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Abstract

We study multiclass PAC learning with bandit feedback, where inputs are classi-
fied into one of 𝐾 possible labels and feedback is limited to whether or not the
predicted labels are correct. Our main contribution is in designing a novel learn-
ing algorithm for the agnostic (𝜀, 𝛿)-PAC version of the problem, with sample
complexity of 𝑂

(
(poly(𝐾) + 1/𝜀2) log( |H |/𝛿)

)
for any finite hypothesis classH .

In terms of the leading dependence on 𝜀, this improves upon existing bounds for
the problem, that are of the form 𝑂 (𝐾/𝜀2). We also provide an extension of
this result to general classes and establish similar sample complexity bounds in
which log |H | is replaced by the Natarajan dimension. This matches the optimal
rate in the full-information version of the problem and resolves an open question
studied by Daniely, Sabato, Ben-David, and Shalev-Shwartz (2011) who demon-
strated that the multiplicative price of bandit feedback in realizable PAC learning
is Θ(𝐾). We complement this by revealing a stark contrast with the agnostic case,
where the price of bandit feedback is only 𝑂 (1) as 𝜀 → 0. Our algorithm utilizes
a stochastic optimization technique to minimize a log-barrier potential based on
Frank-Wolfe updates for computing a low-variance exploration distribution over
the hypotheses, and is made computationally efficient provided access to an ERM
oracle overH .

1 Introduction

Multiclass classification is a fundamental learning problem in which a learner is tasked with clas-
sifying objects into one of 𝐾 possible labels. In bandit multiclass classification [18], upon making
a prediction, the learner does not observe the true label, but only whether or not the prediction was
correct. As a concrete example, consider a the task of classifying images, say, from the ImageNet
dataset, with the number of labels 𝐾 being several thousands. After the learner predicts a label for a
particular image, both the image and the prediction are shown to a human rater who is asked if the
prediction is correct or not, after which the answer is revealed to the learner. Thus, the learner faces
a bandit multiclass classification instance as the true label is not revealed in case the prediction was
deemed incorrect by the rater.

Much of previous work on the foundations of bandit multiclass classification focused on the online
setting [18, 10, 9, 21, 23, 13], where the goal of the learner is to minimize the regret compared to
a given hypothesis class H , namely, the learner’s total number of correct predictions throughout
the learning process compared to that of the best fixed hypothesis from H . A central line of work
focused on studying the properties ofH that allow for sublinear regret in this context, and on char-
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acterizing the achievable regret rates in terms of 𝐾 , |H | and the number of prediction rounds 𝑇 . For
instance, Auer et al. [4] show that for any finiteH one can obtain a regret bound of𝑂 (

√︁
𝐾𝑇 log |H |),

by casting the classification problem as a (contextual) 𝐾-armed bandit problem. Daniely and Hel-
bertal [9] demonstrate that the dependence on log |H | can be replaced by the Littlestone dimension
ofH , which may potentially be smaller than log |H | and, in particular, may be finite even whenH
is infinite. Very recently, Erez et al. [13] establish a characterization of the optimal regret rates for
finite hypothesis classes and show that it is of the form Θ(min {

√︁
𝐾𝑇 log |H |}, |H | +

√
𝑇), which is

tight even when the labeled examples are drawn i.i.d. from a fixed distribution.

Here we focus on a different, yet closely related version of multiclass classification, viewed as a
learning problem in a PAC framework [25]. In this setting, the labeled examples are drawn from
a fixed unknown distribution, and the learner’s goal is to ultimately output a prediction rule which
performs well, over this distribution, relative to the best hypothesis from the underlying class H .
This problem has mainly been studied in the analogous full-information setting, that is, when the
learner as access to a training set of i.i.d. examples along with their true labels, where the number of
samples required to learn an 𝜀-optimal hypothesis was shown to be 𝑂 ((1/𝜀2) log(|H |/𝛿)) for finite
classes [22, 5, 10, 6]. In the bandit case, however—namely where the learner may repeatedly predict
labels of drawn examples and obtain feedback only on whether the prediction was correct or not—a
comprehensive understanding of the achievable sample complexity rates is still missing.

On the surface, the PAC bandit multiclass problem might be deemed trivial: a straightforward ap-
proach of uniformly approximating the losses of all hypotheses inH by drawing i.i.d. examples and
predicting labels uniformly at random, already gives rise to 𝑂 ((𝐾/𝜀2) log |H |) sample complexity
which appears to be optimal due to the bandit feedback. Furthermore, the simple underlying al-
gorithm can be implemented efficiently, provided that empirical risk minimization (ERM) can be
carried out efficiently over the hypothesis class. However, this view regards multiclass classification
as a generic 𝐾-armed (contextual) bandit problem and neglects a crucial aspect of the setting: each
example has a single correct label, as opposed to a more general scenario where each label may be
associated with its own loss, independently of other labels. And indeed, no non-trivial lower bounds
can be found in the existing literature for this problem.1

The following questions thus remain:

(1) What is the optimal sample complexity of the bandit multiclass setting? In particular, can one
improve upon the prototypical 𝐾/𝜀2 rate, representative of bandit problems?

(2) Can this sample complexity be attained by an efficient (polynomial time) algorithm, whenever
ERM can be computed efficiently over the underlying hypothesis class?

1.1 Summary of contributions

In this work, we address the questions above and establish a nearly-tight characterization of the
achievable sample complexity in the bandit multiclass problem, along with an efficient algorithm.
Our main contributions are summarized as follows.

(i) For a finite hypothesis classH , we give an algorithm with sample complexity of𝑂 ((poly(𝐾)+
1/𝜀2) log( |𝐻 |/𝛿)) for producing an 𝜀-optimal classifier with probability at least 1 − 𝛿; see
Theorem 1 in Section 3. Further, our algorithm is a proper learner and can be implemented
efficiently provided a (weighted) ERM oracle for the classH . In terms of the leading depen-
dence on 𝜀, this bound significantly improves over the previously mentioned𝑂 (𝐾/𝜀2) bound,
and matches the optimal rate in the full-information version of the problem.

(ii) For more general, possibly infinite hypothesis classes H with finite Natarajan dimension 𝑑,
we establish a generalized sample complexity bound of 𝑂 ((poly(𝐾) + 1/𝜀2)𝑑 log(1/𝛿));
see Theorem 2 in Section 4. This improves over the previous 𝑂 (𝐾𝑑/𝜀2) bound due to
Daniely, Sabato, Ben-David, and Shalev-Shwartz [10], and matches the known rate in the
full-information case [22] up to logarithmic factors for sufficiently small 𝜀.

These results bear some interesting consequences. First, and perhaps most surprisingly, they imply
that there is no additional price for bandit feedback in PAC multiclass classification, as 𝜀 → 0;

1We note that Daniely and Helbertal [9] do provide a stochastic lower bound construction, but it pertains to
multi-label multiclass rather to the standard single-label setting we consider here.
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namely, that the ratio between the optimal sample complexity rates in the bandit and the full-
information settings is Θ(1), and not Θ(𝐾) as one might expect. Indeed, the latter is often the
multiplicative price of bandit information in a multitude of scenarios [see, e.g., 19], and further, it is
the tight price in the realizable case of bandit multiclass [10]. This phenomenon occurs already in
the case of a finite hypothesis class, and extends naturally to general Natarajan classes.

Second, the results reveal an unexpected gap between the attainable bounds in the online (i.e., regret
minimization) and the PAC settings of the bandit multiclass problem. A recognized trademark of
online learning is that online-to-batch conversions of regret bounds very often give sharp sample
complexity rates in the i.i.d. PAC setting [see e.g., 8, 7, 17]. In bandit multiclass classification,
however, we exhibit a stark separation between the two settings, where for sufficiently large hypoth-
esis classes an online-to-batch conversion of the optimal regret rate results with sample complexity
Θ̃(𝐾/𝜀2) [13], whereas the rate we establish here is 𝑂 (1/𝜀2 + poly(𝐾)).2

The core novelty in our algorithmic approach is a stochastic optimization technique for efficiently
recovering a low-variance exploration distribution over the hypotheses in H , with variance 𝑂 (1)
rather than the 𝑂 (𝐾) obtained by simple uniform exploration of labels. We show that through
minimization of a stochastic objective akin to a log-barrier (convex) potential over the induced label
probabilities, such a distribution can be computed in a sample-efficient way and in turn be used
to uniformly estimate the losses of all hypotheses in H via importance sampling. Moreover, we
demonstrate how this stochastic optimization problem can be solved efficiently using a stochastic
Frank-Wolfe method. More details about the algorithmic ideas and an overview of the analysis are
given in Section 3.

1.2 Additional related work

Bandit multiclass classification. In agnostic online multiclass classification with bandit feed-
back, regret bounds of the form 𝑂 (

√︁
𝐾𝑇 log |H |) can be obtained by viewing the problem as an

instance of contextual multi-armed bandits [4]; this bound has been recently improved by [13] to
Θ(min {

√︁
𝐾𝑇 log |H |, |H | +

√
𝑇}) for the classification setting. [9] show how to replace the log |H |

dependence in the first bound by the Littlestone dimension of H , and [23] show how 𝐾 can be
replaced with a refined quantity which encapsulates the effective number of labels. Additional re-
finements in the realizable setting include the Bandit Littlestone dimension which provides a char-
acterization of the optimal mistake bound for deterministic learning algorithms [10].

