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Abstract

Mapping clinical classification systems, such
as the International Classification of Diseases
(ICD) is crucial for data analysis but is man-
ually intensive and not scalable. We identi-
fied two key issues with the standard auto-
matic methods using transformer-based pre-
trained encoders: (1) linguistic variation and
(2) varying granular details across ICD ver-
sions. To address these issues, we propose
a novel method by leveraging the representa-
tional capacity of pre-trained encoders and the
reasoning abilities of the large language models
(LLMs). For each ICD code, we generate: (1)
hierarchy-augmented and (2) LLM-generated
descriptions to capture rich semantic nuances,
addressing linguistic variation. Furthermore,
we leverage the reasoning ability of the LLM
to generate the final maps where the source
code has been mapped to a parent code, using
a multiple-choice style prompts. Empirically,
we demonstrate the effectiveness of the pro-
posed method by performing chapter-wise map-
ping between ICD-9-CM (Clinical Modifica-
tion) and ICD-10-CM (Clinical Modification)
and ICD-10-AM (Australian Modification) and
ICD-11. Our source code is publicly available
at:[github link on camera-ready version].

1 Introduction

Disease classification systems such as International
Classification of Diseases (ICD) provide standard-
ised codes for diseases and health conditions, fa-
cilitating accurate communication, reporting and
analysis of healthcare data globally. Clinical classi-
fication systems evolve over time into new versions,
such as ICD-9, ICD-10, and the most recent ICD-
11. In addition, countries often adapt these base
classifications for local use, creating national ex-
tensions such as Germany’s ICD-10-CM (Clinical
Modification) and Australia’s ICD-10-AM (Aus-
tralian Modification). These continuous updates
and modifications require the development of map-
ping tables between classification systems to ensure

that previously coded data remain consistent and
suitable for longitudinal analysis.

These mapping tables are typically constructed
manually by domain experts, which is time con-
suming and not easily scalable. Although some au-
tomatic mapping approaches have been proposed,
progress remains very limited. Most existing meth-
ods rely on name-based techniques (e.g. string
matching) or lexical-based strategies (e.g. exploit-
ing lexical variations and synonym generation) (Al-
lones et al., 2014; Huang et al., 2009; Wang et al.,
2008). However, since these approaches are devel-
oped primarily for text-to-concept' mapping, their
effectiveness in concept-to-concept mapping, such
as mapping between ICD versions, remains unclear.
Moreover, the lack of implementation details fur-
ther complicates the evaluation of their suitability
for ICD version mapping.

Transformer-based encoder models (e.g., BERT
(Devlin et al., 2019)) have emerged as powerful
tools for generating discriminative dense repre-
sentations for texts. A straightforward approach
leverages these pre-trained models to project ICD
code descriptions (source and target) into a shared
embedding space, generating potential mappings
based on similarity metrics such as cosine similar-
ity. While this method yields promising results (see
Appendix C), we identify two key limitations when
mapping across ICD versions: (1) linguistic vari-
ation (e.g., synonyms) and (2) varying granular
detail across ICD versions.

Given the strong reasoning capabilities of
decoder-only large language models (LLMs) nu-
merous methods have been proposed for generat-
ing text embeddings using these pre-trained models.
These approaches generally fall into two categories:
(1) tuning-free methods (Jiang et al., 2024; Lei
et al., 2024; Thirukovalluru and Dhingra, 2024;

'Tt involves mapping any clinical term to a terminology

system, e.g Systemized Nomenclature of Medicine — Clinical
Terms (SNOMED-CT)



Zhang et al., 2024) and (2) tuning-based meth-
ods (Li et al., 2024; Muennighoff et al., 2024; Ji
et al., 2025). Both these methods rely on manually
crafted prompts and typically use the final hidden
state of the last token (e.g., the [EOS] or end-of-
sequence token) as the text embedding. Tuning-
based methods refine these embeddings further us-
ing the InfoNCE (Oord et al., 2018) loss to en-
hance alignment in the embedding space. On the
one hand, tuning-free methods are easy to use, but
often produce poor embeddings for ICD code de-
scriptions (see Appendix D). On the other hand,
tuning-based methods may yield better results but
require a complex and resource-intensive training
procedure.

To this end, we propose an automatic mapping
approach that combines the representation capa-
bilities of pre-trained encoders with the reason-
ing abilities of large language models (LLMs).
For each ICD code description, we (1) generate
a hierarchy-augmented description and (2) prompt
a pre-trained LLM to produce a concise clinical
description. We encode these two descriptions sep-
arately, using a pre-trained encoder model, and take
their mean as the final embedding.

To address variation in the level of detail across
ICD code descriptions and ensure accurate map-
ping, we further leverage the reasoning capabili-
ties of LLMs through a prompting framework. In
particular, we create a prompt in multiple-choice
question format, asking the LLM to find the best
match for a given source code description from a
list of target code descriptions. The prompt also
includes a set of manually defined rules, which the
model must follow when making decisions. It is
important to note that the proposed method does
not require any task-specific training or fine-tuning.
It is model-agnostic and can be applied using any
suitable pre-trained models.

Empirically, we show the effectiveness of the
proposed method by mapping different ICD ver-
sions, namely ICD-9-CM and ICD-10-CM, and
ICD-10-AM and ICD-11. In this work, we opted
for chapter-wise mapping. We used the equiva-
lent chapters of source and target ICD versions
and mapped the codes. Likewise, we restrict our
approach to one-to-one mapping, i.e. one source
code is mapped to one target code. However, if the
source concept is broader in meaning than the tar-
get concepts, the union of more than one target con-
cept approximates the source concept more closely
than the individual target codes (one-fo-many). In

such cases, any partial match is considered com-
plete.
Our main contributions are:

1. We propose an automatic mapping technique
to map different ICD version. The proposed
method doesn’t require any training (or fine-
tuning), and doesn’t rely on a specific family
of pre-trained models.

2. Empirically, we demonstrate the effectiveness
of the proposed method by chapter-wise map-
ping between ICD-9-CM and ICD-10-CM, as
well as ICD-10-AM and ICD-11, in both di-
rections.

2 Background

The International Classification of Diseases (ICD)
is a hierarchical system that organises clinical con-
ditions into chapters, blocks, and groups based on
various characteristics, such as affected body sys-
tems or causative agents. Figure 1 illustrates an
example of the code structure in the eleventh re-
vision of the ICD (ICD-11). Each condition is
assigned a unique code with a brief description
summarising the clinical condition. Maintained by
the World Health Organisation (WHO), the ICD
is periodically updated to reflect the advances in
medical science and clinical practice. As a result,
health data gets encoded using different ICD ver-
sions over time, necessitating mapping tables to
align historical data and support longitudinal anal-
ysis.

