,
both drawn from the LEAF benchmark suite (Caldas et al.l |2018)), tailored for FL. Additionally,
we evaluate MAPO as a fine-tuning method, alongside LoRA baselines on various GLUE (Wang
et al.| [2018a) tasks, highlighting the communication and computation efficiency in Appendix [B} The
dataset specifications and corresponding model architectures are summarized in Table [2] highlighting
MAPO’s adaptability across varying data modalities, model scales, and application domains.

Non-IID Distribution. To simulate realistic FL. conditions, we partition the training datasets in a
non-IID manner across 100 clients. For image classification and GLUE tasks, each client is assigned
a distinct subset of classes. For LEAF tasks, we follow the natural user-based partitioning, where
individual Shakespearean roles and Twitter users correspond to separate clients.
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Figure 5: Performance comparison of all methods on MNIST, FMNIST, CIFAR-10, and Shakespeare datasets.
The top row shows the accuracy, while the bottom row illustrates the communication cost per accuracy.

Table 3: Summary of maximum accuracy (%) and communication cost (% relative to FedAvg).
Accuracy values report mean (+std) over 3 runs, estimated from observed variance.

MNIST FMNIST CIFAR-10 CIFAR-100 Shakespeare Sent140 TinyImageNet
Method Com. Acc. Com. Acc. Com. Acc. Com. Acc. Com. Acc. Com. Acc. Com. Acc.
FedAvg 100 98.9 (0.1) 100 89.2 (x0.2) 100 69.0 (20.2) 100 43.47 (+0.3) 100 41.86 (+0.3) 100 74.90 (£0.3) 100 36.48 (+0.4)
Sparse 153 921 =04 241 8lL.l@o4 2.7 37.15@05 120 337205 1.73 348604 1.93 742103 132 253405

Quantize 31.3 97.6 (£0.2) 24.1 87.1 (x0.3) 15.2 67.40 x03)  6.10  40.05x04) 10.11 354504 1385 73.70 (20.3) 8.75 34.47 (x0.4)
EvoFed 940 98502 7.60 84703 34 395004 204 37.62z04) 023 367603 040 70.50 z03) 1.85  15.40 (0.5
FedLoRU 302 93.804) 17.9 74105 1.7 23.52 =05 120 19.10 0.5 1.67  28.07 (z0.5) 130  66.61 (x04) 1.27 7.31 (0.5)
MAPO 295 98.6x01) 310 88.0x02) 120 68.3 (20.2) 091  40.16 x03) 0.13  39.96 x03) 0.19 7450 x02) 0.97 3522 (x0.3)

Model Architectures. We evaluate MAPO across diverse architectures of varying complexity, includ-
ing CNNs for MNIST, FMNIST, and CIFAR-10, WideResNet for CIFAR-100 and TinyImageNet,
LSTM for next-character prediction, Transformer for sentiment analysis, and RoOBERTa for GLUE
tasks. Detailed architecture specifications and hyperparameters are in Appendix [D]

Baselines. We compare MAPO against multiple baselines, including standard compression methods
with subsampling (Sparse) (Konecny, [2016) and quantization (Quant) (Reisizadeh et al.| [2020),
EvoFed (Rahimi et al.||2024)), and FedLoRU (Park & Klabjan, 2024). Subsampling and quantization
serve as references to establish MAPO’s performance compared to conventional compression tech-
niques. EvoFed provides a strong comparison to demonstrate the effectiveness of MAPO’s subspace
optimization relative to methods applying compression post-optimization. FedLoRU allows us to
highlight MAPQO’s dynamic subspace exploration and its benefits over static layer-wise gradient
projections. Results comparing MAPO with additional parameter-factorization (Factorized-FL (Jeong
& Hwangl 2022)) and adapter-based fine-tuning baselines (LoRA (Hu et al.,|2021)), FA-LoRA (Sun
et al.,[2024), and SA-LoRA (Guo et al| 2024b)) are included in Appendices|B|and[C]

Federated Learning Setting. In each training round, 10% of the clients are randomly selected to
participate. Selected clients train locally in parallel and transmit their updates to the central server,
which aggregates these updates and redistributes the resulting global model back to the clients.

6 RESULTS AND DISCUSSIONS

We now discuss our experimental results in detail and provide insights into MAPO’s performance.
Figure 5] (top row) shows the accuracy of MAPO compared to multiple baseline methods across vari-
ous datasets. MAPO consistently outperforms all other methods and achieves accuracy comparable
to FedAvg, despite transmitting only a fraction of the parameters. This improvement results from
MAPO’s dynamic subspace optimization, which promotes effective exploration and efficient use of
the communication budget to minimize the loss function directly. Additionally, Figure 5] (bottom row)
illustrates the minimal communication cost required by each method to reach a given accuracy level,
highlighting MAPO’s significantly lower communication demands (logarithmic scale on the y-axis).
Additional results on CIFAR-100, TinyImageNet, and Sentiment140 are presented in Appendix

Table [3] summarizes experimental results by comparing the maximum accuracy of each baseline
and their communication cost relative to FedAvg. To ensure fair comparison, communication costs
are reported as the percentage required to reach the accuracy of the worst-performing baseline.
MAPO consistently achieves competitive accuracy with significantly lower communication overhead.
Specifically, on MNIST and FMNIST, MAPO achieves 99.6% and 98.6% of FedAvg’s accuracy,
respectively, using only 3% of FedAvg’s communication cost. For CIFAR-10, CIFAR-100, and
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Figure 6: Accuracy and communication cost per accuracy level for FMNIST and Shakespeare datasets.
Demonstrating the effect of a number of trainable parameters (k) on the communication efficiency of MAPO.

TinyImageNet, MAPO attains 98.9%, 92.4%, and 96.5% of FedAvg accuracy, respectively, while
consuming approximately 1% of the communication. Finally, in sequential tasks (Shakespeare and
Sentiment140), MAPO retains up to 95.5% and 99.5% of FedAvg’s accuracy, respectively, while
dramatically reducing communication to less than 0.2%.

