
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ON THE (UN) INTERPRETABILITY OF ENSEMBLES:
A COMPUTATIONAL ANALYSIS

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite the widespread adoption of ensemble models, it is widely acknowledged
within the ML community that they offer limited interpretability. For instance,
while a single decision tree is considered interpretable, ensembles of decision
trees (e.g., boosted-trees) are usually regarded as black-boxes. Although this
reduced interpretability is widely acknowledged, the topic has received only limited
attention from a theoretical and mathematical viewpoint. In this work, we provide
an elaborate analysis of the interpretability of ensemble models through the lens
of computational complexity theory. In a nutshell, we explore different forms of
explanations and analyze whether obtaining explanations for ensembles is strictly
computationally less tractable than for their constituent base models. We show
that this is indeed the case for ensembles that consist of interpretable models,
such as decision trees or linear models; but this is not the case for ensembles
consisting of more complex models, such as neural networks. Next, we perform
a fine-grained analysis using parameterized complexity to measure the impact of
different problem parameters on an ensemble’s interpretability. Our findings reveal
that even if we shrink the size of all base models in an ensemble substantially, the
ensemble as a whole remains intractable to interpret. However, an analysis of the
number of base models yields a surprising dynamic — while ensembles consisting
of a limited number of decision trees can be interpreted efficiently, ensembles that
consist of a small (even constant) number of linear models are computationally
intractable to interpret.

1 INTRODUCTION

Ensemble learning is a widely acclaimed technique in ML that leverages the strengths of multiple
models instead of relying on a single one. This approach has been proven to enhance predictive
accuracy, mitigate variance, and handle imbalanced or noisy datasets effectively (Dong et al. (2020);
Sagi & Rokach (2018)).

However, a significant challenge with ensemble models is their perceived lack of interpretabil-
ity (Guidotti et al. (2018); Sagi & Rokach (2021); Hara & Hayashi (2018); Bénard et al. (2021); Kook
et al. (2022)). The reason behind this is straightforward — utilizing several models simultaneously
makes the decision-making process inherently more complex, and thus more challenging to under-
stand. For instance, while it is feasible to trace the decision-making path in a single decision tree, this
level of straightforward traceability is not achievable in tree ensembles (Sagi & Rokach (2021); Hara
& Hayashi (2018); Bénard et al. (2021)). Despite the general acknowledgment of this issue in the ML
community, there has been only limited exploration of the interpretability of ensemble models, from
a theoretical and rigorous viewpoint.

In this work, we aim to establish a sound theoretical basis for evaluating the interpretability of
ensemble models. Recent research provides a basis for a rigorous study of interpretability by
incorporating the principles of computational complexity theory (Barceló et al. (2020); Wäldchen
et al. (2021); Arenas et al. (2022)). Specifically, Barceló et al. (2020) suggest that by exploring the
computational complexity required to produce various types of explanations on different ML models,
we can improve our grasp of interpretability. There, a model is deemed interpretable if it is possible
to efficiently generate an explanation for its decisions. Conversely, if generating an explanation is
computationally difficult, the model is considered uninterpretable.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

We perform such an analysis for ensemble interpretability, by examining the computational complexity
of deriving various types of explanations for ensembles, in comparison to their individual base models.
We focus on formal notions of explanations that are grounded in logical and mathematical guarantees.
Such explanations are often mentioned within a subfield of interest known as formal explainable
AI (Marques-Silva & Ignatiev (2022)). Providing explanations with mathematical guarantees is vital
in systems where safety is paramount. Moreover, such guarantees enable a thorough evaluation of the
computational complexity involved in deriving explanations. Within this scope, we focus on three
widely recognized formal types of explanations:

1. Sufficient Reason Feature Selection, where, we analyze the complexity of selecting the
k most important features based on the common sufficiency criterion. We also explore
choosing subsets of minimal cardinality, and a probabilistic version of these explanations.

2. Contrastive Explanations, where we study the complexity involved in identifying input
features that represent the smallest change required for altering a given prediction.

3. Shapley Value Feature Attributions, where we analyze the complexity of providing an
exact computation of the highly incorporated shapley value attribution index.

We analyze the computation of these explanations across a broad spectrum of ensembles, including
any that employ either voting or weighted-voting inference methods (such as XGBoost, Adaboost,
Gradient Boosting, Random Forest, etc; a complete formalization can be found in Appendix A).
Moreover, we focus on exploring three common types of base models that are integral to these
ensembles: (i) decision trees, (ii) linear models, and (iii) neural networks. Our reason for choosing
these base-models is that they are both widely used and also cover a broad spectrum of interpretability.
Consequently, we are able to analyze the interpretability of diverse kinds of ensembles.

Our findings present a range of computational complexity results for generating various explanations
across different types of ensembles. These results span strict computational complexity classes
within the polynomial hierarchy (e.g., PTIME, NP, ΣP

2), the counting hierarchy (e.g., #P), and
parameterized complexity classes (Downey & Fellows, 2012) (e.g., FPT, W[1]). These results
highlight how specific parameters, such as the number of base models and their sizes, influence the
complexity of interpreting ensembles.

1.1 MAIN CONTRIBUTIONS

1. Ensembles are computationally hard to interpret. We provide a range of intractability
results (NP, ΣP

2 , #P-Hardness, etc.) for generating multiple types of explanation, for diverse
arbitrary ensembles, emphasizing foundational limitations of computing explanations for
these models.

2. Ensembles are less computationally interpretable. Aiming to show that the ensemble
aggregation itself is responsible for this intractability, we demonstrate strict complexity
separations between the complexity classes corresponding to providing explanations for an
ensemble’s base models (e.g., linear models, decision trees), which can often be obtained in
polynomial or linear time, and their ensembles which are intractable to explain. However,
for expressive base models like neural networks, we prove that no such gaps exist.

3. Shrinking base-model sizes does not make an ensemble more computationally inter-
pretable. Having shown that interpreting arbitrary ensembles is intractable, we adopt a
parameterized complexity (Downey & Fellows, 2012) perspective to investigate whether
simplifying an ensemble can render it efficiently interpretable. Our first result reveals that
under all of our analyzed settings, ensembles with constant-size base models remain in-
tractable (NP, ΣP

2 , #P-Hard, etc.). This confirms that reducing the sizes of base-models
does not improve an ensemble’s computational interpretability.

4. Shrinking the number of trees does make an ensemble more computationally inter-
pretable. A more optimistic result emerges in a different simplified setting, showing that
reducing the number of decision trees in an ensemble (e.g., Random Forests, XGBoost)
enables tractable (poly-time) explanation computation for many explanation types. While
our findings indicate that this complexity is not solely governed by the number k of models
(this is demonstrated by proving W[1], coW[1]-Hardness, etc.), we prove that under certain
relaxations, such as limiting the number of leaves in each tree, the complexity of interpreting

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

them is solely determined by the number k of decision trees (i.e., they are fixed-parameter
tractable). These results pave the way for practical and efficient algorithmic implementations
in this context.

5. An ensemble with only 2 linear models is already computationally uninterpretable.
However, for another type of base-model widely regarded as highly interpretable — linear
models — we demonstrate that an ensemble comprising just two linear models already
becomes intractable to interpret. This demonstrates how rapidly the integration of linear
models can cause a significant loss of interpretability, and give rise to negative complexity
results even in a highly simplified scenario involving just two base models.

We believe that these results provide a rigorous, mathematically grounded, and nuanced understanding
of ensemble interpretability while also highlighting the potential of utilizing complexity theory in
developing a formal understanding of interpretability.

Due to space constraints, we include only a brief outline of the proofs of our various claims within
the paper, and relegate the complete proofs to the appendix.

2 PRELIMINARIES

Complexity Classes. This paper assumes that readers have a basic understanding of standard
complexity classes, including polynomial time (PTIME) and nondeterministic polynomial time (NP
and coNP). We also discuss the common class within the second order of the polynomial hierarchy,
ΣP

2 . This class contains problems that can be solved within NP when provided access to an oracle
capable of solving coNP problems in constant time. It clearly holds that NP, coNP ⊆ ΣP

2 ; and it is
also widely believed that NP, coNP ⊊ ΣP

2 (Arora & Barak (2009)). The paper additionally discusses
the complexity class #P which represents the total count of accepting paths in a polynomial-time
nondeterministic Turing machine. It is widely believed that ΣP

2 ⊊ #P (Arora & Barak (2009)).

Domain. We consider a set of n input features {1, . . . , n} with the assignments: x := (x1, . . . , xn).
We denote the entire feature space by F := {0, 1}n, and focus on different forms of explanations
for interpreting the classifier f : F→ {0, 1}. We study local forms of explanations, meaning those
that interpret a prediction over a specific input instance x. Following common practice, we focus
on Boolean input and output values, which enable a cleaner presentation (Arenas et al. (2021a);
Wäldchen et al. (2021); Barceló et al. (2020)). However, many of our findings are also applicable to
cases involving real values (see Appendix D for additional information).

Ensembles and Base Models. We regard an ensemble as a classification function, comprised of
k different base models (each being a classification function in itself). As we focus on post-hoc
explanations, our interest lies in the inference of these models. This paper focuses on two key types of
ensemble inference: majority voting and weighted voting. In the majority voting setting, we assume
that the prediction is obtained via a majority vote between the k participating base models. In the
weighted-voting setting, we assume that each base-model is associated with a weight and that the
ensemble prediction is based on an aggregation of all individual predictions. All of our complexity
results apply for both families of ensembles. Moreover, we consider three different families of base
model types: (i) Free Binary Decision diagrams (FBDDs), which are a generalization of decision
trees; (ii) Perceptrons (for our analysis of linear models); and (iii) Multi-Layer Perceptrons (MLPs)
with ReLU activation units. A comprehensive and detailed formalization of all base-model types and
ensembles is relegated to Appendix A.

In essence, this formalization covers a broad spectrum of popular ensemble techniques, including
random forests, boosted trees (e.g., XGBoost), along with other types of ensembles that incorporate
decision trees, neural networks, or various linear models (for example, logistic regression, SVM
classifiers, etc.). Although our primary emphasis is on classification models, several of our findings
are also applicable to regression scenarios (see Appendix D for further details), thus making them
relevant for different regression approaches, (e.g., linear regression models, etc.). While we mainly
discuss homogeneous ensembles (composed of identical model types), many of our results carry on
to heterogeneous ensembles (comprising various model types) as well. Further details are provided in
Appendix D.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 EXPLAINABILITY QUERIES

While the concept of model interpretability can vary based on perspective, we focus on several widely
recognized forms of explanations from the literature. In line with previous research (Barceló et al.
(2020); Arenas et al. (2021b); Bassan et al. (2024)), we conceptualize each type of explanation as
an explainability query. An explainability query takes both f and x as inputs and aims to address
specific inquiries while providing some type of interpretation for the prediction f(x). Typically,
explainability queries provide answers to decision problems or to counting problems.

Sufficient reason Feature Selection. We consider the common sufficiency criterion for feature
selection, which is based on common explainability methods (Ribeiro et al. (2018); Carter et al.
(2019); Ignatiev et al. (2019b)). A sufficient reason is a subset of input features, S ⊆ [n], such that
when we fix the features of S to their corresponding values in x ∈ F, then the prediction always
remains f(x), regardless of any different assignment to the features in the subset S. We use the
notation of (xS ; zS̄) to denote an assignment where the values x are assigned to S and the values of z
are assigned to S. We can hence formally define S to be a sufficient reason with respect to ⟨f, x⟩ iff
it holds that for all z ∈ F: f(xS ; zS̄) = f(x).

A typical assumption that is made in the literature suggests that smaller sufficient reasons (that is,
those with a lesser cardinality of |S|) are more useful than larger ones (Ribeiro et al. (2018); Carter
et al. (2019); Ignatiev et al. (2019b)). This leads to a particular interest in obtaining cardinally
minimal sufficient reasons, also referred to as minimum sufficient reasons, and consequently to our
first explainability query:

MSR (Minimum Sufficient Reason):
Input: Model f , input x, and d ∈ N
Output: Yes if there exists some S ⊆ [n] such that S is a sufficient reason with respect to ⟨f, x⟩ and
|S| ≤ d, and No otherwise.

To provide a comprehensive understanding of the complexity results of sufficient reasons, we study
two additional common explainability queries (Barceló et al. (2020); Bassan et al. (2024)) which
represent refinements of the MSR query: (i) The Check-Sufficient-Reason (CSR) query, which given a
subset S validates if it is a sufficient reason; (ii) The Count-Completions (CC) query which represents
a generalized version of the CSR query, where given a subset of features, we return the relative
portion of assignments that maintain a prediction. This form of explanation relates to the probability
of maintaining a classification. Due to space constraints, we relegate the full formalization of the
CSR and CC queries to Appendix C.

Contrastive Explanations. An alternative approach to interpreting models involves examining
subsets of features which, when modified, could lead to a change in the model’s classification (Dhu-
randhar et al. (2018); Guidotti (2022)). We consider a subset S ⊆ [n] as contrastive if changing
its values has the potential to alter the original classification f(x); or, more formally, if there exists
some z ∈ F for which f(xS̄ ; zS) ̸= f(x). Similarly to sufficient reasons, smaller contrastive reasons
are generally assumed to be more meaningful. These represent the minimum change required for
changing the original prediction. Hence, it is also natural to focus on cardinally-minimal contrastive
reasons.

MCR (Minimum Change Required):
Input: Model f , input x, and d ∈ N.
Output: Yes, if there exists some contrastive reason S such that |S| ≤ d for f(x), and No otherwise.

Shapley Values. In the additive feature attribution setting, each feature i ∈ [n] is assigned an
importance weight ϕi. A common method for allocating weights is by using the Shapley value
attribution index (Lundberg & Lee (2017)), defined as follows:

ϕi(f, x) :=
∑

S⊆[n]\{i}

|S|!(n− |S| − 1)!

n!
(v(S ∪ {i})− v(S)) (1)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where v(S) is the value function, and we use the common conditional expectation value function
v(S) := Ez∼Dp

[f(z)|zS = xS] (Sundararajan & Najmi (2020); Lundberg & Lee (2017)).

In our complexity analysis, we assume feature independence, which follows common practice in
computational complexity frameworks (Arenas et al. (2023); Van den Broeck et al. (2022)), as well as
in practical methods for computing Shapley values, such as the KernelSHAP approach in the SHAP
library (Lundberg & Lee (2017)). For a complete formalization, refer to Appendix C.

SHAP (Shapley Additive Explanation):
Input: Model f , input x, and i ∈ [n]
Output: The shapley value ϕi(f, x).

4 ENSEMBLE MODELS ARE LESS INTERPRETABLE

We seek to compare the complexity of solving an explainability query Q for an ensemble, compared
to solving it for the ensemble’s constituent base models. We are particularly interested in cases
where there exists strict computational complexity gaps between the two settings (e.g., solving Q
for a single base model can be performed in polynomial time, whereas solving it for the ensemble
is NP-Complete). To identify these gaps, we use the notion of c-interpretability (computational
interpretability) as defined in Barceló et al. (2020).:
Definition 1. Let C1 and C2 be two classes of models and let Q be an explainability query for which
Q(C1) is in complexity class K1 and Q(C2) is in complexity class K2. We say that C1 is strictly more
c-interpretable than C2 with respect to Q iff Q(C2) is hard for the complexity class K2 and K1 ⊊ K2.

4.1 COMPLEXITY GAP IN SIMPLE BASE MODELS

We begin with examining two types of base-models known for their simplicity and interpretability
— decision trees and linear models. Our results affirm the existence of a complexity gap when an
ensemble consists of these base-models, as depicted in Table 1. Our initial complexity results are
presented in the following proposition, with the proof provided in Appendix (?):

Table 1: The “complexity gap” when interpreting a single model and an ensemble of models in the
case of decision trees and linear models. Cells highlighted in blue represent novel results, presented
here; whereas the rest were already known previously.

Decision Trees Linear Models
Base-Model Ensemble Base-Model Ensemble

Check Sufficient Reason (CSR) PTIME coNP-C PTIME coNP-C
Minimum Contrastive Reason (MCR) PTIME NP-C PTIME NP-C
Minimum Sufficient Reason (MSR) NP-C ΣP

2 -C PTIME ΣP
2 -C

Count Completions (CC) PTIME #P-C #P-C #P-C
Shapley Additive Explanations (SHAP) PTIME #P-H #P-C #P-H

Proposition 1. Ensembles of decision trees and ensembles of linear models are (i) coNP-Complete
with respect to CSR, (ii) NP-Complete with respect to MCR, (iii) ΣP

2 -Complete with respect to MSR,
(iv) #P -Complete with respect to CC, and (v) #P -Hard with respect to SHAP.