Certain Infectious or Parasitic Diseases
Gastorenteritis or Colitis of Infecious Origin
Bacterial Intestinal Infections
1AQ0 Cholera
1A01 Intestinal Infection due to Other Vibrio

Bacterial Foodborne Intoxications
1A10 Foodborne Staphylococcal Intoxication
1A11 Botulism
1A11.0 Foodborne intoxication by ...
1A11.1 Other forms of Botulism
1A11.Z Botulism, unspecified

Figure 1: Each clinical condition in ICD-11 is assigned
a unique alphanumeric code along with a corresponding
description. For example, /A00 is the ICD-11 code for
Cholera. The ICD-11 hierarchy is organized into multi-
ple levels of specificity. In this case, /A00 falls under
the broader categories: Certain infectious or parasitic
diseases — Gastroenteritis or colitis of infectious origin
— Bacterial intestinal infections.

The different ICD versions are not directly com-
parable. For example, ICD-9 codes are mostly




numeric, whereas ICD-10 codes are alphanumeric.
ICD-11 codes are also alphanumeric, but they use
completely different structures compared to ICD-
10 codes. Thus, it is not possible to directly com-
pare the codes to find equivalent code in the target
system.

While mapping between ICD versions is still
predominantly a manual task performed by trained
professionals with limited progress in automation,
recent advancements, particularly in transformer-
based encoders for representation learning, offer
promising avenues. These models can generate
high-quality, discriminative embeddings that cap-
ture semantic relationships, placing similar words
in close proximity within the embedding space due
to their distributional properties. One straightfor-
ward automatic mapping approach leverages this
by projecting source and target ICD codes into a
shared embedding space and then identifying map-
pings based on a similarity metric such as cosine
similarity. We identified the following two key chal-
lenges for implementing such automatic mapping
approaches:

2.1 Linguistic variation.

The different ICD versions may use varying clini-
cal terms (code descriptions) to describe the same
condition. Table 1 illustrates some examples of
equivalent ICD-9-CM and ICD-10-CM codes that
differ in linguistic structure. These terms are typi-
cally short and contain specialised vocabulary. As
a result, due to limited contextual information, pre-
trained encoders often struggle to generate embed-
dings that accurately capture their semantic mean-
ings.

Source

Target

0068 Amebic infection of other sites
[ICD-9-CM]

A068 Amebic infection of other sites
[ICD-10-CM]

A0681 Amebic cystitis

A0682 Other amebic genitourinary in-
fections

A0689 Other amebic infections™

0330 Whooping cough due to bordetella
pertussis [ICD-9-CM]

A370 Whooping cough due to Borde-
tella pertussis [ICD-10-CM]

A3700 Whooping cough due to Borde-
tella pertussis without pneumonia *
A3700 Whooping cough due to Borde-
tella pertussis with pneumonia

11289 Other candidiasis of other speci-
fied sites [ICD-9-CM]

B378 Candidiasis of other sites [ICD-
10-CM]

B3781 Candidal esophagitis

B3782 Candidal enteritis

B3783 Candidal cheilitis

B3784 Candidal otitis externa

B3789 Other sites of candidiasis *

A483 Toxic shock syndrome [ICD-10-
AM]

1C45 Toxic shock syndrome [ICD-11]

1C450 Streptococcal toxic shock syn-
drome

1C451 Staphylococcal toxic shock syn-
drome

1C45Y Toxic shock syndrome due to
other specified infectious agent

1C45Z Toxic shock syndrome without
specified infectious agent *

B560 Gambiense trypanosomiasis [ICD-
10-AM]

1F510 Gambiense trypanosomiasis,
[ICD-11]

1F5100 Meningitis in gambiense try-
panosomiasis

IF510Y Other specified gambiense try-
panosomiasis

1F510Z Gambiense trypanosomiasis,
unspecified *

conditions.

Table 2: Examples of cases where source and target code
descriptions are similar, but the target system defines
the clinical condition in more granular sub-codes—with
* indicating the actual mapped target code.

2.2 Varying granular detail in clinical

ICD-9-CM

ICD-10-CM

Madura foot [0394]

Mycetoma unspecified
[B479]

Ornithosis with pneumo-
nia [0730]

Chlamydia psittaci infec-
tion [A70]

Herpangina [0740]

Enteroviral  vesicular
pharyngitis [BO85]

Condyloma acuminatum
[07811]

Anogenital
warts [A630]

(venereal)

Toxocariasis [1280]

Visceral larva migrans
[B830]

Pneumoconiosis  due
to other inorganic dust
[503]

Stannosis [J635]

Table 1: ICD-9-CM and ICD-10-CM equivalent codes

but with different linguistic structures.

Newer ICD versions are often more specialised
than the previous versions and hence may de-
fine certain clinical conditions at a more granu-
lar level, incorporating distinctions based on spe-
cific causative agents or the presence or absence
of complications. When mapping to a more spe-
cialised ICD version, parent codes in the target
system sometimes share similar descriptions with
codes in the source system (see Table 2 for ex-
amples). Consequently, when relying exclusively
on code descriptions, the resulting embeddings for
these terms exhibit a high degree of similarity. As
a result, these source codes are more likely to get
mapped to the parent target code, which is much
broader in meaning than the source code.



Cholera is Bacterial
intestinal infection.
Bacterial ...

Certain infect...

L Gastroenteritis ...
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Figure 2: The overall process of generating dense representations for the ICD code descriptions. For each ICD codes,
we generate: (1) a hierarchy-augmented description and (2) a concise description generated using a pre-trained
LLM. Each descriptions are encoded by an encoder model and we take their mean as the final embedding.

3 Method
3.1 Task Definition

We define an ICD system as a set of codes > and it’s
parent labels, i.e. C, € C = {(c;, {pi,;j};)}i» where
ci is the i'" code in C, and p;; is the j*"-level parent
of ¢;. Suppose Cy, Cigt € C be the source and tar-
get ICD versions respectively. Now, the objective
of mapping ICD versions is to generate a mapping
set, Mcy, Ce = (€ € Csre, € € Cigt, Sc,r) }» Where
5 : Csre X Cige — R is the score function that re-
flects the semantic similarity between two codes.