Contextual bandits. The PAC objective of the bandit multiclass classification problem can be
seen as a special case of the problem of identifying an approximately optimal policy in contextual
multi-armed bandits. In the more general contextual bandit framework, sample complexity lower
bounds of Ω̃(𝐾/𝜀2) are known [4], with regret upper bounds of the form𝑂 (

√
𝐾𝑇) obtained in several

previous works [4, 12, 1]. Reducing our problem to contextual bandits, however, ignores the special
structure exhibited by the reward function in the classification setting, namely their sparsity (see [13]
for a more detailed comparison), and indeed we establish improved sample complexity rates in this
special case. In a bit more detail, in the works of [12, 1], one of the main technical ideas is to compute
a distribution over policies which induces a reward estimator whose variance is bounded, uniformly
over the policies, by 𝑂 (𝐾) (it is actually nontrivial to show that such a distribution even exists).
Our approach involves similar ideas in the sense that we also aim to compute such a low-variance
exploration distribution over the hypotheses, but the crucial difference is that in the classification
setting, the sparse nature of the rewards allows us to uniformly bound the variance by 𝑂 (1) rather
than 𝑂 (𝐾). Li et al. [20] also consider the PAC objective for contextual bandits and establish a gap
dependent sample complexity bound which never exceeds 𝐾/𝜀2, but to our understanding does not
imply an improved bound for sparse rewards (or single-label classification), as even for the multi-
armed bandit variant, in order to obtain improved sample complexity bounds which are instance
dependent, one must leverage the variances of the arm rewards in addition to the gaps.

2A similar separation has been observed before, e.g., in the context of general online/stochastic convex
optimization [24].
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2 Problem Setup

Bandit multiclass classification. We consider a learning setting in which a learner is tasked with
classifying objects from a set of examples X with a single label from a set of 𝐾 possible labels
Y = {1, . . . , 𝐾}. A stochastic multiclass classification instance is specified by a hypothesis class
H ⊆ {X → Y} and a joint distribution D over example-label pairs over X × Y. We focus on
finite hypothesis classes and denote 𝑁 ≜ |H |. In the bandit setup, the learner interacts with the
environment in an iterative manner according to the following protocol, over 𝑖 = 1, 2, . . .:
(i) The environment generates a pair (𝑥𝑖 , 𝑦𝑖) ∼ D and the example 𝑥𝑖 is revealed to the learner;

(ii) The learner predicts a label �̂�𝑖 ∈ Y;
(iii) The learner observes whether or not the classification of 𝑥𝑖 is correct, namely 𝟙{�̂�𝑖 = 𝑦𝑖}.3

Agnostic PAC model. In the PAC version of the problem, given parameters 𝜀, 𝛿 > 0 the goal of
the learner is to produce a hypothesis ℎ̂ : X → Y,4 such that with probability at least 1− 𝛿 (over the
randomness of the environment as well as any internal randomization of the algorithm):

𝐿D ( ℎ̂) − 𝐿D (ℎ★) ≤ 𝜀,

where here 𝐿D (ℎ) ≜ Pr[ℎ(𝑥) ≠ 𝑦] is the expected zero-one loss of ℎ with respect to (𝑥, 𝑦) ∼ D,
and ℎ★ ≜ argminℎ∈H 𝐿D (ℎ) is the best hypothesis in H . That is, the learner needs to identify a
hypothesis which is 𝜀-optimal in H with respect to the expected zero-one loss, with probability at
least 1 − 𝛿. In this model, the learner’s performance is measured in terms of sample complexity,
which is the number of interaction rounds with the environment as a function of 𝜀, 𝛿 required for
satisfying the guarantee stated above.

Weighted ERM oracle. For our computational results, we will assume a weighted empirical risk
minimization (ERM) oracle access to the hypothesis class H . In more detail, we assume access
to an oracle, denoted OH , defined as follows: given a sequence of examples, labels and weights
(𝑥1, 𝑦1, 𝛼1), . . . , (𝑥𝑡 , 𝑦𝑡 , 𝛼𝑡 ) ∈ X × Y ×ℝ as input, the oracle OH returns

argmin
ℎ∈H

𝑡∑︁
𝑠=1

𝛼𝑠𝟙{ℎ(𝑥𝑠) ≠ 𝑦𝑠}. (1)

We remark that this is a version of the argmin oracle often considered in the more general contextual
bandit setting [e.g., 12, 1], specialized for the classification setting we focus on here. For our runtime
results, we will assume that each call to OH takes 𝑂 (1) time.

Additional notation. We denote by Δ𝑁 ≜
{
𝑃 ∈ ℝ𝑁+ |

∑𝑁
𝑖=1 𝑃𝑖 = 1

}
the 𝑁-dimensional simplex

which corresponds to the set of all probability distributions over H . Given 𝑃 ∈ Δ𝑁 and ℎ ∈ H we
use the notation 𝑃(ℎ) to denote the probability assigned to ℎ by the probability vector 𝑃. Given an
example-label pair (𝑥, 𝑦) ∈ X × Y we define the binary vector 𝑟𝑥,𝑦 ∈ {0, 1}𝑁 by

𝑟𝑥,𝑦 (ℎ) ≜ 𝟙{ℎ(𝑥) = 𝑦} ∀ℎ ∈ H ,

that is, 𝑟𝑥,𝑦 (ℎ) is the zero-one reward of the hypothesis ℎ on the pair (𝑥, 𝑦). Given 𝑃 ∈ Δ𝑁 and
(𝑥, 𝑦) ∈ X × Y we denote the probability of choosing the label 𝑦 when sampling a hypothesis from
𝑃 on 𝑥 by

𝑊𝑥,𝑦 (𝑃) ≜
∑︁
ℎ=H

𝑃(ℎ)𝟙{ℎ(𝑥) = 𝑦} = 𝑃 · 𝑟𝑥,𝑦 ,

and for 𝛾 ∈ (0, 1) we let 𝑊𝛾
𝑥,𝑦 (𝑃) ≜ (1 − 𝛾)𝑊𝑥,𝑦 (𝑃) + 𝛾/𝐾 , which corresponds to mixing the

distribution𝑊𝑥,𝑦 (𝑃) with a uniform distribution over labels with weight factor 𝛾.

3Note that in the bandit setting, the learner does not observe the true label 𝑦𝑖 directly.
4In this model we allow for improper learners, that is, the output hypothesis may not be a member ofH ; we

emphasize, however, that our main algorithm below is a proper learner, namely it returns a hypothesis ℎ̂ ∈ H .
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Algorithm 1 Bandit PAC Multiclass Classification via Log Barrier Stochastic Optimization

Parameters: 𝑀1, 𝑀2, 𝛾 ∈ (0, 1
2 ].

Phase 1:
Initialize 𝑆 ← ∅.
while |𝑆 | < 𝑀1 do

Environment generates (𝑥, 𝑦) ∼ D, algorithm receives 𝑥.
Predict �̂� uniformly at random from Y and receive feedback 𝟙{�̂� = 𝑦}.
Update 𝑆 ← 𝑆 ∪ {(𝑥, 𝑦)} if 𝑦 = �̂�, otherwise 𝑆 is unchanged.

end while
Solve the stochastic optimization problem defined in Eq. (2) up to an additive error of 𝜇 = 𝛾2/2𝐾2

using the dataset 𝑆. Let �̂� ∈ Δ𝑁 be its output.
Phase 2:
for 𝑖 = 1, . . . , 𝑀2 do

Environment generates (𝑥𝑖 , 𝑦𝑖) ∼ D, algorithm receives 𝑥𝑖 .
With prob. 𝛾, pick �̂�𝑖 ∈ Y uniformly at random; otherwise sample ℎ𝑖 ∼ �̂� and set �̂�𝑖 = ℎ𝑖 (𝑥𝑖).
Predict �̂�𝑖 and receive feedback 𝟙{�̂�𝑖 = 𝑦𝑖}.

end for
Return:

ℎ̂ = OH
(
{(𝑥𝑖 , �̂�𝑖 , 𝛼𝑖)}𝑀2

𝑖=1

)
,

where 𝛼𝑖 = 𝟙{𝑦𝑖 = �̂�𝑖}/𝑊𝛾

�̂�
(𝑥𝑖 , �̂�𝑖).

3 Algorithm and Analysis

In this section we present and analyze our main contribution: an efficient bandit multiclass classi-
fication algorithm, detailed in Algorithm 1, which will be shown to satisfy the following agnostic
PAC guarantee.

Theorem 1. If we set 𝛾 = 1
2 , 𝑀1 = Θ(𝐾8 log(𝑁/𝛿)), 𝑀2 = Θ

(
log(𝑁/𝛿)

(
𝐾/𝜀 + 1/𝜀2) ) and use

Algorithm 2 to solve the optimization problem defined in Eq. (2) for 𝑇 = Θ((𝐾4/𝛾4)
√︁

log(𝑁/𝛿))
rounds with step sizes 𝜂𝑡 = 1/𝑡 and batch sizes 𝑏𝑡 = (𝛾/2𝐾)2𝑡2 for 𝑡 ∈ {2𝑘 − 1}𝑘≥1 and 𝑏𝑡 = 𝑡

otherwise; then with probability at least 1−𝛿 Algorithm 1 outputs ℎ̂ ∈ H with 𝐿D ( ℎ̂)−𝐿D (ℎ★) ≤ 𝜀,
using a total sample complexity of

𝑂

((
𝐾9 + 1

𝜀2

)
log

𝑁

𝛿

)
.

Furthermore, Algorithm 1 makes a total number of 𝑂
(
𝐾4

√︁
log(𝑁/𝛿)

)
calls to the weighted ERM

oracle OH , and runs in total time polynomial in 𝐾 , 1/𝜀 and log(𝑁/𝛿).

