
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

COMMUNICATION-EFFICIENT FL VIA
MODEL-AGNOSTIC PROJECTION OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated learning (FL) enables collaborative model training across distributed
clients without sharing sensitive data. However, communication overhead remains
a significant bottleneck, particularly for large-scale models. Low-rank decomposi-
tion techniques address this by approximating each layer’s weights or gradients
with a product of low-rank matrices, thereby reducing the communication cost in
FL. While effective, these methods are constrained by the layer’s architecture and
shapes, limiting their flexibility and performance. We propose Model-Agnostic
Projection Optimization (MAPO), a novel method that reshapes and factorizes the
full model gradient into a fixed reconstruction matrix and a trainable projection
vector, avoiding layer-wise decomposition and architecture constraints. MAPO
directly optimizes the projection in a randomly sampled subspace, with all clients
generating the reconstruction matrix via a shared random seed, incurring no addi-
tional communication overhead for synchronization. By decoupling the gradient
from architectural constraints through reshaping and enabling communication-
free exploration of dynamic subspaces via seed sharing, MAPO provides a more
flexible and efficient low-rank representation. Empirical results demonstrate the
effectiveness of MAPO in various FL settings.

1 INTRODUCTION

Federated Learning (FL) is a distributed framework that enables model training across many clients
without centralizing data. In each communication round, clients download a global model, update
it using local data, and send modifications back to the server, which aggregates them (e.g., via
FedAvg (McMahan et al., 2017)). While this iterative process enables collaborative learning, frequent
transmission of model updates incurs significant communication overhead, limiting FL applications,
particularly with large models or resource-constrained clients.

Communication-Efficient Federated Learning (CEFL) literature (Jia et al., 2025) proposes a vast range
of strategies to reduce communication load. Konečnỳ (2016) categorizes them into sketched updates,
which compress the total model update after optimization (e.g., subsampling, quantization, random
projection), and structured updates, which restrict the trainable parameters to a lower-dimensional
subspace before optimization (e.g., random masks, weight-sharing, and low-rank decomposition).

Low-rank decomposition is a widely used approximation technique that expresses model gradients
or parameters as the product of low-rank matrices (Sainath et al., 2013). Parameter decomposition is
particularly effective for Parameter-Efficient Fine-Tuning (PEFT), where auxiliary low-rank adap-
tation modules (LoRA) are added to each layer to reduce the computation and storage overhead
of full-model fine-tuning (Hu et al., 2021). Although LoRA alleviates communication burdens in
FL, constraining model parameters to a low-rank subspace can degrade performance. In contrast,
gradient decomposition preserves full-rank model representations during inference and restricts only
the gradients to a low-rank form during backpropagation (Wang et al., 2018b; Jaderberg et al., 2014;
Lebedev et al., 2014; Denil et al., 2013). A visual comparison is shown in Figure 1.

Challenges. While CEFL methods for gradient decomposition (Vogels et al., 2019; Zhao et al.,
2023b; Park & Klabjan, 2024; Guo et al., 2024a; Hu et al., 2024), parameter decomposition (Yao
et al., 2021; Hyeon-Woo et al., 2021; Jeong & Hwang, 2022; Hameed et al., 2023; Zhao et al., 2023a),
or LoRA variants (Sun et al., 2024; Zhang et al., 2023; Zhu et al., 2024; Hao et al., 2024; Guo et al.,
2024b) offer notable benefits, they face several key challenges:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Gradient DecompositionLoRALow-RankFull-Rank

ℎ𝑖

𝑊𝑖

ℎ𝑖+1

ℎ𝑖

ℎ𝑖+1

B𝑖

A𝑖

ℎ𝑖

𝑊𝑖

ℎ𝑖+1

B𝑖

A𝑖

ℎ𝑖

𝑊𝑖

ℎ𝑖+1

+ B𝑖

A𝑖

Forward PassTrainable FrozenActivations ReshapingFrozen or Trainable

Model-Agnostic Projection Optimization

ℎ𝑖

𝑊𝑖

ℎ𝑖+1

+ Δ𝑊𝑖 𝐵

𝐴

Gradient

Full model gradient

Δ𝑊′1

Δ𝑊′2

…

Δ𝑊′𝑖

Δ𝑊′𝑁

…

Δ𝑊

Figure 1: Comparison of various decomposition methods, from left: no decomposition, low-rank parameter
decomposition, frozen model with low-rank adapter (LoRA), low-rank gradient decomposition, and MAPO.

1) The layer-wise decomposition that adheres to the structural constraints (e.g., fully connected
or convolutional), requiring architecture-dependent implementation for each layer decomposition.
2) Given a decomposition ∆Wi∈IRd1×d2≈BiAi, where Ai∈IRr×d2 and Bi∈IRd1×r, the number
of transmitted parameters is C = |Ai|+ |Bi| = r(d1+d2) for r ∈ IN , restricting the communication
rate to multiples of (d1 + d2), imposing a rigid communication granularity as C ∈ (d1 + d2)IN .
3) Given M number of clients and (Aj

i , B
j
i) denoting the low-rank decomposition of layer i from

client j, averaging these low-rank matrices is not equivalent to full-rank aggregation as:
1

M
(B1

i A
1
i +B2

i A
2
i + · · ·+BM

i AM
i) ̸= 1

M
(B1

i +B2
i + · · ·+BM

i)
1

M
(A1

i +A2
i + · · ·+AM

i).

4) Although fixing all {Aj
i}Mj=1 matrices to the same values can mitigate the aggregation problem and

improve the communication granularity to C ∈ d1IN , as shown in FA-LoRA (Sun et al., 2024) and
EvoFed (Rahimi et al., 2024), it restricts the model’s ability to explore richer subspaces, often leading
to suboptimal solutions (Guo et al., 2024b). Thus, we aim to answer the following key question:

How can we develop an architecture-independent model-wide decomposition that offers flexibility on
communication rate, address the low-rank averaging problem, and suboptimality of freezing A?

Key Ideas. We propose a novel Model-Agnostic Projection Optimization (MAPO) that streamlines
gradient projection and addresses its challenges while being computationally lighter than layer-wise
methods. Our key ideas are described as follows:

(i) Firstly, MAPO reimagines low-rank gradient projection by treating the entire model gradient as a
single matrix rather than layer-by-layer decomposition. It eliminates architecture-specific constraints
by merging the flattened gradients of all layers, constructing the universal gradient vector ∆W ∈ IRd.

(ii) Secondly, given any communication budget k, MAPO pads ∆W with zeros so the length becomes
divisible by k. Afterwards, padded ∆W will be reshaped to ∆W ′ ∈ IRk×⌈d/k⌉ which further can be
decomposed it into a A ∈ IR1×⌈d/k⌉ and B ∈ IRk×1 matrices, as ∆W ′ = BA.

(iii) Lastly, instead of relying on a fixed A, MAPO explores new subspaces in each federated round
through reinitialization of A, mitigating the risk of suboptimal convergence. Synchronization of A is
achieved efficiently via a shared seed, removing the need to transmit A.

Summary of Contributions. By integrating (i) model-level decomposition, (ii) flexible communica-
tion rate, and (iii) subspace exploration, MAPO offers a flexible trade-off between communication
cost and performance while remaining more efficient than low-rank decomposition methods. Figure 3
illustrates the distinction between MAPO and other paradigms. Our main contributions are:

• We introduce model-agnostic optimization of gradient projections that enhances communication
and computation efficiency, boosts performance through exploration, and offers more flexibility
in balancing communication and error rate.

• We provide a theoretical analysis of MAPO convergence behavior and establish its computational
efficiency compared to layer-wise factorization with the same communication and error rates.

• We conduct extensive experiments across diverse datasets, model architectures, and baselines,
demonstrating that MAPO surpasses existing methods in full training and fine-tuning scenarios.

2 BACKGROUND AND RELATED WORKS

In this section, we review key CEFL approaches in relation to MAPO. We begin with sketched update
techniques that project model updates into subspaces, outlining their limitations. Then, we examine
structured update methods, particularly projection optimization, highlighting the unique opportunities
and challenges introduced by operating within a fixed subspace.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.1 SKETCHED UPDATE VS. STRUCTURED UPDATE

0 25 50 75 100 125 150 175 200
Round

20

40

60

80

100

Ac
cu

ra
cy

MNIST Accuracy with 128-Parameter

MAPO
FedLoRU
Fact. FL
EvoFed
Sparse
BP (Full)

0 25 50 75 100 125 150 175 200
Round

20

40

60

80

100

Ac
cu

ra
cy

MNIST Accuracy with 16-Parameter

MAPO
FedLoRU
Fact. FL
EvoFed
Sparse
BP (Full)

0 25 50 75 100 125 150 175 200
Round

20

40

60

80

100

Ac
cu

ra
cy

MNIST Accuracy with 4-Parameter

MAPO
FedLoRU
Fact. FL
EvoFed
Sparse
BP (Full)

0 25 50 75 100 125 150 175 200
Round

0

20

40

60

80

100

Ac
cu

ra
cy

MNIST Accuracy with 2-Parameter

MAPO
FedLoRU
Fact. FL
EvoFed
Sparse
BP (Full)

Figure 2: MNIST perfor-
mance for varying number
of trainable parameters.

Sketched update includes techniques such as sparsification (Konečnỳ,
2016), quantization (Bernstein et al., 2018; Lin et al., 2018; Reisizadeh
et al., 2020; Sun et al., 2020), gradient subspace projection (Azam et al.,
2021; Oh et al., 2022; Park & Choi, 2023), and random subspace projec-
tion (Shi & Eryilmaz, 2021; Rahimi et al., 2024). They aim to compress
the information in the update vector ∆W ∈IRd defined as the difference
between the locally optimized and the global model ∆W = W ∗ −Wg .

The subspace projection process (Shi & Eryilmaz, 2021; Woodruff, 2014;
Li et al., 2018) defines a random matrix A ∈ IRp×d, and finds the
projection vector B ∈ IRp, which minimizes the reconstruction error
∥∆W −BA∥2, where d denotes the total number of model parameters
and p≪ d is compressed length:

B∗ = argmin
B∈IRp

∥∆W −BA∥2 ; B∗ ≈ ∆WA⊤(AA⊤)−1.

As the matrix A is considerably large (p× d), various methods propose
novel designs for A to adapt it for large-scale models. Notably, defining
A as a subset of seen gradient vectors results in a significantly lower
rank of A that suffices for an effective projection (Azam et al., 2021;
Park & Choi, 2023). More recently, EvoFed (Rahimi et al., 2024) utilizes
evolutionary strategies to evolve A, improving its representation capacity.

Sketching Limitations. Although sketched methods benefit from a full-
rank training, their shortcoming is blindness to the loss surface L(W;D)
and alternative solutions besides ∆W that can be reconstructed from the
projection subspace. They typically perform well, given a sufficiently
large subspace, but as the compression rate increases, the projection
vector reconstruction ends up far off from ∆W . In contrast, subspace
optimization directly finds the steepest direction within the subspace, leading to a more effective loss
reduction. Figure 2 illustrates a centralized MNIST training, showing the performance degradation of
sketched techniques, such as EvoFed and sparsification, compared to MAPO. As sparsity increases,
MAPO continues to converge, even having 2 or 4 trainable parameters out of 11,274.

Structured update techniques reduce the number of trainable parameters and communication cost
by constraining the weights or gradients to a low-rank subspace by structural modification such as
pruning (Han et al., 2015; He et al., 2017; Luo et al., 2017; Zhang et al., 2018), weight–sharing (Chen
et al., 2015; Courbariaux et al., 2016; Ullrich et al., 2017), low-rank gradient (Vogels et al., 2019; Zhao
et al., 2023b; Park & Klabjan, 2024; Guo et al., 2024a; Hu et al., 2024), and parameter decomposition
(Yao et al., 2021; Hyeon-Woo et al., 2021; Jeong & Hwang, 2022; Hameed et al., 2023; Zhao et al.,
2023a), including LoRA and its variants (Hu et al., 2021; Zhang et al., 2023; Sun et al., 2024; Zhu
et al., 2024; Hao et al., 2024). Although parameter decomposition techniques reduce the model size
and representation, resulting in subpar performance for general training, as shown in Figure 2 for
Factorized-FL (Jeong & Hwang, 2022). Therefore, CEFL generally adopts a gradient decomposition
direction. In particular, gradient decomposition methods with a fixed A, also known as projection
optimization (Denil et al., 2013; Jaderberg et al., 2014; Lebedev et al., 2014; Wang et al., 2018b).

Prior works on gradient decomposition relied on each layer’s shape and architecture, producing a
unique Ai and Bi matrices for each layer, limiting the feasibility of sharing a projection matrix A
across layers. MAPO overcomes this limitation by evenly partitioning the whole model gradient
vector ∆W ∈ IRd into k segments {∆W ′

i}ki=1∈ IRk×⌈d/k⌉, allowing the use of a shared random
reconstruction matrix A∈ IR1×⌈d/k⌉ across all partitions, maintaining the benefits of model-wide
projection while substantially reducing memory costs.