MAPO Hyperparameter. MAPO simplifies gradient projection by applying a single factorization
across all model parameters, thus replacing per-layer rank selection with a single hyperparameter,
k, directly controlling communication cost and model accuracy. Figure[6]illustrates the effect of
varying k on performance and communication efficiency for the FMNIST and Shakespeare datasets.
While a smaller k significantly reduces communication overhead, it slows the convergence, requiring
more training rounds. Conversely, increasing k improves convergence speed and accuracy but rapidly
raises communication costs, often with diminishing returns. Therefore, the optimal &k achieves
a target accuracy with minimal total communication. Figure [6{b) and (c¢) show communication
costs associated with specific accuracy levels, guiding the selection of optimal k. We use the same
guidelines for all baselines to fairly tune hyperparameters.

Fresh Reconstruction Matrix. A key factor in MAPO’s performance
is using a dynamically generated reconstruction matrix A rather than a
fixed one. This approach promotes the exploration of new subspaces
throughout training. Figure [7|illustrates the benefits of using a fresh A
on the FMNIST and Shakespeare datasets. We evaluate MAPO across
varying numbers of trainable parameters, ranging from 2° to 2'3. For

Global Accuracy
HNWHMUON®
oo0oooo0oo0oo

FMNIST, this corresponds to 0.009% to 72.27% of the total model pa- Acc(ﬁis\f,ﬂi};meters

a
o

rameters, while for Shakespeare, it spans from 0.0001% to nearly 1%. In
both cases, MAPO with a fresh A achieves superior convergence with
fewer parameters, effectively leveraging the search space. In contrast,
when A is frozen, performance follows a logarithmic correlation with
the number of trainable parameters, requiring an exponentially larger
parameter count to match the results obtained with a fresh A.
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Additional Results. Comparisons with LoRA-based methods and (B) Shakespeare

: : : . : Figure 7: Comparison of
Factorlzed-FL are prqv1ded in Appendwe;s and[C] Appgnd}X supple- haging a fresh VSP frozen A.
ments our main experiments with evaluations under IID distributions and
without client sampling. The ablation study on the effect of input dimension and model parameters on
communication rate and training stability during exploration of A is presented in Appendices[Fand[G]
Finally, Appendix [K] presents a detailed analysis of memory complexity, emphasizing computational
efficiency and flexibility compared to layer-wise low-rank factorization.

Limitations. MAPO’s improved communication efficiency comes with additional computational
overhead from gradient projection optimization. While significantly reduced compared to prior
methods, MAPO still requires [d/r]+r memory and computation (instead of dr+r; see Appendix [E)
MAPO complements, but does not replace, PEFT methods like LoRA, as it reduces communication
overhead without decreasing the trainable parameters or storage requirements (see Appendix [B).

7 CONCLUSION

We introduced Model-Agnostic Projection Optimization (MAPO), a novel approach for CEFL. Unlike
layer-wise decomposition, MAPO factorizes the entire gradient using a projection vector and a
random reconstruction matrix, regenerated at each round. MAPO balances communication efficiency
and accuracy without imposing architecture-specific constraints or fixed-subspace limitations. Our
theoretical analysis establishes convergence guarantees, and empirical results demonstrate superior
performance and scalability across diverse datasets, confirming its practical value for FL.
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REPRODUCIBILITY STATEMENT

We provide complete, anonymous source code and configuration files in the supplementary materials:
(i) a PyTorch project for LoRA and GLUE fine-tuning experiments, and (ii) a JAX project for all
other federated experiments. The algorithmic design of MAPO is specified in Section [3.1] with
a step-by-step visualization (Figures [I]and [3) and a federated pseudo-code listing in Algorithm [I]
(see also the “Matrix Construction and Broadcasting” paragraph in Section [3.2] for seed handling
and synchronization). Dataset/model choices and train/test splits appear in Table 2} with the non-
IID partitioning and training protocol detailed in Section [5] (“Non-IID Distribution” and “Model
Architectures”), and hyperparameters in Appendix [D] Theoretical assumptions and guarantees are
stated in Assumptions [4.1]to #.4]and Theorem [.5] with complete proofs in Appendices|[|and[J]] The
supplementary packages include all configurations and environmental specifications necessary to
reproduce all reported results within the stated variance.
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A ACCURACY AND COMMUNICATION LEARNING CURVES

This appendix provides extended experimental results that complement the main findings discussed
in Section El We include detailed evaluations of MAPO and baseline methods on CIFAR-100,
TinyImageNet, and Sentiment140 datasets. Similar to the main results, Figure [§] reports both
maximum test accuracy and the communication cost required to reach a given accuracy threshold.
These additional experiments further demonstrate MAPO’s superior communication efficiency and
consistent performance gains across more challenging and large-scale tasks.
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Figure 8: Performance comparison of MAPO and baseline methods on CIFAR100, Tinylmagenet, and
Sentiment140 datasets. The top row shows the accuracy achieved by each method on the respective datasets,
while the bottom row illustrates the communication cost associated with each method.

B COMPARISON WITH LOW-RANK ADAPTATION IN FINE-TUNING

We conduct fine-tuning experiments using RoOBERTa-large on five GLUE tasks to evaluate MAPO
alongside LoRA, FA-LoRA, and SA-LoRA. Table d]compares the number of trainable parameters
and the communication load per round for each method. Table [5] summarizes fine-tuning results
under federated settings, reporting communication efficiency based on the number of rounds and total
communication required to reach 80% accuracy. Overall, the results indicate that MAPO improves
communication efficiency without compromising performance.

Table 4: Number of trainable and communication parameters per round for different methods.

Method Number of trainable parameters ~ Number of communication parameters per round
LoRA 1.83M 0.78M

FA-LoRA 1.44M 0.39M

SA-LoRA 1.83M 0.39M

MAPOg /1 357TM 0.36M

MAPO 10k 357TM 35.70K

MAPOg 100k 357TM 3.57K

MAPOg/1mm 357TM 357

Table 5: Comparison of model accuracies, communication rounds, and total communication cost.