Algorithm 1 operates in two phases. In the first phase, we construct a dataset 𝑆 of 𝑀1 =

poly(𝐾) log(𝑁/𝛿) i.i.d. samples fromD by predicting labels uniformly at random and taking into 𝑆
the samples for which the correct label is predicted (and is thus known). We then feed these samples
to a stochastic optimization scheme which finds an approximate solution to the following stochastic
optimization problem:

min Φ(𝑃) ≜ 𝔼(𝑥,𝑦)∼D [𝜙(𝑃; 𝑥, 𝑦)], where 𝜙(𝑃; 𝑥, 𝑦) ≜ − log
(
𝑊
𝛾
𝑥,𝑦 (𝑃)

)
(2)

s.t. 𝑃 ∈ Δ𝑁 .

The approximate solution, �̂� ∈ Δ𝑁 will be shown to satisfy certain low-variance properties, which
will allow us to repeatedly sample from �̂� for 𝑀2 = 𝑂

( (
𝐾/𝜀 + 1/𝜀2) log(𝑁/𝛿)

)
and estimate the

loss of hypotheses inH rounds such that we are guaranteed to find an approximately optimal policy
with high probability. We again emphasize that our algorithm is a proper learner in the sense that
the returned hypothesis ℎ̂ is a member of the underlying classH .

3.1 Overview of analysis

We next outline the details and intuition behind the implementation of Algorithm 1.
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Low-variance exploration distribution. The main goal of the first phase of Algorithm 1 is to
compute an exploration distribution �̂� ∈ Δ𝑁 with the property that with probability at least 1 − 𝛿/2,
the following holds:

∀ℎ ∈ H : 𝔼(𝑥,𝑦)∼D

[
𝑟𝑥,𝑦 (ℎ)
𝑊
𝛾
𝑥,𝑦 (�̂�)

]
≤ 𝐶, (3)

where 𝛾 is some predefined parameter and 𝐶 is an absolute constant, which crucially does not
depend on 𝐾 . The intuition behind this property is that the quantity of the left-hand side of Eq. (3)
constitutes an upper bound on the variance of the random variable

𝑟𝑥,𝑦 (ℎ)𝟙{𝑦 = �̂�}
𝑊
𝛾
𝑥,𝑦 (�̂�)

,

which is an unbiased estimator of the expected reward of the hypothesis ℎ, that is, of 𝟙{ℎ(𝑥) = 𝑦} if
the label �̂� is chosen according to an hypothesis drawn from �̂� and (𝑥, 𝑦) is drawn from D. Thus,
we think of Eq. (3) as a property which guarantees that the exploration distribution �̂� can be used
to estimate rewards, uniformly for all hypotheses in H , with low (constant) variance. This in turn
allows us to make use of variance-sensitive concentration bounds, namely Bernstein’s inequality, in
order to accurately approximate the optimal policy using a small number of samples (this is done in
the second phase of the algorithm, described below).

Controlling variance via stochastic optimization. In some more detail, our approach for com-
puting such a low-variance exploration distribution �̂� is via approximately solving the stochastic
convex optimization problem defined in Eq. (2). The reason for the choice of Φ as a convex poten-
tial to be minimized is the fact that its gradient is, up to a constant factor, given by

∀ℎ ∈ H : (∇Φ(𝑃))ℎ ≈ 𝔼(𝑥,𝑦)∼D

[
𝑟𝑥,𝑦 (ℎ)
𝑊
𝛾
𝑥,𝑦 (𝑃)

]
, (4)

so that finding a low-variance exploration distribution amounts to computing �̂� ∈ Δ𝑁 for which
∇Φ(�̂�) is bounded in 𝐿∞ norm. Indeed, we show that the optimal solution to the optimization
problem given in Eq. (2) satisfies such a property. This, together with the properties of Φ as a self-
concordant function allows finding such �̂� by approximately minimizing Φ over the simplex: the
self-concordance of Φ acts as a “restricted strong convexity” property, which roughly implies that
approximate minimizers of Φ must also have small (low norm) gradients.

Efficient optimization via Stochastic Frank-Wolfe. In order to compute an approximate mini-
mizer of the convex potential Φ defined in Eq. (2), we employ a stochastic optimization procedure,
formally described in Algorithm 2, which is based on a stochastic version of the Frank-Wolfe (FW)
algorithm [15] with SPIDER gradient estimates [14]. The reason for choosing a FW based approach,
is that it allows for efficient optimization of Φ in 𝑁-dimensional space, with runtime essentially in-
dependent of 𝑁 , by exploiting the weighted ERM oracle at our disposal. Furthermore, the FW
algorithm, when performed over the simplex, generates iterates 𝑃1, 𝑃2, . . . such that 𝑃𝑡 is supported
on at most 𝑡 coordinates (provided that 𝑃1 is initialized at an arbitrary vertex of the simplex), allow-
ing us to maintain a succinct representation of the FW iterates—again, essentially independently of
the ambient dimension 𝑁 . Additionally, we remark that while existing analyses (e.g. [29]) of the
stochastic FW algorithm rely on smoothness of the objective with respect to the 𝐿2-norm, our objec-
tive of interest, namely Φ, is not smooth in this classical sense, however it is smooth with respect to
the 𝐿1 norm. Therefore, we crucially rely on a different analysis of the FW algorithm with SPIDER
gradient estimates, presented in Appendix C, which accommodates smoothness with respect to the
𝐿1 norm.

Final exploration phase. The second phase of Algorithm 1 is more straightforward, where we
repeatedly predict labels using i.i.d. samples from a distribution which mixes the distribution over
labels induced by �̂� (the exploration distribution computed in phase 1) with a uniform distribution
over Y. Using Bernstein’s inequality and the uniform low-variance property of �̂�, we show that
𝑀2 = 𝑂

( (
𝐾/𝜀 + 1/𝜀2) log(𝑁/𝛿)

)
samples suffice in order to ultimately output an hypothesis ℎ̂ ∈ H

being 𝜀-optimal with probability at least 1 − 𝛿/2. With this in hand, the desired PAC guarantee
follows by a union bound over the failure probabilities of the two phases of the algorithm.
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3.2 Stochastic Frank-Wolfe with SPIDER Gradient Estimates

Next, we present the stochastic FW procedure used in our algorithm as subprocedure; see Algo-
rithm 2. It is essentially the SPIDER FW algorithm of Yurtsever et al. [29], specialized for solving
the stochastic optimization problem defined in Eq. (2). We remark that the algorithm makes calls
to a linear optimization oracle over the simplex denoted by LOO, that given an input 𝑔 ∈ ℝ𝑁 com-
putes LOO(𝑔) = argmin𝑄∈Δ𝑁

𝑄 · 𝑔. As we will show later, each of the calls Algorithm 2 makes to
LOO can be implemented by a call to the weighted ERM oracle. We also remark that, as discussed
before, existing analyses of the stochastic FW procedure with SPIDER gradient estimates relies on
𝐿2 smoothness of the objective [29], and here we provide an analysis with respect to 𝐿1 smoothness
being crucial in our case. We defer further details about SPIDER FW and its analysis to Appendix C.

Algorithm 2 Stochastic Frank-Wolfe with SPIDER gradient estimates
Parameters: Dataset 𝑆 ⊆ X × Y, step sizes {𝜂𝑡 }𝑡 , batch sizes {𝑏𝑡 }𝑡 .
Initialize 𝑃1 ∈ Δ𝑁 and initial gradient estimate 𝑔1 = 0.
Let 𝜏𝑘 = 2𝑘 − 1 for 𝑘 = 1, 2, . . ..
for 𝑡 = 1, 2, . . . do

Draw 𝑏𝑡 fresh samples (𝑥1, 𝑦1), . . . , (𝑥𝑏𝑡 , 𝑦𝑏𝑡 ) from 𝑆;
if 𝑡 ∈ {𝜏𝑘}𝑘≥1 then

Set

𝑔𝑡 =
1
𝑏𝑡

𝑏𝑡∑︁
𝑖=1
∇𝜙(𝑃𝑡 ; 𝑥𝑖 , 𝑦𝑖);

else
Set

𝑔𝑡 = 𝑔𝑡−1 +
1
𝑏𝑡

𝑏𝑡∑︁
𝑖=1
(∇𝜙(𝑃𝑡 ; 𝑥𝑖 , 𝑦𝑖) − ∇𝜙(𝑃𝑡−1; 𝑥𝑖 , 𝑦𝑖));

end if
Compute 𝑄𝑡 = LOO(𝑔𝑡 );
Update 𝑃𝑡+1 = (1 − 𝜂𝑡 )𝑃𝑡 + 𝜂𝑡𝑄𝑡 ;

end for

3.3 Proof of Theorem 1

We now turn to formally prove Theorem 1. For clarity of notation, we henceforth use 𝔼[·] instead of
𝔼(𝑥,𝑦)∼D [·] to denote an expectation of a random variable with respect to D. We begin this section
by analyzing the first phase of Algorithm 1. The following lemma, which is proven in Appendix A,
characterizes the optimal solution to the stochastic optimization problem defined in Eq. (2), and
shows that the gradient of Φ at that optimum is bounded by a constant in 𝐿∞ norm.

Lemma 1. Suppose 𝛾 ≤ 1
2 and let 𝑃★ ∈ argmin𝑃∈Δ𝑁

Φ(𝑃), where Φ : Δ𝑁 → ℝ+ was defined in
Eq. (2). Then for any 𝑃 ∈ Δ𝑁 we have

𝔼

[
𝑊
𝛾
𝑥,𝑦 (𝑃)

𝑊
𝛾
𝑥,𝑦 (𝑃★)

]
≤ 1. (5)

In particular, letting 𝑃 be the delta distribution on some ℎ ∈ H :

𝔼

[
𝑟𝑥,𝑦 (ℎ)
𝑊
𝛾
𝑥,𝑦 (𝑃★)

]
≤ 2.

The next key lemma, whose proof is also in Appendix A ensures that a sufficiently approximate
minimizer of Φ is also a point in which the gradient Φ is bounded in 𝐿∞-norm, establishing the
property given in Eq. (3).