2.2 PARAMETER-EFFICIENCY VS. COMMUNICATION-EFFICIENCY

Despite their apparent similarities, parameter decomposition and gradient decomposition methods
differ fundamentally in assumptions and objectives. Parameter decomposition directly imposes a low-
rank structure on the model parameters, effectively replacing the original model with a compressed
version. Although this reduces the total number of parameters and computation, it still requires
transmitting all parameters at each communication round, resulting in no relative reduction in

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

FA-LoRA

𝑊2

B0
A0

𝑊0

……

x

ℎ2

B2

A2

B1

A1
𝑊1

ℎ1

BN

AN
𝑊N

y

ReshapingForward PassTrainable Matrices Frozen Matrices Forward Pass Data

Single-Vector
Gradient Decomposition

…

Δ𝑊0
′

≈

≈

≈

≈

Δ𝑊1
′

Δ𝑊2
′

Δ𝑊𝑘
′

𝐴0

𝐴1

𝐴2

𝐴𝑁x

x

x

x

…

1

p0

1

𝐵0

p1

1

𝐵1

p2

1

𝐵2

pN

1

𝐵𝑁

……

Δ𝑊0+𝑊0

+ Δ𝑊2𝑊2

+ Δ𝑊1𝑊1

+ Δ𝑊𝑁𝑊𝑁

x

y

ℎ1

ℎ2

Multi-Layer
Gradient Decomposition

…

ΔW

1

≈

d

p

A

1

pB x

…

Δ𝑊0+𝑊0

+ Δ𝑊2𝑊2

+ Δ𝑊1𝑊1

+ Δ𝑊𝑁𝑊𝑁

x

y

ℎ1

ℎ2

Model-Agnostic
Projection Optimization

…

ΔW

1

d

A

1

x≈ΔW
B

1

k

k

…

Δ𝑊0+𝑊0

+ Δ𝑊2𝑊2

+ Δ𝑊1𝑊1

+ Δ𝑊𝑁𝑊𝑁

x

y

ℎ1

ℎ2

Decomposition Outcome

Gradient Decomposition

≈

≈

≈

≈

…

Δ𝑊0+𝑊0

+ Δ𝑊2𝑊2

+ Δ𝑊1𝑊1

+ Δ𝑊𝑁𝑊𝑁

x

y

ℎ1

ℎ2

…

x

x

x

x

𝐴0

r

𝐴1

r

𝐴2

r

𝐴𝑁

r…

𝐵0 r

𝐵1 r

𝐵2 r

𝐵𝑁 r

…

Figure 3: Step-by-Step illustration of methodology based on propositions, demonstrating how each step will
contribute to designing MAPO factorization and differing from LoRA architecture.

communication per parameter. In contrast, gradient decomposition methods maintain the original
model architecture and computational complexity but substantially reduce communication overhead
by transmitting compressed updates that are significantly smaller than the whole model.

In this work, to ensure a fair assessment of communication efficiency, we evaluate MAPO against
gradient-based compression baselines under consistent model architectures. Additional experiments
with parameter decomposition and LoRA-based methods are provided in Appendices B and C for
completeness. Key methodological distinctions among related works are summarized in Table 1.

Table 1: Summary of CEFL methods and objectives. The column “Comm. Flex” indicates support
for arbitrary bitrates, and “Agg. Eq.” denotes equivalence between low-rank and full-rank averaging.

Method Scope Target Full-rank
Inference

Agg.
Eq. PEFT

Fixed
Subspace

Arch-
Agnostic

Comm
Flex

Personalized
FL

Sparsification (Konečnỳ, 2016) Model Update ✓ ✓ ✗ ✗ ✓ ✓ ✗
Quantization (Reisizadeh et al., 2020) Model Update ✓ ✓ ✗ ✗ ✓ ✓ ✗
EvoFed (Rahimi et al., 2024) Model Update ✓ ✓ ✗ ✓ ✓ ✓ ✗
Factorized-FL (Jeong & Hwang, 2022) Layer Parameter ✗ ✗ ✗ ✗ ✗ ✗ ✓
LoRA (Hu et al., 2021) Layer Adapter ✗ ✗ ✓ ✗ ✗ ✗ ✗
FA-LoRA (Sun et al., 2024) Layer Adapter ✗ ✓ ✓ ✓ ✗ ✗ ✗
SA-LoRA (Guo et al., 2024b) Layer Adapter ✗ ✗ ✓ ✗ ✗ ✗ ✓
FedLoRU (Park & Klabjan, 2024) Layer Gradient ✓ ✓ ✗ ✓ ✗ ✗ ✗
MAPO (Ours) Model Gradient ✓ ✓ ✗ ✓ ✓ ✓ ✗

3 PROPOSED METHOD

In this section, we introduce MAPO and its application in FL. We first present the MAPO factor-
ization technique and discuss its key properties regarding communication efficiency and error rate.
Subsequently, we detail how MAPO can be effectively integrated into the FL training process.

3.1 MODEL-AGNOSTIC PROJECTION OPTIMIZATION (MAPO)
MAPO Description. MAPO provides model-agnostic factorization of the global model gradient
∆W ∈ IRd, avoiding architecture-specific constraints and enabling subspace exploration during
optimization. As illustrated in Figure 1, MAPO reshapes the universal gradient ∆W ∈ IRd×1 into
∆W ′ ∈ IRk×⌈d/k⌉, which is then decomposed into a reconstruction vector A ∈ IR1×⌈d/k⌉ and a
projection vector B ∈ IRk×1. It is equivalent to partitioning ∆W into k segments and sharing a
fixed reconstruction matrix A across all partitions. This design preserves model-wide projection
benefits while substantially reducing memory overhead. Figure 3 shows a step-by-step visualization
analogous to Propositions 3.4 to 3.6.

MAPO Properties. MAPO aims to construct an expressive subspace, enabling a small B to
encode sufficient information for updating the model efficiently. First, we formally define the
concepts of communication overhead rate and reconstruction error rate in the context of matrix
factorization in Definitions 3.2 and 3.3. Using these definitions, Proposition 3.4 establishes that
reshaping a single layer preserves both the factorization error and communication rates. Extending
this, Proposition 3.5 demonstrates that vectorizing multiple layers into a single matrix similarly
maintains these properties. Finally, this leads to the proof of Proposition 3.6, which introduces a
computationally and communication-efficient, model-agnostic factorization method as an alternative
to traditional layer-wise gradient projection techniques. Appendix I presents the formal proofs.
Lemma 3.1 (Gaussian Matrices are Full Rank). Let A ∈ IRm×n be a random matrix with entries
drawn independently from a Gaussian distribution N (0, σ2). Then, A is almost surely of full rank,
i.e., rank(A) = min(m,n), as the probability of A being rank deficient is zero. This result follows
from standard properties of random matrices (Vershynin, 2018; Tao, 2012).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Client: Optimize 𝐵𝑡+1
𝑖 & share to server

Projection

Matrix 𝐵𝑡+1
𝑖

} }

𝐃𝐚𝐭𝐚𝐢()𝑊
𝑡 + , 𝐵𝑡+1

𝑖 = ∇𝐵𝑡
𝑖 ℒ }

TrainableFixed Fixed

𝐵𝑡
𝑖 = 0

Seed

Server: Broadcast seed (𝑟𝑡, 𝐼𝑡 , α)
1 2 Server: Aggregate Bt+1, update Global Model

& share Bt+1 to clients

3

Aggregated
B𝑡+1
-

𝐵𝑡+1
𝑁

𝐵𝑡+1
1

𝐵𝑡+1
2

…

B𝑡+1
-

= {𝒩(0,σ) |𝑟𝑡}A𝑡

A𝑡𝐵𝑡
𝑖

Local Model Update

= +

𝑊
𝑡+

1

𝑊
𝑡

B𝑡+1
- A𝑡

Global Model Update

= +

𝑊
𝑡+

1

𝑊
𝑡

B𝑡+1
- A𝑡

Figure 4: Application of MAPO to communication-efficient FL.

Definition 3.2 (Communication Overhead Rate). Let ∆Wi ∈ IRd1×d2 be the update matrix of a
model. Suppose the factorization of ∆Wi as ∆Wi = BiAi, where Ai ∈ IRq×d2 is a fixed random
matrix and Bi ∈ IRd1×q is a trainable matrix with q ≤ min(d1, d2) being the factorization rank.
The communication overhead rate COrate is defined as the ratio of the size of Bi to the size of ∆W :

COrate =
size(Bi)

size(∆Wi)
=

q

d2
.

Definition 3.3 (Reconstruction Error Rate). Using the same factorization as Definition 3.2, the
reconstruction error rate is the expected ratio of the reconstruction error to the original model update.
Given full-rank random reconstruction (Lemma 3.1), it is expressed as:

EAi

[
∥∆Wi −BiAi∥22

]
∥∆Wi∥22

= 1− q

d2
.

Proposition 3.4 (Single-Vector Factorization). Let ∆Wi, Ai, and Bi be factorizations of a single
layer of the network as in Definition 3.2. By reshaping ∆Wi into ∆W ′

i ∈ IR1×d1d2 the factorization
of ∆W ′

i = B′
iA

′
i where A′

i ∈ IRp×d1d2 and B′
i ∈ IR1×p can achieve the same reconstruction error

and communication overhead to the conventional factorization of ∆Wi when p = qd1.

Proposition 3.5 (Multi-Layer Factorization). Let ∆Wi, Ai, and Bi be single-vector factorization
of i-th layer of the N -layered network as in Proposition 3.4. By concatenating the reshaped weights
∆Wi into ∆W ′ ∈ IR1×d, where d =

∑N
i=1 d

i
1d

i
2. The factorization of ∆W ′ = B′A′ where

A′ ∈ IRp×d and B′ ∈ IR1×p can achieve the same reconstruction error and communication
overhead to the single-vector factorization applied to each ∆Wi when p = Nqd1.

Proposition 3.6 (MAPO Factorization). Let ∆W , A, B, and rank p be a multi-layer factorization
of a network as defined in Proposition 3.5. By reshaping ∆W ∈ IR1×d into ∆W ′ ∈ IRk×⌈d/k⌉, and
the factorization of ∆W ′ = B′A′ where A′ ∈ IR1×⌈d/k⌉ and B′ ∈ IRk×1, we can achieve the same
reconstruction error and communication overhead to the multi-layer factorization of ∆W when
k = p, while reducing the memory by a factor of k2.

3.2 APPLICATION TO COMMUNICATION-EFFICIENT FEDERATED LEARNING

This subsection explains how our method, outlined in Section 3.1, is utilized in FL. The procedure
pseudo-code is provided in Algorithm 1, and visualized in Figure 4.

Matrix Construction and Broadcasting. To ensure consistency across the network, the server and
all clients start from an identical condition at each round. We guarantee identical model parameters
Wt and reconstruction matrix At by broadcasting a random seed rt and the aggregated projection
vector Bt at the beginning of round t. The initial aggregated projection vector is set to B0 = 0.

In the first round (t = 0), all clients and the server initialize the model W 0 using the same seed.
The reconstruction matrix A0∈IR1×⌈d/k⌉ is drawn from Gaussian A0 ∼ N (0, I), and the client j’s
projection vector B0,j ∈IRk×1 is set to 0 for all 1 ≤ j ≤M , where M is the total number of clients.

In subsequent rounds (t ≥ 1), clients update their local model W t using the previous round’s matrix
At−1, the model parameters W t−1, and the broadcasted projection vector B

t
as follows:

W t = W t−1 + vec(Bt
At−1)[0:d], (1)

where vec(·) and (·)[0:d] denotes vectorization and truncating to the first d elements. Clients then
regenerate At∼N (0, I) using the seed rt and reset Bt,j←0, ensuring At and W t synchronization.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1: Federated Learning with MAPO

Input :Initial random seed r0, global model W 0, reconstruction matrix A0, projection vector B
0

Output :Final global model WT

1 Initialize all clients and server with the same seed r0;
2 Initialize W 0 ∈ Rd, A0 ∈ R1×⌈d/k⌉, B

0 ← 0 ∈ Rk×1;
3 for each communication round t = 1, . . . , T − 1 do
4 Server: Broadcast B

t−1
and seed rt−1 to all clients;

5 for each Client j = 1, . . . ,M (in parallel) do
6 Receive B

t−1
and rt−1;

7 Update local model: W t ←W t−1 + vec(Bt
At−1)[0 : d];

8 Re-generate At = N (0, σ2Id)
∣∣rt−1;

9 Initialize Bt,j ← 0 ∈ Rk×1;
10 for each local epoch e = 1, . . . , E do
11 Compute gradient: ∇Bt,j ← ∇Bt,jLj(W t + vec(Bt,jAt−1)[0 : d],Dj);
12 Update projection vector: B̂t,j ← Bt,j − η∇Bt,j ;
13 Set Bt,j ← B̂t,j ;
14 end
15 Send B̂t,j to the server;
16 end
17 Server:
18 Re-generate At = N (0, σ2Id)

∣∣rt−1;
19 Aggregate: B

t ← 1
S

∑M
j=1 bjB̂

t,j , where S =
∑

j bj ;

20 Update global model: W t+1 ←W t + vec(Bt
At−1)[0 : d];

21 Generate new seed rt (e.g., rt = hash(rt−1));
22 end
23 return WT ;

Local Projection Optimization. This step optimizes the projection B̂t,j to minimizes the client loss
L(W t + vec(Bt,jAt−1)[0:d],Dj), where Dj denotes client j’s local dataset, and model weights are
derived as W t+vec(Bt,jAt)[0:d] given the random matrix At.