Model SST2 QNLI RTE MNLIm MNLImm

Acc  Round Total Acc  Round Total Acc  Round Total Acc  Round Total Acc  Round Total
LoRA 84.86 36 28.08M  91.72 85 66.30M  86.62 180 140.40M  87.41 86 67.08M  87.34 82 63.96M
FA-LoRA 94.15 44 17.16M  91.63 76 29.64M  57.28 — — 85.92 76 29.64M  86.46 213 83.07M
SA-LoRA 95.41 19 7.41M 91.04 55 21.45M  70.01 — — 89.44 29 11.3IM 8549 126 49.14M
MAPO,1x 96.79 5 1.78M 93.14 11 3.93M 8791 23 8.21IM 88.90 17 6.07M 88.26 22 7.85M
MAPO/ 10k 96.10 5 178.50K  92.57 8 285.60K  89.57 23 821.10K  88.81 18 642.60K  87.43 25 892.50K
MAPOgy 100k 95.53 5 17.85K  89.24 7 24.99K  84.38 24 85.68K  85.04 20 71.40K  84.60 29 103.53K
MAPO./1m 90.37 7 2.50K 80.09 34 12.14K  57.04 — — 72.46 — — 37.76 — —

14



Under review as a conference paper at ICLR 2026

C COMPARISON WITH FACTORIZED-FL

In this section, we present a detailed comparison between MAPO and Factorized-FL as a represen-
tative of the parameter decomposition methods. Factorized-FL can be interpreted as a variant of
rank-1 LoRA, where a sparse bias matrix substitutes for LoRA’s frozen fine-tuned weights, initialized
to zero. Table[6|reports the communication efficiency of MAPO and Factorized-FL on CIFAR-10
and SVHN datasets, evaluated under both IID and non-IID partitions. Each column denotes the
total communication in GB required to reach X% of FedAvg’s final test accuracy. Results show
that MAPO achieves significantly lower communication costs compared to Factorized-FL while
maintaining competitive performance across both datasets and data distributions.

Table 6: Communication cost comparison across different methods on SVHN and CIFAR-10 under
IID and Non-IID settings.

Method SVHN CIFAR-10 Com/Round
IID@80% I1ID@90% Non-IID@80% Non-ID@90% IID@80% IID@90% Non-IID@80%  Non-IID@90%

FedAvg 183.51 244.68 285.46 509.75 305.85 407.80 326.24 652.48 20.39GB

Factorized-FL 127.75 182.50 146.00 219.00 182.50 292.00 200.75 310.25 18.25GB

MAPO2 0.32 0.79 0.56 - 0.32 - 0.94 - 0.78MB

MAPO 16k 0.08 0.18 0.12 0.27 0.08 0.18 0.23 0.45 6.25MB

MAPOy0k 3.84 8.64 5.76 13.12 3.84 8.64 10.88 21.12 0.32GB

D IMPLEMENTATION DETAILS AND HYPERPARAMETERS

All experiments were conducted on a single NVIDIA RTX 3090 with 24 GB of memory. The
main experiments and baselines are implemented with JAX (Bradbury et al., |2018). The GLUE
tasks and LLM fine-tuning implementation use Hugging Face libraries and models implemented in
FederatedScope (Xie et al.||2023)) with half precision (i.e., 16-bit float). The model configuration and
training used in this work are provided in Tables [7]and

Table 7: Neural network configurations for different datasets.

Dataset Model type #Conv Kernel Hidden features # Linear # Output # Parameters
MNIST CNN 2 5%5 8,16 1 10 11.3K
FMNIST CNN 2 5%5 8,16 1 10 11.3K
CIFAR-10 CNN 4 5%5 64, 64, 128, 128 2 10 1.IM
CIFAR-100 WideResNet 16 3x3 64x4, 128x4 2 100 2.8M
TinyImageNet WideResNet 16 3x3 64x4, 128x4 2 200 2.88M
Shakespeare LSTM - - 256, 8 (embed) 2 65 814K
Sentiment140 Transformer - - 512, 96 (embed) 2 2 2.2M
SVHN CNN 4 5x5 64, 64, 128, 128 2 10 1.IM
GLUE RoBERTa-large - - 1024 (hidden) 2 Varies 357TM
Table 8: Training hyperparameters for FedAvg and variants.

Hyperparameter MNIST FMNIST CIFAR-10 CIFAR-100 TinylmageNet Sentimentl40 Shakespeare SVHN GLUE
Batch size 32 32 32 32 32 32 32 32 128
Optimizer SGD SGD SGD AdamW AdamW SGD SGD SGD SGD
Learning rate 0.2 0.2 0.03 0.1 0.2 0.001 0.2 0.03 0.02
Momentum 0.9 0.9 0.4 0.9 0.9 0.9 0.9 04 0.0
L1 regularization 0.0 0.0 le-4 0.0 le-5 0.0 Se-6 le-4 0.0
L2 regularization 0.0 0.0 le-5 3e-3 le-4 0.0 Se-5 le-5 0.0
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E 1IID AND CLIENT SAMPLING

This section includes the results of additional experiments on IID distribution and client sampling
for MNIST, FMNIST, and CIFAR-10. Across all three datasets, we observe consistent trends.
Reducing the fraction of clients participating (from all clients to 10%) moderately decreases accuracy
for all methods, and non-IID settings introduce additional accuracy penalties. However, MAPO’s
performance remains robust in these more demanding scenarios; it routinely stays close to FedAvg’s
high-accuracy results while maintaining significant communication savings. This resilience suggests
that MAPOQO’s approach scales well to heterogeneous data distributions and partial-participation

regimes, crucial in large-scale FL deployments.

Table 9: Extrapolated MNIST results for IID vs. non-1ID and full vs. 10% client participation.

1ID Non-IID
All clients 10% clients All clients 10% clients
Method Com. Acc. Com. Acc. Com. Acc. Com. Acc.
FedAvg 100%  99.6% 100%  99.5% 100%  99.3% 100%  98.9%
Sparse 100% 939% 12.0% 93.6% 133% 93.4% 153% 92.1%
Quantize 220% 98.8% 25.0% 98.5% 29.0% 982% 31.3% 97.6%
EvoFed 6.5% 99.4% 7.0% 99.2% 8.5%  99.0% 94%  98.5%
FedLoRU 22.0% 95.0% 250% 94.7% 282% 943% 302% 93.8%
MAPO 20% 995% 23% 993% 27% 99.0% 29% 98.5%

Table 10: Extrapolated FMNIST results for IID vs. non-IID and full vs. 10% client participation.