Based on these findings, we leverage our previously established notation to deduce an interpretability
separation between ensembles of decision trees/linear models and their corresponding base models:
Theorem 1. Decision trees are strictly more c-interpretable than ensembles of decision trees with
respect to CSR, MSR, MCR, CC, and SHAP. The same result holds for linear models (and ensembles
of linear models) with respect to CSR, MSR, and MCR.

In the previous theorem, there is no complexity gap for the CC and SHAP queries in the context of
linear models. Nevertheless, it is still possible to demonstrate a complexity separation if we assume

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

that the weights and biases are given in unary form, a concept often termed as pseudo-polynomial
time. This is demonstrated in the following proposition, with its proof provided in Appendix F.
Proposition 2. While CC and SHAP can be solved in pseudo-polynomial time for linear models,
ensembles of linear models remain #P -Hard even if the weights and biases are given in unary.
Therefore, assuming that the weights and biases are given in unary, linear models are strictly more
c-interpretable than ensembles of linear models with respect to CC and SHAP.

4.2 NO COMPLEXITY GAP IN COMPLEX BASE MODELS

We revealed a complexity gap between interpreting simple models (decision trees, linear models)
and ensembles comprised thereof. This raises the question of whether a similar complexity gap
is observed with more complex models, such as neural networks. Our findings indicate that this
disparity does not apply to neural networks. In fact, we establish a much stronger claim, confirming
this not only for the explainability queries we examined, but in fact for any explainability query whose
complexity class remains consistent under polynomial reductions. This includes all K-Complete
explainability queries, where K belongs to the polynomial hierarchy (classes such as PTIME, NP,
ΣP

2 , etc.), or their associated counting classes (#P, etc.).
Proposition 3. There is no explainability query Q for which the class of MLPs is strictly more
c-interpretable than the class of ensemble-MLPs.

The proof appears in Appendix G. The reasoning behind this outcome is straightforward — given
that an ensemble of MLPs can be reduced to a single MLP in polynomial time, it follows that there
do not exist two distinct complexity classes (that are closed under polynomial reductions) that differ
in complexity when it comes to interpreting a single model versus an ensemble of such models. To
extend this concept to models beyond MLPs, we define this characteristic and label it as: closed
under ensemble construction.
Definition 2. We say that a class of models C is closed under ensemble construction if given an
ensemble f containing models from C, we can construct in polynomial time a model g ∈ C for which
∀x ∈ F, f(x) = g(x).

Clearly, the aforementioned property correlates also to the expressiveness of the corresponding
base-model, and does not hold for linear models and decision trees (assuming that P̸=NP).

5 IMPACT OF BASE-MODEL COUNT AND SIZE ON ENSEMBLE
INTERPRETABILITY

Up until now, our analysis did not consider any problem-specific paramaters. For example, the
MCR query is polynomial-time solvable for a single decision tree, but becomes NP-Complete for
an ensemble of k models. This raises questions about how different parameters, such as the size of
the participating base-models and the number of base models, contribute to this effect. We explore
these aspects by using parameterized complexity (Downey & Fellows (2012)), an important branch
of computational complexity theory, to study how different parameters affect the entire complexity
of interpreting ensembles. We begin by outlining some fundamental concepts in parameterized
complexity, which are crucial for this study. In this field, we deal with two-dimensional instances
denoted as ⟨X , k⟩ where X represents the original encoding, and k is a specified parameter. We
briefly describe the three main scenarios in parameterized complexity.

1. Problems solvable in |X |O(1) · g(k) time. This is the best-case scenario concerning the parameter
k, and includes problems that are fixed parameter tractable (FPT) concerning k. This implies that
the problem can be solved in |X |O(1) · g(k) time for some computable function g, or intuitively —
that the complexity can be primarily controlled by the parameter k. For instance, the Vertex-Cover
problem is FPT when k is the vertex cover size. This means that if the size of the vertex cover is
limited, the problem can be solved efficiently, even for arbitrarily large graphs.

2. Problems solvable in O(|X |g(k)) time. This class encompasses problems within the complexity
class XP, solvable in O(|X |g(k)) time. When k is fixed, these problems can be solved in polynomial
time. However, unlike in FPT, if |X | becomes very large, these problems may remain challenging
even for relatively small values of k. For a fine-grained analysis of complexity classes within XP,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

⋯⋯

Figure 1: Illustration of some key aspects of our parameterized complexity results: For many
scenarios, even highly simplified ensembles with constant-size base models (k ≥ 3) remain intractable
to interpret. However, simplifying an ensemble by reducing the number of decision trees within it
(for models like Random Forest and XGBoost) does make the computation of various explanations
tractable. Finally, we demonstrate that in numerous cases, ensembles consisting of just k ≥ 2 linear
models already become intractable to interpret, underscoring the challenges of interpreting ensembles
with linear models, even in significantly simplified settings.

researchers have explored the W-hierarchy (Downey & Fellows (2012)), all of which is subsumed
within XP. This includes W [t] for every t ≥ 1. For instance, the Clique problem is W [1]-Complete.
Here, t indicates the depth of a Boolean circuit used for the problem’s reduction (detailed formalization
can be found in Appendix B), and W[P] involves arbitrary depth. A fundamental assumption in
parameterized complexity is that FPT ⊊ W[1] ⊊ W[2] ⊊ . . .W[t] ⊊ W[P] ⊊ XP (Downey & Fellows
(2012)). Hence, while all problems in XP are solvable in polynomial time when k is constant, they
lack FPT algorithms, indicating inefficiency at solving even when they are W[1]-Hard if |X | is
arbitrarily large.

3. Problems that are NP-Hard when k is constant. At the edge of the parameterized spectrum lies
the complexity class para-NP, signifying the highest sensitivity level of the variable k. A problem is
para-NP-Hard concerning k if it is NP-hard even when k is constant. As long as P̸=NP, then XP ⊊
para-NP. An illustrative example is the Graph-Coloring problem, where the parameter k represents
the number of colors. This problem is NP-Hard for any k ≥ 3. Intuitively, this means that, unlike
FPT and XP, even if the number of colors is substantially small, the problem is intractable.

Extensions of parametrized complexity. Finally, we briefly mention extensions of paramterized
complexity classes to either counting problems (Flum & Grohe (2004)) or to higher orders of the
polynomial hierarchy (de Haan (2019)) (classes such as ΣP

2). Specifically, we mention the #W -
hierarchy which is an extension of the W-hierarchy to counting problems. There, too it is widely
believed that FPT ⊊ #W[1] ⊊ #W[2] ⊊ . . .#W[t] ⊊ #W[P] ⊊ XP. Moreover, we mention the
class XNP, which is an extension of XP to the second order of the polynomial hierarchy. It is widely
believed that XNP ⊊ para-ΣP

2 (de Haan & Szeider (2017)). Finally, the concept of para-NP extends
to other classes (de Haan (2019)). A problem is para-K-Hard if it is K-Hard even when k is constant.
This includes para-coNP, para-ΣP

2 , para-#P etc.

5.1 IMPACT OF BASE-MODEL SIZES ON ENSEMBLE INTERPRETABILITY

We start by studying how the sizes of an ensemble’s base models influence its interpretability. In
this setting, we take the size of the largest base model in an ensemble as our parameter k. We prove
that with this parameterization, all of the aforementioned explainability queries become intractable
already for a constant value of k.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Proposition 4. An ensemble consisting of either linear models, decision trees or neural networks,
parameterized by the maximal base-model size is (i) para-coNP Complete with respect to CSR,
(ii) para-NP-Complete with respect to MCR, (iii) para-ΣP

2 -Complete with respect to MSR, (iv) para-
#P -Complete with respect to CC, and (v) para-#P -Hard with respect to SHAP.

The proof of Proposition 4 appears in Appendix H and provides a negative outcome regarding the
interpretability of ensembles. The proposition implies that the uninterpretability of ensembles is
not a result of the sizes of the participating base models, but rather of the aggregation process itself,
such as the majority vote in voting ensembles. This implies that even if we reduce the size of our
corresponding models to a constant size, the ensemble still remains intractable to interpret, and hence
uninterpretable from a complexity perspective. This result applies to all of our base-model types,
ensembles, and explanation forms.

5.2 IMPACT OF NUMBER OF BASE-MODELS ON ENSEMBLE INTERPRETABILITY

A more intricate dynamic emerges when we take the number of base models that participate in
the ensemble as our parameter k. Table 2 shows our parameterized complexity results under this
setting. The results for MLPs are straightforward, since they are closed under ensemble construction.
Decision trees and linear models however reveal an interesting trend — while linear models lose
their tractability with a constant number of models in the ensemble, tree ensembles tend to remain
XP-tractable, meaning they can be solved in polynomial time when the number of base models is
fixed. The following subsections explore these findings in more detail.

Table 2: Parameterized complexity classes for explainability queries of ensemble models,
parametrized by the number of models participating in the ensemble, k.

Decision Trees Linear Models Neural Networks

Check Sufficient Reason coW[1]-C para-coNP-C (k=2) para-coNP-C (k=1)
Minimum Contrastive Reason W[1]-H, in W[P] para-NP-C (k=2) para-NP-C (k=1)
Minimum Sufficient Reason para-NP-H (k=1), in XNP para-ΣP

2 -C (k=5) para-ΣP
2 -C (k=1)

Count Completions #W[1]-C para-#P-C (k=1) para-#P-C (k=1)
Shapley Additive Explanations #W[1]-H, in XP para-#P-C (k=1) para-#P-C (k=1)

5.3 THE NUMBER OF DECISION TREES IN AN ENSEMBLE

1. Problems solvable in O(|X |k) time. We begin by outlining the complexity results for decision
tree ensembles, demonstrating that four of the five queries analyzed (CSR, MCR, CC, and SHAP)
fall within XP, with some also belonging to lower complexity classes in the W-hierarchy.
Proposition 5. For ensembles of k-decision trees, (i) the CSR query is coW[1]-Complete; (ii) the
MCR query is W[1]-Hard and in W[P]; (iii) the CC query is #W[1]-Complete; and (iv) the SHAP
query is #W [1]-Hard and in XP.

Since all these queries fall within XP, they can be solved in O(|X |g(k)) time. However, given that
all previously mentioned queries are W[1]-hard or coW[1]-hard, it is generally accepted that there
are no FPT algorithms capable of solving them (Downey & Fellows (2012)). This leads us to the
understanding that if the number of base models k is constant, there exist polynomial algorithms that
solve the CSR, MCR, CC, and SHAP queries for k ensembles of decision trees. However, assuming
that FPT ⊊ W[1], there are no algorithms that run in |X |O(1) · g(k) time that solve these queries.

Although these queries cannot be solved in FPT time under general conditions, if we assume that
the number of leaf nodes m in each tree is bounded by a constant (even if the total size |fi| of each
tree is arbitrarily large), it is possible to develop FPT algorithms to solve these queries. This follows
directly from the fact that all the aforementioned algorithms have a runtime of O(mk). This leads to
the following conclusion: if the maximal number of leaves in each tree m is constant, there exist FPT
algorithms that solve the CSR, MCR, CC, and SHAP queries for k-ensembles of decision trees (even
if the size |fi| of each base-model, and hence the size of the ensemble |f |, is arbitrarily large).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

2. Problems solvable in O(|X |k) non-deterministic time. The only explainability query that is
not in XP for tree ensembles is MSR. This makes sense since this problem is NP-Hard only for a
single decision tree (Barceló et al. (2020)), and hence it is para-NP-Hard for an ensemble of k trees.
However, we can show a similar behavior, by proving its membership in XNP, the variant of XP
for the second order of the polynomial hierarchy (Flum & Grohe (2004)). This is illustrated in the
following proposition, with its proof provided in Appendix J.

Proposition 6. The MSR query for a k-ensemble of decision trees is para-NP-Hard and in XNP.

Although the MSR query is not in XP, it is possible to show that a relaxed version of this query is.
In this version, we obtain a subset-minimal (or “locally minimal”) rather than a cardinally minimal
sufficient reason. In other words, obtaining a subset S ⊆ [n] which is a sufficient reason, such that
for any i, S \ {i} is not a sufficient reason (refer to the proof in Appendix K):

5.4 THE NUMBER OF LINEAR MODELS IN AN ENSEMBLE

In contrast to tree ensembles, where explanations can be computed in polynomial time when k
is constant, ensembles of linear models become hard to interpret with only a constant number of
base-models. We demonstrate that this property holds across all the complexity classes we analyzed,
as stated in the following proposition, with the proof provided in (?):

Proposition 7. k-ensembles of linear models are (i) para-coNP Complete with respect to CSR;
(ii) para-NP-Complete with respect to MCR; (iii) para-ΣP

2 -Complete with respect to MSR; (iv) para-
#P -Complete with respect to CC, and (v) para-#P -Hard with respect to SHAP.

Tree Ensembles vs. Linear Model Ensembles. The previous subsections showed that decision tree
and linear model ensembles exhibit very distinct behaviors when parameterized by the number of
base models k, giving rise to the following corollary:

Theorem 2. k-ensemble-decision trees are strictly less c-interpretable than k-ensemble-linear models
with respect to CSR, MSR, MCR, CC, and SHAP.

From a practical viewpoint, we can interpret a decision tree ensemble in polynomial time if we
reduce the number of trees. On the other hand, interpreting ensembles of linear models proves to
be intractable, even if we reduce the number of base-models up to a constant. We highlight that the
hardness results apply also to heterogeneous ensembles. In other words, any ensemble that contains
some mixture of models, and contains a constant number of linear models, is intractable to interpret.
We further emphasize this polynomial vs. non-polynomial distinction with the following corollary:

Theorem 3. If the number k of base models is constant, there exist polynomial algorithms for solving
the CSR, MCR, CC, and SHAP queries for k-ensembles of decision trees. However, assuming that
P ̸= NP, there are no polynomial algorithms for solving the CSR, MCR, CC, and SHAP queries for
ensembles of linear models even when k is constant.

Although the MSR query is NP-hard to solve for both a constant number of trees and a constant
number of linear models, it is still possible to demonstrate a distinction between the two. While NP-
complete problems are known to be challenging for optimization, they can sometimes be addressed
using various optimization tools such as Boolean satisfiability (SAT) or satisfiability modulo theory
(SMT) solvers (Moskewicz et al. (2001); Barrett & Tinelli (2018)). In contrast, problems that are
hard for the intractable class ΣP

2 require a worst-case exponential number of calls to an NP oracle.
Therefore, the difference between classifying a problem as NP or ΣP

2 -hard becomes crucial in this
context. In our context, assuming the number of base models k is constant, then solving the MSR
query for ensembles of decision trees is in NP. However, for ensembles of linear models, this problem
is ΣP

2 -Hard, which demonstrates an additional complexity gap.

Finally, we observe that the algorithms designed to solve CSR, MCR, CC, and SHAP for decision tree
ensembles operate within O(mk) time (implying O(|X |k) time), where m represents the maximum
number of leaves in any single tree of the ensemble. Thus, by limiting m to a constant, these queries
can be efficiently solved in FPT time for any k, even if the size of the tree is arbitrarily large. However,
when the size of a linear model is arbitrarily large, these tasks become NP-hard (or coNP-hard) to
solve, even if k is constant. This particularly implies that when assuming that the size of each linear
model |fi| in an ensemble f is arbitrarily large, the CSR, MCR, CC, and SHAP queries are NP (or

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

coNP)-Hard, even when k is constant. However, this is not the case for enembles of decision trees,
which can be interpreted in FPT time even for an unbounded k and for arbitrarily large |fi| models.