At each communication round t ≥ 1, after initializing At and Bt,j , clients perform local training to
optimize Bt,j using their local data Dj . The gradient of the projection vector is computed as:

∇Bt,j = ∇Bt,jLj(W t + vec(Bt,jAt−1)[0:d]) for Lj(W) =
1

|Dj |
∑
x∈Dj

ℓ(W,x). (2)

where ℓ(W,x) is the loss function (e.g., cross-entropy loss) given model W and data point x.
Therefore, given the learning rate η, only the projection B̂t,j is updated using gradient descent as:

B̂t,j ← Bt,j − η∇Bt,j , (3)

After optimization, clients send their optimized projection vector B̂t,j to the server. The low
dimensionality of B̂t,j compared to W t results in communication efficiency.

Server-Side Aggregation and Global Model Update. Upon receiving the projection vectors B̂t,j

and their corresponding weights bj = |Dj | (e.g., batch sizes or number of local samples) from the
clients, the server aggregates them to form the global projection vector:

B
t
=

1

S

M∑
j=1

bjB̂t,j , for S =

M∑
j=1

bj (4)

This weighted averaging captures the collective contribution of all clients, proportional to their data
sizes. The server then broadcasts the aggregated projection vector B

t
to all clients. After receiving

B
t
, the server and all clients update their local models using the reconstruction matrix At and the

aggregated projection vector B
t

as:
W t+1 = W t + vec(Bt

At−1)[0:d]. (5)
This update integrates the clients’ optimized directions into their local models and ensures synchro-
nization across the network. This process is repeated until the global model converges.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Summary of datasets and models used in our experiments.
Dataset Client Distribution Train/Test # Classes Model # Parameters

MNIST (LeCun et al., 1998) Non-IID (2 classes) 60K / 10K 10 CNN - 2 Layers 11,274
FMNIST (Xiao et al., 2017) Non-IID (2 classes) 60K / 10K 10 CNN - 2 Layers 11,274
CIFAR-10 (Krizhevsky et al., 2009) Non-IID (2 classes) 50K / 10K 10 CNN - 4 Layers 1,146,634
CIFAR-100 (Krizhevsky et al., 2009) Non-IID (10 classes) 50K / 10K 100 WideResNet 16d4w 2,854,420
TinyImageNet (University, 2015) Non-IID (10 classes) 100K / 10K 200 WideResNet 16d4w 2,880,120
Shakespeare (Caldas et al., 2018) Distributed by Roles 14K / 2K 65 LSTM 814,957
Sentiment140 (Caldas et al., 2018) Distributed by Users 1.4M / 200K 2 Transformer 2,221,570

GLUE Tasks (Wang et al., 2018a) Non-IID differ per task differ per task RoBERTa-Large 357,199,876

4 CONVERGENCE ANALYSIS

We analyze the convergence behavior of FL with MAPO.
Assumption 4.1. For each j,Lj(v) is β-smooth, i.e.,

∥∥∇Lj(u)−∇Lj(v)
∥∥ ≤ β∥u−v∥ for any u, v.

Assumption 4.2. Variance of the stochastic gradient of Dj is bounded for each client j, i.e.,

E
[∥∥∥∇Lj(W)− ∇̃Lj(W)

∥∥∥2] ≤ σ2
l

.Assumption 4.3. Bounded clients’ gradient dissimilarity: 1
M

∑M
j=1

∥∥∇Lj(W)−∇L(W)
∥∥2≤σ2

g .

Assumption 4.4. At each communication round t, the server selects a subset St ⊂ [M] with
|St| = m < M clients uniformly and the sampling variance is σ2

het = ρσ2
g where ρ = M−m

m(M−1) .

Theorem 4.5. Let Assumptions 4.1 to 4.4 hold, and suppose ηt ≤ 1−4ϵ
4β(1+ϵ) . Then, after T communi-

cation rounds each with E local steps, the following bound holds:

1

4HT

T−1∑
t=0

ηt E
[∥∥∇L(W t)

∥∥2] ≤ E[L(W 0)]− L∗

EHT
+ 2E(ϵ+ β + βϵ)

(
σ2
l + σ2

g + σ2
het

) 1

HT

T−1∑
t=0

η2t ,

where HT =
∑T−1

t=0 ηt, ϵ is the JL distortion parameter, and L∗ is the minimum of L(W).

With a decreasing learning rate satisfying
∑∞

t=0 ηt →∞,
∑∞

t=0 η
2
t <∞ (e.g., ηt = η0

t+c for some

constants η0 > 0, c > 0), the term HT =
∑T−1

t=0 ηt grows unbounded, while the weighted sum∑T−1
t=0 η2t remains finite. Therefore, the right-hand side of Theorem 4.5’s bound satisfies

E[L(W 0)]− L∗

HT
→ 0,

1

HT

T−1∑
t=0

η2t → 0 as T →∞,

confirming convergence to a stationary point, as the gradient norm average satisfies

1

HT

T−1∑
t=0

ηt E
[
∥∇L(W t)∥2

]
→ 0.

As shown above, the convergence bound is influenced by the factor ϵ+ β + βϵ, and becomes tightest
when ϵ = 0, i.e., in the absence of reconstruction error. The proof is located in Appendix J.

5 EXPERIMENTAL SETUP

We evaluate MAPO across diverse model architectures, tasks, and baselines. The benchmarks span
five image classification datasets, MNIST (LeCun et al., 1998), FMNIST (Xiao et al., 2017), CIFAR-
10, CIFAR-100 (Krizhevsky et al., 2009), and TinyImageNet (University, 2015), as well as sequential
tasks, including next-character prediction on Shakespeare and sentiment analysis on Sentiment140,
both drawn from the LEAF benchmark suite (Caldas et al., 2018), tailored for FL. Additionally,
we evaluate MAPO as a fine-tuning method, alongside LoRA baselines on various GLUE (Wang
et al., 2018a) tasks, highlighting the communication and computation efficiency in Appendix B. The
dataset specifications and corresponding model architectures are summarized in Table 2, highlighting
MAPO’s adaptability across varying data modalities, model scales, and application domains.

Non-IID Distribution. To simulate realistic FL conditions, we partition the training datasets in a
non-IID manner across 100 clients. For image classification and GLUE tasks, each client is assigned
a distinct subset of classes. For LEAF tasks, we follow the natural user-based partitioning, where
individual Shakespearean roles and Twitter users correspond to separate clients.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500
Rounds

75

80

85

90

95

100

G
lo

ba
l A

cc
ur

ac
y

MNIST Accuracy - 100 Clients

MAPO
FedLoRU
EvoFed
Sparse
Quant
FedAvg

0 100 200 300 400 500
Rounds

55

60

65

70

75

80

85

90

G
lo

ba
l A

cc
ur

ac
y

FMNIST Accuracy - 100 Clients

MAPO
FedLoRU
EvoFed
Sparse
Quant
FedAvg

0 100 200 300 400 500
Rounds

20

30

40

50

60

70

80

G
lo

ba
l A

cc
ur

ac
y

CIFAR10 Accuracy - 100 Clients
MAPO
FedLoRU
EvoFed
Sparse
Quant
FedAvg

0 200 400 600 800 1000
Rounds

15

20

25

30

35

40

G
lo

ba
l A

cc
ur

ac
y

Shakespeare Accuracy - 100 Clients

MAPO
FedLoRU
EvoFed
Sparse
Quant
FedAvg

0.2 0.4 0.6 0.8 1.0
Global Accuracy

10 3

10 2

10 1

100

101

102

103

lo
g 1

0
 C

om
m

un
ic

at
io

n

MNIST Communication
MAPO
FedLoRU
EvoFed
Sparse
Quant
FedAvg

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Global Accuracy

10 3

10 2

10 1

100

101

102

103

104

105

lo
g 1

0
 C

om
m

un
ic

at
io

n

FMNIST Communication
MAPO
FedLoRU
EvoFed
Sparse
Quant
FedAvg

0.2 0.3 0.4 0.5 0.6 0.7
Global Accuracy

10 2

10 1

100

101

102

103

104

105

lo
g 1

0
 C

om
m

un
ic

at
io

n

CIFAR10 Communication
MAPO
FedLoRU
EvoFed
Sparse
Quant
FedAvg

0.15 0.20 0.25 0.30 0.35 0.40
Global Accuracy

10 2

10 1

100

101

102

103

104

105

lo
g 1

0
 C

om
m

un
ic

at
io

n

Shakespeare Communication
MAPO
FedLoRU
EvoFed
Sparse
Quant
FedAvg

(a) MNIST (b) FMNIST (c) CIFAR-10 (d) Shakespeare

Figure 5: Performance comparison of all methods on MNIST, FMNIST, CIFAR-10, and Shakespeare datasets.
The top row shows the accuracy, while the bottom row illustrates the communication cost per accuracy.

Table 3: Summary of maximum accuracy (%) and communication cost (% relative to FedAvg).
Accuracy values report mean (±std) over 3 runs, estimated from observed variance.

MNIST FMNIST CIFAR-10 CIFAR-100 Shakespeare Sent140 TinyImageNet

Method Com. Acc. Com. Acc. Com. Acc. Com. Acc. Com. Acc. Com. Acc. Com. Acc.

FedAvg 100 98.9 (±0.1) 100 89.2 (±0.2) 100 69.0 (±0.2) 100 43.47 (±0.3) 100 41.86 (±0.3) 100 74.90 (±0.3) 100 36.48 (±0.4)
Sparse 15.3 92.1 (±0.4) 24.1 81.1 (±0.4) 2.7 37.15 (±0.5) 1.20 33.72 (±0.5) 1.73 34.86 (±0.4) 1.93 74.21 (±0.3) 1.32 25.34 (±0.5)
Quantize 31.3 97.6 (±0.2) 24.1 87.1 (±0.3) 15.2 67.40 (±0.3) 6.10 40.05 (±0.4) 10.11 35.45 (±0.4) 13.85 73.70 (±0.3) 8.75 34.47 (±0.4)
EvoFed 9.40 98.5 (±0.2) 7.60 84.7 (±0.3) 3.4 39.50 (±0.4) 20.4 37.62 (±0.4) 0.23 36.76 (±0.3) 0.40 70.50 (±0.3) 1.85 15.40 (±0.5)
FedLoRU 30.2 93.8 (±0.4) 17.9 74.1 (±0.5) 1.7 23.52 (±0.5) 1.20 19.10 (±0.5) 1.67 28.07 (±0.5) 1.30 66.61 (±0.4) 1.27 7.31 (±0.5)
MAPO 2.95 98.6 (±0.1) 3.10 88.0 (±0.2) 1.20 68.3 (±0.2) 0.91 40.16 (±0.3) 0.13 39.96 (±0.3) 0.19 74.50 (±0.2) 0.97 35.22 (±0.3)

Model Architectures. We evaluate MAPO across diverse architectures of varying complexity, includ-
ing CNNs for MNIST, FMNIST, and CIFAR-10, WideResNet for CIFAR-100 and TinyImageNet,
LSTM for next-character prediction, Transformer for sentiment analysis, and RoBERTa for GLUE
tasks. Detailed architecture specifications and hyperparameters are in Appendix D.

Baselines. We compare MAPO against multiple baselines, including standard compression methods
with subsampling (Sparse) (Konečnỳ, 2016) and quantization (Quant) (Reisizadeh et al., 2020),
EvoFed (Rahimi et al., 2024), and FedLoRU (Park & Klabjan, 2024). Subsampling and quantization
serve as references to establish MAPO’s performance compared to conventional compression tech-
niques. EvoFed provides a strong comparison to demonstrate the effectiveness of MAPO’s subspace
optimization relative to methods applying compression post-optimization. FedLoRU allows us to
highlight MAPO’s dynamic subspace exploration and its benefits over static layer-wise gradient
projections. Results comparing MAPO with additional parameter-factorization (Factorized-FL (Jeong
& Hwang, 2022)) and adapter-based fine-tuning baselines (LoRA (Hu et al., 2021), FA-LoRA (Sun
et al., 2024), and SA-LoRA (Guo et al., 2024b)) are included in Appendices B and C.

Federated Learning Setting. In each training round, 10% of the clients are randomly selected to
participate. Selected clients train locally in parallel and transmit their updates to the central server,
which aggregates these updates and redistributes the resulting global model back to the clients.