Lemma 2. Suppose 𝛾 ≤ 1
2 and assume that for all 𝑃★ ∈ Δ𝑁 the following holds for �̂� which was

computed in phase 1 of Algorithm 1:

Φ(�̂�) −Φ(𝑃★) ≤ 𝜇.
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Then,

∥∇Φ(�̂�)∥∞ ≤ 2 +

√︄
2𝜇𝐾2

𝛾2 .

In particular, setting 𝜇 = 𝛾2/2𝐾2 gives ∥∇Φ(�̂�)∥∞ ≤ 3.

The fact that the property given in Eq. (3) can be guaranteed with high probability using as few as
𝑀1 = Θ(poly(𝐾) log(𝑁/𝛿)) samples relies on the following lemma, also proven in Appendix A,
which follows from the analysis of the stochastic Frank-Wolfe procedure (see Appendix C for the
detailed analysis).

Lemma 3. Suppose 𝛾 ≤ 1
2 . If 𝑀1 = 58000

(
𝐾8/𝛾8) log(16𝑁/𝛿) and 𝑇 = 240

(
𝐾4/𝛾4)√︁log(16𝑁/𝛿),

then with probability at least 1 − 𝛿/2, for all 𝑃★ ∈ Δ𝑁 it holds that

Φ(�̂�) −Φ(𝑃★) ≤
𝛾2

2𝐾2 .

We are now in position to prove Theorem 1 by analyzing the second phase of Algorithm 1. We make
use of the guarantee of the first phase given in Lemma 2 with respect to the exploration distribution
�̂�, which allows us to use Bernstein’s concentration inequality in order to compute an 𝜀-optimal
hypothesis in high probability using only ≈ 𝐾/𝜀 + 1/𝜀2 samples.

Proof of Theorem 1. We first show that we can in fact use Algorithm 2 as specified in the theorem’s
statement. That is, we prove that the calls to the linear optimization oracle, denoted by LOO in
Algorithm 2 can be implemented using the weighted ERM oracle OH . Indeed, we first note that for
any 𝑔 ∈ ℝ𝑁 it holds that

LOO(𝑔) = argmin
𝑃∈Δ𝑁

{𝑃 · 𝑔} = argmin
ℎ∈H

{𝑔ℎ},

so it suffices to show that this can be represented in the form given in Eq. (1) for the SPIDER gradient
estimates used in Algorithm 2, which we denote by 𝑔𝑡 . It is straightforward to see each 𝑔𝑡 is a linear
combination of terms of the form ∇𝜙(𝑃, 𝑥, 𝑦) where 𝑃 is either 𝑃𝑡 or 𝑃𝑡−1. Thus, we show that for
𝑔 = 1

𝑛

∑𝑛
𝑖=1 ∇𝜙(𝑃𝑡 , 𝑥𝑖 , 𝑦𝑖), LOO(𝑔) can be computed by a call to the weighted ERM oracle. Indeed,

LOO(𝑔) = argmin
ℎ∈H

{
−(1 − 𝛾) 1

𝑛

𝑛∑︁
𝑖=1

𝟙{ℎ(𝑥𝑖) = 𝑦𝑖}
𝑊
𝛾
𝑥𝑖 ,𝑦𝑖 (𝑃𝑡 )

}
= argmin

ℎ∈H

𝑛∑︁
𝑖=1

𝛼𝑖𝟙{ℎ(𝑥𝑖) ≠ 𝑦𝑖},

where 𝛼𝑖 = (1 − 𝛾)/𝑛𝑊𝛾
𝑥𝑖 ,𝑦𝑖 (𝑃𝑡 ). Now, assume that after phase 1, Algorithm 1 computed �̂� ∈ Δ𝑁

with

max
ℎ∈H

𝔼

[
𝑟𝑥,𝑦 (ℎ)
𝑊
𝛾
𝑥,𝑦 (�̂�)

]
≤ 3.

Fix some ℎ ∈ H . For 𝑖 ∈ {1, . . . , 𝑀2} define 𝑋𝑖 (ℎ) =
𝑟𝑥𝑖 ,𝑦𝑖 (ℎ)𝟙{𝑦𝑖=�̂�𝑖 }

𝑊
𝛾
𝑥𝑖 ,𝑦𝑖

( �̂�) . Note that 𝔼[𝑋𝑖 (ℎ)] =

Pr[ℎ(𝑥) = 𝑦] and that 𝑋1 (ℎ), . . . , 𝑋𝑀2 (ℎ) are i.i.d. Additionally, by the guarantee of phase 1:

Var[𝑋𝑖 (ℎ)] ≤ 𝔼[𝑋𝑖 (ℎ)2] = 𝔼

[
𝑟𝑥𝑖 ,𝑦𝑖 (ℎ)𝟙{𝑦𝑖 = �̂�𝑖}
(𝑊𝛾

𝑥𝑖 ,𝑦𝑖 (�̂�))
2

]
= 𝔼

[
𝑟𝑥,𝑦 (ℎ)
𝑊
𝛾
𝑥,𝑦 (�̂�)

]
≤ 3.

Define �̄� (ℎ) = 1
𝑀2

∑𝑀2
𝑖=1 𝑋𝑖 (ℎ), and note that by the form of the weighted ERM oracle, ℎ̂ =

argmaxℎ∈H �̄� (ℎ). Therefore, by an application of Bernstein’s inequality (see e.g. [19], page 86)
and a union bound, we have with probability at least 1 − 𝛿/2 for all ℎ ∈ H :

| �̄� (ℎ) − Pr[ℎ(𝑥) = 𝑦] | ≤

√︄
6 log(2𝑁/𝛿)

𝑀2
+ 2𝐾 log(2𝑁/𝛿)

𝛾𝑀2
.
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Hence for ℎ̂, with probability at least 1 − 𝛿/2 we have
𝐿D ( ℎ̂) − 𝐿D (ℎ★) = Pr[ℎ̂(𝑥) ≠ 𝑦] − Pr[ℎ★(𝑥) ≠ 𝑦]

= Pr[ℎ★(𝑥) = 𝑦] − Pr[ℎ̂(𝑥) = 𝑦]
≤ Pr[ℎ★(𝑥) = 𝑦] − �̄� (ℎ★) + �̄� ( ℎ̂) − Pr[ℎ̂(𝑥) = 𝑦]

≤

√︄
36 log(2𝑁/𝛿)

𝑀2
+ 4𝐾 log(2𝑁/𝛿)

𝛾𝑀2
.

Choosing 𝑀2 ≥ max{144 log(2𝑁/𝛿)/𝜀2, 8𝐾 log(2𝑁/𝛿)/(𝛾𝜀)} gives 𝐿D ( ℎ̂) − 𝐿D (ℎ★) ≤ 𝜀. Thus,
using Lemma 2 and Lemma 3, we are only left with proving that with high probability, collecting
𝑀1 samples for 𝑆 takes at most 𝑂 (𝐾9 log(𝑁/𝛿)) steps. This essentially follows from the fact that
a binomial random variables is smaller than half of its expected value with very small probability.
Formally, we use lemma F.4 of [11] to deduce that if 𝑋 ∼ Bin(4𝐾𝑀1, 1/𝐾) then with probability
at least 1 − 𝛿 it holds that 𝑋 ≥ 2𝑀1 − log(1/𝛿) ≥ 𝑀1, which means that 4𝐾𝑀1 trials suffice to
guarantee that with probability at least 1 − 𝛿, the dataset 𝑆 will contain at least 𝑀1 samples. Thus,
the proof of Theorem 1 is complete once we make the observation that 2𝐾/𝜀 ≤ 𝐾2 + 1/𝜀2 (using
the AM-GM inequality) so that the 𝐾/𝜀 term is of lower order and can be dropped from the final
bound. □

4 Extension to Natarajan Classes

In this section we extend our result for finite classes given in Theorem 1 to general, possibly infinite
hypothesis classes H with finite Natarajan dimension. The Natarajan dimension is an extension of
the VC dimension to the multiclass setting, defined as follows:
Definition 1 (Natarajan dimension [22]). The Natarajan dimension of a hypothesis classH ⊆ X →
Y is the largest integer 𝑑 for which there exist 𝑑 points 𝑥1, . . . , 𝑥𝑑 ∈ X and 𝑑 pairs of distinct labels
{𝑦1,1, 𝑦1,2}, . . . , {𝑦𝑑,1, 𝑦𝑑,2} ∈

( |Y |
2

)
such that all 2𝑑 sequences of the form (𝑥1, 𝑦1), . . . , (𝑥𝑑 , 𝑦𝑑),

with 𝑦𝑖 ∈ {𝑦𝑖1, 𝑦𝑖2}, are realizable byH .

Note that in the binary case, whenY = {0, 1}, the Natarajan dimension reduces to the VC dimension.
Our main result in this case effectively replaces the log|H | term, relevant whenH is finite, with the
Natarajan dimension 𝑑𝑁 ofH .
Theorem 2. A hypothesis class H : X → Y is PAC learnable with bandit feedback if and only if
(i) it has a finite Natarajan dimension, and (ii) there exists 𝐾 ∈ ℕ such that |{ℎ(𝑥) : ℎ ∈ H}| ≤ 𝐾
for every 𝑥 ∈ X.

Furthermore, let H : X → Y be a hypothesis class of finite Natarajan dimension 𝑑𝑁 . Then
there exists a bandit multiclass classification algorithm which outputs a hypothesis ℎ̂ with 𝐿D ( ℎ̂) −
infℎ∈H 𝐿D (ℎ) ≤ 𝜀 with a sample complexity of 𝑂 ((𝐾9 + 1/𝜀2)𝑑𝑁 log(1/𝛿)).