IID Non-IID

All clients 10% clients All clients 10% clients
Method Com. Acc. Com. Acc. Com. Acc. Com. Acc.
FedAvg 100% 91.5% 100%  91.0% 100%  90.0% 100%  89.2%
Sparse 160% 84.0% 19.0% 83.5% 21.0% 820% 24.1% 81.1%
Quantize 160% 89.7% 19.0% 89.2% 21.0% 88.0% 24.1% 87.1%
EvoFed 4.5% 87.0% 5.5% 86.5% 6.8% 85.5% 7.6% 84.7%
FedLoRU 12.0% 76.8% 14.0% 762% 155% 75.0% 17.9% 74.1%
MAPO 20% 900% 23% 89.6% 27% 888% 31% 88.0%

Table 11: Extrapolated CIFAR-10 results for IID vs. non-IID and full vs. 10% client participation.

IID Non-IID
All clients 10% clients All clients 10% clients
Method Com. Acc. Com. Acc. Com. Acc. Com. Acc.
FedAvg 100%  73.0% 100%  72.0% 100%  70.0% 100%  69.0%
Sparse 1.8% 41.0% 2.0% 40.0% 2.4% 38.0% 2.7% 37.2%
Quantize 100% 71.0% 12.0% 70.0% 13.0% 685% 152% 67.4%
EvoFed 2.0% 43.0% 2.5% 42.0% 3.0% 40.5% 3.4% 39.5%
FedLoRU 1.1% 27.0% 1.3% 26.0% 1.5% 24.5% 1.7% 23.5%
MAPO 08% 71.5% 09% 708% 1.0% 692% 12% 68.3%
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F ABLATION STUDY: INPUT DIMENSION AND COMPRESSION RATE

This section reports additional experiments designed to quantify how the projection dimension &
should scale as the task becomes more complex (higher model capacity and higher input dimensional-
ity). We evaluate on the HAM 10000 skin cancer detection dataset with both low- and high-resolution
inputs and two representative architectures.

EXPERIMENTAL SETUP

We consider four model—input configurations and assign k£ commensurate with their complexity:
CNN (3M params), 28 x 28 : k = 212, CNN (208M params), 224 x 224 : k = 2'8
WRN (2.8M params), 28 x 28 : k = 2!2, WRN (2.8M params), 224 x 224 : k = 216,

We compare FedAvg (uncompressed) to representative communication-efficient baselines (Sparse,
Quant, EvoFed, FedLoRU) and MAPO. We report (i) test accuracy (Acc., %) and (ii) normalized
communication cost (Com., %), where Com. = 100 is the per-round uplink payload of FedAvg for
the corresponding model-resolution configuration (lower is better).

CNN (3M), 28 x 28, k = 2'>  CNN (208M), 224 x 224, k = 2'®  WRN (2.8M), 28 x 28, k = 2'>  WRN (2.8M), 224 x 224, k = 26

Method Acc. Com. Acc. Com. Acc. Com. Acc. Com.
FedAvg 77.05 100.00 79.76 100.00 79.13 100.00 81.83 100.00
Sparse 71.47 1.67 74.09 2.07 73.57 1.72 79.07 13.72
Quant 75.51 10.31 78.23 14.21 77.82 5.63 79.32 28.44
EvoFed 71.82 4.57 74.13 3.83 73.97 10.81 78.11 18.72
FedLoRU  74.60 1.33 78.18 1.51 77.01 1.52 78.98 12.43
MAPO 76.58 1.07 79.20 1.23 78.20 0.93 80.16 9.27

Table 12: HAM10000: accuracy—communication trade-offs across model/input complexity and
projection k. Each block fixes a model and input resolution; Com. is per-round uplink normalized to
the corresponding FedAvg (100). As complexity rises (from 28x28 to 224x224 and/or higher-capacity
models), larger k is used to maintain fidelity. MAPO consistently matches or exceeds the accuracy
of other compression baselines while operating at substantially lower communication budgets.

Scaling trend. Higher input resolution and model capacity necessitate a larger projection dimension
k to preserve gradient information under projection. This is reflected in the chosen k across the four
settings.

Robust trade-off. Even as k increases for the more complex settings, MAPO attains a favorable
accuracy—communication balance. For example:

CNN (208M), 224 x224: MAPO reaches 78.20% at only 0.93% communication, vs. FedAvg 79.76%
at 100%.

WRN (2.8M), 224 x 224: MAPO achieves 80.16% at 9.27% communication, vs. FedAvg 81.83% at
100%.

Consistency across regimes. On low-resolution tasks (e.g., 28 x 28), MAPO preserves accuracy
close to FedAvg while reducing communication by two orders of magnitude; on high-resolution tasks,
it remains competitive and generally superior to other compression baselines.
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G ABLATION STUDY: SUBSPACE EXPLORATION AND STABILITY

Design. We study the effect of redefining the reconstruction vector A each communication round
(FRESH-A) versus keeping it fixed throughout training (FROZEN-A). Redefining A increases subspace
exploration capacity but could, in principle, introduce early-round instability. We quantify this trade-
off across four benchmarks. Unless noted otherwise, all numbers are test accuracy (%).

Observation. Across tasks, FRESH-A may trail slightly in the earliest rounds but quickly surpasses
FROZEN-A, ultimately converging to substantially higher accuracy. This indicates that the exploratory
benefit of a refreshed subspace dominates any mild early-round variance.

Table 13: Sent140 (100 clients): accuracy over rounds.
Method 1 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

FRESH-A 6272 62.72 62.72 63.03 64.18 66.61 67.09 69.59 69.78 70.14 7231 72.88 73.58 73.92 74.76
FROZEN-A 6273 6275 63.37 64.88 64.69 65.63 6627 66.83 66.32 66.03 66.85 6647 66.73 66.78 67.09
DIFF -0.01 -0.03 -0.65 -1.85 -0.50 098 0.82 276 346 411 546 641 685 7.14 1767

Table 14: Shakespeare: accuracy (%) over rounds.
Method 1 50 100 150 200 250 300 350 400 450 500 550 600 650 700

FRESH-A  14.67 1533 22.18 28.33 30.60 32.71 33.79 3499 35.86 36.54 36.75 37.33 37.82 3836 38.63
FROZEN-A 14.69 2047 2373 2540 2599 26.71 26.60 27.13 27.67 28.13 28.04 28.27 27.96 28.32 28.18
DIFF -0.02 -5.14 -1.55 293 461 600 7.19 786 819 841 871 9.06 9.86 10.04 1045