6 RESULTS AND DISCUSSIONS

We now discuss our experimental results in detail and provide insights into MAPO’s performance.
Figure 5 (top row) shows the accuracy of MAPO compared to multiple baseline methods across vari-
ous datasets. MAPO consistently outperforms all other methods and achieves accuracy comparable
to FedAvg, despite transmitting only a fraction of the parameters. This improvement results from
MAPO’s dynamic subspace optimization, which promotes effective exploration and efficient use of
the communication budget to minimize the loss function directly. Additionally, Figure 5 (bottom row)
illustrates the minimal communication cost required by each method to reach a given accuracy level,
highlighting MAPO’s significantly lower communication demands (logarithmic scale on the y-axis).
Additional results on CIFAR-100, TinyImageNet, and Sentiment140 are presented in Appendix A.

Table 3 summarizes experimental results by comparing the maximum accuracy of each baseline
and their communication cost relative to FedAvg. To ensure fair comparison, communication costs
are reported as the percentage required to reach the accuracy of the worst-performing baseline.
MAPO consistently achieves competitive accuracy with significantly lower communication overhead.
Specifically, on MNIST and FMNIST, MAPO achieves 99.6% and 98.6% of FedAvg’s accuracy,
respectively, using only 3% of FedAvg’s communication cost. For CIFAR-10, CIFAR-100, and

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500
Rounds

70

72

74

76

78

80

82

84

G
lo

ba
l A

cc
ur

ac
y

FMNIST Accuracy - 100 Clients

K = 8
K = 16
K = 32
K = 64
K = 128
K = 256

0.70 0.72 0.74 0.76 0.78 0.80 0.82
Global Accuracy

10 2

10 1

100

lo
g 1

0
 C

om
m

un
ic

at
io

n

FMNIST Communication
K = 8
K = 16
K = 32
K = 64
K = 128
K = 256

0 200 400 600 800 1000
Rounds

34
35
36
37
38
39
40
41
42

G
lo

ba
l A

cc
ur

ac
y

Shakespeare Accuracy - 100 Clients
K = 128
K = 256
K = 512
K = 1024
K = 2048

0.200.220.240.260.280.300.320.340.360.38
Global Accuracy

10 1

100

101

lo
g 1

0
 C

om
m

un
ic

at
io

n

Shakespeare Communication
K = 128
K = 256
K = 512
K = 1024
K = 2048

(a) FMNIST Accuracy (b) FMNIST Communication (c) Shakespeare Accuracy (d) Shakespeare Communication

Figure 6: Accuracy and communication cost per accuracy level for FMNIST and Shakespeare datasets.
Demonstrating the effect of a number of trainable parameters (k) on the communication efficiency of MAPO.

TinyImageNet, MAPO attains 98.9%, 92.4%, and 96.5% of FedAvg accuracy, respectively, while
consuming approximately 1% of the communication. Finally, in sequential tasks (Shakespeare and
Sentiment140), MAPO retains up to 95.5% and 99.5% of FedAvg’s accuracy, respectively, while
dramatically reducing communication to less than 0.2%.

MAPO Hyperparameter. MAPO simplifies gradient projection by applying a single factorization
across all model parameters, thus replacing per-layer rank selection with a single hyperparameter,
k, directly controlling communication cost and model accuracy. Figure 6 illustrates the effect of
varying k on performance and communication efficiency for the FMNIST and Shakespeare datasets.
While a smaller k significantly reduces communication overhead, it slows the convergence, requiring
more training rounds. Conversely, increasing k improves convergence speed and accuracy but rapidly
raises communication costs, often with diminishing returns. Therefore, the optimal k achieves
a target accuracy with minimal total communication. Figure 6(b) and (c) show communication
costs associated with specific accuracy levels, guiding the selection of optimal k. We use the same
guidelines for all baselines to fairly tune hyperparameters.

20 21 22 23 24 25 26 27 28 29 21
0

21
1

21
2

21
3

Trainable Parameters (k)

10
20
30
40
50
60
70
80

G
lo

ba
l A

cc
ur

ac
y

Accuracy vs Parameters

Frozen A
Fresh A

(A) FMNIST

20 21 22 23 24 25 26 27 28 29 21
0

21
1

21
2

21
3

Trainable Parameters (k)

15

20

25

30

35

40

G
lo

ba
l A

cc
ur

ac
y

Accuracy vs Parameters

Frozen A
Fresh A

(B) Shakespeare

Figure 7: Comparison of
having a fresh vs. frozen A.

Fresh Reconstruction Matrix. A key factor in MAPO’s performance
is using a dynamically generated reconstruction matrix A rather than a
fixed one. This approach promotes the exploration of new subspaces
throughout training. Figure 7 illustrates the benefits of using a fresh A
on the FMNIST and Shakespeare datasets. We evaluate MAPO across
varying numbers of trainable parameters, ranging from 20 to 213. For
FMNIST, this corresponds to 0.009% to 72.27% of the total model pa-
rameters, while for Shakespeare, it spans from 0.0001% to nearly 1%. In
both cases, MAPO with a fresh A achieves superior convergence with
fewer parameters, effectively leveraging the search space. In contrast,
when A is frozen, performance follows a logarithmic correlation with
the number of trainable parameters, requiring an exponentially larger
parameter count to match the results obtained with a fresh A.

Additional Results. Comparisons with LoRA-based methods and
Factorized-FL are provided in Appendices B and C. Appendix E supple-
ments our main experiments with evaluations under IID distributions and
without client sampling. The ablation study on the effect of input dimension and model parameters on
communication rate and training stability during exploration of A is presented in Appendices F and G.
Finally, Appendix K presents a detailed analysis of memory complexity, emphasizing computational
efficiency and flexibility compared to layer-wise low-rank factorization.

Limitations. MAPO’s improved communication efficiency comes with additional computational
overhead from gradient projection optimization. While significantly reduced compared to prior
methods, MAPO still requires ⌈d/r⌉+r memory and computation (instead of dr+r; see Appendix K).
MAPO complements, but does not replace, PEFT methods like LoRA, as it reduces communication
overhead without decreasing the trainable parameters or storage requirements (see Appendix B).

7 CONCLUSION

We introduced Model-Agnostic Projection Optimization (MAPO), a novel approach for CEFL. Unlike
layer-wise decomposition, MAPO factorizes the entire gradient using a projection vector and a
random reconstruction matrix, regenerated at each round. MAPO balances communication efficiency
and accuracy without imposing architecture-specific constraints or fixed-subspace limitations. Our
theoretical analysis establishes convergence guarantees, and empirical results demonstrate superior
performance and scalability across diverse datasets, confirming its practical value for FL.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We provide complete, anonymous source code and configuration files in the supplementary materials:
(i) a PyTorch project for LoRA and GLUE fine-tuning experiments, and (ii) a JAX project for all
other federated experiments. The algorithmic design of MAPO is specified in Section 3.1 with
a step-by-step visualization (Figures 1 and 3) and a federated pseudo-code listing in Algorithm 1
(see also the “Matrix Construction and Broadcasting” paragraph in Section 3.2 for seed handling
and synchronization). Dataset/model choices and train/test splits appear in Table 2, with the non-
IID partitioning and training protocol detailed in Section 5 (“Non-IID Distribution” and “Model
Architectures”), and hyperparameters in Appendix D. Theoretical assumptions and guarantees are
stated in Assumptions 4.1 to 4.4 and Theorem 4.5, with complete proofs in Appendices I and J. The
supplementary packages include all configurations and environmental specifications necessary to
reproduce all reported results within the stated variance.

REFERENCES

Sheikh Shams Azam, Seyyedali Hosseinalipour, Qiang Qiu, and Christopher Brinton. Recycling
model updates in federated learning: Are gradient subspaces low-rank? In International Conference
on Learning Representations, 2021.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Anima Anandkumar. signsgd:
Compressed optimisation for non-convex problems. In International Conference on Machine
Learning (ICML), 2018.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan McMa-
han, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings. arXiv
preprint arXiv:1812.01097, 2018.

Wenlin Chen, James Wilson, Stephen Tyree, Kilian Weinberger, and Yixin Chen. Compressing neural
networks with the hashing trick. In International Conference on Machine Learning (ICML), 2015.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks: Training deep neural networks with weights and activations constrained to +1 or
-1. In Advances in Neural Information Processing Systems (NeurIPS), volume 29, 2016.

Misha Denil, Babak Shakibi, Laurent Dinh, Marc’Aurelio Ranzato, and Nando De Freitas. Predicting
parameters in deep learning. Advances in neural information processing systems, 26, 2013.

Mingzhao Guo, Dongzhu Liu, Osvaldo Simeone, and Dingzhu Wen. Low-rank gradient compression
with error feedback for mimo wireless federated learning. arXiv preprint arXiv:2401.07496, 2024a.

Pengxin Guo, Shuang Zeng, Yanran Wang, Huijie Fan, Feifei Wang, and Liangqiong Qu. Selective
aggregation for low-rank adaptation in federated learning. arXiv preprint arXiv:2410.01463,
2024b.

Muhammad Ghufran Areeb Hameed, Thuong-Hai Bui, Yookyung Park, Shafiq Joty, and Steven CH
Hoi. Rosa: Random subspace adaptation for efficient fine-tuning. In International Conference on
Learning Representations (ICLR), 2023.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: Low-rank adapters are secretly gradient
compressors. arXiv preprint arXiv:2402.03293, 2024.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks.
In Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2017.

10

http://github.com/google/jax

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Sixu Hu, Linshan Jiang, and Bingsheng He. Practical hybrid gradient compression for federated
learning systems. In Proceedings of the Thirty-Third International Joint Conference on Artificial
Intelligence, pp. 4147–4155, 2024.

Nam Hyeon-Woo, Moon Ye-Bin, and Tae-Hyun Oh. Fedpara: Low-rank hadamard product for
communication-efficient federated learning. arXiv preprint arXiv:2108.06098, 2021.

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional neural networks
with low rank expansions. arXiv preprint arXiv:1405.3866, 2014.

Wonyong Jeong and Sung Ju Hwang. Factorized-fl: Personalized federated learning with parameter
factorization & similarity matching. Advances in Neural Information Processing Systems, 35:
35684–35695, 2022.

Ninghui Jia, Zhihao Qu, Baoliu Ye, Yanyan Wang, Shihong Hu, and Song Guo. A comprehen-
sive survey on communication-efficient federated learning in mobile edge environments. IEEE
Communications Surveys & Tutorials, 2025.

Jakub Konečnỳ. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Unpublished, 2009.

Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets, and Victor Lempitsky.
Speeding-up convolutional neural networks using fine-tuned cp-decomposition. arXiv preprint
arXiv:1412.6553, 2014.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Chunyuan Li, Hang Su, Xiaowei Shen, Yizhe Li, Yiren Wang, Yiming Chen, and Lawrence
Carin. Measuring the intrinsic dimension of objective landscapes. In International Conference on
Learning Representations (ICLR), 2018.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. Deep gradient compression:
Reducing the communication bandwidth for distributed training. In International Conference on
Learning Representations (ICLR), 2018.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural
network compression. In Proceedings of the IEEE international conference on computer vision,
pp. 5058–5066, 2017.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-Efficient Learning of Deep Networks from Decentralized Data. In Aarti Singh
and Jerry Zhu (eds.), Proceedings of the 20th International Conference on Artificial Intelligence
and Statistics, volume 54 of Proceedings of Machine Learning Research, pp. 1273–1282. PMLR,
20–22 Apr 2017. URL https://proceedings.mlr.press/v54/mcmahan17a.html.

Yongjeong Oh, Yo-Seb Jeon, Mingzhe Chen, and Walid Saad. Vector quantized compressed sens-
ing for communication-efficient federated learning. In 2022 IEEE Globecom Workshops (GC
Wkshps), pp. 365–370. IEEE, 2022.

Haemin Park and Diego Klabjan. Communication-efficient federated low-rank update algorithm and
its connection to implicit regularization. arXiv preprint arXiv:2409.12371, 2024.

Sangjun Park and Wan Choi. Regulated subspace projection based local model update compression for
communication-efficient federated learning. IEEE Journal on Selected Areas in Communications,
41(4):964–976, 2023.

11

https://proceedings.mlr.press/v54/mcmahan17a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Mohammad Mahdi Rahimi, Hasnain Irshad Bhatti, Younghyun Park, Humaira Kousar, Do-Yeon
Kim, and Jaekyun Moon. Evofed: leveraging evolutionary strategies for communication-efficient
federated learning. Advances in Neural Information Processing Systems, 36, 2024.

Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and Ramtin Pedarsani.
Fedpaq: A communication-efficient federated learning method with periodic averaging and quanti-
zation. In International Conference on Artificial Intelligence and Statistics, pp. 2021–2031. PMLR,
2020.

Tara N Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arisoy, and Bhuvana Ramabhadran. Low-
rank matrix factorization for deep neural network training with high-dimensional output targets. In
2013 IEEE international conference on acoustics, speech and signal processing, pp. 6655–6659.
IEEE, 2013.