As discussed, this result improves the classical result of Daniely et al. [10], who provided an upper
bound on the sample complexity of PAC learning with bandit feedback, given by 𝑂 (𝐾𝑑𝑁/𝜀2),
and left obtaining tighter bounds as an open question. In particular, for small target excess loss
(𝜀 → 0), our bound eliminates the linear dependence on the number of labels 𝐾 , thereby matching
the Θ̃(𝑑𝑁/𝜀2) bound from the full information setting [22].

Theorem 2 follows directly from the following technical result, which is proven in Appendix B,
when put together with Theorem 1.
Proposition 1. Assume that the sample complexity of PAC learning with bandit feedback a finite
class of size 𝑁 over a label-space of size 𝐾 is at most 𝑚(𝑁, 𝐾, 𝜀, 𝛿), where 𝜖, 𝛿 are the error and
confidence parameters. Then, the sample complexity of learning an infinite classH is at most

𝑠 + 𝑚(𝑆, 𝐾, 𝜖/2, 𝛿/2),
where

𝑠 := 𝑂
( 𝑑𝑁 ln(𝐾) ln(1/𝜖) + ln(1/𝛿)

𝜖

)
,

𝑆 :=
𝑑𝑁∑︁
𝑖=0

(
𝑠

𝑖

) (
𝐾

2

) 𝑖
≤

( 𝑒 𝑠
𝑑𝑁

)𝑑𝑁
𝐾2𝑑𝑁 ,
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and 𝑑𝑁 is the Natarajan dimension ofH .

The proposition is proven by using the first 𝑠 examples to construct a finite discretization of size 𝑆
of the classH , which is (𝜖/2)-dense inH in the sense that every ℎ ∈ H is (𝜖/2)-close to some ℎ′ in
the discretization. Then, we apply our algorithm for finite classes on this finite discretization. Most
of the proof is dedicated to establishing that the discretization is dense and to upper bounding its
size. A similar result for discretizing binary classes, with the VC dimension replacing the Natarajan
dimension, is well known. In the VC case, the proof is based on considering the class of all symmet-
ric differences of hypotheses from H and analyzing the VC dimension of that class using standard
techniques. In our proof, we follow a similar argument, but the analysis of the VC dimension of the
symmetric difference class, which remains binary even in the multiclass setting, is more nuanced.

Proof of Theorem 2. For the first part of the theorem, note that Item (i) is clearly necessary for
learnability, as a finite Natarajan dimension is required even in the case of full information feedback.
Item (ii) is also necessary: if there exists a point 𝑥 such that {ℎ(𝑥) : ℎ ∈ H} contains more than
𝐾 distinct labels, then in the realizable case, the sample complexity with bandit feedback has a
lower bound of Ω(𝐾), provided 𝐾 is a sufficiently large constant. This follows by setting the target
distribution to assign probability 1 to a single example (𝑥, 𝑦), where 𝑦 is drawn uniformly in advance
from 𝐾 labels in {ℎ(𝑥) : ℎ ∈ H}. An elementary coupon collector argument yields a lower bound
of 𝐾/2: indeed, if only 𝑚 ≤ 𝐾/2 examples are drawn, then the learner does not correctly guess the
label during training with probability at least 1/2. Conditioned on this event, the population loss is
≥ 1/2 (in fact, ≥ 1

𝐾/2 ), leading to a lower bound of 1/2 · 1/2 = 1/4 on the population error.

For sufficiency, note that if Item (ii) holds, the class H effectively reduces to a class over 𝐾 total
labels and is therefore learnable when its Natarajan dimension is finite, as follows from [9].

For the second part of the theorem, note that by Theorem 1, we have an upper bound on the sample
complexity for PAC learning with bandit feedback over finite classes of size 𝑁 of

𝑚(𝑁, 𝐾, 𝜀, 𝛿) = 𝑂
(
(𝐾9 + 1/𝜀2) log(𝑁/𝛿)

)
.

Thus, the proof follows immediately from Proposition 1 together with the fact that:

log
(
𝑆

𝛿

)
≤ 𝑑𝑁 log

(
𝑒𝑠

𝑑𝑁

)
+ 2𝑑𝑁 log𝐾 + log

1
𝛿
,

where 𝑠 and 𝑆 are defined in the statement of Proposition 1 (note that log(𝑠) only contributes loga-
rithmic terms to the overall bound).

□

5 Conclusion and Open Problems

In this work, we establish a nearly-optimal sample complexity of𝑂 ((poly(𝐾)+1/𝜀2) log( |𝐻 |/𝛿)) for
the bandit multiclass classification problem and design an efficient algorithm achieving this bound.
While the dominant term in our sample complexity bound (which depends on 𝜀) is optimal, our
bound exhibits a 𝐾9 additive dependence on the size of the label space. We conjecture that the
optimal bound is of the form 𝑂

(
𝐾/𝜀 + 1/𝜀2) , for which a matching lower bound can be shown in

a straightforward manner. One possible approach to improve the dependence on 𝐾 is perhaps a
more adaptive method which combines maximization of estimated rewards in tandem with lowering
the variance of the sampling distribution gradually over time. We leave this as a very interesting
question for future research.
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A Proofs for Section 3

Proof of Lemma 1. First note that the gradient of Φ(·) is given by

∇Φ(𝑃) = 𝔼

[
−
(1 − 𝛾)𝑟𝑥,𝑦
𝑊
𝛾
𝑥,𝑦 (𝑃)

]
.

Thus, using a first-order optimality condition for 𝑃★, the following holds that for any 𝑃 ∈ Δ𝑁 ,

∇Φ(𝑃★) · (𝑃 − 𝑃★) ≥ 0,
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which amounts to

𝔼

[ (1 − 𝛾) (𝑃 − 𝑃★) · 𝑟𝑥,𝑦
𝑊
𝛾
𝑥,𝑦 (𝑃)

]
≤ 0,

or equivalently,

𝔼

[
𝑊
𝛾
𝑥,𝑦 (𝑃) −𝑊𝛾

𝑥,𝑦 (𝑃★)
𝑊
𝛾
𝑥,𝑦 (𝑃★)

]
≤ 0,

which rearranges to the first inequality to be proven. Letting 𝑃 be the delta distribution on some
ℎ ∈ H , we have proven that

𝔼

[
(1 − 𝛾)

𝑟𝑥,𝑦

𝑊
𝛾
𝑥,𝑦 (𝑃★)

]
≤ 1,

and the second inequality follows since 𝛾 ≤ 1
2 . □

Proof of Lemma 2. Assume that �̂� minimizes Φ up to an additive error of 𝜇, that is, the assumption
given in the statement of the lemma. Now, note that for every (𝑥, 𝑦) ∈ X × Y, using the explicit
form of 𝜙(·; 𝑥, 𝑦) and its gradient, it holds that:

𝜙(�̂�; 𝑥, 𝑦) − 𝜙(𝑃★; 𝑥, 𝑦) − ∇𝜙(𝑃★; 𝑥, 𝑦) ·
(
�̂� − 𝑃★

)
= 𝜔(𝑅𝑥,𝑦),

where 𝜔(𝑧) = − log 𝑧 + 𝑧 − 1 and 𝑅𝑥,𝑦 = 𝑊
𝛾
𝑥,𝑦 (�̂�)/𝑊𝛾

𝑥,𝑦 (𝑃★). Using the lower bound 𝜔(𝑧) ≥
1
2 min

{
(1 − 𝑧)2, (1 − 1

𝑧
)2

}
(see Lemma 4 in Appendix A; this is where the self-concordance of 𝜙

comes in) we obtain that for all ℎ ∈ H ,

𝜙(�̂�; 𝑥, 𝑦) − 𝜙(𝑃★; 𝑥, 𝑦) − ∇𝜙(𝑃★; 𝑥, 𝑦) ·
(
�̂� − 𝑃★

)
≥ 𝛾2

2𝐾2

(
1

𝑊
𝛾
𝑥,𝑦 (�̂�)

− 1
𝑊
𝛾
𝑥,𝑦 (𝑃★)

)2

≥ 𝛾2

2𝐾2

(
𝑟𝑥,𝑦 (ℎ)
𝑊
𝛾
𝑥,𝑦 (�̂�)

−
𝑟𝑥,𝑦 (ℎ)
𝑊
𝛾
𝑥,𝑦 (𝑃★)

)2

.

Taking expectation of the inequality over (𝑥, 𝑦) ∼ D while using a first-order optimality condition
for 𝑃★ with respect to Φ and the fact that 𝔼[(·)2] ≥ 𝔼2 [·], we obtain

𝜇 ≥ Φ(�̂�) −Φ(𝑃★) ≥
𝛾2

2𝐾2

(
𝔼

[
𝑟𝑥,𝑦 (ℎ)
𝑊
𝛾
𝑥,𝑦 (�̂�)

]
− 𝔼

[
𝑟𝑥,𝑦 (ℎ)
𝑊
𝛾
𝑥,𝑦 (𝑃★)

])2

,

and rearranging we obtain that for all ℎ ∈ H ,

𝔼

[
𝑟𝑥,𝑦 (ℎ)
𝑊
𝛾
𝑥,𝑦 (�̂�)

]
≤

√︄
2𝜇𝐾2

𝛾2 + 𝔼
[
𝑟𝑥,𝑦 (ℎ)
𝑊
𝛾
𝑥,𝑦 (𝑃★)

]
,

so using Lemma 1 and the form of ∇Φ we obtain the desired bound. □

Proof of Lemma 3. In order to invoke Theorem 3 on Φ(·), we prove that 𝜙(·; 𝑥, 𝑦) satisfies the re-
quired Lipschitz and smoothness properties with 𝐺 = 𝐾/𝛾 and 𝛽 = 𝐾2/𝛾2. Indeed, the gradient of
𝜙 is given by