3.2 Obtaining Term Embeddings

In this work, we aim to generate the mapping set
by projecting both the source and target codes
into a shared embedding space, using a pre-trained
transformer-based encoders and use cosine simi-
larity as the score function, i.e. Mc,. ¢, =1{(c €
Csre, € € Cigt, Sp, ) }» Where p,, pr € RP are
the dense representation for ¢ and ¢’ respectively,
and s : Cere X Cige — [—1,1] is the cosine simi-
larity between c and ¢’. While the pre-trained en-
coders yield promising results, as discussed in 2,
they often fail to capture the semantic meanings
of the ICD code descriptions due to the inherent
linguistic variation. We aim to address this by gen-
erating short descriptions of each term. Specifi-
cally, for each code description, we generate: (1)
a hierarchy-augmented description, and (2) a con-
cise description generated using an LLM. Figure
2 illustrates the overall process of generating the
embeddings.

Hierarchy-Augmented (HA) Description. The
hierarchy-augmented variants utilise the structural

2We do not use the codes themselves to generate the em-
beddings, but the corresponding code descriptions.

context provided by a code’s position within the
ICD hierarchy—specifically its parent or ancestor
codes—to clarify and enrich the meaning of a code.
To construct this, we concatenate the original code
description with its hierarchical labels using the "is
a" relation to form a short, context-aware descrip-
tion as follows:

dh:“[ci] is [pial-.-[pij—1] is [pig].”, (1)

where ¢; is the i*" code description and p; 1, ...,
p;,j are its parent labels with p; 1 being the imme-
diate parent. For example, using the template as
shown in 1, the hierarchy-augmented description
for Cholera in ICD-11 is: Cholera is a Bacterial
Intestinal Infection. Bacterial Intestinal Infection
is a Gastroenteritis or Colitis of Infectious Origin.
Gastroenteritis or Colitis of Infectious Origin is a
Certain Infectious or Parasitic Disease.

This context-aware description is then encoded
using a pre-trained encoder model. In this work, we
use the Sentence-Transformer (SBERT) (Reimers
and Gurevych, 2019) model, specifically all-mpnet-
base-v2, as the preferred encoding model.

e € RP = SBERT(d"), )

where D is the dimension of the embedding
space.

LLM-Generated (LG) Description. Recent
studies have demonstrated that fine-tuning mod-
els on synthetic data generated by large language
models (LLMs) can enhance performance across
various downstream tasks, such as representation
learning (Peng et al., 2024; Wang et al., 2024), fake
news detection (Ma et al., 2024), and instance de-
tection (Wagner et al., 2025). Inspired by this, we



generate a concise description for each code de-
scription using an LLM via a prompting method.
This is particularly effective for reducing lexical
variation, as LLLMs tend to produce consistent out-
puts for similar prompts.

We construct prompts using a template (see Fig-
ure 3) and instruct a pre-trained LLM to gener-
ate the concise description. The output is then
encoded using SBERT. Finally, we compute the
mean of the two embedding vectors (hierarchy-
augmented and LLM-generated) to obtain the final
representation. To evaluate the effectiveness of this
approach, we conducted experiments using sev-
eral open-source LL.Ms, including LLaMA-3.1-8B-
Instruct (Lei et al., 2024), Qwen3-8B (Yang et al.,
2025), Mistral-7B-Instruct-v0.3°, and Microsoft-
Phi-4-mini-Instruct (Abdin et al., 2024).

d" = LLM(Prompt(X)) 3)
e' ¢ RP = SBERT(d'), 4)
1
And finally, e = i(eh + el ®)

cases arise when mapping a less specialised ver-
sion to a more specialised version. One potential
alternative would be to remove all the parent-level
codes and map only to the leaf-nodes. However,
we identified some cases where source codes are
mapped to the parent-level codes.

To mitigate these cases, the proposed method
leverages the reasoning ability of an LLM. In par-
ticular, we construct a multiple-choice-style prompt
asking the LLM to select the best option for the
given source codes, from a list of target codes. Fig-
ure 4 shows an example of the prompt for ICD-
9-CM code 0020 (‘Typhoid fever®). The prompts
also include a set of manually defined rules (see
Appendix F for details on the rules) and instruct
the LLM to follow these rules while selecting the
best option. We use Qwen3-8B as it allows a hard
switch to enable the model’s thinking behaviour.

Prompt(X) = Provide a concise clinical
description (max 100 words) of the condition '[X
1'. Include (if possible) common synonyms, known
causative agents, and typically affected body
parts. Avoid bullet points.

Figure 3: Prompt template to generate a concise de-
scription of an ICD code description. Here X is the
placeholder for the code description.

3.3 Generating Maps with Rule-Based
Prompts (RP)

Given the source and the target code embeddings,
the proposed method used cosine similarity score
as the metric to find the potential maps.

b= Ay
where S = {s;}; and 7 = {t;}; are the set
of source and target embeddings respectively, and
cos(a, b) is the cosine similarity score between a
and b.
However, as discussed earlier (see section 2.2),
some source codes get mapped to parent target
codes, i.e. source-to-parent mapping. Often, these

cos(s;, tj), 6)

3https://huggingface.co/mistr‘alai/
Mistral-7B-Instruct-ve.3

Please apply the rules below to answer the following question.
Rules:

1. Select the most specific target option that represents the closest
clinical equivalent to the level of detail provided in the given
clinical term.

2. In cases where the given clinical term lacks specific details,
select the options that include terms like 'unspecified' or 'other
specified'.

3. Maintain consistency by selecting 'other' for 'other specified'
and 'unspecified' for 'unspecified'.

4. Take into account the clinical context of the given clinical term
and select the option that reflect common clinical manifestations or
broader categories relevant to its clinical implications.

Which of the following is the best match for 'Typhoid fever'?

A010 Typhoid fever

A0100 Typhoid fever unspecified

AQ101 Typhoid meningitis

AQ102 Typhoid fever with heart involvement

AQ103 Typhoid pneumonia

AQ104 Typhoid arthritis

AQ105 Typhoid osteomyelitis

AQ109 Typhoid fever with other complications

Please do not include explanations or code descriptions, just return
the code.

Figure 4: An example of a prompt template to select
the best ICD-10-CM match for ICD-9-CM code 0020
(Typhoid fever) based on the provided rules.