Zai Shi and Atilla Eryilmaz. Communication-efficient subspace methods for high-dimensional
federated learning. In 2021 17th International Conference on Mobility, Sensing and Networking
(MSN), pp. 543–550. IEEE, 2021.

Shiqiang Sun, Jakub Konecny, Ananda Theertha Suresh, and Brendan McMahan. Qfedavg: Quantized
federated averaging. arXiv preprint arXiv:2002.05645, 2020.

Youbang Sun, Zitao Li, Yaliang Li, and Bolin Ding. Improving lora in privacy-preserving federated
learning. arXiv preprint arXiv:2403.12313, 2024.

Terence Tao. Topics in Random Matrix Theory. Graduate Studies in Mathematics, Vol. 132. American
Mathematical Society, 2012.

Karen Ullrich, Edward Meeds, and Max Welling. Soft weight-sharing for neural network compression.
arXiv preprint arXiv:1702.04008, 2017.

Stanford University. Tiny imagenet visual recognition challenge. https://www.kaggle.com/
c/tiny-imagenet, 2015.

Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data
Science. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University
Press, 1st edition, 2018.

Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. Powersgd: Practical low-rank gradient
compression for distributed optimization. In Advances in Neural Information Processing Systems
(NeurIPS), volume 32, 2019.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for
NLP, pp. 353–355, 2018a.

Wenqi Wang, Yifan Sun, Brian Eriksson, Wenlin Wang, and Vaneet Aggarwal. Wide compres-
sion: Tensor ring nets. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 9329–9338, 2018b.

David P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations and Trends in
Theoretical Computer Science, 10(1–2):1–157, 2014.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Yuexiang Xie, Zhen Wang, Dawei Gao, Daoyuan Chen, Liuyi Yao, Weirui Kuang, Yaliang Li, Bolin
Ding, and Jingren Zhou. Federatedscope: A flexible federated learning platform for heterogeneity.
Proceedings of the VLDB Endowment, 16(5):1059–1072, 2023.

D Yao, W Pan, Y Wan, H Jin, and L Sun. Fedhm: Efficient federated learning for heterogeneous
models via low-rank factorization. arxiv. arXiv preprint arXiv:2111.14655, 2021.

12

https://www.kaggle.com/c/tiny-imagenet
https://www.kaggle.com/c/tiny-imagenet

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen Chu, and Bo Li. Lora-fa: Memory-efficient
low-rank adaptation for large language models fine-tuning. arXiv preprint arXiv:2308.03303,
2023.

Tianyun Zhang, Shaokai Ye, Kaiqi Zhang, Jian Tang, Wujie Wen, Makan Fardad, and Yanzhi Wang.
A systematic dnn weight pruning framework using alternating direction method of multipliers. In
Proceedings of the European conference on computer vision (ECCV), pp. 184–199, 2018.

Haoran Zhao, Jiayu Zhang, Qinbin Sun, Zhouchen Lin, Yang Wang, Yefeng Zheng, and Shiqiang
Liu. Separate: A simple low-rank projection for gradient compression. arXiv preprint
arXiv:2309.08386, 2023a.

Jingfei Zhao, Ilia Shumailov, Takuma Chinen, Ilia Shumailov, and Dawn Song. Galore: Memory-
efficient llm training by gradient low-rank projection. arXiv preprint arXiv:2306.03341, 2023b.

Jiacheng Zhu, Kristjan Greenewald, Kimia Nadjahi, Haitz Sáez de Ocáriz Borde, Rickard Brüel
Gabrielsson, Leshem Choshen, Marzyeh Ghassemi, Mikhail Yurochkin, and Justin Solomon.
Asymmetry in low-rank adapters of foundation models. arXiv preprint arXiv:2402.16842, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A ACCURACY AND COMMUNICATION LEARNING CURVES

This appendix provides extended experimental results that complement the main findings discussed
in Section 5. We include detailed evaluations of MAPO and baseline methods on CIFAR-100,
TinyImageNet, and Sentiment140 datasets. Similar to the main results, Figure 8 reports both
maximum test accuracy and the communication cost required to reach a given accuracy threshold.
These additional experiments further demonstrate MAPO’s superior communication efficiency and
consistent performance gains across more challenging and large-scale tasks.

0 25 50 75 100 125 150 175 200
Rounds

0

10

20

30

40

G
lo

ba
l A

cc
ur

ac
y

CIFAR100 Accuracy - 100 Clients

MAPO
FedLoRU
EvoFed
Sparse
Quant
FedAvg

0 25 50 75 100 125 150 175 200
Rounds

0
5

10
15
20
25
30
35
40

G
lo

ba
l A

cc
ur

ac
y

TinyImagenet Accuracy - 100 Clients
MAPO
FedLoRU
EvoFed
Sparse
Quant
FedAvg

0 250 500 750 10001250150017502000
Rounds

55
58
60
62
65
68
70
73
75

G
lo

ba
l A

cc
ur

ac
y

Sent140 Accuracy - 100 Clients

MAPO
FedLoRU
EvoFed
Sparse
Quant
FedAvg

(a) CIFAR100 Accuracy (b) TinyImagenet Accuracy (c) Sentiment140 Accuracy

0.0 0.1 0.2 0.3 0.4
Global Accuracy

10 1

100

101

102

103

104

105

lo
g 1

0
 C

om
m

un
ic

at
io

n

CIFAR100 Communication
MAPO
FedLoRU
EvoFed
Sparse
Quant
FedAvg

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Global Accuracy

100

101

102

103

104

105

lo
g 1

0
 C

om
m

un
ic

at
io

n

TinyImagenet Communication
MAPO
FedLoRU
EvoFed
Sparse
Quant
FedAvg

0.400.450.500.550.600.650.700.75
Global Accuracy

10 1

100

101

102

103

104

105

lo
g 1

0
 C

om
m

un
ic

at
io

n

Sent40 Communication
MAPO
FedLoRU
EvoFed
Sparse
Quant
FedAvg

(d) CIFAR100 Comm. cost (e) TinyImagenet Comm. cost (f) Sentiment140 Comm. cost
Figure 8: Performance comparison of MAPO and baseline methods on CIFAR100, TinyImagenet, and
Sentiment140 datasets. The top row shows the accuracy achieved by each method on the respective datasets,
while the bottom row illustrates the communication cost associated with each method.

B COMPARISON WITH LOW-RANK ADAPTATION IN FINE-TUNING

We conduct fine-tuning experiments using RoBERTa-large on five GLUE tasks to evaluate MAPO
alongside LoRA, FA-LoRA, and SA-LoRA. Table 4 compares the number of trainable parameters
and the communication load per round for each method. Table 5 summarizes fine-tuning results
under federated settings, reporting communication efficiency based on the number of rounds and total
communication required to reach 80% accuracy. Overall, the results indicate that MAPO improves
communication efficiency without compromising performance.

Table 4: Number of trainable and communication parameters per round for different methods.
Method Number of trainable parameters Number of communication parameters per round

LoRA 1.83M 0.78M
FA-LoRA 1.44M 0.39M
SA-LoRA 1.83M 0.39M
MAPOd/1k 357M 0.36M
MAPOd/10k 357M 35.70K
MAPOd/100k 357M 3.57K
MAPOd/1m 357M 357

Table 5: Comparison of model accuracies, communication rounds, and total communication cost.
Model SST2 QNLI RTE MNLIm MNLImm

Acc Round Total Acc Round Total Acc Round Total Acc Round Total Acc Round Total

LoRA 84.86 36 28.08M 91.72 85 66.30M 86.62 180 140.40M 87.41 86 67.08M 87.34 82 63.96M
FA-LoRA 94.15 44 17.16M 91.63 76 29.64M 57.28 — — 85.92 76 29.64M 86.46 213 83.07M
SA-LoRA 95.41 19 7.41M 91.04 55 21.45M 70.01 — — 89.44 29 11.31M 85.49 126 49.14M
MAPOd/1k 96.79 5 1.78M 93.14 11 3.93M 87.91 23 8.21M 88.90 17 6.07M 88.26 22 7.85M
MAPOd/10k 96.10 5 178.50K 92.57 8 285.60K 89.57 23 821.10K 88.81 18 642.60K 87.43 25 892.50K
MAPOd/100k 95.53 5 17.85K 89.24 7 24.99K 84.38 24 85.68K 85.04 20 71.40K 84.60 29 103.53K
MAPOd/1m 90.37 7 2.50K 80.09 34 12.14K 57.04 — — 72.46 — — 37.76 — —

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C COMPARISON WITH FACTORIZED-FL

In this section, we present a detailed comparison between MAPO and Factorized-FL as a represen-
tative of the parameter decomposition methods. Factorized-FL can be interpreted as a variant of
rank-1 LoRA, where a sparse bias matrix substitutes for LoRA’s frozen fine-tuned weights, initialized
to zero. Table 6 reports the communication efficiency of MAPO and Factorized-FL on CIFAR-10
and SVHN datasets, evaluated under both IID and non-IID partitions. Each column denotes the
total communication in GB required to reach X% of FedAvg’s final test accuracy. Results show
that MAPO achieves significantly lower communication costs compared to Factorized-FL while
maintaining competitive performance across both datasets and data distributions.

Table 6: Communication cost comparison across different methods on SVHN and CIFAR-10 under
IID and Non-IID settings.

Method SVHN CIFAR-10 Com/Round
IID@80% IID@90% Non-IID@80% Non-IID@90% IID@80% IID@90% Non-IID@80% Non-IID@90%

FedAvg 183.51 244.68 285.46 509.75 305.85 407.80 326.24 652.48 20.39GB
Factorized-FL 127.75 182.50 146.00 219.00 182.50 292.00 200.75 310.25 18.25GB
MAPO2k 0.32 0.79 0.56 – 0.32 – 0.94 – 0.78MB
MAPO16k 0.08 0.18 0.12 0.27 0.08 0.18 0.23 0.45 6.25MB
MAPO40k 3.84 8.64 5.76 13.12 3.84 8.64 10.88 21.12 0.32GB

D IMPLEMENTATION DETAILS AND HYPERPARAMETERS

All experiments were conducted on a single NVIDIA RTX 3090 with 24 GB of memory. The
main experiments and baselines are implemented with JAX (Bradbury et al., 2018). The GLUE
tasks and LLM fine-tuning implementation use Hugging Face libraries and models implemented in
FederatedScope (Xie et al., 2023) with half precision (i.e., 16-bit float). The model configuration and
training used in this work are provided in Tables 7 and 8.

Table 7: Neural network configurations for different datasets.
Dataset Model type # Conv Kernel Hidden features # Linear # Output # Parameters

MNIST CNN 2 5×5 8, 16 1 10 11.3K
FMNIST CNN 2 5×5 8, 16 1 10 11.3K
CIFAR-10 CNN 4 5×5 64, 64, 128, 128 2 10 1.1M
CIFAR-100 WideResNet 16 3×3 64×4, 128×4 2 100 2.8M
TinyImageNet WideResNet 16 3×3 64×4, 128×4 2 200 2.88M
Shakespeare LSTM - - 256, 8 (embed) 2 65 814K
Sentiment140 Transformer - - 512, 96 (embed) 2 2 2.2M
SVHN CNN 4 5×5 64, 64, 128, 128 2 10 1.1M
GLUE RoBERTa-large - - 1024 (hidden) 2 Varies 357M

Table 8: Training hyperparameters for FedAvg and variants.
Hyperparameter MNIST FMNIST CIFAR-10 CIFAR-100 TinyImageNet Sentiment140 Shakespeare SVHN GLUE

Batch size 32 32 32 32 32 32 32 32 128
Optimizer SGD SGD SGD AdamW AdamW SGD SGD SGD SGD
Learning rate 0.2 0.2 0.03 0.1 0.2 0.001 0.2 0.03 0.02
Momentum 0.9 0.9 0.4 0.9 0.9 0.9 0.9 0.4 0.0
L1 regularization 0.0 0.0 1e-4 0.0 1e-5 0.0 5e-6 1e-4 0.0
L2 regularization 0.0 0.0 1e-5 3e-3 1e-4 0.0 5e-5 1e-5 0.0

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

E IID AND CLIENT SAMPLING

This section includes the results of additional experiments on IID distribution and client sampling
for MNIST, FMNIST, and CIFAR-10. Across all three datasets, we observe consistent trends.
Reducing the fraction of clients participating (from all clients to 10%) moderately decreases accuracy
for all methods, and non-IID settings introduce additional accuracy penalties. However, MAPO’s
performance remains robust in these more demanding scenarios; it routinely stays close to FedAvg’s
high-accuracy results while maintaining significant communication savings. This resilience suggests
that MAPO’s approach scales well to heterogeneous data distributions and partial-participation
regimes, crucial in large-scale FL deployments.

Table 9: Extrapolated MNIST results for IID vs. non-IID and full vs. 10% client participation.

IID Non-IID

All clients 10% clients All clients 10% clients

Method Com. Acc. Com. Acc. Com. Acc. Com. Acc.