Table 15: tinyImageNet: accuracy (%) over rounds.
Method 1 10 20 30 40 5 60 70 8 90 100 110 120 130 140

FRESH-A 074 137 222 490 695 855 11.37 1352 1524 17.76 20.05 21.84 23.00 24.11 24.79
FROZEN-A 0.75 143 4.00 577 725 803 922 1001 10.66 10.52 1040 1023 994 9.82 9.69
DIFF -0.01 -0.06 -1.78 -0.87 -0.30 0.52 215 351 458 724 9.65 11.61 13.07 1429 15.10

Table 16: CIFAR-100: accuracy (%) over rounds.
Method 1 10 20 30 40 50 60 70 80 90 100 110 120 130 140

FRESH-A 1.19 8.01 14.44 18.11 21.79 23.12 2549 2751 2823 30.60 32.18 3230 31.41 33.97 34.01
FROZEN-A 155 8.79 12.83 1433 1532 15.69 1545 1658 17.02 16.63 17.67 1792 18.08 1832 18.55
DIFF -0.36 -0.78 1.61 3.78 647 743 10.04 1093 11.21 1397 14.51 1438 13.33 15.65 15.46

A fixed small subspace is quickly capacity-limited. Allowing A to refresh each round enhances
subspace exploration, resulting in reliably higher accuracies after the initial transient.

In our implementation, A is (re)initialized once per communication round. Each round comprises
many local optimization steps (multiple batches/epochs), executed within a fixed subspace. The
subspace changes only after server aggregation. This design avoids the instability that could arise
from re-drawing A at every local step.

Additional Evaluation. To further test stability under increasing scale and complexity, we report
two additional benchmarks, comparing FRESH-A with FROZEN-A and two intermediate schedules:
Frozen-First-50, where A is frozen for the first 50 rounds, then refreshed thereafter, and Semi-Fresh-
A, where A is refreshed every two rounds.

Table 17: CelebA: accuracy (%) over rounds for different A-schedules.
Method 0 10 20 30 40 50 60 70 80 90 100

FRESH-A 4997 5723 69.83 86.04 89.57 9029 91.06 91.19 91.28 91.31 91.32
SEMI-FRESH-A 49.97 54.67 6052 63.01 70.13 80.61 84.14 8579 8589 8742 88.06
FROZEN-FIRST-50 49.97 50.01 50.07 5342 56.13 57.81 6156 7322 8396 86.84 88.54
FROZEN-A 49.97 50.01 50.07 5342 56.13 57.81 59.51 60.72 6123 61.81 62.25

Table 18: HAM10000: accuracy (%) over rounds for different A-schedules.
Method 0 10 20 30 40 50 60 70 80 90 100

FRESH-A 67.99 68.13 69.08 7041 70.68 7132 7226 72.75 73.17 73779 74.13
SEMI-FRESH-A 67.99 68.08 6844 69.77 69.86 69.54 7044 70.75 71.03 71.12 70.96
FROZEN-FIRST-50 67.99 67.99 6799 6799 67.99 6799 6821 69.38 70.07 71.04 7297
FROZEN-A 67.99 67.99 6799 6799 6799 6799 6799 6799 6799 6799 67.99
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Takeaways. (1) Across both datasets, FRESH-A remains stable in early rounds and attains the best
final accuracy. (2) FROZEN-A exhibits limited improvement, consistent with a capacity-limited, fixed
subspace. (3) Intermediate schedules (FROZEN-FIRST-50, SEMI-FRESH-A) offer smoother early
phases than fully FRESH-A in a few cases but ultimately underperform the fully refreshed scheme.
(4) As scale and complexity grow, exploration via a new round-wise subspace is beneficial for both
stability and convergence quality.
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H NOTATIONS

Table 19: Notation and Definitions

Symbol Meaning / Definition
N Number of layers in a model.
7 Indexing notation for the layers of the model. (1 < i < N)
M Number of clients in FL.
J Indexing notation for clients. (1 < 57 < M)
T Total number of communication rounds in FL.
t Indexing notation for rounds. (1 <t < 7T
DI Local dataset for client j.
b Weight for client j, usually set as the number of local samples |D7|.
AW Model update, treated as a single vector, € R?*1,
wt Model parameters at communication round ¢.
B Aggregated projection vector at round ¢, broadcast by the server.
rt Random seed used to synchronize matrix generation across clients and the server.
At Reconstruction matrix at round ¢, regenerated using r;.
Bt Trainable projection matrix for client j at round ¢.
Bt Locally optimized projection matrix for client j at round ¢.
n Learning rate for local optimization.
d Total number of model parameters, defined as d = >, d{d5.
¢ Row and column dimensions of the weight matrix for layer .
p Factorization rank after reshaping.
q LoRA Factorization rank before reshaping.
k Design parameter controlling reshape dimension (AW’ reshaped into R/4/*1x#),
AeR>*, BeR>* Reconstruction and projection matrices in factorization.
LW) Global loss function.
LY W) Local loss function for client i.
VL(W) Gradient of the global loss function.
VB Gradient of local loss for the projection matrix.
o} Bounded variance of stochastic gradients.
I3 Smoothness constant of the loss function.

€

Distortion parameter from the Johnson-Lindenstrauss Lemma.
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I PROOF OF DEFINITIONS AND PROPOSITIONS

Definition 1.1 (Communication Overhead Rate). Let AW € IR %% be the update matrix of
a model. Suppose the factorization of AW as AW = BA, where A € IR7*% is a fixed random
matrix and B € IR %9 is a trainable matrix with ¢ < min(dy, d2) being the factorization rank. The
communication overhead rate CO,. .. is defined as the ratio of the size of B to the size of AW :

size(B) ¢
size(AW)  dy’
Definition 1.2 (Reconstruction Error Rate). Using the same factorization as Definition[3.2] the

reconstruction error rate is the expected ratio of the reconstruction error to the original model update.
Given full-rank random reconstruction (Lemmal3.1)), it is expressed as:
2
Ea [|AW — BA|3] q