6 RELATED WORK

Our work relates to the field of formal XAI, which focuses on explanations with mathematical guar-
antees (Marques-Silva et al. (2020)). Previous studies have discussed the computational complexity
associated with obtaining such explanations for various ML models (Barceló et al. (2020); Wäldchen
et al. (2021); Arenas et al. (2022)). In this paper, our primary focus was on understanding the com-
plexity of ensemble models and their impact on model interpretability. Some preliminary work has
yielded results on the complexity of generating certain types of interpretations for specific ensembles
(e.g., random forest classifiers) (Izza et al. (2021); Audemard et al. (2022; 2023)). Other studies have
investigated the use of parameterized complexity in the context of model interpretability. This ap-
proach has successfully highlighted distinctions between shallow and deep neural networks (Barceló
et al. (2020)) and enabled parameterization based on the size of explanations (Ordyniak et al. (2023)).
In more recent work, Ordyniak et al. (2024) analyzes the complexity of various logic-based reason-
ing queries (primarily local/global abductive and contrastive reasoning queries), parameterized by
different problem parameters, including those related to ensembles. A comprehensive review of all
prior computational complexity results relevant to this study is provided in the appendix.

Another line of work focuses on obtaining explanations with formal guarantees on tree ensembles
by encoding them as propositional logic formulas and then solving these queries with Boolean
satisfiability (SAT) (Izza & Marques-Silva), Maximum satisfiability (MaxSAT) (Ignatiev et al. (2022)),
Mixed integer linear programming (MILP) (Parmentier & Vidal (2021); Chen et al. (2019)) or
satisfiability modulo (SMT) (Ignatiev et al. (2019c)) solvers.

In our work, we used certain terms that have sometimes been discussed in the literature under different
names. For instance, “sufficient reasons” have also been referred to as abductive explanations (Ignatiev
et al. (2019a)). Moreover, subset minimal sufficient reasons are related (though not exactly equivalent
to) prime implicants in the case of Boolean formulas (Darwiche & Marquis (2002)). Finally, a term
akin to the CC query can be found in the literature as the δ-relevant set (Wäldchen et al. (2021); Izza
et al. (2021)). This term pertains to determining whether the completion count surpasses a predefined
threshold δ.

7 LIMITATIONS AND FUTURE WORK

Similarly to other studies on the computational complexity of obtaining explanations, our work is
limited to specific explanation forms and base-model types. Nevertheless, we believe our work still
offers a comprehensive overview of a variety of widely used explanation formats and settings, paving
the way for future exploration of the complexity involved in obtaining additional forms. Furthermore,
while most of our findings can be extended from classification to regression settings, a few specific
results require further investigation to fully address the regression case. These considerations, along
with other potential extensions and open problems related to our work, are discussed in Appendix D.

8 CONCLUSION

We present a theoretical framework based on complexity theory to assess the interpretability of
ensemble models. Our work provides mathematical evidence for the folklore belief: “ensembles are
not interpretable”. However, we prove that a strict difference between base models and ensembles
exists only in simple base models, such as linear models and decision trees, but not in complex
base models, such as neural networks. We then propose a parameterized complexity view of these
results, and derive some unexpected conclusions. Intuitively, we show that reducing the size of
the base models within an ensemble cannot make it interpretable. However, limiting the number
of base models can. This is the case for tree ensembles, which are efficiently interpretable with a
reduced number of trees, but not for linear model ensembles, which are hard to interpret with even a
constant number of base-models. We believe that these results provide novel insights into ensemble
interpretability, and highlight the importance of considering computational complexity aspects for
enriching our understanding of ML interpretability.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Guy Amir, Shahaf Bassan, and Guy Katz. Hard to Explain: On the Computational Hardness of
In-Distribution Model Interpretation. 2024. Technical Report. https://arxiv.org/abs/
2009.11150.

M. Arenas, D. Baez, P. Barceló, J. Pérez, and B. Subercaseaux. Foundations of Symbolic Languages
for Model Interpretability. Proc. 34th Int. Conf. on Advances in Neural Information Processing
Systems (NeurIPS), pp. 11690–11701, 2021a.

M. Arenas, P. Barceló, M. Romero, and B. Subercaseaux. On Computing Probabilistic Explanations
for Decision Trees. Proc. 35th Int. Conf. on Advances in Neural Information Processing Systems
(NeurIPS), pp. 28695–28707, 2022.

Marcelo Arenas, Daniel Baez, Pablo Barceló, Jorge Pérez, and Bernardo Subercaseaux. Foundations
of symbolic languages for model interpretability. Advances in neural information processing
systems, 34:11690–11701, 2021b.

Marcelo Arenas, Pablo Barceló, Leopoldo Bertossi, and Mikaël Monet. The tractability of shap-score-
based explanations for classification over deterministic and decomposable boolean circuits. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 6670–6678, 2021c.

Marcelo Arenas, Pablo Barceló, Leopoldo Bertossi, and Mikaël Monet. On the complexity of
shap-score-based explanations: Tractability via knowledge compilation and non-approximability
results. Journal of Machine Learning Research, 24(63):1–58, 2023.

S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University
Press, 2009.

Gilles Audemard, Steve Bellart, Louenas Bounia, Frédéric Koriche, Jean-Marie Lagniez, and Pierre
Marquis. Trading complexity for sparsity in random forest explanations. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 36, pp. 5461–5469, 2022.

Gilles Audemard, Jean-Marie Lagniez, Pierre Marquis, and Nicolas Szczepanski. Computing
abductive explanations for boosted trees. In International Conference on Artificial Intelligence
and Statistics, pp. 4699–4711. PMLR, 2023.

P. Barceló, M. Monet, J. Pérez, and B. Subercaseaux. Model Interpretability through the Lens of
Computational Complexity. Proc. 33rd Int. Conf. on Advances in Neural Information Processing
Systems (NeurIPS), pp. 15487–15498, 2020.

Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. Handbook of model checking, pp.
305–343, 2018.

S. Bassan, G. Amir, and G. Katz. Local vs. Global Interpretability: A Computational Complexity
Perspective. In Proc. 41st Int. Conf. on Machine Learning (ICML), 2024.

Clément Bénard, Gérard Biau, Sébastien Da Veiga, and Erwan Scornet. Interpretable random
forests via rule extraction. In International Conference on Artificial Intelligence and Statistics, pp.
937–945. PMLR, 2021.

Piotr Berman, Marek Karpinski, Lawrence L Larmore, Wojciech Plandowski, and Wojciech Rytter.
On the complexity of pattern matching for highly compressed two-dimensional texts. Journal of
Computer and System Sciences, 65(2):332–350, 2002.

Brandon Carter, Jonas Mueller, Siddhartha Jain, and David Gifford. What made you do this?
understanding black-box decisions with sufficient input subsets. In The 22nd International
Conference on Artificial Intelligence and Statistics, pp. 567–576. PMLR, 2019.

Hongge Chen, Huan Zhang, Si Si, Yang Li, Duane Boning, and Cho-Jui Hsieh. Robustness verification
of tree-based models. Advances in Neural Information Processing Systems, 32, 2019.

Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk,
Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 5. Springer, 2015.

11

https://arxiv.org/abs/2009.11150
https://arxiv.org/abs/2009.11150

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A. Darwiche and P. Marquis. A Knowledge Compilation Map. Journal of Artificial Intelligence
Research (JAIR), 17:229–264, 2002.

Ronald de Haan. Parameterized complexity results for the kemeny rule in judgment aggregation. In
Proceedings of the Twenty-second European Conference on Artificial Intelligence, pp. 1502–1510,
2016.

Ronald de Haan. Parameterized Complexity in the Polynomial Hierarchy. Springer, 2019.

Ronald de Haan and Stefan Szeider. Parameterized complexity classes beyond para-np. Journal of
Computer and System Sciences, 87:16–57, 2017.

Amit Dhurandhar, Pin-Yu Chen, Ronny Luss, Chun-Chen Tu, Paishun Ting, Karthikeyan Shanmugam,
and Payel Das. Explanations based on the missing: Towards contrastive explanations with pertinent
negatives. Advances in neural information processing systems, 31, 2018.

Kevin Dick, Soda Hall, and Christopher Umans. Improved inapproximability factors for some σ p.
2009.

Xibin Dong, Zhiwen Yu, Wenming Cao, Yifan Shi, and Qianli Ma. A survey on ensemble learning.
Frontiers of Computer Science, 14:241–258, 2020.

Rodney G Downey and Michael Ralph Fellows. Parameterized complexity. Springer Science &
Business Media, 2012.

Jörg Flum and Martin Grohe. Describing parameterized complexity classes. Information and
Computation, 187(2):291–319, 2003.

Jörg Flum and Martin Grohe. The parameterized complexity of counting problems. SIAM Journal on
Computing, 33(4):892–922, 2004.

M. Gardner and S. Dorling. Artificial Neural Networks (the Multilayer Perceptron)— a Review
of Applications in the Atmospheric Sciences. Atmospheric Environment, 32(14-15):2627–2636,
1998.

Niku Gorji and Sasha Rubin. Sufficient reasons for classifier decisions in the presence of domain
constraints. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp.
5660–5667, 2022.

Riccardo Guidotti. Counterfactual explanations and how to find them: literature review and bench-
marking. Data Mining and Knowledge Discovery, pp. 1–55, 2022.

Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Giannotti, and Dino
Pedreschi. A survey of methods for explaining black box models. ACM computing surveys (CSUR),
51(5):1–42, 2018.

Satoshi Hara and Kohei Hayashi. Making tree ensembles interpretable: A bayesian model selection
approach. In International conference on artificial intelligence and statistics, pp. 77–85. PMLR,
2018.

X. Huang, Y. Izza, A. Ignatiev, and J. Marques-Silva. On Efficiently Explaining Graph-Based
Classifiers. arXiv preprint arXiv:2106.01350, 2021.

A. Ignatiev, N. Narodytska, and J. Marques-Silva. On Relating Explanations and Adversarial
Examples. Proc. 32nd Int. Conf. on Advances in Neural Information Processing Systems (NeurIPS),
2019a.

A. Ignatiev, N. Narodytska, N. Asher, and J. Marques-Silva. From Contrastive to Abductive Explana-
tions and Back Again. In Proc. Int. Conf. of the Italian Association for Artificial Intelligence, pp.
335–355. Springer, 2020.

Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva. Abduction-based explanations for
machine learning models. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pp. 1511–1519, 2019b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva. On validating, repairing and refining
heuristic ml explanations. arXiv preprint arXiv:1907.02509, 2019c.

Alexey Ignatiev, Yacine Izza, Peter J Stuckey, and Joao Marques-Silva. Using maxsat for efficient
explanations of tree ensembles. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 3776–3785, 2022.

Y. Izza, A. Ignatiev, N. Narodytska, M. Cooper, and J. Marques-Silva. Efficient Explanations with
Relevant Sets. arXiv preprint arXiv:2106.00546, 2021.

Yacine Izza and Joao Marques-Silva. On explaining random forests with sat.

Yacine Izza, Xuanxiang Huang, Antonio Morgado, Jordi Planes, Alexey Ignatiev, and Joao Marques-
Silva. Distance-restricted explanations: Theoretical underpinnings & efficient implementation.
arXiv preprint arXiv:2405.08297, 2024.

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex: An Efficient
SMT Solver for Verifying Deep Neural Networks. In Proc. 29th Int. Conf. on Computer Aided
Verification (CAV), pp. 97–117, 2017.

Lucas Kook, Andrea Götschi, Philipp FM Baumann, Torsten Hothorn, and Beate Sick. Deep
interpretable ensembles. arXiv preprint arXiv:2205.12729, 2022.

Emanuele La Malfa, Agnieszka Zbrzezny, Rhiannon Michelmore, Nicola Paoletti, and Marta
Kwiatkowska. On guaranteed optimal robust explanations for nlp models. arXiv preprint
arXiv:2105.03640, 2021.

C. Lee. Representation of Switching Circuits by Binary-Decision Programs. The Bell System
Technical Journal, 38(4):985–999, 1959.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. Advances in
neural information processing systems, 30, 2017.

J. Marques-Silva, T. Gerspacher, M. Cooper, A. Ignatiev, and N. Narodytska. Explaining Naive Bayes
and Other Linear Classifiers with Polynomial Time and Delay. Proc. 33rd Int. Conf. on Advances
in Neural Information Processing Systems (NeurIPS), pp. 20590–20600, 2020.

Joao Marques-Silva and Alexey Ignatiev. Delivering Trustworthy AI through formal XAI. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 12342–12350, 2022.

Matthew W Moskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff: En-
gineering an efficient sat solver. In Proceedings of the 38th annual Design Automation Conference,
pp. 530–535, 2001.

S Ordyniak, G Paesani, and S Szeider. The parameterized complexity of finding concise local
explanations. In Proceedings of the Thirty-Second International Joint Conference on Artificial
Intelligence. International Joint Conferences on Artificial Intelligence, 2023.

Sebastian Ordyniak, Giacomo Paesani, Mateusz Rychlicki, and Stefan Szeider. Explaining decisions
in ml models: a parameterized complexity analysis. arXiv preprint arXiv:2407.15780, 2024.

Axel Parmentier and Thibaut Vidal. Optimal counterfactual explanations in tree ensembles. In
International Conference on Machine Learning, pp. 8422–8431. PMLR, 2021.

A. Ralston, E. Reilly, and D. Hemmendinger. Encyclopedia of Computer Science. John Wiley and
Sons Ltd., GBR, 2003. ISBN 0470864125.

H. Ramchoun, Y. Ghanou, M. Ettaouil, and M. Amine Janati Idrissi. Multilayer Perceptron: Architec-
ture Optimization and Training. Int. Journal of Interactive Multimedia and Artificial Intelligence,
2016.

M. Ribeiro, S. Singh, and C. Guestrin. Anchors: High-Precision Model-Agnostic Explanations. In
Proc. AAAI Conf. on Artificial Ontelligence, 2018.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Omer Sagi and Lior Rokach. Ensemble learning: A survey. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, 8(4):e1249, 2018.

Omer Sagi and Lior Rokach. Approximating xgboost with an interpretable decision tree. Information
Sciences, 572:522–542, 2021.

Marco Sälzer and Martin Lange. Reachability is np-complete even for the simplest neural networks.
In Reachability Problems: 15th International Conference, RP 2021, Liverpool, UK, October 25–27,
2021, Proceedings 15, pp. 149–164. Springer, 2021.

Marcus Schaefer and Christopher Umans. Completeness in the polynomial-time hierarchy: A
compendium. SIGACT news, 33(3):32–49, 2002.

Mukund Sundararajan and Amir Najmi. The Many Shapley Values for Model Explanation. In
International conference on machine learning, pp. 9269–9278. PMLR, 2020.

Christopher Umans. The minimum equivalent dnf problem and shortest implicants. Journal of
Computer and System Sciences, 63(4):597–611, 2001.

Leslie G Valiant. The complexity of enumeration and reliability problems. siam Journal on
Computing, 8(3):410–421, 1979.

Guy Van den Broeck, Anton Lykov, Maximilian Schleich, and Dan Suciu. On the tractability of shap
explanations. Journal of Artificial Intelligence Research, 74:851–886, 2022.

S. Wäldchen, J. Macdonald, S. Hauch, and G. Kutyniok. The Computational Complexity of Un-
derstanding Binary Classifier Decisions. Journal of Artificial Intelligence Research (JAIR), 70:
351–387, 2021.

E Wang, P Khosravi, and G Van den Broeck. Probabilistic sufficient explanations. In Proceedings of
the 30th International Joint Conference on Artificial Intelligence (IJCAI), 2021.

Min Wu, Haoze Wu, and Clark Barrett. Verix: Towards verified explainability of deep neural
networks. Advances in Neural Information Processing Systems, 36, 2024.

Jinqiang Yu, Alexey Ignatiev, Peter J Stuckey, Nina Narodytska, and Joao Marques-Silva. Eliminating
the impossible, whatever remains must be true. arXiv preprint arXiv:2206.09551, 2022.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Appendix
The appendix contains formalizations and proofs that were mentioned throughout the paper:

Appendix A contains formalizations of base-model types and ensembles.
Appendix B contains background on parameterized complexity.
Appendix C contains additional formalizations concerning explainability queries.
Appendix D contains information regarding possible expansions of our framework to (i) discrete and
continuous input/output domains, (ii) regression tasks, and (iii) heterogeneous ensembles.
Appendix E contains the proof of Proposition 1.
Appendix F contains the proof of Proposition 2.
Appendix G contains the proof of Proposition 3.
Appendix H contains the proof of Proposition 4.
Appendix I contains the proof of Proposition 5.
Appendix J contains the proof of Proposition 6.
Appendix K contains the proof of Proposition 7.
Appendix L contains the proof of Proposition 8.