∇𝜙(𝑃, 𝑥, 𝑦) = −(1 − 𝛾)
𝑟𝑥,𝑦

𝑊
𝛾
𝑥,𝑦 (𝑃)

,

and since 𝑊𝛾
𝑥,𝑦 (𝑃) ≥ 𝛾/𝐾 and ∥𝑟𝑥,𝑦 ∥∞ ≤ 1 we obtain the required Lipschitz property, that is,

∥∇𝜙(𝑃, 𝑥, 𝑦)∥∞ ≤ 𝐺. For 𝐿1 smoothness, it suffices to show that for any 𝑃,𝑄 ∈ Δ𝑁 and any
(𝑥, 𝑦) ∈ X × Y it holds that

∥∇𝜙(𝑃, 𝑥, 𝑦) − ∇𝜙(𝑄, 𝑥, 𝑦)∥∞ ≤ 𝛽∥𝑃 −𝑄∥1.
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Indeed,

∥∇𝜙(𝑃, 𝑥, 𝑦) − ∇𝜙(𝑄, 𝑥, 𝑦)∥∞ = (1 − 𝛾)max
ℎ∈H

����� 𝑟𝑥,𝑦 (ℎ)𝑊
𝛾
𝑥,𝑦 (𝑃)

−
𝑟𝑥,𝑦 (ℎ)
𝑊
𝛾
𝑥,𝑦 (𝑄)

�����
≤

�����𝑊𝛾
𝑥,𝑦 (𝑄) −𝑊𝛾

𝑥,𝑦 (𝑃)
𝑊
𝛾
𝑥,𝑦 (𝑃)𝑊𝛾

𝑥,𝑦 (𝑄)

�����
= (1 − 𝛾)

����� 𝑟𝑥,𝑦 · (𝑄 − 𝑃)
𝑊
𝛾
𝑥,𝑦 (𝑃)𝑊𝛾

𝑥,𝑦 (𝑄)

�����
≤ 𝐾

2

𝛾2 ∥𝑃 −𝑄∥1,

where in the last step we used Hölder’s inequality. Now, using Theorem 3, our choice of 𝑇 and 𝑀1
for which the batch sizes 𝑏𝑡 defined in Theorem 3 satisfy

∑𝑇
𝑡=1 𝑏𝑡 ≤ 𝑀1, the proof is complete. □

Lemma 4. Let 𝜔(𝑧) = − log 𝑧 + 𝑧 − 1. It holds that:

𝜔(𝑧) ≥ min
{

1
2 (1 − 𝑧)

2, 𝑧2
(
1 − 1

𝑧

)2
}
.

The first lower bound is relevant for 𝑧 ≤ 1 and the second for 𝑧 ≥ 1.

Proof. Note that 𝜔′ (𝑧) = 1 − 1/𝑧 and 𝜔(1) = 0, hence 𝜔(𝑧) =
∫ 𝑧

1 (1 − 1/𝑥)𝑑𝑥. When 0 < 𝑧 ≤ 1 we
can bound 1 − 1/𝑥 ≤ 1 − 𝑥 for any 𝑧 ≤ 𝑥 ≤ 1. Therefore,

𝜔(𝑧) =
∫ 𝑧

1
(1/𝑥 − 1)𝑑𝑥 ≥

∫ 𝑧

1
(𝑥 − 1)𝑑𝑥 = 1

2 (1 − 𝑧)
2.

When 𝑧 ≥ 1, we can use the elementary inequality, for any 𝑧 ≥ 𝑥 ≥ 1:

1 − 1
𝑥
≥ 1

2

(
1 − 1

𝑥2

)
=
𝑑

𝑑𝑥

{
𝑥

2

(
1 − 1

𝑥

)2
}

to bound

𝜔(𝑧) =
∫ 𝑧

1
(1 − 1/𝑥)𝑑𝑥 ≥

∫ 𝑧

1

(
1
2 (1 − 1/𝑥2)

)
𝑑𝑥 = 𝑧

2 (1 − 1/𝑧)2.

□

B Proof of Proposition 1

Proof of Proposition 1. Consider the following learning rule: first sample 𝑠 examples 𝑥1, . . . , 𝑥𝑠
from the population (guess their label arbitrarily). Now for each pattern {(𝑥𝑖 , 𝑦𝑖)}𝑠𝑖=1 which is realiz-
able by some function ℎ ∈ H , pick a representative ℎ ∈ H such that ℎ(𝑥𝑖) = 𝑦𝑖 for all 𝑖 ≤ 𝑠. Define
Hfin to be the set of all such representatives. The Sauer-Shelah-Perles Lemma for the Natarajan
dimension [16] implies that

|Hfin | ≤ 𝑆.
Now, apply the assumed algorithm on the finite class Hfin with error and confidence parameters
𝜀/2, 𝛿/2. Let ℎ̂ denote the hypothesis outputted by the algorithm. Thus, with probability at least 𝛿/2
the excess loss (or regret) of ℎ̂ with respect to Hfin is at most 𝜀/2. A union bound combined with
the following lemma imply that with probability at least 𝛿, the excess loss of ℎ̂ with respect toH is
at most 𝜀.

Lemma 5. With probability at least 1 − 𝛿/2 over the sampling of 𝑥1, . . . 𝑥𝑠 , the finite class Hfin is
an (𝜀/2)-cover forH . That is, for every ℎ ∈ H there exists ℎ′ ∈ Hfin such that the probability that
ℎ′ (𝑥) ≠ ℎ(𝑥) for a random point 𝑥 drawn from the population is at most 𝜀/2.
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Indeed, by a union bound, with probability at least 1− 𝛿, both (i) the excess loss of ℎ̂ is at most 𝜖/2,
and (ii)Hfin is an (𝜀/2)-cover forH . Hence, the excess loss of ℎ̂ with respect to the best hypothesis
inH is at most 𝜀/2 + 𝜀/2 = 𝜀, as required. □

Lemma 5 follows from a standard uniform convergence argument. In the case of binary labels 𝐾 = 2,
this lemma is known and has been used e.g. in [2]. The general case is derived below using a similar
argument like in [2].

Proof of Lemma 5. We need to show that with probability at least 1 − 𝛿/2 over
(𝑥1, 𝑦1), . . . , (𝑥𝑠 , 𝑦𝑠) ∼ D, for every ℎ ∈ H , there exists ℎ′ ∈ Hfin such that Pr(𝑥,𝑦)∼D [ℎ(𝑥) ≠
ℎ′ (𝑥)] ≤ 𝜀/2. For convenience, we use the notation 𝑑 (ℎ, ℎ′) := Pr(𝑥,𝑦)∼D [ℎ(𝑥) ≠ ℎ′ (𝑥)].
Let 𝑇 = (𝑥1, . . . , 𝑥𝑠) be the sequence of points in the random sample, and for a hypothesis ℎ let
ℎ(𝑇) = (ℎ(𝑥1), . . . , ℎ(𝑥𝑠)). By construction, for every ℎ ∈ H , there exists ℎ′ ∈ Hfin such that
ℎ′ (𝑇) = ℎ(𝑇). We will show that 𝑑 (ℎ, ℎ′) ≤ 𝜀/2.

Define the event

𝐸 =
{
∃ℎ1, ℎ2 ∈ H : 𝑑 (ℎ1, ℎ2) > 𝜀/2 and ℎ1 (𝑇) = ℎ2 (𝑇)

}
.

We prove that

Pr[𝐸] ≤ 2
(

2𝑒 𝑠
𝑑𝑁

)2𝑑𝑁
𝐾4𝑑𝑁 𝑒−𝜖 𝑠/4. (6)

Before we do so, we first show that this suffices to prove the lemma: indeed, if 𝑑 (ℎ, ℎ′) > 𝜖/2 for
some ℎ ∈ H and ℎ′ ∈ Hfin such that ℎ′ (𝑇) = ℎ(𝑇), then the event 𝐸 occurs because Hfin ⊆ H .
Now, via standard manipulation, this bound is at most 𝛿/2 for some

𝑠 = 𝑂

( 𝑑𝑁 ln(𝐾) ln(1/𝜖) + ln(1/𝛿)
𝜖

)
,

which yields the desired bound and completes the proof.

It remains to prove (6). To do so, we use a standard VC-based uniform convergence bound on the
classHΔ = {Δℎ1 ,ℎ2 : ℎ1, ℎ2 ∈ H}, where

Δℎ1 ,ℎ2 (𝑥) =
{
1 ℎ1 (𝑥) ≠ ℎ2 (𝑥),
0 ℎ1 (𝑥) = ℎ2 (𝑥).

Let GΔ denote the growth function ofHΔ; that is, for any number 𝑚,

GΔ (𝑚) = max
{𝑉 : |𝑉 |=𝑚}

���HΔ |𝑉
���,

whereHΔ |𝑉 is the set of all restrictions (or projections) on 𝑉 of functions fromHΔ. Note that

GΔ (𝑚) ≤
(

2𝑒 𝑠
𝑑𝑁

)2𝑑𝑁
𝐾4𝑑𝑁 .

This follows from the fact that for any set 𝑉 of size 𝑚, we have |HΔ |𝑉 | ≤ |H |𝑉 |2, since every binary
vector inHΔ |𝑉 is determined by a pair of functions inH|𝑉 . Hence,

GΔ (𝑚) ≤ max
|𝑉 |=𝑚

��H|𝑉 ��2 ≤ (
2𝑒 𝑠
𝑑𝑁

)2𝑑𝑁
𝐾4𝑑𝑁 ,

where the last inequality follows from the extended Sauer’s Lemma for Natarajan classes applied
onH [16].