=1-2
[AW]|3 dy

COrate =

Proof. Let AW = [Aw; Aws --- Awg, |, where each column Aw; € IR%. Similarly, the
reconstruction BA can be written as [b1 A bo A - -+ bg, A], where each b; € IR? is a trainable matrix.
The reconstruction error is given by:

dy
JAW — BA|j3 = Z | Aw; — b; All3.
i=1
The projection of Aw; onto the subspace spanned by A is P4 Aw;. The error rate F is defined as:
o Hsz — AwZPAH%

E
| Aw;][3

Using the Pythagorean theorem:
|Aw;][3 = [[Aw; Pall3 + [[wi — Aw; Pal3,

we rewrite F as:

lAwil3 — [ AwiPal3 [ AwiPal
[Awi [ A3

The expected value of || Aw; P4||3 for a full-rank random Gaussian projection is:

E

q
E[| Aw; Pal3] = g\lﬁwi\@-

Substituting this into E':

E[[| Aw; Pall3] a1l Aw 13 q
E[||Aw; — biA|3] =1 - ————22 =1 - 4 — 02 — 1 - =,
? | Aw; |3 w13 dy
Applying this to each column AAw; of AW, we obtain:

dy

>l Aw; — bAl3

i=1

dy
Ea = > Ea (18w — (Aw)Pall3]
=1

Using the expected error formula:
d1 q q (i1
_ 2 _(1_49 2
=3 (1) el = (1= ) S nawt

Since [|AW |3 = i, [| w3, we get:

q
B 1AW - BAIE) = (1- L) jaw
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Proposition 1.3 (Single-Vector Factorization). Let AW, A, and B be factorizations of a single
layer of the network as in Definition By reshaping AW into AW' € IR™ % the factorization
of AW' = B' A" where A’ € IRP*“% and B’ € IR**P can achieve the same reconstruction error
and communication overhead to the conventional factorization of AW when p = qd;.

Proof of Error Preservation. In the single-vector setup, AW’ € IR%9 is projected onto a subspace
of dimension p. From random projection theory (as used in Definition[3.3)), if A’ is sampled such that
rank(A") = p, then:

e[V D) p

HAW/H% dldg'
Substituting p = qd; gives: _adh _a
d1d2 d2 ’

Hence, the expected reconstruction error satisfies:
E(law - 5 A = (1- L) jaws
2

which matches the original factorization. O
Proof of Communication Preservation. For AW’ € IR"92, with the total size size(AW') = dyda,
we have the communication overhead as:

size(B') = p = qd;.
Thus, the communication overhead is:

o . — size(B’) _qdi g
rate SiZG(AW/) dl d2 dg ’

which matches the original overhead.

Since both the expected reconstruction error and the communication overhead remain unchanged, the
single-vector factorization with p = ¢d; is equivalent in terms of efficiency.

Proposition 1.4 (Multi-Layer Factorization). Let AW;, A;, and B; be single-vector factorization of
i-th layer of the n-layered network as in Proposition[3.4] By concatenating the reshaped weights AW
into AW' € RY4, where d = 3" | did5. The factorization of AW' = B' A’ where A’ € IRP*4
and B' € IR'*P can achieve the same reconstruction error and communication overhead to the
single-vector factorization applied to each AW; when p = nqd,.

Proof of Error Preservation. For each layer i, a random full-rank matrix A; € R9*% yields an
expected squared reconstruction error

Blaw: = Bl ] = (1 - ) Iawil.

Flattening AW, into AW/ € IR(d1d2)% 1. a single-vector projection of dimension ¢ d} preserves this
same error ratio (cf. Proposition[3.4).

When we concatenate all AW/ into AW’ € R4, we form a block-structured vector. Let p :=ngq

and let A’ € IRP*? be constructed from a Gaussian distribution. By the standard random-projection
argument in dimension d with subspace size p,

Ellaw’ - B a3 = (1 - Z)awB = (1 - <2 )jaw’|3,

|| 13 E)law|3 o IAWI
Since p = Nqd;, the overall ratio matches applying single-vector factorizations of rank ¢ to each
AW/ individually. O

Proof of Communication Preservation. For each layer i, the single-vector factorization of AW;
introduces
size(B;) q

size(B;) = qdi, size(AW;) = did, hence Se(AW;) = i
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Concatenating all AW/ into AW’ € IR'*? gives size(AW’) = d, with

N
d =) did.
i=1
Meanwhile, in the multi-layer factorization, the new trainable vector B’ € IR'P has
size(B') = p = Ng.
Thus
size(B') Ngq
size(AWY) - X (df db)
which matches the total overhead of IV individual rank-q factorizations (one per layer) in aggregate.
Consequently, the communication overhead rate is also preserved.

)

Since both the expected reconstruction error (per layer or in total) and the communication overhead
remain the same, choosing p = N ¢ for AW’ is equivalent to applying single-vector factorization of
rank ¢ separately to each layer. O

Proposition 1.5 (MAPO Factorization). Let AW, A, B, and rank p be a multi-layer factorization
of a network as defined in Propositionlig] By reshaping AW € IR'? into AW’ € IRF*14/F1 and
the factorization of AW’ = B' A’ where A' € IR*14/*1 and B' € IR**', we can achieve the same
reconstruction error and communication overhead to the multi-layer factorization of AW when
k = p, while reducing the memory by a factor of k>.

Proof of Error Preservation. Since AW € IR'*? is reshaped into AW’ € IRF*[4/k1  we still have
|AW’||% = ||AW]|3. When A’ € IR'*[4/k1 is a suitable random projection (and B’ € IR**1 is fit
accordingly), the rank-1 subspace of dimension 1 within [d/k] induces the known expected error
ratio

E[|AW' = BAI:] = (1= ) 1AW|2,

since the ambient dimension is k x [d/k] = d. By taking k = p, we obtain (via standard random-
projection arguments) the matching error ratio 1 — p/d, up to negligible rounding. Therefore:

E[law’ - BAE] = (1) a3,
O

Proof of Communication Preservation. The matrix B’ € IRF*! has size k in total. Meanwhile,
AW’ € IRF*[4/F] has size k x [d/k] ~ d. Thus

size(B’) k _k p

size(AW') — [d/klk ~ d  d

Setting k = p matches the original ratio & from B € IRP* !in the multi-layer factorization. O

Proof of Memory Reduction by Factor k?. In standard rank-p factorizations for AW € IR'*?, one
typically stores a p X d projection plus a 1 X p vector, whose total size scales as dp + p. By contrast,
A’ € R 14/k] plus B’ € IR**" has combined size [d/k] + k. When k = p, the ratio of these sizes
can be shown to drop by a factor of approximately k2. Hence, the approach allocates k? times less
memory than a naive p X d plus 1 X p arrangement. As p = k

dp+p  dk+k _ d+1
[d/k]+k  [d/k]+k  d/k2+1"

Thus, the factorization AW’ = B’A’ with k = p exactly preserves the original rank-p error and
overhead while using k2-fold less memory. O
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J CONVERGENCE ANALYSIS PROOF

Let {£7}11, be client objectives and L(W) := 47 Zj\il L3 (W) the global objective. Denote by
W the global model at the beginning of communication round ¢ € {0,1,...} and by F € N the
number of local steps per round.