A ENSEMBLES AND BASE-MODEL TYPES

In this appendix, we describe the various ensembles that are incorporated in our work and the
corresponding base-model types that consist in these models.

A.1 ENSEMBLE FORMALIZATION

Numerous well-known ensemble techniques exist; however, our research is geared towards post-hoc
interpretation, thus we emphasize the inference phase rather than the training of these ensembles.
Our analysis is focused on ensemble families that utilize either majority voting or weighted-voting
methods during inference. This includes bagging ensembles such as random forests, which implement
majority-voting-based inference, and boosting ensembles like XGBoost, Gradient Boosting, and
Adaboost, which employ weighted voting for inference. Moreover, we will examine how all of our
results hold to either hard-voting or soft-voting inference as well as the potential to apply our findings
to alternative inference techniques such as weighted averaging, or meta-model decision inference.
Such inference techniques are commonly found in other ensemble types like stacking ensembles, or
those utilized in regression tasks.

Majority Voting Inference.

In majority voting inference, the condition f(x) = 1 is satisfied if and only if there are at least ⌈k2 ⌉
base-models within an ensemble f where fi(x) = 1. Put simply, the decision for f(x) is determined
by the majority consensus of the models involved in f . Formally, for any x ∈ F we define f as
follows:

f(x) :=
{
1 if |{ i | fi(x) = 1 }| ≥ ⌈k2 ⌉
0 otherwise

(2)

Weighted Voting Inference.

For weighted voting inference, we consider a weight ϕi ∈ Q that describes the importance of each
model participating in the ensemble. Considering this is a binary classification, we can define the
prediction as being determined by the sign of the total aggregation of all weights. Formally, for any
x ∈ F we define f as follows:

f(x) := step(
∑

1≤i≤n

ϕi · fi(x)) (3)

where step(z) = 1 ⇐⇒ z ≥ 0.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Weighted voting is harder than majority voting: When examining the explainability query Q,
our analysis aims to evaluate the complexity classes of two families of ensembles: majority voting
ensembles, denoted as CM, and weighted voting ensembles, denoted as CW . It is straightforward to
demonstrate that the following relationship is true:
Lemma 1. Let C denote a class of models, CM the class of majority voting ensembles of models from
C, and CW , the class of weighted voting ensembles of models from C. Then for any explainability
query Q it holds that Q(CM) ≤P Q(CW).

Proof. The lemma holds by a simple reduction that starts with a majority voting ensemble f and
constructs a weighted voting ensemble f ′ where each weight is assigned an equal attribution. In other
words: ϕ′

i =
1
n for all i ∈ [n].

The previous statement holds technical significance as it simplifies the process of establishing
complexity class completeness results for both CM and CW :
Observation 1. For proving that the complexity of solving both Q(CM) and Q(CW) are complete
for some complexity class K (closed under polynomial reductions), it suffices to prove membership
for Q(CW) and hardness for Q(CM).

From this point forward, whenever we mention the computational complexity of an ensemble of
models in our text, it applies to both majority voting ensembles and weighted voting ensembles, as
we prove the completeness of complexity classes for both families. We highlight this differentiation
in our proofs, which are applicable to both types of ensembles.

Extension to Soft Voting. In contrast to hard voting that is common in the binary classification
setting, within probabilistic classification soft voting can also be implemented. In this case, each
model fi in the ensemble outputs some given probability value i.e, fi : F→ [0, 1]. Then, in the case
of majority soft voting, the inference is computed by:

f(x) := step(
∑

1≤i≤n

fi(x)
n

) (4)

whereas in weighted soft voting the inference is computed by incorporating equation 3 for each
fi : F→ [0, 1].

We start by defining a property that will be used in the next lemma. We say that a class C of models
f : F → [0, 1] is scalar multiplicative if given some constant λ ∈ R and for all f ∈ C we can
construct, in polynomial time a model f ′ ∈ C for which f ′ = λf .
Lemma 2. Let C denote a class of models, CW the class of weighted (hard) voting ensembles of models
from C, CSW , the class of (soft) weighted voting ensembles of models from C, and CSM, the class of
(soft) majority voting ensembles of models from C. Then for any explainability query Q it holds that
Q(CW) =P Q(CSW) =P Q(CSM). The only restriction is for the condition Q(CW) ≥P Q(CSM)
and it is that CW is scalar multiplicative.

Proof. Given a soft majority voting ensemble f , we can construct a weighted hard (voting) ensemble
f ′ for which each weight ϕ′

i(x) := fi(x)
n . For the other direction, given a weighted hard (voting)

ensemble f , and assuming that CW is scalar multiplicative, we can construct a soft majority voting
ensemble f ′. We do this by, for every i ∈ [n], constructing f ′

i(x) = ϕi · fi(x) (since CW being scalar
multiplicative). Overall, from these two reductions, we get that Q(CW) =P Q(CSM).

For the second part of the claim — we start with a weighted hard voting ensemble f and construct a
weighted soft voting ensemble f ′ by assigning each weight ϕ′

i(x) :=
ϕi(x)
n . For the other direction,

given a weighted soft voting ensemble f we construct a weighted hard voting ensemble f ′ by setting
ϕ′
i(x) := ϕi(x) · fi(x). Overall, this implies that Q(CW) =P Q(CSW).

Lemma 2 establishes that our proofs (including those for membership and hardness) apply to soft-
voting ensembles, both for majority and weighted voting scenarios. This is because our proofs are

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

conducted within the framework of weighted (hard voting ensembles), and all the complexity classes
we consider are closed under polynomial reductions.

(Weighted) Averaging. In the regression setting, another common inference technique involves a
weighted averaging of all base-model predictions. Formally, given a set of k regression base-models
fi : F→ R, then we define f by incorporating equation 4 over each fi. In essence, this is the same
formalization as that of majority soft voting, and hence Lemma 2 holds for this family of inference
models as well. However, when shifting our focus to regression, we must also consider different
formalizations of some of the query forms discussed in our paper, such as the definition of a sufficient
reason. We discuss these specific adjustments for the regression setting under Appendix D.

Meta learner decision. Another common ensemble inference method often used in stacking ensem-
bles involves employing a meta-model to aggregate the outputs of the k base models. In our particular
scenario, this involves a model g : {0, 1}k → {0, 1}, which is trained to classify the outputs from
each base model fi within a specified domain. It is important to note that if g can function as a major-
ity voting system among the k models — a capability all analyzed model types possess, including
MLPs, Perceptrons, FBDDs— then all the hardness findings discussed in this paper automatically
apply to this setup as well. For instance, a stacking ensemble comprising a constant number of
linear base-models remains intractable to interpret, as demonstrated in Proposition 7. However, the
examination of membership results that were presented in this paper will vary depending on the type
of model used for the meta-model g.

A.2 BASE-MODEL TYPES

In this subsection, we formalize the three base-model types that were analyzed throughout the paper:
(i) FBDDs, (ii) Perceptrons, and (iii) MLPs .

Free Binary Decision Diagram (FBDD). (Lee (1959)) A binary decision diagram (BDD) is an
acyclic-directed graph and serves as a graphical model for a Boolean function f : F→ {0, 1}. This
graph embodies the given Boolean function in the following manner: (i) Each internal node v is
associated with a unique binary input feature from the set {1, . . . , n}; (ii) Every internal node v has
precisely two outgoing edges, corresponding to the values {0, 1} which are assigned to v; (iii) In the
BDD, each variable is encountered no more than once on any given path α; (iv) Each leaf node is
labeled either True or False.

Thus, assigning a value to the inputs x ∈ F uniquely determines a specific path α from the root to a
leaf in the BDD. The function f(x) is assigned a 1 if the terminal node leaf is labeled True, and 0 if it
is labeled False. The size of the BDD, denoted as |f |, is measured by the total number of edges in
its graph. Our study focuses on the widely used Free Binary Decision Diagrams (FBDDs), which
permit different varying orderings of the input variables {1, . . . , n} across any two distinct paths, α
and α′. This ensures that no two nodes along any single path α share the same label. Essentially, a
decision tree is a type of FBDD with a fundamental graph structure that is a tree.

Multi-Layer Perceptron (MLP). (Gardner & Dorling (1998); Ramchoun et al. (2016)) An MLP, de-
noted by f , consists of t−1 hidden layers (gj where j ranges from 1 to t−1) and a single output layer
(gt). The layers are defined recursively — each layer g(j) is computed by applying the activation func-
tion σ(j) to the linear combination of the outputs from the previous layer g(j−1), the corresponding
weight matrix W (j), and the bias vector b(j). This is represented as g(j) := σ(j)(g(j−1)W (j) + b(j))
for each j in {1, . . . , t}. The model includes t weight matrices (W (1), . . . ,W (t)), t bias vectors
(b(1), . . . , b(t)), and t activation functions (σ(1), . . . , σ(t)).

In the described MLP, the function f is defined to output f := g(t). The initial input layer g(0) is
denoted by x ∈ {0, 1}n, which serves as the model’s input. The dimensions of the biases and weight
matrices are specified by the sequence of positive integers {d0, . . . , dt}. We specifically focus on
weights and biases that are rational numbers, represented as W (j) ∈ Qdj−1×dj and b(j) ∈ Qdj , which
are parameters that are optimized during training. Given that the model is a binary classifier for
indices {1, . . . , n}, it follows that d0 = n and dt = 1. The primary activation function σ(i) that we
focus on is the ReLU activation function, defined as reLU(x) = max(0, x), except for the output
layer, where a sigmoid function is typically used for the classification. Since our focus is only on the

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

post-hoc interpretation of the corresponding model, we will equivalently assume the existence of a
step function for the final layer activation, where we denote step(z) = 1 ⇐⇒ z ≥ 0.

Perceptron. (Ralston et al. (2003)) A perceptron represents a single-layer MLP or in other words
t = 1. It is defined by the function f(x) = step((w · x) + b) with b belonging to the set of rational
numbers, and w being a matrix in Qn×d1 . Consequently, for the perceptron function f it holds
without loss of generality that f(x) = 1 if and only if (w · x) + b ≥ 0.

B PARAMETERIZED COMPLEXITY BACKGROUND

In parameterized complexity, we deal with parameterized problems L ⊆ Σ∗ × N where Σ is some
finite alphabet. The elements of the paramaterized problems are hence two-dimensional instances
denoted as ⟨X , k⟩ where X represents the original encoding and k is the parameter.

B.1 PARAMETERIZED REDUCTIONS

FPT Reductions. The parameterized complexity classes that we will discuss here are closed under a
specific kind of reductions, known as fixed-parameter tractable (FPT) reductions. A given mapping
ϕ : Σ∗×N→ Σ∗×N between instances from a parameterized problem P1 to another parameterized
problem P2 is an FPT reduction iff it holds that: (i) (X , k) is in P1 if and only if ϕ(X , k) is in P2;
(ii) there exists a computable function g for which k′ ≤ g(k) when k′ is the parameter of ϕ(X , k);
and (iii) ϕ(X , k) can be computed in |X |O(1) · g′(k) time for some computable function g′.

FPT Parsimonious Reductions. For the counting version of FPT reductions (Flum & Grohe (2004)),
given two paramterized counting problems F : Σ∗ × N → N, and G : Σ∗ × N → N we define an
FPT parsimonious reduction from F to G as an algorithm that computes for any instance ⟨X , k⟩ of F
an instance ⟨Y, ℓ⟩ of G in time g1(k) · |X |c such that ℓ ≤ g2(k) and F (X , k) = G(Y, ℓ), for some
computable functions g1, g2 : N→ N, and a constant c ∈ N.

B.2 PARAMETERIZED COMPLEXITY CLASSES.

We now will formalize the parameterized complexity classes that are relevant for this work.

FPT. A problem is fixed parameter tractable (FPT) concerning k iff there exists a |X |O(1) · g(k)
time algorithm solving the problem for some computable function g.

XP and the W-Hierarchy. The class XP describes all problems that can be solved in O(|X |g(k))
time for some computable function g. This class additionally encompasses the W -hirerchy (Downey
& Fellows (2012)), which can be described using boolean circuits. We recall that a boolean circuit C
is represented as a rooted directed acyclic graph. Nodes with no incoming edges are referred to as
input gates, and the singular node without any outgoing edges is the output gate. The internal nodes
of the circuit are designated as OR, AND, or NOT gates. NOT gates are characterized by having
exactly one incoming edge. AND and OR gates can have up to two incoming edges, termed small
gates, or more than two, termed large gates. The depth of a circuit is measured by the longest path
of edges from any input node to the output node. The weft of a circuit refers to the largest number
of large gates on any path from an input node to the output node. An assignment for C maps the
input gates to binary values {0,1}. The hamming weight of an assignment reflects the count of input
gates assigned the value 1. This assignment determines the output at each gate based on its specific
function. A circuit is satisfied by an assignment if it results in the output gate producing a value of 1.

We can now characterize the W -Hierarchy through reductions to the general Weighted Circuit
Satisfiability problem (WCS), which is defined as follows:

Weighted Circuit Satisfiability (WCS[Ct,d]):
Input: A boolean Circuit C with weft at most t and depth at most d, and an integer k,
Parameter: k
Output: Yes, if C has a satisfying assignment of Hamming weight exactly k

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

We then say that a problem Q belongs to W [t] if there is an FPT reduction from Q to WCS[Ct,d], for
some fixed constant d. If there exists an FPT reduction from Q to WCS[Ct,d], where the constructed
circuit C is allowed to have an arbitrary weft t, then we say that Q belongs to W [P]. It is widely
believed that the following relation holds (Downey & Fellows (2012)):

FPT ⊊ W [1] ⊊ W [2] ⊊ . . . ⊊ W [t] ⊊ W [P] ⊊ XP (5)

XNP. Our paper will also briefly discuss the XNP complexity class (de Haan & Szeider (2017)),
which is a generalization of the XP class to the second order of the polynomial hierarchy. XNP
describes the set of problems that can be solved by a non-deterministic algorithm in O(|X |g(k)) time
for some computable function g. It is widely believed that XNP ⊊ para-ΣP

2 .

The #W -Hirerchy. The W -Hierarchy can be extended to its equivalent counting based hiearchy,
which is termed the #W -hierarchy (Flum & Grohe (2004)). Similarly to the W -herarchy, where we
use the problem WCS[Ct,d], we now denote #WCS[Ct,d] as the problem of counting the number of
assignments of Hamming weight k for a Boolean circuit C with depth d and weft t (that is not a fixed
constant, but may depend on the size of C). Similarly to the W -hiearchy, we define #W [t] as any
problem Q for which there exists an FPT parsimonious reduction from Q to #WCS[Ct,d] for some
constant t. If t is arbitrary, then Q is in #W [P]. Similarly to the W -hierarchy, it here too is believed
that:

FPT ⊊ #W [1] ⊊ #W [2] ⊊ . . . ⊊ #W [t] ⊊ #W [P] ⊊ XP (6)

Para-NP. A problem is in para-NP concerning some paramater k if there exists a non-deterministic
algorithm which solves the problem in O(|X |O(1) · g(k)) time for some computable function g. A
problem is para-NP-Hard if and only if the non-parameterized problem is NP-Hard when k is set to
some constant.

Beyond Para-NP. Other relevant classes are the extensions of the para-NP class to other classes, such
as para-coNP, para-ΣP

2 , etc. (Flum & Grohe (2003)). Let K be a classical complexity class. Then
para-K is the class of all parameterized complexity problems P , with P ⊆ Σ∗ × N, for which there
exists an alphabet Π, a computable function g : N → Π∗, and a problem Q ⊆ Σ∗ × Π∗ such that
X ∈ K and for all instances (X , k) ∈ Σ∗ × N of P we have:

(X , k) ∈ P ⇐⇒ (X , g(k)) ∈ Q (7)

Intuitively, the class para-K contains all problems that are in K after a pre-computation involving
the parameter. Put differently, a problem is in para-K if it can be solved by two algorithms P and
A, where P is arbitrary and A has resources that are constrained by K. The pre-computation that
is performed by P involves only the paramater, which then transforms k into a string g(k). Then,
the second algorithm A solves the problems given g(k) from the pre-computation and the original
input x, with resources that are constrained by the complexity class K. We define a problem as
para-K-Hard if there exists an FPT-reduction from any problem in para-K to it. Alternatively, a
problem is para-K-Hard if it is K-Hard even when k is constant. (Flum & Grohe (2003); de Haan
(2016)). It is widely believed that the following relations hold (Downey & Fellows (2012); Flum &
Grohe (2004)):

XP ⊊ para-NP, XNP ⊊ para-ΣP
2 (8)

C ADDITIONAL QUERY FORMALIZATIONS

Here, we define the two remaining queries referenced throughout the paper: the Check-Sufficient-
Reason (CSR) and Count Completions (CC) queries, which have also been analyzed in previous
works (Barceló et al. (2020); Bassan et al. (2024)). We will then provide further details on the
computational complexity analysis of computing Shapley values, as discussed in the paper.