FedAvg 100% 99.6% 100% 99.5% 100% 99.3% 100% 98.9%
Sparse 10.0% 93.9% 12.0% 93.6% 13.3% 93.4% 15.3% 92.1%
Quantize 22.0% 98.8% 25.0% 98.5% 29.0% 98.2% 31.3% 97.6%
EvoFed 6.5% 99.4% 7.0% 99.2% 8.5% 99.0% 9.4% 98.5%
FedLoRU 22.0% 95.0% 25.0% 94.7% 28.2% 94.3% 30.2% 93.8%
MAPO 2.0% 99.5% 2.3% 99.3% 2.7% 99.0% 2.9% 98.5%

Table 10: Extrapolated FMNIST results for IID vs. non-IID and full vs. 10% client participation.

IID Non-IID

All clients 10% clients All clients 10% clients

Method Com. Acc. Com. Acc. Com. Acc. Com. Acc.

FedAvg 100% 91.5% 100% 91.0% 100% 90.0% 100% 89.2%
Sparse 16.0% 84.0% 19.0% 83.5% 21.0% 82.0% 24.1% 81.1%
Quantize 16.0% 89.7% 19.0% 89.2% 21.0% 88.0% 24.1% 87.1%
EvoFed 4.5% 87.0% 5.5% 86.5% 6.8% 85.5% 7.6% 84.7%
FedLoRU 12.0% 76.8% 14.0% 76.2% 15.5% 75.0% 17.9% 74.1%
MAPO 2.0% 90.0% 2.3% 89.6% 2.7% 88.8% 3.1% 88.0%

Table 11: Extrapolated CIFAR-10 results for IID vs. non-IID and full vs. 10% client participation.

IID Non-IID

All clients 10% clients All clients 10% clients

Method Com. Acc. Com. Acc. Com. Acc. Com. Acc.

FedAvg 100% 73.0% 100% 72.0% 100% 70.0% 100% 69.0%
Sparse 1.8% 41.0% 2.0% 40.0% 2.4% 38.0% 2.7% 37.2%
Quantize 10.0% 71.0% 12.0% 70.0% 13.0% 68.5% 15.2% 67.4%
EvoFed 2.0% 43.0% 2.5% 42.0% 3.0% 40.5% 3.4% 39.5%
FedLoRU 1.1% 27.0% 1.3% 26.0% 1.5% 24.5% 1.7% 23.5%
MAPO 0.8% 71.5% 0.9% 70.8% 1.0% 69.2% 1.2% 68.3%

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

F ABLATION STUDY: INPUT DIMENSION AND COMPRESSION RATE

This section reports additional experiments designed to quantify how the projection dimension k
should scale as the task becomes more complex (higher model capacity and higher input dimensional-
ity). We evaluate on the HAM10000 skin cancer detection dataset with both low- and high-resolution
inputs and two representative architectures.

EXPERIMENTAL SETUP

We consider four model–input configurations and assign k commensurate with their complexity:

CNN (3M params), 28× 28 : k = 212, CNN (208M params), 224× 224 : k = 218,

WRN (2.8M params), 28× 28 : k = 212, WRN (2.8M params), 224× 224 : k = 216.

We compare FedAvg (uncompressed) to representative communication-efficient baselines (Sparse,
Quant, EvoFed, FedLoRU) and MAPO. We report (i) test accuracy (Acc., %) and (ii) normalized
communication cost (Com., %), where Com. = 100 is the per-round uplink payload of FedAvg for
the corresponding model–resolution configuration (lower is better).

CNN (3M), 28×28, k = 212 CNN (208M), 224×224, k = 218 WRN (2.8M), 28×28, k = 212 WRN (2.8M), 224×224, k = 216

Method Acc. Com. Acc. Com. Acc. Com. Acc. Com.

FedAvg 77.05 100.00 79.76 100.00 79.13 100.00 81.83 100.00
Sparse 71.47 1.67 74.09 2.07 73.57 1.72 79.07 13.72
Quant 75.51 10.31 78.23 14.21 77.82 5.63 79.32 28.44
EvoFed 71.82 4.57 74.13 3.83 73.97 10.81 78.11 18.72
FedLoRU 74.60 1.33 78.18 1.51 77.01 1.52 78.98 12.43
MAPO 76.58 1.07 79.20 1.23 78.20 0.93 80.16 9.27

Table 12: HAM10000: accuracy–communication trade-offs across model/input complexity and
projection k. Each block fixes a model and input resolution; Com. is per-round uplink normalized to
the corresponding FedAvg (100). As complexity rises (from 28×28 to 224×224 and/or higher-capacity
models), larger k is used to maintain fidelity. MAPO consistently matches or exceeds the accuracy
of other compression baselines while operating at substantially lower communication budgets.

Scaling trend. Higher input resolution and model capacity necessitate a larger projection dimension
k to preserve gradient information under projection. This is reflected in the chosen k across the four
settings.

Robust trade-off. Even as k increases for the more complex settings, MAPO attains a favorable
accuracy–communication balance. For example:

CNN (208M), 224×224: MAPO reaches 78.20% at only 0.93% communication, vs. FedAvg 79.76%
at 100%.

WRN (2.8M), 224×224: MAPO achieves 80.16% at 9.27% communication, vs. FedAvg 81.83% at
100%.

Consistency across regimes. On low-resolution tasks (e.g., 28×28), MAPO preserves accuracy
close to FedAvg while reducing communication by two orders of magnitude; on high-resolution tasks,
it remains competitive and generally superior to other compression baselines.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

G ABLATION STUDY: SUBSPACE EXPLORATION AND STABILITY

Design. We study the effect of redefining the reconstruction vector A each communication round
(FRESH-A) versus keeping it fixed throughout training (FROZEN-A). Redefining A increases subspace
exploration capacity but could, in principle, introduce early-round instability. We quantify this trade-
off across four benchmarks. Unless noted otherwise, all numbers are test accuracy (%).

Observation. Across tasks, FRESH-A may trail slightly in the earliest rounds but quickly surpasses
FROZEN-A, ultimately converging to substantially higher accuracy. This indicates that the exploratory
benefit of a refreshed subspace dominates any mild early-round variance.

Table 13: Sent140 (100 clients): accuracy over rounds.
Method 1 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

FRESH-A 62.72 62.72 62.72 63.03 64.18 66.61 67.09 69.59 69.78 70.14 72.31 72.88 73.58 73.92 74.76
FROZEN-A 62.73 62.75 63.37 64.88 64.69 65.63 66.27 66.83 66.32 66.03 66.85 66.47 66.73 66.78 67.09
DIFF -0.01 -0.03 -0.65 -1.85 -0.50 0.98 0.82 2.76 3.46 4.11 5.46 6.41 6.85 7.14 7.67

Table 14: Shakespeare: accuracy (%) over rounds.
Method 1 50 100 150 200 250 300 350 400 450 500 550 600 650 700

FRESH-A 14.67 15.33 22.18 28.33 30.60 32.71 33.79 34.99 35.86 36.54 36.75 37.33 37.82 38.36 38.63
FROZEN-A 14.69 20.47 23.73 25.40 25.99 26.71 26.60 27.13 27.67 28.13 28.04 28.27 27.96 28.32 28.18
DIFF -0.02 -5.14 -1.55 2.93 4.61 6.00 7.19 7.86 8.19 8.41 8.71 9.06 9.86 10.04 10.45

Table 15: tinyImageNet: accuracy (%) over rounds.
Method 1 10 20 30 40 50 60 70 80 90 100 110 120 130 140

FRESH-A 0.74 1.37 2.22 4.90 6.95 8.55 11.37 13.52 15.24 17.76 20.05 21.84 23.00 24.11 24.79
FROZEN-A 0.75 1.43 4.00 5.77 7.25 8.03 9.22 10.01 10.66 10.52 10.40 10.23 9.94 9.82 9.69
DIFF -0.01 -0.06 -1.78 -0.87 -0.30 0.52 2.15 3.51 4.58 7.24 9.65 11.61 13.07 14.29 15.10

Table 16: CIFAR-100: accuracy (%) over rounds.
Method 1 10 20 30 40 50 60 70 80 90 100 110 120 130 140

FRESH-A 1.19 8.01 14.44 18.11 21.79 23.12 25.49 27.51 28.23 30.60 32.18 32.30 31.41 33.97 34.01
FROZEN-A 1.55 8.79 12.83 14.33 15.32 15.69 15.45 16.58 17.02 16.63 17.67 17.92 18.08 18.32 18.55
DIFF -0.36 -0.78 1.61 3.78 6.47 7.43 10.04 10.93 11.21 13.97 14.51 14.38 13.33 15.65 15.46

A fixed small subspace is quickly capacity-limited. Allowing A to refresh each round enhances
subspace exploration, resulting in reliably higher accuracies after the initial transient.

In our implementation, A is (re)initialized once per communication round. Each round comprises
many local optimization steps (multiple batches/epochs), executed within a fixed subspace. The
subspace changes only after server aggregation. This design avoids the instability that could arise
from re-drawing A at every local step.

Additional Evaluation. To further test stability under increasing scale and complexity, we report
two additional benchmarks, comparing FRESH-A with FROZEN-A and two intermediate schedules:
Frozen-First-50, where A is frozen for the first 50 rounds, then refreshed thereafter, and Semi-Fresh-
A, where A is refreshed every two rounds.

Table 17: CelebA: accuracy (%) over rounds for different A-schedules.
Method 0 10 20 30 40 50 60 70 80 90 100

FRESH-A 49.97 57.23 69.83 86.04 89.57 90.29 91.06 91.19 91.28 91.31 91.32
SEMI-FRESH-A 49.97 54.67 60.52 63.01 70.13 80.61 84.14 85.79 85.89 87.42 88.06
FROZEN-FIRST-50 49.97 50.01 50.07 53.42 56.13 57.81 61.56 73.22 83.96 86.84 88.54
FROZEN-A 49.97 50.01 50.07 53.42 56.13 57.81 59.51 60.72 61.23 61.81 62.25

Table 18: HAM10000: accuracy (%) over rounds for different A-schedules.
Method 0 10 20 30 40 50 60 70 80 90 100

FRESH-A 67.99 68.13 69.08 70.41 70.68 71.32 72.26 72.75 73.17 73.79 74.13
SEMI-FRESH-A 67.99 68.08 68.44 69.77 69.86 69.54 70.44 70.75 71.03 71.12 70.96
FROZEN-FIRST-50 67.99 67.99 67.99 67.99 67.99 67.99 68.21 69.38 70.07 71.04 72.97
FROZEN-A 67.99 67.99 67.99 67.99 67.99 67.99 67.99 67.99 67.99 67.99 67.99

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Takeaways. (1) Across both datasets, FRESH-A remains stable in early rounds and attains the best
final accuracy. (2) FROZEN-A exhibits limited improvement, consistent with a capacity-limited, fixed
subspace. (3) Intermediate schedules (FROZEN-FIRST-50, SEMI-FRESH-A) offer smoother early
phases than fully FRESH-A in a few cases but ultimately underperform the fully refreshed scheme.
(4) As scale and complexity grow, exploration via a new round-wise subspace is beneficial for both
stability and convergence quality.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

H NOTATIONS

Table 19: Notation and Definitions
Symbol Meaning / Definition

N Number of layers in a model.
i Indexing notation for the layers of the model. (1 ≤ i ≤ N)
M Number of clients in FL.
j Indexing notation for clients. (1 ≤ j ≤M)
T Total number of communication rounds in FL.
t Indexing notation for rounds. (1 ≤ t ≤ T)
Dj Local dataset for client j.
bj Weight for client j, usually set as the number of local samples |Dj |.
∆W Model update, treated as a single vector, ∈ Rd×1.
W t Model parameters at communication round t.
B

t
Aggregated projection vector at round t, broadcast by the server.

rt Random seed used to synchronize matrix generation across clients and the server.
At Reconstruction matrix at round t, regenerated using rt.
Bt,j Trainable projection matrix for client j at round t.
B̂t,j Locally optimized projection matrix for client j at round t.
η Learning rate for local optimization.
d Total number of model parameters, defined as d =

∑
i d

i
1d

i
2.

di1, d
i
2 Row and column dimensions of the weight matrix for layer i.

p Factorization rank after reshaping.
q LoRA Factorization rank before reshaping.
k Design parameter controlling reshape dimension (∆W ′ reshaped into R⌈d/k⌉×k).
A ∈ R·×·, B ∈ R·×· Reconstruction and projection matrices in factorization.
L(W) Global loss function.
Li(W) Local loss function for client i.
∇L(W) Gradient of the global loss function.
∇Bt,j Gradient of local loss for the projection matrix.
σ2
l Bounded variance of stochastic gradients.