4 Experiment Details

4.1 Dataset

We evaluated the effectiveness of the proposed
methods by mapping ICD-9-CM and ICD-10-CM,
as well as ICD-10-AM and ICD-11, for three differ-
ent chapters: the Disease of the Digestive System,
Intestinal Infectious Diseases and the Diseases of
the Respiratory System (see Appendix B for de-
tails, including the particular versions and chapter
details). For mappings between ICD-9-CM and
ICD-10-CM (in both directions), we relied on the
General Equivalence Mappings (GEMs) provided
by the Centres for Medicare and Medicaid Ser-
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https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3

vices (CMS)*. Since no official mapping tables
are available for ICD-10-AM to ICD-11 and vice
versa, similar to Xu et al. (2022), we used a se-
quential approach—first, we map ICD-10-AM to
ICD-10 using the mapping tables provided by the
Independent Health and Aged Care Pricing Author-
ity THACPA)>, and then ICD-10 to ICD-11 using
the conversion tables made available by the World
Health Organisation (WHO). For all ICD versions,
we included all available codes, including three-
and four-digit codes®. Consequently, some source
codes lacked a valid mapping in the ground truth,
and we excluded those instances when calculating
the final accuracies (see Appendix B.2 for more
details).

4.2 Baseline Method

We construct the baseline method, by generat-
ing embeddings using only the ICD code descrip-
tions. We evaluated various transformer-based en-
coders (see Appendix C for details) with some
specifically trained on the clinical data, and gen-
eral text data. We use mean pooling to gen-
erate a single fixed-length sentence-level repre-
sentations from a variable-length foken-level em-
beddings. Compared to all other models, the
Sentence-Transformer (Reimers and Gurevych,
2019) (SBERT) (all-mpnet-base-v2’) performed
significantly better, and hence we chose it as the
preferred baseline encoder.

4.3 Models

To validate the effectiveness of the proposed
method, we experimented with various open-source
large language models (LLMs), including Llama-
3.1-8B-Instruct, Mistral-7B-Instruct-v0.3, Phi-4-
mini-instruct and Qwen3-8B, to generate the clin-
ical descriptions. For the reasoning task, i.e. for
rule-based prompt RP, we used Qwen3-8B. See
Appendix A for the implementation details.

4https ://www.cms.gov/medicare/coding-billing/
icd-10-codes/2018-icd-10-cm-gem

5h’ctps ://www.ihacpa.gov.au/resources/
icd-10-am-and-achi-mapping-tables

®The three-digit codes are a general group of related con-
ditions (or a single specific condition in some cases), and the
four-digit codes represent more specific conditions that are
further subdivided (in some cases) based on various features,
for example, the causative agent, and with or without some
complications.

7h'ctps ://sbert.net/docs/sentence_transformer/
pretrained_models.html

4.4 Evaluation Metric

For evaluation metric, we report the Top-1 accu-
racy:

C
N — Np’
where C'is the number of correct maps, NN is the to-
tal number of source codes and NV, is the number
of source codes that do not have any maps.

Given the inherent stochasticity of LLM-
generated text, which introduces slight variations in
output across multiple runs with the same prompt,
and that the proposed method uses LLM-generated
descriptions to generate the final representation,
we adopted a strategy of multiple runs to ensure
a robust evaluation of performance. Specifically,
we report the mean and standard deviation of the
accuracy calculated from five independent runs for
each prompt.

Top-1 Accuracy = @)

5 Results
5.1 Main Results

Comparison with the Baseline. We present our
main results, a detailed comparison of the pro-
posed method against the baseline, in table 3 for
chapter-wise mapping across different ICD ver-
sions. We used the Top-1 accuracy to evaluate
the mapping performance. The baseline method,
which generates the embeddings using only the
code descriptions, exhibits consistent but lower per-
formance across all tasks (accuracies ranging from
0.59 to 0.80). For instance, incorporating hierarchy-
augmented (HA) and Qwen3-8B generated descrip-
tions (LG) resulted in an average gain of approxi-
mately 5% (0.0483). This performance was further
enhanced by roughly 6% (0.0575) when employ-
ing the rule-based prompting (RP) technique (as
discussed in 3.3) for generating final maps.

Similarly, in all the cases, except for the ICD-9-
CM to ICD-10-CM for the Disease of the Diges-
tive System, the proposed method outperformed
the baseline, even without the rule-based map gen-
eration step. In the case where the Top-1 accuracy
was below the baseline, the maximum performance
difference was only 3% (0.03), i.e. for the Llama-
3.1-8B-Instruct.

Consistency of Results. In table 3, we also re-
ported the standard deviation to assess the con-
sistency of the mapping performance across five
runs. The proposed method, across all evalu-
ated LLMs and both configurations (HA+LG and
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ICD-9-CM to ICD-10-CM

ICD-10-CM to ICD-9-CM

ICD-10-AM to ICD-11

ICD-11 to ICD-10-AM

Dig Inf Resp Dig Inf Resp Dig Inf Resp Dig Inf Resp
Baseline 0.80 0.69 0.75 0.62 0.70 0.59 0.66 0.66 0.71 0.60 0.67 0.61
+0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0
Qwen3-8B 0.79 0.74 0.76 0.70 0.77 0.67 0.67 0.69 0.76 0.64 0.72 0.71
+0.007 £0.004 =+0.010 +0.005 £0.005 =+0.005 +0.004 £0.005 £0.010 £0.005 =+0.005 =+£0.011
Llama-3.1-8B-Instruct 0.77 0.74 0.73 0.68 0.78 0.66 0.66 0.69 0.73 0.65 0.71 0.71
HA+LG +0.005 £0.005 =+0.016 +0.013 £0.008 =+0.011 +0.012 £0.004 £0.004 =£0.008 =+0.011 =+0.012
Phi-4-mini-instruct 0.78 0.72 0.75 0.68 0.77 0.68 0.66 0.69 0.71 0.62 0.72 0.71
+0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0
Mistral-7B-Instruct-v0.3 0.79 0.72 0.74 0.68 0.79 0.66 0.66 0.69 0.74 0.62 0.71 0.66
+0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0
Qwen3-8B 0.87 0.80 0.82 0.80 0.77 0.73 0.75 0.73 0.80 0.71 0.79 0.74
40.005 +0.004 +0.010 +0.008 £0.005 +0.005 +0.009 +0.004 £0.012 £0.004 =+0.006 +0.017
Llama-3.1-8B-Instruct 0.86 0.79 0.79 0.78 0.78 0.73 0.73 0.74 0.78 0.72 0.80 0.73
HA+LG+RP 40.008 +0.005 +0.010 +0.014 £0.008 +0.015 +0.008 +0.001 £0.006 =+0.005 =40.014 =+0.016
Phi-4-mini-instruct 0.87 0.79 0.80 0.78 0.77 0.75 0.74 0.73 0.78 0.72 0.80 0.76
+0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0
Mistral-7B-Instruct-v0.3 0.86 0.78 0.79 0.79 0.79 0.74 0.73 0.74 0.78 0.71 0.79 0.69
+0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0