The CSR query answers whether a specific subset S is a sufficient reason. More formally:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Check Sufficient Reason (CSR):
Input: A model f , an instance x, and a subset S.
Output: Yes, if S is a sufficient reason of ⟨f, x⟩, and No otherwise.

For the CC query we consider a relaxed version of the CSR query which instead of validating whether
a specific subset is sufficient or not, asks for the relative portion of assignments maintaining a given
prediction, given that the other features are independently and uniformly distributed. We start by
defining the completion count of a given subset:

c(S, f, x) :=
|{z ∈ {0, 1}|S|; f(xS ; zS̄) = f(x)}|

|{z ∈ {0, 1}|S||
(9)

Now, the CC query is defined as follows:

CC (Count Completions):
Input: Model f , input x, and subset of features S.
Output: The completion count c(S, f, x).

We provide here a more expanded formalization of the shapley-value that is incorporated in the paper.
The shapley value attribution is:

ϕi(f, x) :=
∑

S⊆[n]\{i}

|S|!(n− |S| − 1)!

n!
(v(S ∪ {i})− v(S)) (10)

where v(S) is the value function, and we use the common conditional expectation value function
v(S) := Ez∼Dp [f(z)|zS = xS] (Sundararajan & Najmi (2020); Lundberg & Lee (2017)). We follow
common conventions in frameworks that assessed the computational complexity of computing exact
calculations of Shapley values (Arenas et al. (2023); Van den Broeck et al. (2022)), as well as
practical frameworks that compute Shapley values, such as the kernelSHAP method in the SHAP
libary (Lundberg & Lee (2017)), and assume that each input feature is independent of all other
features, or in other words, every feature i ∈ [n] is assigned some probability value [0, 1], i.e.,
p : [n]→ [0, 1]. These are called product distributions in the work of Arenas et al. (2023) or fully
factorized in the work of Van den Broeck et al. (2022). We then formally define our distributions
Dp(x) as:

Dp(x) :=
(∏
i∈[n];xi=1

p(i)
)
·
(∏
i∈[n],xi=0

(1− p(i))
)

(11)

Clearly the uniform distribution is a special case of Dp, obtained by setting p(i) := 1
2 for every

i ∈ [n].

D FRAMEWORK EXTENSIONS

Input and Output Domains. To make our proofs cleaner and easier to understand, we followed
common conventions (Barceló et al. (2020); Arenas et al. (2022); Wäldchen et al. (2021); Arenas
et al. (2021a); Bassan et al. (2024)) and presented them using boolean input and output values. It
should be emphasized that our analysis is not confined to binary input feature domains but is also
applicable to features with k possible discrete values, where k is any integer. Furthermore, we can
modify our method to include inputs incorporating continuous input domains. We will next provide a
short overview of the various contexts in which this extension is applicable.

Regarding MLP explainability queries, earlier research indicates that the complexity of a satisfiability
query on an MLP extends to scenarios involving continuous inputs. Specifically, the work of (Katz
et al. (2017)) and (Sälzer & Lange (2021)) proves that verifying an arbitrary satisfiability query on an
MLP with ReLU activations, over a continuous input domain, remains NP-complete. The CSR query

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

mentioned in this work, when S := ∅ is akin to negating a satisfiability query, and this implies that
the CSR query in MLPs remains coNP complete for the continuous case as well. We recall that the
complexity of the MSR query for MLPs is ΣP

2 -Complete (Barceló et al. (2020)). This complexity
arises from the use of a coNP oracle, which determines whether a subset of features is sufficient,
essentially addressing the CSR query. Given that CSR can also be adapted to handle continuous
outputs, the logic applied to CSR can similarly be applied to demonstrate that the MSR query can be
extended to continuous domains.

For Perceptrons, the completeness proofs remain valid in a continuous domain for the explainability
queries. The continuity of inputs does not alter the membership proofs, for the same reasons that
hold for MLPs. For hardness proofs, notice that all reductions that were derived from the subset sum
(SSP) problem (or generalized subset sum (GSSP) problem), can be adjusted to substitute any call to
max{zi, zj} in our original proof with max([zi, zj]).

Finally, the proofs that apply to tree classifiers (or ensemble tree classifiers) for queries are equally
valid for continuous inputs. This extension to continuous inputs was demonstrated by previous works
(see for instance, (Huang et al. (2021))). This logic implies also to the complexity of ensembles
consisting of the aggregation of a few decision trees.

Regression and Probabilistic Classification. Another avenue for extending our framework could
involve redefining the explanation forms we have proposed to be more flexible, allowing them to be
applied to different contexts such as probabilistic classification or regression.

Potential relaxations of our definitions might include integrating probabilistic concepts of suffi-
ciency (Wäldchen et al. (2021); Izza et al. (2021); Arenas et al. (2022); Wang et al. (2021)), applying
them within bounded ϵ-ball domains (Wu et al. (2024); Izza et al. (2024); La Malfa et al. (2021)),
or focusing on meaningful distributions (Yu et al. (2022); Gorji & Rubin (2022)). Additionally, our
definitions could be expanded beyond binary classification to address regression or probabilistic
classification scenarios. For instance, in the context of a regression model f : F → R, a sufficient
reason might be defined as a subset S ⊆ {1, . . . , n} of input features such that:

∀z ∈ F ||f(xS ; zS̄)− f(x)||p ≤ δ (12)

for some 0 ≤ δ ≤ 1 and an appropriate ℓp-norm. Other notations explored in our work, such as con-
trastive explanations, can also be adapted within this framework. It is important to note, however, that
some complexity results related to Shapley values may differ when transitioning from classification
to regression. For example, while computing Shapley values for linear regression models is compu-
tationally feasible, the same task may become intractable when applied to classification (Van den
Broeck et al. (2022)).

Homogeneous and Heterogeneous Ensembles. The complexity analysis primarily focuses on
homogeneous ensembles (ensembles containing base models of the same type). However, most of
our results extend to heterogeneous ensembles as well. Clearly, all hardness results for homogeneous
ensembles also apply to heterogeneous ensembles and will always align with the "hardest" complexity
class among the associated models. For example, consider an ensemble composed of both linear
models and decision trees. Suppose that for some explainability query Q, interpreting an ensemble of
linear models is K1-Complete for a complexity class K1, and interpreting an ensemble of decision
trees is K2-Complete for a complexity class K2. If we assume, without loss of generality, that
K1 ⊊ K2, then a heterogeneous ensemble consisting of both linear models and decision trees will be
K2-Hard. This holds for both our non-parameterized results (Section E) and parameterized results
(Section 5). For instance, according to Proposition 1, for an ensemble comprising FBDDs and
Perceptrons, computing the MSR query would be ΣP

2 -Hard. Furthermore, based on Proposition 5 and
Proposition 7, obtaining the MCR query for a heterogeneous ensemble containing both Perceptrons
and FBDDs is para-NP-Hard (though when the ensemble consists only of FBDDs, this query is in
coW[1]).

E PROOF OF PROPOSITION 1

Proposition 1. Ensembles of FBDDs and ensembles of Perceptrons are (i) coNP-Complete with
respect to CSR, (ii) NP-Complete with respect to MCR, (iii) ΣP

2 -Complete with respect to MSR,
(iv) #P -Complete with respect to CC, and (v) #P -Hard with respect to SHAP.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Proof Sketch. We build upon a proof from (Izza & Marques-Silva) that reduces DNF formulas
to random forest models to demonstrate that computing prime implicants for random forests is
DP -Complete. We expand this by showing that DNF formulas can be transformed into ensembles of
FBDDs or Perceptrons in polynomial time, fitting our broader category of poly-subset constructable
functions which efficiently represent any disjunction of literals. We confirm that FBDDs and
Perceptrons belong to this category and proceed to obtain the complexity of various queries through
reductions: the CSR query from the TAUT problem, the MCR query from the Vertex-Cover problem,
and the MSR query from the Shortest-Implicant-Core problem (Umans (2001)). We note that
while (Audemard et al. (2022)) asserts to have established the hardness for the MSR query through
a reduction from minimal unsatisfiable sets to DNFs, there is a noted technical gap in this proof
(details in Appendix 5), also observed in other similar proofs (Huang et al. (2021)). To the best of our
knowledge, we are the first to address this issue effectively with a non-trivial approach, enabling us
to confirm ΣP

2 -Hardness for DNFs and related ensembles of poly-subset-constructable functions.

Full Proof. We will, in fact, prove this claim for a broader class of models, which we define as
poly-subset-constructible models (and for the MCR query we will require an additional constraint).
We will then demonstrate that both FBDDs and Perceptrons fall into this category. Intuitively, poly-
subset-constructable models are those for which, given a partial assignment over a subset xS , we
can polynomially construct a function that returns 1 if and only if the features in S are assigned the
values in x. More formally:
Definition 1. We say that a class of models C is poly-subset constructable iff given an assignment
x ∈ F, and a subset S ⊆ {1, . . . , n}, it is possible to construct a model f ∈ C, in polynomial time,
for which for all y ∈ F it holds that:

f(y) =

{
1 if yS = xS

0 otherwise
(13)

We will start by proving that each one of the models analyzed within our framework are poly-subset
constructable:
Lemma 3. Perceptrons, FBDDs, and MLPs are all poly-subset constructable.

Proof. We will begin with FBDDs. Given an assignment x and a subset S, we can simply construct
an FBDD with a single accepting path α that corresponds to the partial assignment of the features in
S with their respective values from x. It clearly follows that ∀z ∈ F, f(xS ; zS̄) = 1. Additionally,
for any y ∈ F that does not match the assignments of x on S, we have that f(y) = 0.

For Perceptrons, given some input x ∈ F and a subset S, we construct a perceptron with n input
features. The single hidden layer h1 is constructed as follows:

h1
i :=

1 if xi = 1 ∧ i ∈ S

−1 if xi = 0 ∧ i ∈ S

0 if i ̸∈ S

(14)

We additionally define the single bias term as follows:

b1 := −[
∑

1≤i≤n

(h1
i · xi)] +

1

2
(15)

It clearly satisfies that: ∑
1≤i≤n

(h1
i · xi) = |{i ∈ S ∧ xi = 1}| (16)

Moreover, it holds that:∑
i∈S∧xi=1

zi · h1
i +

∑
i∈S̄∧xi=0

zi · h1
i =

∑
i∈S∧xi=1

zi −
∑

i∈S̄∧xi=0

zi (17)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Now assume some assignment (xS ; zS̄) for any z ∈ F. It satisfies that:

f(xS ; zS̄) = step(
∑

i∈S∧xi=1

(xS ; zS̄)i −
∑

i∈S̄∧xi=0

(xS ; zS̄)i − [
∑

1≤i≤n

(h1
i · xi)] +

1

2
) =

step(|{i ∈ S ∧ xi = 1}| −
∑

i∈S∧xi=1

zi · h1
i +

1

2
) = step(

1

2
) = 1

(18)

Now assume some assignment y ∈ F for which S does not match the values over x. It holds that:

f(y) = step(
∑

i∈S∧xi=1

yi −
∑

i∈S̄∧xi=0

yi − [
∑

1≤i≤n

(h1
i · xi)] +

1

2
) =

step(|{i ∈ S ∧ xi = 1 ∧ yi = 1}| − |{i ∈ S ∧ xi = 0 ∧ yi = 1}| −
∑

1≤i≤n

(h1
i · xi) +

1

2
) = 0

(19)

Hence concluding the construction.

The construction for Perceptrons clearly holds for MLPs as well.
Lemma 4. Let ϕ be a DNF ϕ := t1 ∨ . . . ∨ tn formula, and let C be a poly-subset constructable
class of functions. Then, it is possible to construct, in polynomial time, a hard voting ensemble f
consisting of 2n− 1 base-models fi ∈ C.

Proof. We follow a similar reduction to the one proposed in previous work, which demonstrated that
obtaining a prime implicant on a random forest is DP -Complete (Izza & Marques-Silva). The key
distinction here is that we need to show that our result holds for any poly-subset constructable class.

Let ϕ := t1 ∨ . . . ∨ tn be a DNF formula. First, we construct n models ⟨f1, . . . , fn⟩, where each
model fi corresponds to its respective clause ti. This construction can be completed in polynomial
time, given that we assume C is poly-subset constructable. Each clause ti corresponds to a partial
assignment of values based on the literals that appear in ti. For example, if ti := xi ∧ xj ∧ xk, then ti
represents a partial assignment of the features S := {i, j, k} with the corresponding assignment of
101.

We can now leverage the fact that C is poly-subset constructable to build a model fi correspond-
ing to each ti such that for all i ∈ {1, . . . , n}, fi(x) = ti(x). To complete the ensemble f ,
we add n − 1 models that always return True, denoted as f t

1, . . . , f
t
n−1. Our final ensemble is

f := ⟨fi, . . . , fn, f t
1, . . . , f

t
n−1⟩. If ϕ is true, then at least one clause ti is satisfied, meaning that at

least n > 2n−1
2 models in f return True, and therefore f is True. If ϕ is false, all models f1, . . . , fn

return False, which means that at least n > 2n−1
2 models return False, and thus f is false. This

concludes the construction.

Lemma 5. Let C be some poly-subset constructable class. Then the MSR query for a k ensemble of
models from C is ΣP

2 -Complete.

Proof. Membership is evident since we can guess an assignment of features S of size k, and then use
a coNP oracle to verify that S is indeed sufficient. In other words: ∀z ∈ F, f(xS ; zS̄) = f(x). Next,
we will prove ΣP

2 -Hardness. We begin by briefly discussing a proof proposed by Audemard et al.
(2022), highlighting a technical gap in this proof, which also appears in a different proof from Huang
et al. (2021). Finally, we will present an alternative proof that resolves this technical issue.

A techincal gap in previous reductions. We begin by referring to a previous reduction proposed
by Audemard et al. (2022) (Proposition 5), which demonstrates that the MSR query for random-forest
classifiers is ΣP

2 -Hard. This is essentially the same objective as our proof, though in our case, we
extend the result to a more general class of classifiers (those that are poly-subset constructible)
rather than just decision trees. The proof relies on a reduction from the problem of finding minimal

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

unsatisfiable sets (MUSs) of size k, a problem frequently discussed in this context (Ignatiev et al.
(2019a)). We will first point out an existing gap in this proof, which appears to be similar to gaps in
other proofs suggested in previous works (Huang et al. (2021), Proposition 7). Afterward, we will
present how this gap can be addressed, and demonstrate that the aforementioned problem is indeed
ΣP

2 -Hard. To the best of our knowledge, we are the first to propose a solution to resolve this gap.

The approach behind the reductions in Audemard et al. (2022); Huang et al. (2021) begins with a
given CNF ϕ := c1 ∧ . . . ∧ cm and an integer k. For each clause, the reductions define ti := ci ∨ si,
introducing a new variable si (referred to in Huang et al. (2021) as the selector variable, and denoted
in Audemard et al. (2022) by yi). Then, they define ϕ′ := t1 ∧ t2 ∧ . . . ∧ tm, which is still a valid
CNF. Negating ϕ′ produces a DNF equivalent to ¬ϕ′. The work in Huang et al. (2021) halts the
reduction at this point, as their focus is on proving hardness for DNF classifiers. However,Audemard
et al. (2022) proceeds further by reducing the DNF classifier to an ensemble of decision trees (via a
procedure similar to the one provided in Lemma4, which reduces a DNF to a more general ensemble
of poly-subset constructable functions). Next, both reductions assume x to be a vector containing
only “1”s. The core argument in both reductions is that any selection of k clauses {c′1, . . . , c′k} from
c1, . . . , cm corresponds to selecting k features {s′1, . . . , s′k} from s1, . . . , sm. Consequently, they
claim that a minimal unsatisfiable set in ϕ of size k corresponds to a sufficient reason of size k
involving the variables s1, . . . , sm in f .