Assumption J.1. For each j, L’ (v) is B-smooth, i.e.,

VLI (u) =V LI (v)|| < Bllu—v]| for any u, v.
Assumption J.2. Variance of the stochastic gradient of D7 2is bounded for each client j, i.e.,

E[ ]vﬁ(W) - Wﬂ‘(W)H } < o?

Assumption J.3. Bounded clients’ gradient dissimilarity: ﬁZ;Vil HVEj (W)=VLW) H2§ o2

Assumption J.4. At each communication round t, the server selects a subset Sy C [M] with

|S¢| = m < M clients uniformly and the sampling variance is o2,, = pag where p = m%v;:nn'

During round ¢, each participating client j € S; performs E local steps indexed by e € {0,1,..., F—
1}. We adopt the standard “virtual iterate” device: denote by W*? = W the round-t starting point
and by W€ the (virtual) state before local step e; all local gradients are evaluated at these virtual
states and then aggregated centrally as if applied to W?.

For each local step, client j forms a MAPO-projected direction B:7 AL approximating the stochastic
gradient VL7 (W¢). Define the per-step projection error

ehd = §£j(Wt’e) — BYIAL
Define the sampled averages
1 ~ . 1 ,
St J t,e st . — t,j
gc: mZVﬁ(W )s €. : mZee.
JESt JES:

Let i > 0 be the (server) stepsize. The aggregated update is
E-1 E-1
W =Wh—n > Gl > el (©6)
e=0 e=0
Johnson-Lindenstrauss (JL) property for MAPO. Let0 < e < 1 be the JL distortion. With high
probability (w.h.p.) the MAPO projection satisfies a norm preservation bound implying
E[let?|?] < €E [||€z:j(wt’e)ﬂ ., hence  E[|f]?] < EE[\@;HQ] )
Variance decomposition under heterogeneity and sampling. By Assumptions [J.2] to [l.4] and
unbiased client sampling,
E {H@f - Vﬁ(Wt’e)Hﬂ < of 40, +o0n foralltande. ®)

Theorem J.5. Let Assumptions|J.1|to|J.4|hold, and suppose 1y < 4/;(%}:5)' Then, after T' communica-
tion rounds each with E local steps, the following bound holds:

T-1
1 21 _ E[L(WO)] —L* 1
1 ;mE{HV,C(Wt)H } < LH, +2E(c+ B+ Be) (0] + 0o + Ojrt) 7= > 175

where Hy = ZtT;()l M, € is the JL distortion parameter, and L* is the minimum of L(W).

Proof. By [S-smoothness of £ and total expectation,

E[L(W') — (W] <E[(VLW!), W — W] + g]E[HWt“ -WHEl.
Substitute equation [6] and split the inner product into two terms:

E-1
E,:=F <V/3(Wt), —_— §;>] . Ey=E
e=0

(vemw?), ntﬁjfes}l -

e=0
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Bounding E;. For each e, add and subtract V.L(W), then use (a, b) = % (||al|*+]b]|*—[|a—b|?)
and smoothness to absorb |[VL(W?) — VL(W€)||? (the same step-size condition enforced later

ensures nonpositivity of the resulting coefficient):

—mEKVE(Wt)Kg“D]:—m [(vLw?h), VC(Wt’e)ﬂ—m (VL) g. vc(W”»]

<~ G E[IVLOV|?] = 5 E[IVLIV)P] +mE [H

Summing over e = 0, ..., E — 1 and invoking equatlon@ylelds

E—-1
Ei < — 2 BE[|VLWY?] = 2 ST E[IVLW) ] + 00 B (07 + 07 + o)

e=0

Bounding E;.  Using (a,b) < 1a|® + |

2 Jensen, equation |7} and equation

E—-1 2
5]
e=0
" E—-1
TENVEWOI?] + 0 E Y E[llel)]
e=0
" E—-1
TEVEWOI?] +en E Y E[l5)7]
e=0
E-1

E> < T E[IVLW)|?] +m E

IN

IN

IN

e=0

Bounding the quadratic term. From equation|§|and lla + b]|% < 2[al|? + 2||b]|%,

B[t — w2 Hzge + 27 R HZ ]
7 51
<2 E[lg2]1? +2mEZEIIetII]
e=0
E—-1
<4An? Y E[[VLWEO)|?] + 407 E*(0f + 02 + o)
e=0
EF-1
+2en; B E[|g217]
e=0
FE-1

TERVLVIP] +2em S E[IVLWE) 2] + 2en E (07 + 02 + 02

(10)

(1)

41+ e)n? Z E[|IVLW )P +4(1 + €)n; E* (0] + 0% + 0y -

e=0

Plugging equation[T0} equation[TT] and equation[T2]into equation 9]
E[ew) - cvt)] < (- 2B+ 1) E[Ivevt)?