Table 3: Comparison of the proposed method against the baseline on chapter-wise mapping of different ICD versions.
HA and LG denote hierarchical-augmented description and LLM-generated description, respectively. RP denotes
rule-based map generation if the target code is a parent code. Dig, Inf and Resp are respectively the diseases of
the Digestive System, the Intestinal Infectious Diseases and the Diseases of the Respiratory System chapters. The

numbers are the Mean Top-1 Accuracies and the Standard Deviation after five runs.

HA+LG+RG), demonstrated a high degree of con-
sistency with very low standard deviation, the max-
imum being only 0.017. Notably, with the default
parameter values (see Appendix A) Phi-4-mini-
instruct and Mistral-7B-Instruct-v0.3 consistently
produced identical results across all five runs, and
hence resulting in a standard deviation of 0. Qwen3-
8B and Llama-3.1-8B-Instruct showed slight vari-
ations across runs, and yielded a small non-zero
standard deviations (ranging from 0.001 to 0.017).
These low standard deviation values indicate that
the performance of the proposed method is highly
stable.

5.2 Discussion

As shown in table 4, using different terms (i.e. only
the code descriptions, hierarchy-augmented de-
scriptions and LLM generated descriptions) yielded
comparable performance across different chapters
and ICD version mapping directions. While these
metrics provide an overview of Top-1 accuracies
and their consistency, we conducted a qualitative
analysis of the generated maps to evaluate the effec-
tiveness of LLM-generated descriptions in captur-
ing the linguistic variation across ICD versions. We
identified cases where, despite significant vocab-
ulary differences between source and target code
descriptions, using LLM-generated descriptions en-
abled the successful identification of correct maps.
In these cases, the correct mappings did not even
rank within the top 100 predicted codes using the
baseline method. For example, the target ICD-10-
CM code for the ICD-9-CM code 0730 [Ornitho-

Dig Inf Resp
0.67 0.68 0.67
Terms-Only 400 400 00
0.66 0.68 0.68
HA +0.0 +0.0 +0.0
Qwen3-8B 0.68 0.68 0.68
+0.058 40.02 +0.038
Llama-3.1-8B-Instruct 0.64 0.66 0.63
LG +0.041 +0.023 40.04
Phi-4-mini-instruct 0.65 0.66 0.65
+0.0 +0.0 +0.0
Mistral-7B-Instruct-v0.3 0.64 0.66 0.66
+0.0 +0.0 +0.0

Table 4: Comparison of the ICD version mapping perfor-
mance using different description types. Terms-Only
uses only the ICD code descriptions (Baseline). HA
and LG use hierarchical-augmented description and
LLM-generated description, respectively. Results are
presented for specific chapters: Diseases of the Diges-
tive System (Dig), Intestinal Infectious Diseases (Inf),
and Diseases of the Respiratory System (Resp), across
various ICD version mapping pairs: ICD-9-CM to ICD-
10-CM, ICD-10-CM to ICD-9-CM, ICD-10-AM to ICD-
11, and ICD-11 to ICD-10-AM. The numbers are Mean
Top-1 Accuracy * Standard Deviation over five runs.

sis with pneumonia) is A70 [Chlamydia psittaci
infection]. Using the concise clinical description
generated using Owen3-8B, these codes were cor-
rectly mapped. Table 5 shows the LLM-generated
descriptions for these codes. See Appendix E for
more examples.

Furthermore, since the performance gain with
the rule-based prompting (RP) depends on the num-
ber of correct source-to-parent (i.e. the source
codes are mapped to parent target codes) mapping
cases, we evaluated the effectiveness of using the



Ornithosis with pneumonia: Ornithosis with pneumonia, also known as psittaco-
sis or parrot fever, is a zoonotic infection caused by Chlamydia psittaci. It primarily
affects the respiratory system, leading to pneumonia characterized by fever, cough,
and respiratory distress. The disease is transmitted through inhalation of aerosolized
particles from infected birds. Commonly affected body parts include the lungs and
occasionally the liver and spleen. Symptoms may range from mild flu-like illness to
severe pneumonia.

Treatment typically involves antibiotics such as doxycycline or tetracycline.

Chlamydia psittaci infection: Chlamydia psittaci infection is a zoonotic respira-
tory illness caused by the bacterium Chlamydia psittaci, commonly found in birds.
It is also known as psittacosis or parrot fever. The infection typically affects the
lungs, causing pneumonia, and may spread to other organs. Symptoms include
fever, cough, headache, and muscle pain. Transmission occurs through inhalation
of contaminated aerosols from infected birds. It can also cause systemic illness, par-
ticularly in immunocompromised individuals.
, and treatment involves antibiotics such as tetracyclines.

Table 5: Examples of clinical descriptions generated
by Owen3-8B for ICD-9-CM code 0730 [Ornithosis
with pneumonia] and ICD-10-CM code A70 [Chlamy-
dia psittaci infection]. These are equivalent codes as per
the mapping file.

hierarchy-augmented and LLM-generated descrip-
tions to generate the embeddings, by focusing on
these cases. Table 6 shows the chapter-wise av-
erage percentage of correct source-to-parent map-
pings, across mapping ICD-9-CM and ICD-10-CM,
and ICD-10-AM and ICD-11 versions in both di-
rections. The result suggests that using both the
descriptions, i.e. HA + LG, generally achieved a
higher percentage of correct parent mappings than
the baseline.

Dig (%) Inf (%) Resp (%)
Baseline 744(618)  81.9(443)  74.6(26.8)
Qwen3-8B 78.4(689)  863(542)  77.1(23.1)
HA + LG Llama-3.1-8B-Instruct 803(71.0)  89.8(58.8)  77.8(23.4)
Phi-4-mini 75.8(715)  855(55.0)  78.6(24.8)
Mistral-7B-Instruct-v0.3 81.4(69.8)  86.3(542)  82.5(22.8)

Table 6: comparison between the baseline and the pro-
posed method (using hierachy-augmented (HA) and
LLM-generated (LG) descriptions) on Source-to-Parent
code mappings, across various ICD version mapping
pairs: ICD-9-CM to ICD-10-CM, ICD-10-CM to ICD-
9-CM, ICD-10-AM to ICD-11, and ICD-11 to ICD-10-
AM. The numbers are the chapter-wise average correct
percentage of source-to-parent mappings, with the total
number of cases in parentheses.