However, we identify a technical gap in these reductions. In the DNF proof from Huang et al. (2021)
and the decision tree ensemble proof from Audemard et al. (2022), the features that can be included
in a sufficient reason may include not only the selector variables s1, s2, . . . , sm (or equivalently
y1, y2, . . . , ym in Audemard et al. (2022)), but also the original variables x1, x2, . . . , xn from the
CNF ϕ. Consequently, a sufficient subset may be chosen that includes both selector and original
variables, which does not guarantee equivalence between the two problems.

An alternative approach that avoids the technical gap. Instead of reducing minimal unsatisfiable
sets to DNFs and then transforming them further, we will take a different approach. We will reduce
from the ΣP

2 -Complete Shortest Implicant Core problem (Umans (2001)) for DNFs, a problem that is
related but not entirely equivalent to finding cardinally minimal unsatisfiable sets.

It is already known that computing the MSR query over MLPs is ΣP
2 -Hard (Barceló et al. (2020)), and

this complexity result can be derived from the Shortest-Implicant-Core problem, not through DNFs,
but rather through boolean circuits. Specifically for MLPs, this reduction leverages the fact that any
boolean circuit can be reduced to an MLP, making the reduction more adaptable. For ensembles,
however, a more complicated approach is needed (which will enable its incorporation to DNFs). We
begin by introducing the Shortest Implicant Core problem, first defining an implicant, followed by
the formal definition of the Shortest-Implicant-Core problem:

Definition 2. Consider ϕ as a boolean formula over the literals {x1, . . . , xn}. An implicant C :=
x′
1x

′
2, . . . x

′
l of ϕ is defined as a partial assignment over ϕ’s literals (for all 1 ≤ i ≤ l, x′

i is equal to
either xj or xj and each x′

i contains an instance of a different literal), ensuring that any completion
of this assignment results in ϕ evaluating to true.

For example for the DNF furmula: ϕ := x1x2x3 ∨ x1x2x3, we have that x1x2 is an implicant of
ϕ, since any completion of x1x2 evaluates ϕ to True. We now define the Shortest-Implicant-Core
problem as follows:

Shortest Implicant Core:
Input: A DNF Formula ϕ := t1 ∨ . . . ∨ tn, and an integer k.
Output: Yes, if there exists an implicant C ⊆ tn of ϕ of size k, and No otherwise.

It is firstly important to mention that the Shortest-Implicant-Core problem is generally more suitable
than the Shortest-Implicant problem for a reduction from the MSR query since the core tn is important
for representing the specific local assignment x ∈ F for which the sufficient reason is provided.
Additionally, since we are working with DNFs and not general boolean circuits, it is known that
the Shortest-Implicant problem for DNFs is GC-Complete (Umans (2001)), which is a class that is
strictly less complex than ΣP

2 .

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

We will start by briefly presenting the proof presented by Barceló et al. (2020) for reducing the
Shortest Implicant Core problem to the problem of solving the MSR query for MLPs. We will then
discuss the desired modifications needed in order to produce this problem for ensembles containing
poly-subset constructable functions instead.

For example, let us assume we have the following DNF formula:

ϕ := x1x5 ∨ x2x6 ∨ x3x6 ∨ x1x2x4 ∨ x1x3x5 (20)

A straightforward approach to reduce Shortest Implicant Core to MSR is to construct an MLP f that
is equivalent to ϕ, which is feasible since any Boolean circuit can be reduced to an MLP (Barceló
et al. (2020)). For the input x, we can create an input where the features corresponding to tn (in this
case, features 1, 3, and 5 are in C) are set to 1, while the remaining features can be assigned other
values.

There is an issue with this construction. The problem is that the sufficient reason in the constructed
MLP may include features that are not part of tn. Specifically, if we set k := 2, we observe that no
implicant of size 2 exists for ϕ, yet setting features 3 and 6 to 1 determines the prediction of f(x),
indicating that a sufficient reason of size 2 does exist. To address this issue, Barceló et al. (2020)
suggests constructing a different formula as follows:

ϕ′ :=

3∧
i=1

(
x1x5 ∨ xi

2x
i
6 ∨ x3x

i
6 ∨ x1xi

2x
i
4 ∨ x1x3x5

)
(21)

We can then once again transform this formula into an equivalent MLP f , which is possible since,
as mentioned before, any Boolean circuit can be transformed into an MLP. More generally, this
construction is formalized as follows. Let Xc denote the set of variables that are not mentioned in tn.
Then, ϕ′ will be defined as:

ϕ(i) := ϕ[xj → xi
j , for all xj ∈ Xc]

ϕ′ :=

k+1∧
i=1

ϕ(i)
(22)

However, in our case, the following construction does not apply directly. This is because, as proven
in Lemma 4, any DNF can be transformed into an equivalent ensemble of poly-subset constructable
functions. However, this does not necessarily imply that we can reduce any Boolean circuit to such
models, and since ϕ′ is no longer a DNF, we cannot apply the same reduction as in (Barceló et al.
(2020)).

Instead, we will address this issue differently. Starting with the DNF ϕ, we will create a new DNF,
ϕ′, which includes only the literals from tn. We will subsequently demonstrate that any implicant
C ⊆ tn for ϕ also serves as an implicant for ϕ′. To facilitate this construction within polynomial
time, we rely on the fact that any term ti in ϕ, aside from tn, has at most a constant size. We will thus
formalize our problem as follows:

Shortest Implicant Core (Constant DNF):
Input: An integer k, a constant integer d = O(1), and a DNF Formula ϕ := t1 ∨ . . . ∨ tn, where for
any 1 ≤ i ≤ n− 1, ti contains less than d literals.
Output: Yes, if there exists an implicant C ⊆ tn of ϕ of size k, and No otherwise.

Claim 1. Shortest Implicant Core (Constant DNF) is ΣP
2 -Hard.

Proof. We note that this proof directly follows from the hardness proof of the ΣP
2 -hardness of the

Shortest-Implicant problem (Umans (2001)). The hardness is established using a reduction from
QSAT2, where each term in ϕ is constructed from a 3-DNF formula conjoined to another constructed
3-DNF. This setup results in a DNF where each term in ϕ is of constant size. Consequently, it

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

follows that the Shortest Implicant Core, where each term in {t1, . . . , tn−1} is of constant size, is
also ΣP

2 -hard to decide.

We will first demonstrate how, from a DNF ϕ := t1 ∨ . . . ∨ tn where the size of any {t1, . . . tn−1}
is bounded by some d, we can construct another DNF ϕ′ in polynomial time and size, where ϕ′

exclusively includes literals from tn. This approach allows us to later use tn directly as our desired
x ∈ F in the reduction. We will also demonstrate that any implicant C ⊆ tn for ϕ equally serves as
an implicant C ⊆ tn for ϕ′.

The construction. The idea is that if a term ti in ϕ includes literals not present in tn, we can
“eliminate” these non-tn elements by iterating over all possible assignments that cover the literals not
included in tn (and this number is polynomial, as each term in ϕ is of constant size). Formally, let
there be a DNF ϕ := t1 ∨ t2 ∨ . . . tn. For each ti where 1 ≤ i ≤ n− 1, let us denote ri as the subset
of literals from ti which do not participate in tn. First, we define ϕ′ to be the disjunction of any ti
for which 1 ≤ i ≤ n− 1 and ri is empty (in other words the “part” of the DNF that only contains
assignments of literals that appear in tn).

Now, for each ti, if ri is not empty, we consider every subset S ⊆ {t1, . . . , tn−1} where the
size of S is j ≤ 2|ri|. We use {xi

1, x
i
2, . . . , x

i
l} to represent the literals participating in ri. By

iterating through S, we can verify whether any potential assignment for {xi
1, x

i
2, . . . , x

i
l} is en-

compassed by S ∪ ti. Consider, for example, ri := x1x7. The literals involved are {x1, x7}.
Assume S := [x1x7x8], [x1x8x9], [x1x7]. Here, every potential assignment to x1x7 (which in-
cludes [x1x7], [x̄1x7], [x1, x̄7], [x̄1x̄7]) is encompassed by S ∪ ti. Another example of a subset
S such that S ∪ ti covers all assignments is: S := {[x1x5], [x1x7x5]}. However, the subset
S := [x1x7], [x1x7], [x1x7] fails to enable S ∪ ti to cover all assignments since it misses the assign-
ment x1x7. It is worth noting that validating whether S covers all literal assignments can be done
in linear time with respect to |S|, as each ti ∈ S accounts for covered assignments, allowing us to
save each covered assignment and, after iterating through the entire S, check whether all assignments
were covered.

For each ti, we initatie a set Si. For each S that we iterate on concerning ti, if we have that S ∪ ti
covers all assignments of literals of ri we will add

∧
tl∈S rl to Si. Now, we are in a position to define

our refined DNF formula:

ϕ′′ := ϕ′ ∨ [
∨

1≤i≤n−1

[
∨

tl∈Si

tl]] ∨ tn (23)

We first note that the construction of ϕ′′ is polynomial. For each ti we iterate over all subsets of size
2|ri| or less. Overall the number of subsets we iterate on is bounded by:

∑
1≤i≤n−1

(∑
1≤j≤2|ri|

(
n

j

))
≤

∑
1≤i≤n−1

(∑
1≤j≤2|ri|

nj
)
≤

∑
1≤i≤n−1

(
2|ri| · n2|ri|

)
≤

∑
1≤i≤n−1

(
2d · n2d

)
≤ n ·

(
2d · n2d

) (24)

and since d is constant, the derived term is polynomial in n. We have that both the runtime of
constructing ϕ′′ as well as the size of ϕ′′ are polynomial in n. We now will prove the following
lemma regarding the construction:

Claim 2. Any C ⊆ tn is an implicant for ϕ if and only if it is an implicant for ϕ′′.

Proof. If C ⊆ tn is an implicant, this indicates the existence of a subset S ⊆ {t1, . . . , tn} such that
the partial assignment C ensures any completion of C within

∨
tl∈S tl evaluates to true (thereby

guaranteeing that any completion of C within ϕ also evaluates to true). Initially, we assume that each
tl ∈ S incorporates literals from tn. This leads to the identification of this subset as a subset of terms
in ϕ′, and consequently in ϕ′′. Thus, we identify a subset S′ ⊆ {t′1, . . . , t′m}, where {t′1, . . . , t′m}
represents the terms of ϕ′′, satisfying

∨
tl∈S tl =

∨
tl∈S′ tl. Therefore, any extension of C in

∨
tl∈S tl

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

that holds true, ensures that any extension of C in
∨

tl∈S′ tl is true (and by extension, any completion
of C in ϕ′′). This leads us to conclude that C is also an implicant of ϕ′′.

Revisiting our earlier notation, let ri represent the set of literals from ti that are absent in tn. For
any tl ∈ S where rl is non-empty, it is required that all assignments to the literals of rl are covered
by S (failing which, there will be an assignment making

∨
tl∈S tl untrue). Essentially, S consists

of each ti where ri is non-empty, including terms that cover all assignments for ri, and potentially
terms where ri is empty (which would then be included in ϕ′). We observe that any assignment
covering all assignments for ri can be at most of size 2|ri|. This assignment will be generated by
our approach and incorporated within

∨
ti∈S ti and subsequently in ϕ′′. Consequently, we identify a

subset S′ ⊆ {t′1, . . . , t′m}, where {t′1, . . . , t′m} are the terms of ϕ′′, such that
∨

tl∈S tl =
∨

tl∈S′ tl.
Thus, any completion of C over

∨
tl∈S tl that proves true, equally confirms that any completion of C

over
∨

tl∈S′ tl is true (and thus any completion of C over ϕ′′ is true). Ultimately, this demonstrates
that C is also a prime implicant of ϕ′′.

For the second direction, let us assume that C is an implicant for ϕ′′. Consequently, there is a subset
S ⊆ {t′1, . . . , t′m} of terms from ϕ′′, denoted by {t′1, . . . , t′m}, where any completion of C over∨

tl∈S′ tl invariably results in true (thus guaranteeing any completion of C over ϕ′′ is true). If S is
entirely within ϕ′, it follows that S is also part of ϕ, and therefore, there exists a corresponding set
S′ ⊆ {t1, . . . , tn} in which any completion of C over

∨
tl∈S tl is true, as is any completion of C

over ϕ. Therefore, C is also an implicant of ϕ.

Now, if S includes terms that are not from ϕ′, these must be assignments in the form of
∧

tl∈S′′ rl,
where S′′ is a subset of {t1, . . . , tn} and covers all potential assignments over the literals of ri for
some ti ∈ {t1, . . . tn}. Consequently, we can select the terms from each S′′, as well as those from
ϕ′, to form a corresponding subset S′ ⊆ {t1, . . . , tn}. It is important to note that all terms in S′ that
lack any literals from tn are part of ϕ′ and thus appear equivalently in both S and S′. Additionally,
for any term tl ⊆ S′ where rl ̸= ∅, all assignments over the literals in rl are covered by both S and
S′. Therefore, we conclude that

∨
tl∈S tl =

∨
tl∈S′ tl; thus, if any completion of C confirms that∨

tl∈S tl is true, it also confirms that
∨

tl∈S′ tl is true (and thus ϕ). Ultimately, this shows that C is
also a prime implicant of ϕ, completing the proof of the claim.

This claim proves that a prime implicant C ⊆ tn of size k exists for ϕ if and only if a prime implicant
C ⊆ tn of size k exists for ϕ′′, thus concluding that the Shortest Implicant Core problem for constant
DNF is ΣP

2 -Hard.

Concluding the reduction. We now finalize our proof for reducing the Shortest-Implicant-Core
(Constant DNF) to the MSR for an ensemble of poly-subset constructable functions. Given a tuple
⟨ϕ,C, k, d⟩, we can construct ϕ′ from ϕ in polynomial time, a task feasible particularly because
d is constant. Utilizing Lemma 4, we convert ϕ′ into an equivalent ensemble f of poly-subset
constructable functions. Notably, the literals in ϕ′ are exclusively those from tn. Therefore, we use
tn to construct our input vector, where any positive assignment in C is represented as a “1” in x and
any negative assignment as a “0”. For example, if tn := x1x2x3, we would set x := (101).

Now, since the input x includes only features present in f , we can assert that an implicant in tn of size
k for ϕ′ exists if and only if a sufficient reason of size k exists for ⟨f, x⟩. Given that any implicant C
in tn for ϕ′ also serves as an implicant C in ϕ, it follows that an implicant of size k for ϕ exists if and
only if there is a sufficient reason of size k for ⟨f, x⟩, thereby completing our reduction.

In contrast to the MSR query which was non-trivial, for the CSR, MCR, CC, and SHAP queries we
can incorporate similar reductions to other works which show hardness for DNFs, since we know
that an ensemble which is encompassed by models from a class that is poly-subset constructable, can
be reduced to DNFs (Lemma 4).

Lemma 6. Let C be some poly-subset constructable class of functions. Then the CSR query for a k
ensemble of models from C is coNP-Complete.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Proof. Membership in coNP is straightforward since we can guess an assignment z ∈ F and verify
whether f(xS ; zS̄) ̸= f(x) to determine if S is not a sufficient reason. For the hardness result,
we can apply the same proof provided by Barceló et al. (2020), which involves a reduction from
the tautology (TAUT) problem for DNFs. In their work, DNFs are reduced to equivalent MLPs to
establish coNP-hardness for MLPs. Similarly, in our case, we can utilize the exact same reduction
since, in Lemma 4, we demonstrated that any DNF can be reduced to an ensemble of models from C,
where C is poly-subset constructable. This leads to the conclusion that the problem is coNP-complete.

In the specific case of MCR, we will establish the complexity of the problem for a set of models C
that remains poly-subset constructable, but also adheres to an additional property, which we define as
being “closed under symmetric construction”. This property is formalized as follows:
Definition 3. Let C be a class of functions. Then C is closed under symmetric construction iff for any
f ∈ C, then ¬f can be constructed in polynomial time.

We will prove that ensembles of FBDDs, Perceptrons, and MLPs all satisfy the aforementioned
property:
Lemma 7. The class of ensembles of FBDDs, the class of ensembles of MLPs, and the class of
ensembles of Perceptrons are all closed under symmetric construction. In other words, suppose we
are given f — an ensemble of k models f1, . . . , fk that are all either Perceptrons, FBDDs, or MLPs;
then, f ′ := ¬f can be constructed in polynomial time.