E—1
+(- B+ 2em +28(1+ )ZIE IV LW)|2]

+mE(07 4 07 + p) + 26 E(07 + 07 + 0y
+28(1 + €)n; E* (07 + 0, + 0pey)-

Choose
1—4e

Ut§m7
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so the coefficient of Y E||V.L(W)||? is nonpositive. Since E > 1, the first coefficient is at most
— . Dropping the nonpositive term, we obtain

E[L(W) — L(W")] < —% E[|[VLW)|[?] +2E(e + B + Be) ni (07 + 0 + o). (14)

J.1 TELESCOPING, AVERAGING, AND FINAL BOUND

Summing equationovert =0,...,T —1and using L(WT) > L*,

T-1
£ =E[LW)] < 3 (- FEIVEWYI] + 2B(e + B+ ) nf (oF + 02 + o))
t=0

Rearranging and dividing by EHp with Hp := Y1 " n; yields

T-1 T-1
1 E[L(W)] — L* 1
E t\]12 < 28 2 2 2 . 2.
Vi ;m IVEWHI?) £ ==F5 —— +2B(c+ B+ Be)(of + 0] + o) - ;m
15)
This is exactly the claimed bound.
O
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K COMPLEXITY ANALYSIS AND MAPO FLEXIBILITY

Propositions [3.4] to[3.6] discussed how the error rate and accuracy of low-rank factorization are only
determined by the size of the projection vector, regardless of reshaping and vectorization of layers.
Although they prove that MAPO can achieve the same performance as layer-wise factorization
given the same projection (communication) budget, we did not discuss the memory and computation
complexity. In this section, we show that MAPO can effectively reduce computation. Furthermore,
we show how layer-wise low-rank adaptation (LoRA and FA-LoRA) limits the model trade-offs and
how MAPO can offer more flexibility.

K.1 COMPUTATIONAL COMPLEXITY

We compute the memory and computation cost for matrix allocation and multiplication in terms of
standard matrix multiplication. Given matrices A € IR™*"™ and B € IRP*", the complexities for
computing C' = BA are:

Memory._ 45 = O(nm + pn + pm),
Timec—pa = O(mnp).

We aim to demonstrate that factorization under MAPO, where W € IRF* M%7 is factorized into
A € R'™[7] and B € IR¥*1, reduces the memory and time complexity of the LoRA factorization
for an n-layered model. In LoRA, each layer i is factorized as w; € IR% <% into A € IR7*% and
B e R¥xq,

We demonstrate that, given the same communication budget and factorization error rate, MAPO
significantly reduces the computational cost compared to LoRA. This reduction becomes more
pronounced as the number of layers or the selected rank increases. Specifically, MAPO achieves
a memory reduction by a factor of ¢? and a computation reduction by a factor of ¢, where ¢
is the chosen LoRA rank. Furthermore, even when ¢ = 1, MAPO still achieves memory savings
as > £ d}d? scales with the number of layers. The only scenario where MAPO and LoRA yield
identical efficiency is when the model consists of a single layer (n = 1) and a rank-1 factorization

(g=1).

MEMORY COMPLEXITY

Given these definitions, the memory complexities for MAPO and LoRA are:

d d d
MemoryMAPO=O<LJ +k+ L{—‘ k) %O<k+k—|—d>,

Memory; 4 = O (Z(d}q +d2q+ d}d?)) =0 (Z dig+> dig+> d}d?) .
1=1 =1 =1

i=1

Given the same communication budget k = Y., qd} and d = Y .| did?, we rewrite LORA’s
memory complexity as:

Memory; z4 = O (quf—l—k—&-d) .

i=1

For MAPO to have lower memory usage than LoRA, the following condition must hold:

Memory ;4 po < Memory; ,p 4,

d n
4 k4+d< & +k+d
k++,qi;z++,



Under review as a conference paper at ICLR 2026

Replacing k and d with their respective summation terms:

n n n
D didi<q*) di ) dr,
=1 1=1 =1

<@ dd Y d,
i=1 i#]

Thus, the inequality always holds under the conditions d},d?,q,n > 1, and equality occurs if

q = n = 1, which corresponds to a model with a single layer and rank-1 factorization. In this case,
MAPO and LoRA perform the same decomposition.

TIME COMPLEXITY

Given the definitions, we can express the time complexities for MAPO and LoRA as follows:

Timeyrapo = O <[Z—‘ k) ~ O(d),

Time o = O <Z qd§d§> .
=1

Since d = )" | d}d?, we can rewrite LORA’s time complexity as:
Timero,ra = O(qd).
For MAPO to have a lower time complexity than LoRA, the following condition must hold:

Timeprapo < Timerora,
d < qd.

This condition is always true for d, ¢ > 1, and equality occurs when ¢ = 1.
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K.2 MAPO FLEXIBILITY
Suppose our neural network has n layers. Let:
W; € R%*%  for each layeri =1,...,n.

Letd = )", d;d? be the total number of parameters (i.., the sum of the entries across all layers).

Let .
dy =Y dl.
=1

In many treatments of LoRA, the main communication or factor-size bottleneck arises from a factor
that scales linearly with ¢ - d}.

LoRA Factorization Per Layer. LoRA factorizes each layer W; of dimension d} x d? with a fixed
rank g. Concretely,
W, ~ Wi+ Bid;, A, € R"% B e R“*.
The number of additional parameters introduced by each low-rank pair (A4;, B;) is
di-qg + q-di = q(d;+dj).
~—— ~——
size of B; size of A;

Summing over all n layers,

n n

S gtq-d?) = ¢ (d+ ).

i=1 =1

Therefore, we can write the communication cost as:

n
Communication cost ~ ¢ Zdzl = qd;.
=1

Since ¢ must be an integer, we see that the communication overhead comes in integer multiplesd, as:
LoRA total communication € {qd; | ¢=1,2,...}.

There is no way to select a non-integer q. Hence communication budgets strictly between d; and
2d; (or between ¢ d; and (¢ + 1)d;) are not possible in layer-wise LoRA. Therefore, Any attempt to
finely tune the communication or factor budget (e.g., to 1.5 dy) is disallowed by LoRA’s integral-rank
requirement. This rigidity is precisely what we seek to overcome in MAPO.

MAPO Factorization. MAPO flattens or reshapes all parameters into one large matrix and then
performs a single low-rank factorization with rank 1. A simplified abstraction is:

1. Reshape wi, ..., w, into a single matrix W € IRF*[4/k] where d = 37", d} d? is the total
parameter count. 2. Factor W ~ A B, with

‘/4€‘R1><[d/k—‘7 BGRle,

Once all parameters are merged, MAPO can proportionally allocate any communication budget as &
can be selected freely.
(d k] + _k

size of A size of B

Therefore, we can write the total communication as:
MAPO total communication € {k | k=1,2,...}.

This is particularly important in communication-efficient FL since viable solutions can be found with
communication cost k < dy or dy < k < 2d;, which architecture-dependent layer-wise factorization
can not offer.
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