Likewise, table 7 shows the chapter-wise average
percentage of cases where the rule-based prompt-
ing method generated correct final mappings across
different LLMs. The numbers are comparable
across the different LLMs, with Phi-4-mini having
slightly better results. We analysed the "thinking"
steps of the model for some cases and identified
a key property in the ground-truth mappings from
ICD-9-CM to ICD-10-CM: some ICD-9-CM codes
map to all of their ICD-10-CM siblings, but not to
their parent codes. For example, ICD-9-CM code

Dig (%) Inf (%) Resp (%)
Qwen3-8B 77.2(54.0) 69.6(48.25) 68.9(17.85)
Llama-3.1-8B-Instruct 76.6(56.95) 70.5(53.6) 69.8(18.2)
Phi-d-mini-instruct 77.9(5425)  74.5(00)  78.2(19.5)
Mistral-7B-Instruct-v0.3  76.7(56.75)  68.1(51.75)  73.3(18.75)

Table 7: Evaluation of rule-based prompt (RP) method
to generate the final maps in case of Source-to-Parent
mappings, across different ICD version mapping pairs—
ICD-9-CM and ICD-10-CM, and ICD-10-AM and ICD-
11 in both directions. The numbers are the chapter-wise
average percentage of correct cases generated by RP,
with the total number of correct cases in parentheses.
Dig, Inf and Resp are respectively the diseases of the
Digestive System, Intestinal Infectious Diseases and the
diseases of the Respiratory System.

52107 (Dental caries of smooth surface) is mapped
to ICD-10-CM codes K0261 (Dental caries on
smooth surface limited to enamel), K0262 (Dental
caries on smooth surface penetrating into dentin)
and K0263 (Dental caries on smooth surface pene-
trating into pulp), all of which are the child code
for K026 (Dental caries on smooth surface). How-
ever, our prompt, specifically Rule 1, instructed the
LLM to select the single most appropriate target
option representing a similar level of detail as the
source code description. Consequently, the model
chose the parent code when the individual child
codes were more specific. For example K026 in
the above case (See Appendix G for the detail think-
ing steps used by Qwen3-8B to generate the final
maps).

6 Conclusion

In this work, we proposed an automatic method for
mapping different ICD versions leveraging the rep-
resentational capacities of pre-trained transformer-
based encoders and the reasoning capabilities of
the large language models (LLMs). Specifically, to
address the inherent linguistic variation across ICD
versions, we generate the embeddings using: (1)
the hierarchy-augmented description, and (2) the
LLM-generated description. Furthermore, since
these ICD versions may define some clinical con-
ditions at different granular levels, we propose a
rule-based prompting method to generate the fi-
nal maps for cases where the source codes were
mapped to the parent target codes. Empirically,
we demonstrate the effectiveness of our proposed
method by chapter-wise mapping of ICD-9-CM
and ICD-10-CM, and ICD-10-AM and ICD-11,
across three different chapters.



7 Limitations
We identified the following limitation in our work:

First, in this work, we focused only on the
one-to-one mappings, however, it is also possible
to have one-to-many, many-to-one and many-to-
many maps. For any mapping system, it is crucial
to handle all these cases. Likewise, we did not
extend our experiment to ICD versions in differ-
ent languages (e.g. the German Modification, the
Korean Modification).

Second, several studies have shown that the
LLMs are very sensitive to the input prompt (Sclar
et al.; Lu et al., 2022; Pezeshkpour and Hruschka,
2023). However, in this work, we limit ourselves
to a single prompting template.

Third, in this work, we attempt to capture the
hierarchical information of the ICD system by gen-
erating a simple hierarchy-augmented description.
Even though this approach is simple and produces
comparable results, it is interesting to explore other
techniques, for example, a hyperbolic representa-
tion method (Cao et al., 2020).
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A Implementation Details

Our source code is implemented in Python 3.11
and runs all the experiments on an Nvidia A30
GPU with cuda-12.6. We used Huggingface’s
transformer-v4.51.3 to load the LLMs. We used
sentence-transformers-v4.1.0 to load the SBERT
and all other encoder models. For the clinical
description generation task, we used the default
values for all the hyperparameters, for example,
temperature=1.0 and do_sample=False, and set
the max_new_tokens=512. And for the reason-
ing task, we set max_new_tokens=32768 and en-
able_thinking=True when applying the chat tem-
plate.

B Dataset Details

B.1 Source

We used the ICD-9-CM (version 32) from the Cen-
tres for Medicare and Medicaid Services (CMS)?
and the ICD-10-CM (FY22 release) from the Cen-
ters for Disease Control and Prevention (CDC)°.
Likewise, we used the ICD-10-AM (twelfth edi-
tion) provided by the Independent Health and Aged
Care Pricing Authority (IHACPA)'?. We accessed
the ICD-11 codes via the WHO API (version 2.5)'!.
It is important to note that the WHO API provides
only pre-coordinated ICD-11 codes. Therefore,
we used the parent codes in those cases where the
source codes are mapped to the post-coordinated
codes.

B.2 Chapters

We employed a chapter-wise mapping strategy, con-
centrating on the Infectious Diseases, Diseases of
the Respiratory System, and Diseases of the Di-
gestive System chapters. We used this approach
to limit the search space for the potential maps.
Also, we include all the three- and four-digit codes.
Hence, as shown in Table 8, several codes have no
maps because they are either the immediate parents

8https://www.cms.gov/medicare/coding-billing/
icd-10-codes

9https://www.cdc.gov/nchs/icd/icd—10—cm/files.
html

Ohttps://www. ihacpa.gov.au/resources/
icd-10-amachiacs-twelfth-edition

"https://icd.who.int/icdapi
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or a broader category in the hierarchy. Addition-
ally, this also include the number of cases where
the source codes are mapped to a different target
chapters.