Now, by invoking a uniform convergence argument, we have

Pr[𝐸] = Pr[∃ℎ1, ℎ2 ∈ H : 𝑑 (ℎ1, ℎ2) > 𝜀/2 and ℎ1 (𝑇) = ℎ2 (𝑇)]
= Pr[∃𝑏 ∈ HΔ : 𝑑 (𝑏, 𝑏0) ≥ 𝜀/2 and 𝑏(𝑇) = 𝑏0 (𝑇)] (Here 𝑏0 is the all-zero vector)

≤ 2GΔ (2 𝑠) 𝑒−𝜀,𝑠/4 (double-sample symmetrization argument)

≤ 2
(

2𝑒 𝑠
𝑑𝑁

)2𝑑𝑁
𝐾4𝑑𝑁 𝑒−𝜖 𝑠/4.
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The bound in the third line is non-trivial; it is known as the double-sample argument which was used
by Vapnik and Chervonenkis in their seminal paper [26]. The same argument is used in virtually all
VC-based uniform convergence bounds. This proves inequality (6) and completes the proof of the
lemma. □

C Stochastic (SPIDER) Frank-Wolfe in L1 Norm

In this section we present and analyze the stochastic Frank-Wolfe (FW) method used as a sub-
procedure in our main algorithm. Crucially, we require a specific variant of stochastic FW due
to Yurtsever et al. [28], called SPIDER-FW, that employs mini-batching and variance-reduced for
stochastic gradient estimation.

SPIDER FW has been shown to obtain the optimal 1/𝜀2 rate of convergence in a general stochastic
setting that involves a convex and smooth objective [28]. However, the existing analysis pertain
to the Euclidean case, whereas we crucially require an 𝐿1–𝐿∞ analysis. We provide such analysis
here with a specialized argument for variance-reduction with respect to the 𝐿1 norm. (We note that
similar arguments have appeared in [3] in the context of differentially-private optimization.)

Setup. The setup for this section is the following. We consider a stochastic optimization problem
of the form

minimize 𝐹 (𝑤) = 𝔼[ 𝑓 (𝑤, 𝑧)]
s.t. 𝑤 ∈ 𝑊,

where𝑊 is a convex domain in ℝ𝑑 and the expectation is over 𝑧 drawn from an underlying distribu-
tionD. In the context of this section, we think ofD as being unknown but assume that i.i.d. samples
𝑧1, 𝑧2, . . . ∼ D are readily available.

We further make the following assumptions:

• We assume that 𝑓 convex, 𝛽-smooth and 𝐺-Lipschitz (in its first argument) with respect to the
𝐿1 norm over𝑊 , that is,

𝑓 (𝑢, 𝑧) ≤ 𝑓 (𝑣, 𝑧) + ∇ 𝑓 (𝑣, 𝑧) · (𝑢 − 𝑣) + 𝛽
2
∥𝑢 − 𝑣∥21 ∀𝑧 ∈ Z,∀𝑢, 𝑣 ∈ 𝑊,

and further, that ∥∇ 𝑓 (𝑣, 𝑧)∥∞ ≤ 𝐺 for all 𝑧 ∈ 𝑍 and 𝑣 ∈ W;
• We assume that the feasible domain 𝑊 has 𝐿1 diameter ≤ 𝐷, that is, ∥𝑢 − 𝑣∥1 ≤ 𝐷 for all
𝑢, 𝑣 ∈ 𝑊 . the algorithmic access to the set 𝑊 is through a linear optimization oracle (LOO),
that given any vector 𝑔 ∈ ℝ𝑑 computes

LOO(𝑔) = argmin
𝑤∈𝑊

𝑔 · 𝑤.

C.1 Stochastic FW with SPIDER gradient estimates

The SPIDER FW algorithm is presented in Algorithm 3. The algorithm makes Frank-Wolfe type
updates using “SPIDER” gradient estimates 𝑔𝑡 , that are computed from the raw stochastic gradients.
The SPIDER estimates work in mini-batches, but employ low-variance bias correction in order to
update the estimates without resetting them entirely from round to round, thus saving in the mini-
batch sizes.

The main result of this section is given in the following theorem.
Theorem 3. Algorithm 3 with step sizes 𝜂𝑡 = 1/𝑡 and batch sizes 𝑏𝑡 defined as

𝑏𝑡 =

{
(𝐺/𝛽𝐷)2 𝑡2 if 𝑡 ∈ {𝜏𝑘}𝑘≥1;
𝑡 otherwise,

(7)

guarantees that, for all 𝑡 ≥ 2 and any 𝛿 > 0:

𝔼[𝐹 (𝑤𝑡 ) − 𝐹 (𝑤∗)] ≤
25𝛽𝐷2

𝑡

√︁
log 𝑑 , and Pr

(
𝐹 (𝑤𝑡 ) − 𝐹 (𝑤∗) ≤

25𝛽𝐷2

𝑡

√︂
log

𝑑𝑡

𝛿

)
≥ 1 − 𝛿 .

Consequently, for convergence to within 𝜖 > 0 with probability at least 1− 𝛿, the algorithm requires
𝑂 ((𝛽𝐷2/𝜖)

√︁
log(𝑑/𝛿)) calls to LOO and 𝑂 (((𝐺2𝐷2 + 𝛽2𝐷4)/𝜖2) log(𝑑/𝛿)) stochastic gradient

computations.
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Algorithm 3 Stochastic Frank-Wolfe with SPIDER gradient estimates
Parameters: step sizes {𝜂𝑡 }𝑡 , batch sizes {𝑏𝑡 }𝑡 .
Initialize 𝑤1 ∈ W and initial gradient estimate 𝑔1 = 0.
Let 𝜏𝑘 = 2𝑘 − 1 for 𝑘 = 1, 2, . . ..
for 𝑡 = 1, 2, . . . do

Draw fresh 𝑏𝑡 samples 𝑧1, . . . , 𝑧𝑏𝑡 from D;
if 𝑡 ∈ {𝜏𝑘}𝑘≥1 then

Set

𝑔𝑡 =
1
𝑏𝑡

𝑏𝑡∑︁
𝑖=1
∇ 𝑓 (𝑤𝑡 , 𝑧𝑖);

else
Set

𝑔𝑡 = 𝑔𝑡−1 +
1
𝑏𝑡

𝑏𝑡∑︁
𝑖=1
(∇ 𝑓 (𝑤𝑡 , 𝑧𝑖) − ∇ 𝑓 (𝑤𝑡−1, 𝑧𝑖));

end if
Compute 𝑣𝑡 = LOO(𝑔𝑡 );
Update 𝑤𝑡+1 = (1 − 𝜂𝑡 )𝑤𝑡 + 𝜂𝑡𝑣𝑡 ;

end for

C.2 Analysis

To analyze Algorithm 3, we first record a generic convergence guarantee for stochastic FW template
with gradient estimates. The template operates as follows; starting from an arbitrary initialization
𝑤1 ∈ 𝑊 , for 𝑡 = 1, ..., 𝑇 :

(i) get gradient estimator 𝑔𝑡 at 𝑤𝑡 ;
(ii) use LOO to compute 𝑣𝑡 = argmin𝑤∈𝑊 𝑔𝑡 · 𝑤;

(iii) update 𝑤𝑡+1 = (1 − 𝜂𝑡 )𝑤𝑡 + 𝜂𝑡𝑣𝑡 .
Lemma 6. Set 𝜂𝑡 = 1/𝑡 for all 𝑡 and suppose that the gradient estimates satisfy, for some 𝑐 > 0,5

∀ 𝑡 ≥ 1 : 𝔼∥𝑔𝑡 − ∇𝐹 (𝑤𝑡 )∥∞ ≤ 𝑐𝜂𝑡 .
Then the FW iterations guarantees for all 𝑡 ≥ 2 and 𝑤∗ ∈ 𝑊 that:

𝔼[𝐹 (𝑤𝑡 ) − 𝐹 (𝑤∗)] ≤
𝛽𝐷2 + 2𝑐𝐷

𝑡
.

Similarly, if the estimates satisfy

∀ 𝑡 ≥ 1 : Pr(∥𝑔𝑡 − ∇𝐹 (𝑤𝑡 )∥∞ > 𝑐𝛿𝜂𝑡 ) ≤ 𝛿.
for some 𝛿 ∈ (0, 1) and 𝑐𝛿 > 0, then for any 𝑡 ≥ 2 and 𝑤∗ ∈ 𝑊 , with probability at least 1 − 𝑡𝛿,

𝐹 (𝑤𝑡 ) − 𝐹 (𝑤∗) ≤
𝛽𝐷2 + 2𝑐𝛿𝐷

𝑡
.

Proof. First, using 𝛽-smoothness (with respect to ∥·∥1) we have that

𝐹 (𝑤𝑡+1) ≤ 𝐹 (𝑤𝑡 ) + ∇𝐹 (𝑤𝑡 ) · (𝑤𝑡+1 − 𝑤𝑡 ) + 1
2 𝛽∥𝑤𝑡+1 − 𝑤𝑡 ∥

2
1

≤ 𝐹 (𝑤𝑡 ) + 𝜂𝑡∇𝐹 (𝑤𝑡 ) · (𝑣𝑡 − 𝑤𝑡 ) + 1
2𝜂

2
𝑡 𝛽𝐷

2.