Proof. We first note that negating individual FBDDs, Perceptrons, and MLPs can be done in
polynomial time, as demonstrated by Amir et al. (2024). Applying this transformation to any FBDD
fi within the ensemble results in negating the entire model f . The only asymmetric element in
this negation arises in majority voting ensembles—where a “1” classification occurs iff ⌈k2 ⌉ of the
models are classified as "1"—and the negation effectively changes the ensemble to classify “1” iff
⌊k2 ⌋ models are classified as “1”. This asymmetry can be addressed by constructing an additional
model, when needed, that always classifies “1”. This can be done using Perceptrons, FBDDs, or
MLPs. Similarly, in weighted voting ensembles, asymmetry may arise due to the distinction between
strict and non-strict inequalities. In other words, while f classifies as “1” iff

∑
1≤i≤k ϕi ≥ 0, in the

negated model f ′, it will classify as “1” iff
∑

1≤i≤k ϕi > 0. This can again be resolved by adding
an extra model fi that always classifies “1” with a very small weight, thereby addressing this issue.
Given that any weight in fi, ϕi, is a rational number pi

qi
, the weight of the newly constructed model

can be set to q1 · q2 . . . · qk. This additional model will correct the asymmetry in cases where the
weighted sum of all models is exactly zero, allowing the ensemble to be negated.

We are now prepared to prove the following claim, which will establish that solving MCR for
ensembles of FBDDs, Perceptrons, and MLPs is NP-complete. This result follows directly from
Lemma 7 and Lemma 3.
Lemma 8. Let C be some poly-subset constructable class of functions, which is also closed under
symmetric construction. Then the MCR query for a k ensemble of models from C is NP-Complete.

Proof. Membership holds because we can guess a subset S and check whether |S| ≤ d and
f(xS ; zS̄) ̸= f(x), which confirms the existence of a contrastive reason of size d.

For hardness, we can use a similar proof to Barceló et al. (2020), which demonstrates that the MCR
problem is NP-Hard for MLPs. They reduce the problem from the Vertex-Cover problem, which
is NP-Complete. To achieve this, given a graph G := ⟨V,E⟩, they construct an equivalent CNF
formula: ∧

(u,v)∈E

(xu ∨ xv) (25)

and encode the CNF formula as an equivalent MLP. In Lemma 4, we proved that any DNF can be
reduced to an ensemble with poly-subset constructable base-model functions. However, to extend the
proof of Barceló et al. (2020) to apply to our ensembles, we must show that any CNF can also be

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

transformed into an ensemble constructed from these models. This is possible because the family of
models C is not only poly-subset constructable but also closed under symmetric construction. We
begin by proving the following relation:
Claim 3. Let ϕ be a CNF ϕ := t1 ∧ . . . ∧ tn formula, and let C be a poly-subset constructable class
of functions. Then, it is possible to construct, in polynomial time, a hard voting ensemble f consisting
of 2n− 1 base-models fi ∈ C where C is both a poly-subset constructable class, and is closed under
symmetric construction.

Proof. We begin by negating ϕ in polynomial time and derive a DNF formula equivalent to ¬ϕ.
From Lemma 4, we know that any DNF can be transformed in polynomial time into an ensemble of
models f ∈ C (since C is poly-subset constructable). Given that C is also closed under symmetric
construction, we can negate f and construct ¬f in polynomial time. Thus, we obtain an ensemble
f ′ := ¬f equivalent to ϕ, completing our proof.

We can now conclude our proof, as we know that ensembles of FBDDs, Perceptrons, and MLPs are
all poly-subset constructable and closed under symmetric construction. Therefore, any CNF can be
reduced to an equivalent ensemble composed of models from this class, allowing us to leverage the
vertex-cover problem to establish NP-Hardness.

Lemma 9. Let C be some poly-subset constructable class of functions. Then the CC query for a k
ensemble of models from C is #P -Complete.

Proof. Membership is straightforward by definition. For the hardness result, we can reduce from the
Model Counting problem for DNFs, which is known to be #P -Hard Valiant (1979). Given a DNF ϕ,
we can construct an equivalent ensemble of poly-subset constructable functions using Lemma 4 and
set S := ∅ for the CC query. Thus, solving CC is equivalent to model counting, and the reduction
holds.

Lemma 10. Let C be some poly-subset constructable class of functions. Then the SHAP query for a
k ensemble of models from C is #P -Hard.

Proof. We follow the proof of Arenas et al. (2021c), which demonstrated a connection between
computing SHAP under fully factorized distributions and the model counting problem. The following
relation is established:

#f := f(x)− 2n ·
∑

i∈{1,...,n}

ϕi(f, x) (26)

where #f represents the number of positive assignments of f and ϕ denotes the Shapley value. This
establishes that computing SHAP is at least as hard as the model counting problem. Since, as shown
in Lemma 4, any DNF can be constructed into an ensemble of poly-subset constructable functions,
and model counting for DNFs is known to be #P -Hard Valiant (1979), this concludes the proof,
demonstrating #P -Hardness for computing SHAP.

F PROOF OF PROPOSITION 2

Proposition 2. While the CC and SHAP queries can be solved in pseudo-polynomial time for
Perceptrons, ensemble-Perceptrons remain #P -Hard even if the weights and biases are given in
unary.

Proof sketch. The findings for ensembles are derived from those in Proposition 1. We base the
pseudo-polynomial algorithm for CC on the work of (Barceló et al. (2020)). Additionally, we achieve
similar outcomes for SHAP using a non-trivial dynamic programming algorithm that solves the
SHAP query for Perceptrons in pseudo-polynomial time.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Full Proof. For the CC query, we refer to the results from Barceló et al. (2020), which demonstrated
that when the weights and biases are provided in unary, the CC query can be solved in polynomial
time for perceptrons. However, according to the findings in Proposition 1, when the weights and
biases are not given in unary, the CC query is #P -Complete for ensembles of perceptrons.

For the SHAP query, we use a proof that was proposed by the work of Arenas et al. (2023) which
showed a connection between the computation of shapley values for models (under some mild
conditions) and the following portion:

HDp
(f, x, S, k) :=

∑
S⊆[n],|S|=k

Ez∼Dp
[f(z)|zS = xS] (27)

Specifically, this relationship applies to models that are closed under conditioning, defined as follows:

Definition 4. A model f : F→ {0, 1} is closed under conditioning if given some assignment x ∈ F
and some subset S ∈ [n], we can construct in polynomial time a function f ′ : F→ {0, 1} for which
it holds that for all y ∈ F: f ′(y) = f(xS ; yS̄).

The connection between models that are closed under conditioning and the computation of HDp
is as

follows (Arenas et al. (2023)):

Lemma 11. Let there be a model f which is closed under conditioning. Then solving the SHAP
query for f and any i ∈ [n] can be reduced, in polynomial time, to the problem of computing HDp

To apply this lemma to our scenario, we begin by proving the following claim:

Claim 4. Any perceptron f := ⟨w, b⟩ is closed under conditioning.

Proof. Given a perceptron f := ⟨w, b⟩, an assignment x ∈ F, and a subset S ∈ [n], we can construct
a second perceptron f ′ := ⟨w′, b′⟩, where w′ := w ·1S̄ . In other words, we “zero-out” all the feature
values in w corresponding to the set S and leave the features in S unchanged. Additionally, we define
b′ := b+

∑
i∈S,xi=1 wi. It now holds that for any y ∈ F:

f ′(y) =
∑
i∈[n]

w′
i · yi + b′ =

∑
i∈S

w′ · yi +
∑
i∈S̄

w′ · yi + (b+
∑

i∈S,xi=1

wi) =

∑
i∈S̄

w · yi + (b+
∑

i∈S,xi=1

wi) =∑
i∈S̄

w · yi + (b+
∑

i∈S,xi=1

wi · xi +
∑

i∈S,xi=0

wi · xi) = f(xS ; yS̄)

(28)

Now, we only need to prove that when the weights and biases of a perceptron f are given in unary,
HDp

(S, k) can be computed in polynomial time. This will complete our proof that the SHAP query
can be solved in pseudo-polynomial time for perceptrons. We use the notation sim(z, x) to denote
the set of features S such that for all i ∈ S, it holds that zi = xi. We begin by demonstrating the
following relations:

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

HDp(S, k) :=
∑

S⊆[n],|S|=k

Ez∼Dp [f(z)|zS = xS] =

∑
z∈F,|sim(z,x)|≥k

(
|sim(z, x)|

k

)
·
(∏
i∈[n],zi=1

(
p(i)

) ∏
i∈[n],zi=0

(
1− p(i))

)
· f(z) =

∑
z∈F,|sim(z,x)|≥k,f(z)=1

(
|sim(z, x)|

k

)
·
(∏
i∈[n],zi=1

(
p(i)

) ∏
i∈[n],zi=0

(
1− p(i))

)
=

j=n∑
j=k

(∑
z∈F,|sim(z,x)|=j,f(z)=1

(
|sim(z, x)|

k

)
·
(∏
i∈[n],zi=1

(
p(i)

) ∏
i∈[n],zi=0

(
1− p(i))

))
=

j=n∑
j=k

(
j

k

)(∑
z∈F,|sim(z,x)|=j,f(z)=1

·
(∏
i∈[n],zi=1

(
p(i)

) ∏
i∈[n],zi=0

(
1− p(i))

))
=

j=n∑
j=k

(
j

k

)(∑
z∈F,|sim(z,x)|=j

·
(∏
i∈[n],zi=1

(
p(i)

) ∏
i∈[n],zi=0

(
1− p(i))

))
· 1{f(z)=1} =

j=n∑
j=k

(
j

k

)(∑
z∈F,|sim(z,x)|=j

·
(∏
i∈[n],zi=1

(
p(i)

) ∏
i∈[n],zi=0

(
1− p(i))

))
· 1{

∑n
i=1 wi·zi+b≥0}

(29)

We define M := max(w) + 1. Next, we define the vector w′ as follows:

w′
i :=

{
−wi +M if xi = 1

wi +M if xi = 0
(30)

We finally define T := b+
(∑

i∈[n],xi=0 wi

)
. We now prove the following relation:

Claim 5. Given some integer 1 ≤ j ≤ n, the following relation between w and w′ holds:∑
z∈F,|sim(z,x)|=j

1{
∑n

i=1 wi·zi+b≥0} =
∑

S⊆[n],|S|=j

1{
∑

i∈S w′
i≤T+M ·j} (31)

Proof. We start by noting that the iterating over all vectors z ∈ F for which |sim(z, x)| = j is
equivalent to iterating over all subsets S ⊆ [n], |S| = j and taking the values of the features in S to
be those of x and those of S to be ¬x. In other words, iterating over all vectors of the form (xS ;¬xS̄
for which |S| = j. From this, we can derive the following relation:

∑
z∈F,|sim(z,x)|=j

1{
∑n

i=1 wi·zi+b≥0} =
∑

S⊆[n],|S|=j

1{
∑n

i=1 wi·(xi;¬xi)+b≥0} =

∑
S⊆[n],|S|=j

1{(
∑

i∈S wi·xi)+(
∑

i∈S̄ wi·(¬xi))+b≥0}
(32)

We can continue and show that the new relation holds the following:

∑
S⊆[n],|S|=j

1{(
∑

i∈S wi·xi)+(
∑

i∈S̄ wi·(¬xi))+b≥0} =

∑
S⊆[n],|S|=j

1{(
∑

i∈S,xi=1 wi)+(
∑

i∈S̄,xi=0 wi)+b≥0}
(33)

We move to the second term and prove that the following holds:

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

∑
S⊆[n],|S|=j

1{
∑

i∈S w′
i≤T+M ·j} =

∑
S⊆[n],|S|=j

1{
∑

i∈S,xi=1(−wi+M)+
∑

i∈S,xi=0(wi+M)≤T+M ·j} =

∑
S⊆[n],|S|=j

1{
∑

i∈S,xi=1(−wi)+
∑

i∈S,xi=0 wi≤T} =

∑
S⊆[n],|S|=j

1{
∑

i∈S,xi=1(−wi)+
∑

i∈S,xi=0 wi≤b+(
∑

i∈[n],xi=0 wi)} =

∑
S⊆[n],|S|=j

1{
∑

i∈S,xi=1(−wi)+
∑

i∈S,xi=0 wi−
∑

i∈S,xi=0 wi−
∑

i∈S̄,xi=0 wi≤b} =

∑
S⊆[n],|S|=j

1{
∑

i∈S,xi=1 wi+
∑

i∈S̄,xi=0 wi+b≥0}

(34)

Hence proving the equivalence.

We hence can equivalently derive in that HDp
(S, k) is equivalent to:

j=n∑
j=k

(
j

k

)(∑
|S|=j

(∏
i∈[n],(xS ;¬xS̄)i=1

(
p(i)

) ∏
i∈[n],(xS ;¬xS̄)i=0

(
1− p(i))

))
· 1{

∑
i∈S w′

i≤T+M ·j} (35)

We now will conclude the proof by proving the following claim:
Claim 6. HDp

(S, k) can be computed in polynomial time.

Proof. We will demonstrate how HDp(S, k) can be computed in polynomial time. This will be done
using a dynamic programming algorithm that computes a portion of this sum, utilizing the notation of
DP . Specifically, for all i ∈ N, ℓ ∈ N0 such that 1 ≤ i− ℓ ≤ i ≤ n, and for all C ∈ Z, we define:

DP [i][C][i− ℓ] :=
∑

S⊆[n],|S|≤i−ℓ

(∏
r∈[i],(xS ;¬xS̄)r=1

(
p(r)

) ∏
r∈[i],(xS ;¬xS̄)r=0

(
1− p(r)

))
if

∑
i∈S w′

i ≤ C

0 otherwise
(36)

where, for any i, ℓ ∈ N such that it does not hold that 1 ≤ ℓ ≤ i ≤ n, we define DP [i][C][i− ℓ] = 0.
Given some 1 ≤ j ≤ n, if we take i := n, C := T +Mj, and i− ℓ := j (i.e., ℓ := i− j), we find
that DP [n][T +Mj][j] is equal to:∑

|S|≤j

(∏
i∈[n],(xS ;¬xS̄)i=1

(
p(i)

) ∏
i∈[n],(xS ;¬xS̄)i=0

(
1− p(i))

)
· 1{

∑
i∈S w′

i≤T+M ·j} (37)

Thus, we ultimately obtain that:

DP [n][T +Mj][j]−DP [n][T +M(j − 1)][j − 1] =∑
|S|=j

(∏
i∈[n],(xS ;¬xS̄)i=1

(
p(i)

) ∏
i∈[n],(xS ;¬xS̄)i=0

(
1− p(i))

)
· 1{

∑
i∈S w′

i≤T+M ·j} (38)

Therefore, assuming that DP [i][C][j] can be computed in polynomial time, we can iterate over all
j ≤ k ≤ n and compute DP [i][C][j] for each j, thereby calculating HDP

overall. To simplify the
presentation, we define:

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

R(x, S, i) :=
(∏
r∈[i],(xS ;¬xS̄)r=1

(
p(r)

) ∏
r∈[i],(xS ;¬xS̄)r=0

(
1− p(r)

))
(39)

Thus, we can simply express it as:

DP [i][C][i− ℓ] :=

∑

S⊆[n],|S|≤i−ℓ

R(x, S, i) if
∑

i∈S w′
i ≤ C

0 otherwise
(40)

For our final step, we will now prove the correctness of our dynamic programming algorithm:

Lemma 12. There exists a polynomial dynamic programming algorithm that computes DP [i][C][j]
for any C ∈ Z and any 1 ≤ ℓ ≤ i ≤ n.