ICDICM-  ICD10CM- ICD10AM-
ICD10CM  ICDYCM ICD11
N  Npm N  NpmN

ICD11-
ICD10AM
Nonm N Npm

Chapters

Diseases of the Digestive 757 274 795 213 617 290 969 437
System

Intestinal Infectious Dis- 889 0 1158 117 921 207 1004 398
eases

Diseases of the Respira- 320 93 369 72 281 74 342 136
tory System

Table 8: Total number of codes (/V) and cases where
there were no maps in the ground truth (N,,,)

C Evaluation of Various BERT Models
for Mapping Between ICD Versions

We evaluated multiple pre-trained BERT models to
generate dense vector representations of ICD code
descriptions. ClinicalBERT (Wang et al., 2023),
BioClinical BERT (Alsentzer et al., 2019), and
UMLSBert (Michalopoulos et al., 2021) are trained
specifically on clinical texts. Sentence-Transformer
(SBERT) (Reimers and Gurevych, 2019) provides
a set of models trained on general text to generate
sentence-level embeddings. In this work, we used
all-mpnet-base-v2 as the SBERT encoder. Table
9 reports the mapping accuracy achieved by each
model. Interestingly, SBERT consistently outper-
formed all other models.

D Evaluation of Large Language Models
(LLMs) for Mapping ICD Versions

We used several open-source LLMs, each with
parameters in the range of 7 to 8 billion, to gen-
erate dense representations of ICD code descrip-
tions and evaluated their performance on mapping
different ICD versions. A tuning-free approach
was adopted: for each code description, we ap-
plied a template function to construct a prompt.
Specifically, we used the knowledge-enhanced
promptEOL and promptSUM templates, whose de-
tails are presented in Table 10. Following standard
practice, all prompts were lowercase and appended
with an end-of-sequence (EOS) token. We used the
final hidden state corresponding to the EOS token
as the final representation.

Table 11 lists the performance of various open-
source LLMs, on mapping different ICD versions.
Although LLMs have significantly more parame-
ters and are trained on much larger text corpora

using substantial computational resources, they
achieve considerably lower mapping accuracies
compared to much smaller encoders, which are typ-
ically trained on less data with fewer compute re-
sources. One possible reason for this performance
gap is the causal language modeling objective used
during pre-training, which optimizes the model to
predict the next token rather than to perform struc-
tured alignment tasks like code mapping.

E Comparison Between LLM-Generated
Summaries and the Code Description
for Mapping ICD Versions

We analyzed the generated maps using LLM-
generated descriptions and terms-only, to evaluate
the effectiveness of the LLM-generated descrip-
tions at capturing the linguistic variation in the
code description across different ICD versions. we
identified cases where the ground-truth target codes
did not appear among the top-100 predicted map-
pings when using only the code descriptions, but
were correctly retrieved when using the summaries
generated by Qwen3-8B. Table 12 presents some
examples of such cases. This suggests that, LLM-
generated texts do provide meaningful context to
generate better embeddings.

F Rules for Handling Varying Granular
Detail in Clinical Conditions

1. Select the most specific target option that
represents the closest clinical equivalent to
the level of detail provided in the source
code.

(a) Example: Source: ‘tuberculosis of hip’
— Target: “Tuberculous arthritis of other
joints’ (hip is a specific joint).

(b) Example: Source: ‘typhoid fever’ — Tar-
get: “Typhoid fever unspecified’ (when
no specific complication is mentioned).

2. In cases where the source code lacks specific
details, select the options that include terms
like ‘unspecified’ or ‘other specified’.

(a) Example: Source: ‘roseola infantum, un-
specified” — Target: ‘Exanthema subi-
tum [sixth disease] unspecified’.

(b) Example: Source: ‘tuberculosis of limb
bones’ — Target: ‘Tuberculosis of other
bones’ (limb bones are part of other
bones).



ICDICM-ICD10CM ICD10CM-ICDICM ICD10AM-ICD11 ICD11-ICD10AM
Dig Inf Resp  Dig Inf Resp  Dig Inf Resp Dig Inf Resp

BioClinicalBERT 0.67  0.57  0.63 0.51 0.53 0.55 0.58 0.53 0.63 043 056 057
Clinical BERT 0.73 0.60  0.68 0.53 056  0.58 0.63 057 0.67 046 057  0.60
UmlsBERT 0.75 058  0.67 0.53 056  0.55 062 056  0.65 047 057 054
SBERT 0.80 0.69 075 0.62 070 059 066 0.66 71 0.60 0.67 61

Table 9: Evaluation of various pre-trained BERT models for mapping between different ICD versions. These models
are used to generate the embeddings for the ICD code descriptions and the potential maps are identified using
cosine-similarity.

PromptEOL
"The term: ’[X]’ means in one word"

PromptSUM
"The term: ’[X]’ can be summarized as"

Knowledge Enhanced PromptEOL

"In clinical terminology, a clinical condition can be described in multiple ways, and
many synonyms are used interchangeably. With this in mind, the term: *[X]” means
in one word"

Knowledge Enhanced PromptSUM

"In clinical terminology, a clinical condition can be described in multiple ways, and
many synonyms are used interchangeably. With this in mind, the term: *[X]" can be
summarized as"

Table 10: Prompt templates to generate dense represen-
tation from LLM

3. Maintain consistency by selecting ‘other’
for ‘other specified’ and ‘unspecified’ for ¢
unspecified’.

(a) Example: Source: ‘other specified tu-
berculosis of central nervous system’ —
Target: ‘Other tuberculosis of nervous
system’.

(b) Example: Source: ‘whooping cough, un-
specified organism’ — Target: “Whoop-
ing cough unspecified species without
pneumonia’.

4. Take into account the clinical context of
the source code and select the option that
reflect common clinical manifestations or
broader categories relevant to its clinical
implications.

(a) Example: Source: ‘chickenpox with
other specified complications’ — Tar-
get: ‘Varicella meningitis’ (meningitis
is a known severe complication).

(b) Example: Source: ‘other specified dis-
eases due to chlamydiae’ — Target:
‘Other chlamydial diseases’.