Next, due to the minimality of 𝑣𝑡 , notice that for any 𝑤∗ ∈ 𝑊 ,

∇𝐹 (𝑤𝑡 ) · (𝑣𝑡 − 𝑤𝑡 ) = 𝑔𝑡 · (𝑣𝑡 − 𝑤𝑡 ) + (∇𝐹 (𝑤𝑡 ) − 𝑔𝑡 ) · (𝑣𝑡 − 𝑤𝑡 )
≤ 𝑔𝑡 · (𝑤∗ − 𝑤𝑡 ) + (∇𝐹 (𝑤𝑡 ) − 𝑔𝑡 ) · (𝑣𝑡 − 𝑤𝑡 )
= ∇𝐹 (𝑤𝑡 ) · (𝑤∗ − 𝑤𝑡 ) + (∇𝐹 (𝑤𝑡 ) − 𝑔𝑡 ) · (𝑣𝑡 − 𝑤∗)
≤ 𝐹 (𝑤∗) − 𝐹 (𝑤𝑡 ) + 𝐷∥∇𝐹 (𝑤𝑡 ) − 𝑔𝑡 ∥∞,

5The claim of this particular theorem holds in fact for any pair of dual norms, but for consistency, is stated
and proved here only for the 𝐿1-𝐿∞ case.
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where the final inequality follows from convexity and the diameter bound. Plugging into the in-
equality and rearranging, we obtain

𝐹 (𝑤𝑡+1) − 𝐹 (𝑤∗) ≤ (1 − 𝜂𝑡 ) (𝐹 (𝑤𝑡 ) − 𝐹 (𝑤∗)) + 𝜂𝑡𝐷∥∇𝐹 (𝑤𝑡 ) − 𝑔𝑡 ∥∞ + 1
2𝜂

2
𝑡 𝛽𝐷

2.

Taking the expectation of both sides and using our assumption on the gradient estimates, we obtain
the following progress inequality, that holds for all 𝑡 ≥ 1:

𝔼[𝐹 (𝑤𝑡+1) − 𝐹 (𝑤∗)] ≤ (1 − 𝜂𝑡 )𝔼[𝐹 (𝑤𝑡 ) − 𝐹 (𝑤∗)] + 1
2𝜂

2
𝑡 (𝛽𝐷2 + 2𝑐𝐷).

We are now ready to prove the main claim by induction on 𝑡 ≥ 2. First, plugging 𝑡 = 1 and 𝜂1 = 1
into the progress inequality we have that 𝔼[𝐹 (𝑤2) − 𝐹 (𝑤∗)] ≤ 1

2 (𝛽𝐷
2 + 2𝑐𝐷), that is, the claim

holds for 𝑡 = 2. For the induction step, let us assume that 𝔼[𝐹 (𝑤𝑡 ) − 𝐹 (𝑤∗)] ≤ (𝛽𝐷2 + 2𝑐𝐷)/𝑡 for
some 𝑡 ≥ 2. Then by the progress inequality:

𝔼[𝐹 (𝑤𝑡+1) − 𝐹 (𝑤∗)] ≤ (1 − 𝜂𝑡 )𝔼[𝐹 (𝑤𝑡 ) − 𝐹 (𝑤∗)] + 1
2𝜂

2
𝑡 (𝛽𝐷2 + 2𝑐𝐷)

=

(
1 − 1

𝑡

)
𝛽𝐷2 + 2𝑐𝐷

𝑡
+ 𝛽𝐷

2 + 2𝑐𝐷
2𝑡2

≤ 𝛽𝐷2 + 2𝑐𝐷
𝑡

.

This concludes the proof in expectation. The second claim regarding convergence with high proba-
bility follows from the same arguments together with a union bound. □

The next lemma analyzes the variance-reduced (SPIDER) gradient estimates used in Algorithm 3.

Lemma 7. If we set the batch sizes as defined in Eq. (7), then for all 𝑡 and 𝛿 > 0:

𝔼∥𝑔𝑡 − ∇𝐹 (𝑤𝑡 )∥∞ ≤
12𝛽𝐷
𝑡

√︁
log 𝑑 , and Pr

(
∥𝑔𝑡 − ∇𝐹 (𝑤𝑡 )∥∞ >

12𝛽𝐷
𝑡

√︂
log

𝑑

𝛿

)
≤ 𝛿 . (8)

Proof. The proof relies on standard properties of sub-Gaussian random variables, all of which can
be found in, e.g., [27]. Let 𝑍𝑡 , 𝑗 = (𝑔𝑡 − ∇𝐹 (𝑤𝑡 )) 𝑗 be the 𝑗’th coordinate of the error at step 𝑡. Note
that 𝑍𝑡 , 𝑗 is zero-mean. We will show that 𝑍𝑡 , 𝑗 is also sub-Gaussian with parameter 𝜎𝑡 = 6𝛽𝐷/𝑡.
The claim will then follow since ∥𝑔𝑡 − ∇𝐹 (𝑤𝑡 )∥∞ is a maximum of 2𝑑 zero-mean sub-Gaussians
with parameter 𝜎𝑡 , which implies Eq. (8).

First, consider 𝑡 of the form 𝑡 = 𝜏𝑘 and any coordinate 𝑗 ∈ [𝑑]. The claim follows in this case from
variance reduction by mini-batching: condition on randomness before step 𝑡; since all gradients
are bounded in 𝐿∞ norm by 𝐺, we have by Hoeffding’s Lemma that (∇ 𝑓 (𝑤𝑡 , 𝑧𝑖) − ∇𝐹 (𝑤𝑡 )) 𝑗 are
independent zero-mean 𝐺-sub-Gaussians RVs (for 𝑖 = 1, . . . , 𝑏𝑡 ), thus their mean 𝑍𝑡 , 𝑗 = (𝑔𝑡 −
∇𝐹 (𝑤𝑡 )) 𝑗 is zero-mean sub-Gaussian with parameter 𝜎𝑡 = 𝐺/

√
𝑏𝑡 = 𝛽𝐷/𝑡.

Next, consider any other round such that 𝜏𝑘 < 𝑡 < 𝜏𝑘+1 and any coordinate 𝑗 ∈ [𝑑]. In this case,
the claim will follow from accumulation of variance starting from the reset step 𝜏𝑘 . Note that due to
smoothness,

| ( (∇ 𝑓 (𝑤𝑡 , 𝑧𝑖) − ∇𝐹 (𝑤𝑡 )) 𝑗 − (∇ 𝑓 (𝑤𝑡−1, 𝑧𝑖) − ∇𝐹 (𝑤𝑡−1)) 𝑗 |
≤ |(∇ 𝑓 (𝑤𝑡 , 𝑧𝑖) − ∇ 𝑓 (𝑤𝑡−1, 𝑧𝑖)) 𝑗 | + |(∇𝐹 (𝑤𝑡 ) − ∇𝐹 (𝑤𝑡−1)) 𝑗 |
≤ ∥∇ 𝑓 (𝑤𝑡 , 𝑧𝑖) − ∇ 𝑓 (𝑤𝑡−1, 𝑧𝑖)∥∞ + ∥∇𝐹 (𝑤𝑡 ) − ∇𝐹 (𝑤𝑡−1)∥∞
≤ 2𝛽∥𝑤𝑡 − 𝑤𝑡−1∥1
≤ 2𝛽𝐷𝜂𝑡−1.

Thus, as before, the random variable 𝑍𝑡 , 𝑗 − 𝑍𝑡−1, 𝑗 = (𝑔𝑡 − ∇𝐹 (𝑤𝑡 )) 𝑗 − (𝑔𝑡−1 − ∇𝐹 (𝑤𝑡−1)) 𝑗 is a
zero-mean sub-Gaussian with parameter 2𝛽𝐷𝜂𝑡−1/

√
𝑏𝑡 , conditioned on randomness before step 𝑡.

By the martingale-summation property of sub-Gaussian RVs, we then obtain that 𝑍𝑡 , 𝑗 is zero-mean
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sub-Gaussian with parameter 𝜎𝑡 , where

𝜎2
𝑡 =

𝐺2

𝑏𝜏𝑘
+

𝑡∑︁
𝑠=𝜏𝑘+1

4𝛽2𝐷2𝜂2
𝑠−1

𝑏𝑠

=
𝛽2𝐷2

𝜏2
𝑘

+ 4𝛽2𝐷2
𝑡∑︁

𝑠=𝜏𝑘+1

1
𝑠(𝑠 − 1)2

≤ 𝛽2𝐷2

𝜏2
𝑘

+ 8𝛽2𝐷2
𝑡∑︁

𝑠=𝜏𝑘+1

(
1

(𝑠 − 1)2
− 1
𝑠2

)
≤ 𝛽2𝐷2

𝜏2
𝑘

+ 8𝛽2𝐷2

𝜏2
𝑘

≤ 36𝛽2𝐷2

𝑡2

where the final inequality uses 𝜏𝑘 ≥ 𝑡/2. Therefore, we deduce that 𝜎𝑡 ≤ 6𝛽𝐷/𝑡. □

We are now ready to prove Theorem 3.

Proof of Theorem 3. The theorem follows directly from Lemmas 6 and 7 and plugging in the spec-
ified parameters. The number of steps for convergence to within a given 𝜖 > 0 is therefore
𝑡 = 𝑂 ((𝛽𝐷2/𝜖)

√︁
log(𝑑/𝛿)), which is also the number of LOO calls. For the total sample com-

plexity, observe that the contribution of rounds 𝑡 ∉ {𝜏𝑘}𝑘≥1 is bounded by
∑𝑡
𝑠=1 𝑠 = 𝑂 (𝑡2), while the

contribution of rounds 𝑡 ∈ {𝜏𝑘}𝑘≥1 is at most 𝑂 ((𝐺/𝛽𝐷)2𝑡2). □
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract contains claims that accurately describe the paper’s setting and
main contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the scope of the main results and compares them to
related works.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The paper contains a complete formal description of the problem setting and
proofs for all the theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: This is a theoretical paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: This is a theoretical paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: This is a theoretical paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [NA]
Justification: This is a theoretical paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: This is a theoretical paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper wholly conform with the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This is a purely theoretical paper and is not related to any societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This is a theoretical paper.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This is a theoretical paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
Justification: This is a theoretical paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: This is a theoretical paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This is a theoretical paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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