β Smoothness constant of the loss function.
ϵ Distortion parameter from the Johnson-Lindenstrauss Lemma.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

I PROOF OF DEFINITIONS AND PROPOSITIONS

Definition I.1 (Communication Overhead Rate). Let ∆W ∈ IRd1×d2 be the update matrix of
a model. Suppose the factorization of ∆W as ∆W = BA, where A ∈ IRq×d2 is a fixed random
matrix and B ∈ IRd1×q is a trainable matrix with q ≤ min(d1, d2) being the factorization rank. The
communication overhead rate COrate is defined as the ratio of the size of B to the size of ∆W :

COrate =
size(B)

size(∆W)
=

q

d2
.

Definition I.2 (Reconstruction Error Rate). Using the same factorization as Definition 3.2, the
reconstruction error rate is the expected ratio of the reconstruction error to the original model update.
Given full-rank random reconstruction (Lemma 3.1), it is expressed as:

EA

[
∥∆W −BA∥22

]
∥∆W∥22

= 1− q

d2
.

Proof. Let ∆W = [∆w1 ∆w2 · · · ∆wd1
], where each column ∆wi ∈ IRd2 . Similarly, the

reconstruction BA can be written as [b1A b2A · · · bd1
A], where each bi ∈ IRq is a trainable matrix.

The reconstruction error is given by:

∥∆W −BA∥22 =

d1∑
i=1

∥∆wi − biA∥22.

The projection of ∆wi onto the subspace spanned by A is PA∆wi. The error rate E is defined as:

E =
∥∆wi −∆wiPA∥22

∥∆wi∥22
.

Using the Pythagorean theorem:

∥∆wi∥22 = ∥∆wiPA∥22 + ∥wi −∆wi PA|22,

we rewrite E as:

E =
∥∆wi∥22 − ∥∆wiPA∥22

∥∆wi∥22
= 1− ∥∆wiPA∥22

∥∆wi∥22
.

The expected value of ∥∆wiPA∥22 for a full-rank random Gaussian projection is:

E[∥∆wiPA∥22] =
q

d2
∥∆wi∥22.

Substituting this into E:

E[∥∆wi − biA∥22] = 1− E[∥∆wiPA∥22]
∥∆wi∥22

= 1−
p
d∥∆wi∥22
∥wi∥22

= 1− q

d2
.

Applying this to each column ∆∆wi of ∆W , we obtain:

EA

[
d1∑
i=1

∥∆wi − biA∥22

]
=

d1∑
i=1

EA

[
∥∆wi − (∆wi)PA∥22

]
.

Using the expected error formula:

=

d1∑
i=1

(
1− q

d2

)
∥∆wi∥22 =

(
1− q

d2

) d1∑
i=1

∥∆wi∥22.

Since ∥∆W∥22 =
∑d1

i=1 ∥∆wi∥22, we get:

EA

[
∥∆W −BA∥22

]
=

(
1− q

d2

)
∥∆W∥22.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Proposition I.3 (Single-Vector Factorization). Let ∆W , A, and B be factorizations of a single
layer of the network as in Definition 3.2. By reshaping ∆W into ∆W ′ ∈ IR1×d1d2 the factorization
of ∆W ′ = B′A′ where A′ ∈ IRp×d1d2 and B′ ∈ IR1×p can achieve the same reconstruction error
and communication overhead to the conventional factorization of ∆W when p = qd1.

Proof of Error Preservation. In the single-vector setup, ∆W ′ ∈ IRd1d2 is projected onto a subspace
of dimension p. From random projection theory (as used in Definition 3.3), if A′ is sampled such that
rank(A′) = p, then:

E
[
∥∆W ′ −B′A′∥22
∥∆W ′∥22

]
= 1− p

d1d2
.

Substituting p = qd1 gives:
1− qd1

d1d2
= 1− q

d2
.

Hence, the expected reconstruction error satisfies:

E
[
∥∆W ′ −B′A′∥22

]
=

(
1− q

d2

)
∥∆W ′∥22,

which matches the original factorization.

Proof of Communication Preservation. For ∆W ′ ∈ IRd1d2 , with the total size size(∆W ′) = d1d2,
we have the communication overhead as:

size(B′) = p = qd1.

Thus, the communication overhead is:

CO′
rate =

size(B′)

size(∆W ′)
=

qd1
d1d2

=
q

d2
,

which matches the original overhead.

Since both the expected reconstruction error and the communication overhead remain unchanged, the
single-vector factorization with p = qd1 is equivalent in terms of efficiency.

Proposition I.4 (Multi-Layer Factorization). Let ∆Wi, Ai, and Bi be single-vector factorization of
i-th layer of the n-layered network as in Proposition 3.4. By concatenating the reshaped weights ∆Wi

into ∆W ′ ∈ IR1×d, where d =
∑n

i=1 d
i
1d

i
2. The factorization of ∆W ′ = B′A′ where A′ ∈ IRp×d

and B′ ∈ IR1×p can achieve the same reconstruction error and communication overhead to the
single-vector factorization applied to each ∆Wi when p = nqd1.

Proof of Error Preservation. For each layer i, a random full-rank matrix Ai ∈ IRq×di
2 yields an

expected squared reconstruction error

E
[
∥∆Wi −BiAi∥2F

]
=
(
1 − q

di2

)
∥∆Wi∥2F .

Flattening ∆Wi into ∆W ′
i ∈ IR(di

1d
i
2)×1, a single-vector projection of dimension q di1 preserves this

same error ratio (cf. Proposition 3.4).

When we concatenate all ∆W ′
i into ∆W ′ ∈ IR1×d, we form a block-structured vector. Let p := n q

and let A′ ∈ IRp×d be constructed from a Gaussian distribution. By the standard random-projection
argument in dimension d with subspace size p,

E
[
∥∆W ′ −B′A′∥22

]
=
(
1 − p

d

)
∥∆W ′∥22 =

(
1 − p

Nd1d2

)
∥∆W ′∥22.

Since p = Nqd1, the overall ratio matches applying single-vector factorizations of rank q to each
∆W ′

i individually.

Proof of Communication Preservation. For each layer i, the single-vector factorization of ∆Wi

introduces

size(Bi) = q di1, size(∆Wi) = di1 d
i
2, hence

size(Bi)

size(∆Wi)
=

q

di1
.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Concatenating all ∆W ′
i into ∆W ′ ∈ IR1×d gives size(∆W ′) = d, with

d =

N∑
i=1

di1 d
i
2.

Meanwhile, in the multi-layer factorization, the new trainable vector B′ ∈ IR1×p has

size(B′) = p = N q.

Thus
size(B′)

size(∆W ′)
=

N q∑N
i=1

(
di1 d

i
2

) ,
which matches the total overhead of N individual rank-q factorizations (one per layer) in aggregate.
Consequently, the communication overhead rate is also preserved.

Since both the expected reconstruction error (per layer or in total) and the communication overhead
remain the same, choosing p = N q for ∆W ′ is equivalent to applying single-vector factorization of
rank q separately to each layer.

Proposition I.5 (MAPO Factorization). Let ∆W , A, B, and rank p be a multi-layer factorization
of a network as defined in Proposition 3.5. By reshaping ∆W ∈ IR1×d into ∆W ′ ∈ IRk×⌈d/k⌉, and
the factorization of ∆W ′ = B′A′ where A′ ∈ IR1×⌈d/k⌉ and B′ ∈ IRk×1, we can achieve the same
reconstruction error and communication overhead to the multi-layer factorization of ∆W when
k = p, while reducing the memory by a factor of k2.

Proof of Error Preservation. Since ∆W ∈ IR1×d is reshaped into ∆W ′ ∈ IRk×⌈d/k⌉, we still have
∥∆W ′∥2F = ∥∆W∥22. When A′ ∈ IR1×⌈d/k⌉ is a suitable random projection (and B′ ∈ IRk×1 is fit
accordingly), the rank-1 subspace of dimension 1 within ⌈d/k⌉ induces the known expected error
ratio

E
[
∥∆W ′ −B′A′∥2F

]
=
(
1− 1

⌈d/k⌉
)
∥∆W ′∥2F ,

since the ambient dimension is k × ⌈d/k⌉ ≈ d. By taking k = p, we obtain (via standard random-
projection arguments) the matching error ratio 1− p/d, up to negligible rounding. Therefore:

E
[
∥∆W ′ −B′A′∥2F

]
=
(
1− p

d

)
∥∆W ′∥2F ,

Proof of Communication Preservation. The matrix B′ ∈ IRk×1 has size k in total. Meanwhile,
∆W ′ ∈ IRk×⌈d/k⌉ has size k × ⌈d/k⌉ ≈ d. Thus

size(B′)

size(∆W ′)
=

k

⌈d/k⌉ k
≈ k

d
=

p

d
.

Setting k = p matches the original ratio p
d from B ∈ IRp×1 in the multi-layer factorization.

Proof of Memory Reduction by Factor k2. In standard rank-p factorizations for ∆W ∈ IR1×d, one
typically stores a p× d projection plus a 1× p vector, whose total size scales as dp+ p. By contrast,
A′ ∈ IR1×⌈d/k⌉ plus B′ ∈ IRk×1 has combined size ⌈d/k⌉+ k. When k = p, the ratio of these sizes
can be shown to drop by a factor of approximately k2. Hence, the approach allocates k2 times less
memory than a naive p× d plus 1× p arrangement. As p = k

dp+ p

⌈d/k⌉+ k
=

dk + k

⌈d/k⌉+ k
≈ d+ 1

d/k2 + 1
≈ k2

Thus, the factorization ∆W ′ = B′A′ with k = p exactly preserves the original rank-p error and
overhead while using k2-fold less memory.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

J CONVERGENCE ANALYSIS PROOF

Let {Lj}Mj=1 be client objectives and L(W) := 1
M

∑M
j=1 Lj(W) the global objective. Denote by

W t the global model at the beginning of communication round t ∈ {0, 1, . . . } and by E ∈ N the
number of local steps per round.
Assumption J.1. For each j,Lj(v) is β-smooth, i.e.,

∥∥∇Lj(u)−∇Lj(v)
∥∥ ≤ β∥u−v∥ for any u, v.

Assumption J.2. Variance of the stochastic gradient of Dj is bounded for each client j, i.e.,

E
[∥∥∥∇Lj(W)− ∇̃Lj(W)

∥∥∥2] ≤ σ2
l

.Assumption J.3. Bounded clients’ gradient dissimilarity: 1
M

∑M
j=1

∥∥∇Lj(W)−∇L(W)
∥∥2≤σ2

g .

Assumption J.4. At each communication round t, the server selects a subset St ⊂ [M] with
|St| = m < M clients uniformly and the sampling variance is σ2

het = ρσ2
g where ρ = M−m

m(M−1) .

During round t, each participating client j ∈ St performs E local steps indexed by e ∈ {0, 1, . . . , E−
1}. We adopt the standard “virtual iterate” device: denote by W t,0 = W t the round-t starting point
and by W t,e the (virtual) state before local step e; all local gradients are evaluated at these virtual
states and then aggregated centrally as if applied to W t.

For each local step, client j forms a MAPO-projected direction Bt,j
e At

e approximating the stochastic
gradient ∇̃Lj(W t,e). Define the per-step projection error

et,je := ∇̃Lj(W t,e)−Bt,j
e At

e.

Define the sampled averages

g̃ t
e :=

1

m

∑
j∈St

∇̃Lj(W t,e), ē t
e :=

1

m

∑
j∈St

et,je .

Let ηt > 0 be the (server) stepsize. The aggregated update is

W t+1 = W t − ηt

E−1∑
e=0

g̃ t
e + ηt

E−1∑
e=0

ē t
e . (6)

Johnson–Lindenstrauss (JL) property for MAPO. Let 0 < ϵ < 1 be the JL distortion. With high
probability (w.h.p.) the MAPO projection satisfies a norm preservation bound implying

E
[
∥et,je ∥2

]
≤ ϵE

[∥∥∇̃Lj(W t,e)
∥∥2] , hence E

[
∥ē t

e∥2
]
≤ ϵE

[∥∥g̃ t
e

∥∥2] . (7)

Variance decomposition under heterogeneity and sampling. By Assumptions J.2 to J.4 and
unbiased client sampling,

E
[∥∥g̃ t

e −∇L(W t,e)
∥∥2] ≤ σ2

l + σ2
g + σ2

het for all t and e. (8)

Theorem J.5. Let Assumptions J.1 to J.4 hold, and suppose ηt ≤ 1−4ϵ
4β(1+ϵ) . Then, after T communica-

tion rounds each with E local steps, the following bound holds:

1

4HT

T−1∑
t=0

ηt E
[∥∥∇L(W t)

∥∥2] ≤ E[L(W 0)]− L∗

EHT
+ 2E(ϵ+ β + βϵ)

(
σ2
l + σ2

g + σ2
het

) 1

HT

T−1∑
t=0

η2t ,

where HT =
∑T−1

t=0 ηt, ϵ is the JL distortion parameter, and L∗ is the minimum of L(W).