G Examples of the Thiniking Steps for
the ICD-9-CM Code 52107
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ICD-9-CM to ICD-10-CM ICD-10-CM to ICD-9-CM ICD-10-AM to ICD-11 ICD-11 to ICD-10-AM

Dig Inf Resp Dig Inf Resp Dig Inf Resp Dig Inf Resp

Knowledge. Qwen3-8B 035 024 038 027 022 031 034 031 046 024 033 039
Enh g Llama-3.1-8B-Instruct 042 034 051 033 029 040 041 041 052 026 042 046
P;‘m:“i;UM Phi-4-mini-instruct 0.13 006 0.10 006 005  0.09 004 007 008 007 007 007
P Mistral-7B-Instruct-v0.3 052 042 046 041 042 039 048 046  0.57 035 046 043
Knowledge- Qwen3-8B 030 018 033 020 017 029 029 025 039 022 026 035
Enhmeg Llama-3.1-8B-Instruct 043 033 049 030 029 037 043 040 050 028 041 047
PromotEOL Phi-4-mini-instruct 005 002 004 004 003 006 006 004 008 005 004 006
P Mistral-7B-Instruct-v0.3 059 046 056 041 049 047 054 052 056 042 055 050

Table 11: Evaluation between different pre-trained LLMs on mapping ICD versions. We used knowledge enhanced
prompteEOL and promptSUM to generate the dense representations for the ICD code descriptions.

ICD9CM-ICD10CM

Source

Target

Madura Foot [0394]

Geniculate Herpes Zoster [05311]
Ornithosis with pneumonia [0730]
Condyloma acuminatum [07811]
Hand, foot, and mouth disease [0743]
Blood in stool [5781]

Mycetoma unspecified [B479]

Postherpetic geniculate ganglionitis [B0221]
Chlamydia psittaci infection [A70]

Anogenital (venereal) warts[A630]

Enteroviral vesicular stomatitis with exanthem [B084]
Melena[K921]

ICD10CM-ICD9CM

Enteroviral vesicular pharyngitis [BO85]

Tinea cruris [B356]
Naegleriasis [B602]

Cercarial dermatitis [B653]
Visceral larva migrans [B8§30]
Stannosis [J635]

Herpangina [0740]

Dermatophytosis of groin and perianal area [1103]
Other specific infections by free-living amebae [13629]
Cutaneous schistosomiasis [1203]

Toxocariasis [1280]

Pneumoconiosis due to other inorganic dust [503]

ICD10AM-ICD11

Hypercementosis [K034]
Glossodynia [K146]

Exanthema subitum (sixth disease) [B082]

Tinea unguium [B351]
Penicilliosis [B484]

Cementum dysplasia [DA075]
Burning mouth syndrome[DAOFO]
Roseola infantum [1F01]
Dermatophytosis of nail [1F281]
Talaromycosis [1F2K]

ICD11-ICD10AM

Postdiphtheritic paralysis of uvula [1C1700]

Dermatophytosis of nail [1F281]
Dermatophytosis of foot [1F282]
Talaromycosis [1F2K]

Burning mouth syndrome [DAOFO0]

Pharyngeal diphtheria [A360]
Tinea Unguium [B351]

Tinea Pedis [B353]
Penicilliosis [B484]
Glossodynia [K146]

Table 12: Examples of cases where ground-truth target codes were not in the Top-100 predictions using the ICD
code descriptions but correctly mapped using summaries generated by Qwen3-8B.
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[Prompt]:

Please apply the rules below to answer the following question.

Rules:

1. Select the most specific target option that represents the closest clinical equivalent to the level of detail provided in the given clinical term.
2. In cases where the given clinical term lacks specific details, select the options that include terms like 'unspecified' or 'other specified'.

3. Maintain consistency by selecting 'other' for 'other specified' and 'unspecified' for 'unspecified'.

4. Take into account the clinical context of the given clinical term and select the option that reflect common clinical manifestations or broader
categories relevant to its clinical implications.

Which of the following is the best match for 'Dental caries of smooth surface'?
K026,Dental caries on smooth surface

K0261,Dental caries on smooth surface limited to enamel

K0262,Dental caries on smooth surface penetrating into dentin

K@263,Dental caries on smooth surface penetrating into pulp

Please do not include explanations or code descriptions, just return the code.

[Thinking Steps]:
Okay, let's tackle this question. The user is asking for the best match for 'Dental caries of smooth surface' from the given options. The options are
K026, K0261, K@262, K0263.

First, I need to recall the rules provided. Rule 1 says to select the most specific target option that's the closest clinical equivalent. Rule 2
mentions using 'unspecified' or 'other specified' if the term lacks details. Rule 3 says to use 'other' for 'other specified' and 'unspecified' for
unspecified'. Rule 4 emphasizes considering clinical context and common manifestations.

The clinical term here is "Dental caries of smooth surface”. Looking at the options, K026 is "Dental caries on smooth surface”, which seems to match
exactly. But there are more specific codes: K0261, K0262, K0263. These specify different depths of caries\-enamel, dentin, pulp. The original term
doesn't mention the depth, just the location (smooth surface).

So, since the term doesn't specify the depth, but the options have more detailed categories, I need to check if the original term is general enough. If
the term is only about the location (smooth surface) without depth, then the most specific would be K@26. However, sometimes in coding, if the depth
isn't specified, it might be considered 'unspecified'. But the options don't have an 'unspecified' code here. Wait, the options given are K026, Ko261,
K0262, K0263. The first one is just 'Dental caries on smooth surface', which is the general term. The others are more specific. Since the original term
doesn't mention depth, maybe the correct answer is K@26. But wait, the rules say to select the most specific if possible. However, if the term doesn't
have enough detail, maybe we should pick the most general. Wait, the rules say to select the most specific that's the closest equivalent. But if the
term is 'smooth surface' without depth, then the most specific would be K026, as the others require more detail. However, maybe in some coding systems,
if depth isn't specified, it's considered as unspecified. But the options don't have an unspecified code here. Let me check the options again. The
options are K026, K0261, K0262, K@263. The first one is the general code. So if the term is exactly 'Dental caries on smooth surface', then K026 is the
direct match. However, sometimes in ICD-10 coding, the more specific codes are preferred when possible. But the original term doesn't specify depth,
so maybe K026 is the correct one. But the user's question is about selecting the most specific. Wait, the original term is 'Dental caries of smooth
surface', which is the same as K026. However, the other codes are more specific. But since the original term doesn't specify depth, perhaps the answer
is K@26. Alternatively, maybe the term 'smooth surface' in the original is considered to be the same as K026. Therefore, the best match is K@26. But I
need to make sure. Let me think again. If the original term is 'Dental caries of smooth surface', then the code K026 is exactly that. The other codes
add more details (depth). Since the original term doesn't mention depth, the correct code would be K826. So the answer should be K@26.

[Final Answer]: K026

Figure 5: An example of Qwen3-8B’s thinking steps for generating maps for ICD-9-CM code K026 (Dental caries
of smooth surface).
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