Proof. By β-smoothness of L and total expectation,

E
[
L(W t+1)− L(W t)

]
≤ E

[〈
∇L(W t), W t+1 −W t

〉]
+

β

2
E
[
∥W t+1 −W t∥2

]
. (9)

Substitute equation 6 and split the inner product into two terms:

E1 := E

[〈
∇L(W t), −ηt

E−1∑
e=0

g̃ t
e

〉]
, E2 := E

[〈
∇L(W t), ηt

E−1∑
e=0

ē t
e

〉]
.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Bounding E1. For each e, add and subtract∇L(W t,e), then use ⟨a, b⟩ = 1
2 (∥a∥

2+∥b∥2−∥a−b∥2)
and smoothness to absorb ∥∇L(W t) −∇L(W t,e)∥2 (the same step-size condition enforced later
ensures nonpositivity of the resulting coefficient):

−ηt E
[〈
∇L(W t), g̃ t

e

〉]
= −ηt E

[〈
∇L(W t), ∇L(W t,e)

〉]
− ηt E

[〈
∇L(W t), g̃ t

e −∇L(W t,e)
〉]

≤ −ηt
2
E
[
∥∇L(W t)∥2

]
− ηt

2
E
[
∥∇L(W t,e)∥2

]
+ ηt E

[∥∥g̃ t
e −∇L(W t,e)

∥∥2] .
Summing over e = 0, . . . , E − 1 and invoking equation 8 yields

E1 ≤ −
ηt
2
E E

[
∥∇L(W t)∥2

]
− ηt

2

E−1∑
e=0

E
[
∥∇L(W t,e)∥2

]
+ ηt E

(
σ2
l + σ2

g + σ2
het

)
. (10)

Bounding E2. Using ⟨a, b⟩ ≤ 1
4∥a∥

2 + ∥b∥2, Jensen, equation 7, and equation 8,

E2 ≤
ηt
4
E
[
∥∇L(W t)∥2

]
+ ηt E

[∥∥∥E−1∑
e=0

ē t
e

∥∥∥2]

≤ ηt
4
E
[
∥∇L(W t)∥2

]
+ ηt E

E−1∑
e=0

E
[
∥ē t

e∥2
]

≤ ηt
4
E
[
∥∇L(W t)∥2

]
+ ϵ ηt E

E−1∑
e=0

E
[
∥g̃ t

e∥2
]

≤ ηt
4
E
[
∥∇L(W t)∥2

]
+ 2ϵ ηt

E−1∑
e=0

E
[
∥∇L(W t,e)∥2

]
+ 2ϵ ηt E

(
σ2
l + σ2

g + σ2
het

)
. (11)

Bounding the quadratic term. From equation 6 and ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2,

E
[
∥W t+1 −W t∥2

]
≤ 2η2t E

[∥∥∥E−1∑
e=0

g̃ t
e

∥∥∥2]+ 2η2t E

[∥∥∥E−1∑
e=0

ē t
e

∥∥∥2]

≤ 2η2t E

E−1∑
e=0

E
[
∥g̃ t

e∥2
]
+ 2η2t E

E−1∑
e=0

E
[
∥ē t

e∥2
]

≤ 4η2t

E−1∑
e=0

E
[
∥∇L(W t,e)∥2

]
+ 4η2t E

2
(
σ2
l + σ2

g + σ2
het

)
+ 2ϵ η2t E

E−1∑
e=0

E
[
∥g̃ t

e∥2
]

≤ 4(1 + ϵ)η2t

E−1∑
e=0

E
[
∥∇L(W t,e)∥2

]
+ 4(1 + ϵ)η2t E

2
(
σ2
l + σ2

g + σ2
het

)
.

(12)

Plugging equation 10, equation 11, and equation 12 into equation 9,

E
[
L(W t+1)− L(W t)

]
≤
(
−ηt

2
E +

ηt
4

)
E
[
∥∇L(W t)∥2

]
+
(
− ηt

2
+ 2ϵ ηt + 2β(1 + ϵ)η2t

)E−1∑
e=0

E
[
∥∇L(W t,e)∥2

]
+ ηtE(σ2

l + σ2
g + σ2

het) + 2ϵ ηtE(σ2
l + σ2

g + σ2
het)

+ 2β(1 + ϵ)η2t E
2(σ2

l + σ2
g + σ2

het).

Choose
ηt ≤

1− 4ϵ

4β(1 + ϵ)
, (13)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

so the coefficient of
∑

e E∥∇L(W t,e)∥2 is nonpositive. Since E ≥ 1, the first coefficient is at most
−ηt

4 . Dropping the nonpositive term, we obtain

E
[
L(W t+1)− L(W t)

]
≤ −ηt

4
E
[
∥∇L(W t)∥2

]
+ 2E(ϵ+ β + βϵ) η2t (σ

2
l + σ2

g + σ2
het). (14)

J.1 TELESCOPING, AVERAGING, AND FINAL BOUND

Summing equation 14 over t = 0, . . . , T − 1 and using L(WT) ≥ L∗,

L∗ − E
[
L(W 0)

]
≤

T−1∑
t=0

(
−ηt

4
E
[
∥∇L(W t)∥2

]
+ 2E(ϵ+ β + βϵ) η2t (σ

2
l + σ2

g + σ2
het)
)
.

Rearranging and dividing by EHT with HT :=
∑T−1

t=0 ηt yields

1

4HT

T−1∑
t=0

ηt E
[
∥∇L(W t)∥2

]
≤ E[L(W 0)]− L∗

EHT
+ 2E(ϵ+ β + βϵ)(σ2

l + σ2
g + σ2

het)
1

HT

T−1∑
t=0

η2t .

(15)
This is exactly the claimed bound.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

K COMPLEXITY ANALYSIS AND MAPO FLEXIBILITY

Propositions 3.4 to 3.6 discussed how the error rate and accuracy of low-rank factorization are only
determined by the size of the projection vector, regardless of reshaping and vectorization of layers.
Although they prove that MAPO can achieve the same performance as layer-wise factorization
given the same projection (communication) budget, we did not discuss the memory and computation
complexity. In this section, we show that MAPO can effectively reduce computation. Furthermore,
we show how layer-wise low-rank adaptation (LoRA and FA-LoRA) limits the model trade-offs and
how MAPO can offer more flexibility.

K.1 COMPUTATIONAL COMPLEXITY

We compute the memory and computation cost for matrix allocation and multiplication in terms of
standard matrix multiplication. Given matrices A ∈ IRn×m and B ∈ IRp×n, the complexities for
computing C = BA are:

MemoryC=AB = O(nm+ pn+ pm),

TimeC=BA = O(mnp).

We aim to demonstrate that factorization under MAPO, where W ∈ IRk×⌈ d
k ⌉ is factorized into

A ∈ IR1×⌈ d
k ⌉ and B ∈ IRk×1, reduces the memory and time complexity of the LoRA factorization

for an n-layered model. In LoRA, each layer i is factorized as wi ∈ IRd1
i×d2

i into A ∈ IRq×d1
i and

B ∈ IRd2
i×q .

We demonstrate that, given the same communication budget and factorization error rate, MAPO
significantly reduces the computational cost compared to LoRA. This reduction becomes more
pronounced as the number of layers or the selected rank increases. Specifically, MAPO achieves
a memory reduction by a factor of q2 and a computation reduction by a factor of q, where q
is the chosen LoRA rank. Furthermore, even when q = 1, MAPO still achieves memory savings
as
∑n

i̸=j d
1
i d

2
i scales with the number of layers. The only scenario where MAPO and LoRA yield

identical efficiency is when the model consists of a single layer (n = 1) and a rank-1 factorization
(q = 1).

MEMORY COMPLEXITY

Given these definitions, the memory complexities for MAPO and LoRA are:

MemoryMAPO = O

(⌈
d

k

⌉
+ k +

⌈
d

k

⌉
k

)
≈ O

(
d

k
+ k + d

)
,

MemoryLoRA = O

(
n∑

i=1

(d1i q + d2i q + d1i d
2
i)

)
= O

(
n∑

i=1

d1i q +

n∑
i=1

d2i q +

n∑
i=1

d1i d
2
i

)
.

Given the same communication budget k =
∑n

i=1 qd
1
i and d =

∑n
i=1 d

1
i d

2
i , we rewrite LoRA’s

memory complexity as:

MemoryLoRA = O

(
q

n∑
i=1

d2i + k + d

)
.

For MAPO to have lower memory usage than LoRA, the following condition must hold:

MemoryMAPO ≤ MemoryLoRA,

d

k
+ k + d ≤ q

n∑
i=1

d2i + k + d,

d

k
≤ q

n∑
i=1

d2i .

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Replacing k and d with their respective summation terms:
n∑

i=1

d1i d
2
i ≤ q2

n∑
i=1

d1i

n∑
i=1

d2i ,

≤ q2
n∑

i=1

d1i d
2
i + q2

n∑
i̸=j

d1i d
2
i .

Thus, the inequality always holds under the conditions d1i , d
2
i , q, n ≥ 1, and equality occurs if

q = n = 1, which corresponds to a model with a single layer and rank-1 factorization. In this case,
MAPO and LoRA perform the same decomposition.

TIME COMPLEXITY

Given the definitions, we can express the time complexities for MAPO and LoRA as follows:

TimeMAPO = O

(⌈
d

k

⌉
k

)
≈ O(d),

TimeLoRA = O

(
n∑

i=1

qd1i d
2
i

)
.

Since d =
∑n

i=1 d
1
i d

2
i , we can rewrite LoRA’s time complexity as:

TimeLoRA = O(qd).

For MAPO to have a lower time complexity than LoRA, the following condition must hold:

TimeMAPO ≤ TimeLoRA,

d ≤ qd.

This condition is always true for d, q ≥ 1, and equality occurs when q = 1.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

K.2 MAPO FLEXIBILITY

Suppose our neural network has n layers. Let:

Wi ∈ IRd1
i×d2

i for each layer i = 1, . . . , n.

Let d =
∑n

i=1 d
1
i d

2
i be the total number of parameters (i.e., the sum of the entries across all layers).

Let

d1 =

n∑
i=1

d1i .

In many treatments of LoRA, the main communication or factor-size bottleneck arises from a factor
that scales linearly with q · d1i .

LoRA Factorization Per Layer. LoRA factorizes each layer Wi of dimension d1i × d2i with a fixed
rank q. Concretely,

Wi ≈ Wi +BiAi, Ai ∈ IRq×d2
i , Bi ∈ IRd1

i×q.

The number of additional parameters introduced by each low-rank pair (Ai, Bi) is

d1i · q︸ ︷︷ ︸
size of Bi

+ q · d2i︸ ︷︷ ︸
size of Ai

= q (d1i + d2i).

Summing over all n layers,
n∑

i=1

(
d1i · q + q · d2i

)
= q

n∑
i=1

(
d1i + d2i

)
.

Therefore, we can write the communication cost as:

Communication cost ≈ q

n∑
i=1

d1i = q d1.

Since q must be an integer, we see that the communication overhead comes in integer multiplesd1, as:

LoRA total communication ∈ { q d1 | q = 1, 2, . . . }.

There is no way to select a non-integer q. Hence communication budgets strictly between d1 and
2 d1 (or between q d1 and (q + 1)d1) are not possible in layer-wise LoRA. Therefore, Any attempt to
finely tune the communication or factor budget (e.g., to 1.5 d1) is disallowed by LoRA’s integral-rank
requirement. This rigidity is precisely what we seek to overcome in MAPO.

MAPO Factorization. MAPO flattens or reshapes all parameters into one large matrix and then
performs a single low-rank factorization with rank 1. A simplified abstraction is:

1. Reshape w1, . . . , wn into a single matrix W ∈ IRk×⌈d/k⌉, where d =
∑n

i=1 d
1
i d

2
i is the total

parameter count. 2. Factor W ≈ AB, with

A ∈ IR1×⌈d/k⌉, B ∈ IRk×1,

Once all parameters are merged, MAPO can proportionally allocate any communication budget as k
can be selected freely. ⌈

d/k⌉︸ ︷︷ ︸
size of A

+ k︸︷︷︸
size of B

.

Therefore, we can write the total communication as:

MAPO total communication ∈ { k | k = 1, 2, . . . }.

This is particularly important in communication-efficient FL since viable solutions can be found with
communication cost k < d1 or d1 < k < 2d1, which architecture-dependent layer-wise factorization
can not offer.

29

	Introduction
	Background and Related Works
	Sketched update vs. Structured update
	Parameter-efficiency vs. Communication-efficiency

	Proposed Method
	Model-Agnostic Projection Optimization (MAPO)
	Application to Communication-Efficient Federated Learning

	Convergence Analysis
	Experimental Setup
	Results and Discussions
	Conclusion
	Accuracy and Communication Learning curves
	Comparison with Low-Rank Adaptation in Fine-tuning
	Comparison with Factorized-FL
	Implementation details and Hyperparameters
	IID and Client Sampling
	Ablation Study: Input dimension and Compression rate
	Ablation Study: Subspace Exploration and Stability
	Notations
	Proof of Definitions and Propositions
	Convergence Analysis Proof
	Telescoping, Averaging, and Final Bound

	Complexity Analysis and MAPO Flexibility
	Computational Complexity
	MAPO Flexibility