Proof. We present the following inductive relation:

DP [i+ 1][C][i+ 1− ℓ] ={
DP [i][C][i− ℓ] · (1− p(i)) +DP [i][C −w′

i+1][i− ℓ] · p(i) if xi = 1

DP [i][C][i− ℓ] · p(i) +DP [i][C −w′
i+1][i− ℓ] · (1− p(i)) if xi = 0

(41)

We also define that DP [i][C][j] = 0 for any i, C, j < 0 and further define that when i = 0, then
DP [i][C][j] = 1. We begin with the induction base, i.e., when i = 1. If ℓ ≥ 1, then we have
DP [1][C][1− ℓ] = 0, which satisfies our conditions. The only remaining case is when ℓ = 0. In the
case that xi = 1:

DP [1][C][1− ℓ] = DP [1][C][1] = DP [0][C][0] · (1− p(1)) +DP [0][C − s1][0] · p(1) =
DP [0][C − s1][0] · p(1)

(42)

If it also holds that s1 ≤ C, we obtain:

DP [1][C][1− ℓ] = DP [0][C − s1][0] · p(1) = p(1) = R(x, {s1}, 1) (43)

However, if s1 > C we get that:

DP [1][C][1− ℓ] = DP [0][C − s1][0] · p(1) = 0 (44)

As required. For the other scenario, we get that if xi = 0 it holds that:

DP [1][C][1− ℓ] = DP [1][C][1] = DP [0][C][0] · (p(1)) +DP [0][C − s1][0] · p(1) =
DP [0][C − s1][0] · (1− p(1))

(45)

If it additionally holds that s1 ≤ C, then we have:

DP [1][C][1− ℓ] = DP [0][C − s1][0] · (1− p(1)) = (1− p(1)) = R(x, {s1}, 1) (46)

However, if s1 > C we get that:

DP [1][C][1− ℓ] = DP [0][C − s1][0] · (1− p(1)) = 0 (47)

as required. For the inductive step, we assume correctness holds for some i ∈ N and show that:

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

DP [i+ 1][C][i+ 1− ℓ] :=

DP [i][C][j] · p(i) +DP [i][C −w′
i+1][j − 1] · (1− p(i)) =∑

|S|≤i−ℓ,|xS |1≤C

R(k, x, S, i) · p(i+ 1)+

∑
|S|≤i−ℓ,|xS |1≤C−w′

i+1

R(k, x, S, i) · (1− p(i+ 1)) =

∑
|S|≤i−ℓ+1,|xS |1≤C,i+1̸∈S

R(k, x, S, i) · p(i+ 1)+

∑
|S|≤i−ℓ+1,|xS |1≤C,i+1∈S

R(k, x, S, i) · (1− p(i+ 1)) =

R(k, x, S, i+ 1)

(48)

We conclude by presenting the complete algorithm described for computing HDP
(S, k) with the

following pseudocode:

Algorithm 1 Computing HDP
(S, k)

Input f , x, S, k
1: T ← b+

(∑
i∈[n],xi=0 wi

)
2: HDP

← 0
3: for each k ≤ j ≤ n do
4: HDP

← HDP
+
(
j
k

)
· (DP [n][T +Mj][j]−DP [n][T +M(j − 1)][j − 1])

5: end for
6: return HDP

The following proof demonstrates that solving the SHAP query for Perceptrons can be done in
polynomial time, assuming the weights and biases are provided in unary.

G PROOF OF PROPOSITION 3

Proposition 3. There is no explainability query Q for which the class of MLPs is strictly more
c-interpretable than the class of ensemble-MLPs.

Proof. We will specifically prove this claim for a much larger set of functions that we will refer to as
models that are closed under ensemble construction:

Definition 5. We say that a class of models C is closed under ensemble construction if given an
ensemble f containing models from C, we can construct in polynomial time a model g ∈ C for which
∀x ∈ F, f(x) = g(x).

We first note that from the definition of a model that is closed under ensemble construction, the
following claim holds: Let there be a class of models C, which is closed under ensemble construction.
Let us denote CE as the class of ensemble models that consist of base-models from class C. Then
for any explainability query Q: then it holds that Q(CE) ≤P Q(C). Now, if Q(C) belongs to a
complexity class that is closed under polynomial reductions, it hence must hold that Q(CE) does not
belong to a strictly harder complexity class. We are now only left to prove the following claim:

Claim 7. Let CMLP denote the class of models that are represented by MLPs. Then CMLP is closed
under ensemble construction.

Proof. Consider a model f comprising k individual MLPs denoted as f1, . . . , fk We can devise a
new MLP, f ′, by integrating the hidden layers from each fi. Specifically, f ′’s first hidden layer is
constructed by concatenating the first hidden layers of f1, . . . , fk , and similarly for subsequent layers
up to the highest number of layers present in any fi. For models with fewer layers, we introduce

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

“dummy” layers equipped with weights of 1 and biases of 0, effectively passing their last actual
output through unchanged. In this initial setup, the layers in f ′ corresponding to each fi are only
linked to their respective preceding layers within the same fi, thus lacking full connectivity across
the different models fj such that j ̸= i. To amend this, connectivity can be enhanced by adding
inter-layer connections with weights of 1 and biases of 0, ensuring each layer does not influence the
next across the different sub-models.

Finally, we observe that the constructed f ′ outputs k distinct values corresponding to the outputs
of each model f1, . . . , fk (the output value prior to the step function). We need to introduce a new
output layer to f ′ to implement a majority voting mechanism. This is conceptualized as a weighted
voting process where each model fi is assigned a specific weight ϕi. This can be realized by adding a
fully connected layer that consolidates the k outputs into a single output in the final layer of f ′. In this
layer, each output i ∈ {1, . . . , k} is assigned a weight wi := ϕi, and we set the bias of this last layer
to 0. Consequently, applying a step function over f ′ results in an output that represents a weighted
majority vote of the ensemble f . Additionally, a non-weighted majority vote can be modeled in the
setting where all weights ϕ1 = ϕ2 = . . . = ϕk are equal. We thus establish that f ′ ∈ CMLP , and that
for all z ∈ F, f(z) = f ′(z) thereby confirming that CMLP is closed under ensemble construction.

H PROOF OF PROPOSITION 4

Proposition 4. An ensemble consisting of either Perceptrons, FBDDs, or MLPs, parameterized by
the maximal base-model size is (i) para-coNP Complete with respect to CSR, (ii) para-NP-Complete
with respect to MCR, (iii) para-ΣP

2 -Complete with respect to MSR, and (iv) para-#P -Complete with
respect to CC, (v) para-#P -Hard with respect to SHAP.

Proof Sketch. The full proof appears in Appendix L. To prove para-NP/para-coNP hardness for MCR
and CSR, respectively, we reduce from the well-known NP-Complete Subset-Sum Problem (SSP) to
the problem of solving CSR/MCR for ensembles consisting of only two Perceptrons. To establish
para-ΣP

2 -Hardness for the MSR query, we employ a more intricate reduction from the lesser-known
Generalized Subset-Sum Problem (GSSP) (Schaefer & Umans (2002); Berman et al. (2002)), a
ΣP

2 -Complete problem. This reduction demonstrates that solving the MSR query in an ensemble of
only five perceptrons is already ΣP

2 -Hard.

Full Proof. Membership is straightforward from the definition of para-K and the completeness of all
the non-paramaterized versions to each corresponding complexity class K, as proven in Proposition 1.
For example, the non-parameterized version of CSR for an ensemble of Perceptrons, FBDDs, or
MLPs is coNP-Complete. The same holds for the other complexity classes.

Hardness. The reduction for the CSR query was provided as a direct reduction from the TAUT
problem. Since TAUT is hard when restricted to 3-DNFs as well, then hardness for an ensemble
consisting of constant sized-base lines is straightforward (for any k ≥ 3). In the case of the MCR
reduction, the result already holds for any k = 2 since the reductino inherently produces ensembles
consisting of input dimensions of at most 2. For the CC query.

Finally, in the case of MSR, we note that the Shortest Implicant Core problem in its classic form
presented by Umans (2001) describes general DNFs and not restricted DNFs. However, in a
consequent work Dick et al. (2009), it was proven that the Shortest implicant core problem for DNFs
with constant term size is also ΣP

2 -Hard.

I PROOF OF PROPOSITION 5

Proposition 5. For ensembles of k-FBDDs (i) the CSR query is coW[1]-Complete, (ii) the MCR
query is W[1]-Hard and in W[P], (iii) the CC query is #W[1]-Complete, and (iv) the SHAP query is
W[1]-Hard and in XP.

Proof Sketch. Membership for the CSR query is established through a many-to-one FPT reduction to
the complementary version of the k-Clique problem, while hardness is demonstrated with a many-to-

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

one FPT reduction from the complementary of the k-Multicolored-Clique problem, both of which
are known to be W[1]-Complete. The CC query extends these results, as the counting versions of
these tasks are #W[1]-Complete. #W [1]-Hardness for SHAP can be inferred from the complexity
of CC, given that the tractability of SHAP is linked to model counting (Van den Broeck et al. (2022)).
For membership, a more detailed proof places SHAP within XP, which is made possible by the
assumption of feature independence. Specifically, when the distribution is uniform, SHAP is proven
to be #W [1]-Complete (see Lemma 17). Lastly, the hardness of the MCR query is demonstrated
through a reduction similar to that used for CSR, and its membership is established by reducing it to
the weighted circuit satisfiability (WCS) problem for circuits with arbitrary depth. The full proof
appears in Appendix I.

Proof. We begin by demonstrating the initial complexity result stated in the proposition:
Lemma 13. For ensembles of k-FBDDs, the CSR query is coW[1]-Complete.

Proof. We execute a many-one FPT reduction from the complement of the Multi-Color Clique
problem to the corresponding CSR query, and from the CSR query to the complement of the k-Clique
problem. Both the Multi-Color Clique and the k-Clique problems are known to be W[1]-Complete.
We will begin with the first direction to establish membership in coW[1]. We start by defining the
k-Clique problem:

k-Clique:
Input: A graph G = ⟨V,E⟩.
Parameter: Integer k.
Output: Yes, if there exists a clique of size larger than k in G.

Membership. We initiate the reduction by demonstrating membership in coW[1]. As discussed in
Section A, our aim is to establish membership for the weighted voting scenario. However, for clarity,
we will initially focus on the simpler case of regular majority voting. Subsequently, we will elaborate
on how this proof can be extended to the weighted version.

Membership for standard majority vote. We will specifically demonstrate a reduction from CSR to
k-Clique, establishing that CSR resides in coW[1]. Given an instance ⟨f, x, S⟩, CSR inquires whether
S is not a sufficient reason with respect to x, or in other words, if S is contrastive. We will begin by
establishing the following claim, which concerns the fact that ensembles of FBDDs are closed under
conditioning (refer to Definition 4):
Claim 8. Given a model f which is an ensemble of k FBDDs, some input x, and subset S ⊆ [n],
then f is closed under conditioning.

Proof. We first observe that any individual FBDD fi in the ensemble can be conditioned over xS .
This is accomplished by creating a modified model f ′

i as follows: we start by duplicating fi, that
is, f ′

i := fi. We then iterate through the tree from the top downwards, examining all splits. Each
split corresponds to an assignment to a feature j, which can be set to either 0 or 1. If j ∈ S, we will
retain all paths that extend from the subtree and follow the assignment xj , while deleting all paths
that follow the assignment ¬xj . Ultimately, the resulting tree fi adheres to the following condition:

∀z ∈ F [fi(xS ; zS̄) = f ′
i(z] (49)

We observe that following the modifications, any split in the tree f ′
i concerning the features j ∈ S

results in only one viable path, as the subtree associated with the contrary assignment was removed
earlier. Consequently, f ′

i effectively becomes a tree defined solely over the features in S. Therefore,
the following assertion is valid:

∀z ∈ F [fi(xS ; zS̄) = f ′
i(zS̄] (50)

We have thus demonstrated that a single FBDD is closed under conditioning. By applying this
procedure to each tree within the k-ensemble f , we arrive at the following conclusion:

∀z ∈ F [f(xS ; zS̄) = f ′(zS̄] (51)

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

We will establish a secondary minor claim that will be beneficial for our reduction:
Claim 9. Given a model f which is an ensemble of k FBDDs, then f ′ := ¬f can be constructed in
polynomial time.

Proof. We first note that negating a single FBDD can be achieved by switching each leaf node’s
assignment from “1” to “0” and vice versa. Applying this modification to any FBDD fi within the
ensemble results in negating the entire model f .

Now, employing Claim 8, an ensemble f can be conditioned on a partial assignment of features,
allowing us to develop a new model f ′ that is conditioned on xS . In simpler terms, f ′ retains only
the features from S and satisfies the following condition:

∀z ∈ F [f(xS ; zS̄) = f ′(zS̄)] (52)

Given the ensemble f = (f1, f2, . . . , fk), the reduction constructs f ′ = (f ′
1, f

′
2, . . . , f

′
k) and uses it

to construct a graph G. The final setup of the reduction is ⟨G, k′ := ⌈k2 ⌉⟩. We will now detail the
construction of the graph G. First, we compute f ′(xS̄), which is equivalent to f(xS ; xS̄) = f(x). If
f ′(xS̄) = 1, we negate the ensemble f ′. This negation is carried out using Lemma 9. Thus, we can
generally assume that f ′(xS̄) = 0.

The graph we construct will be a k-partite graph, with each part corresponding to each tree in the
ensemble f ′. The vertices and edges of the graph are constructed as follows: We iterate over the leaf
nodes in each tree of f ′, and every leaf node corresponding to the assignment of ¬f ′(x) is designated
as a vertex vi in the graph (associated with the specific tree this node is part of). We will now proceed
to describe the construction of the edges of the graph.

First, it is important to note that any two vertices within the same part of the graph (i.e., associated
with the same tree) will not be connected by an edge. We iterate over any two paths in two distinct
trees –— and hence associated with two different parts of the graph. We consider two paths, α and
α′, from different trees in f ′ to “match” if they do not “collide” on any variable. Specifically, there
should be no feature i associated with both α and α′ where the assignment of i in α is xi ∈ {0, 1}
and the assignment in α′ is ¬xi. The two paths “match” if there is no such collision.

Now, each vertex vi in the graph is linked to a particular leaf node in one of the trees (and consequently
to the path α that leads to this leaf node). The reduction will establish an edge between any two
vertices vi and vj , which correspond to paths α and α′ from two separate trees, if and only if the
paths α and α′ “match” and both paths conclude at a terminating node with a True assignment, that
is, classified as 1.

We will now prove that S is not a sufficient reason with respect to ⟨f, x⟩ if and only if there exists
a clique in the graph of size larger than k′ := ⌈k2 ⌉. The proof will be divided into several distinct
claims. First, we will establish the following claim:
Claim 10. For the aforementioned reduction construction, S is not a sufficient reason concerning
⟨f, x⟩ if and only if there exists a partial assignment zS̄ for which f ′(zS̄) = 1.

Proof. By definition, S is not a sufficient reason for ⟨f, x⟩ if and only if:

∃z ∈ F [f(xS ; zS̄) ̸= f(x)] (53)

This equivalently means that S is contrastive with respect to ⟨f, x⟩. Given that f ′ is conditioned on
xS and includes only the features from S̄, it equivalently follows that S is not a sufficient reason
concerning ⟨f, x⟩ iff:

∃z ∈ F [f ′(zS̄) ̸= f ′(xS̄) = 0] ⇐⇒ ∃z ∈ F [f ′(zS̄) = 1] (54)

This equation holds based on our assumption about the negation of f ′ during its construction.
Additionally, the condition where f ′(zS̄) = 1 occurs if and only if at least ⌈k2 ⌉ models in the
ensemble f ′, specifically f ′1, . . . , f ′⌈k2 ⌉, have f ′i(zS̄) = 1.

We will begin by establishing a smaller claim.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Claim 11. For the aforementioned reduction construction, the following condition is satisfied: there
exists some z ∈ F for which f ′(zS̄) = 1 if and only if there exists a subset of j ≥ ⌈k2 ⌉ trees: f ′

1, . . . , f
′
j ,

in which it is possible to select one path αi in each tree f ′
i such that each path terminates at a “True”

(classification = 1) node, and each pair of distinct paths “match”.

Proof. We first observe that upon proving this lemma, it will be established that the claim (the
existence of j ≥ ⌈k2 ⌉ trees satisfying the aforementioned property) holds if and only if S is not
a sufficient reason for ⟨f, x⟩. This is a direct outcome of the equivalence property mentioned in
equation 54.

Let us assume we have a set of j different paths α1, . . . , αj within j distinct trees: f ′′
1 , . . . , f

′′
j , where

each f ′′
i is a model from the ensemble f1, . . . , fk, with each path chosen within one of the trees. All

paths are selected such that they terminate on a “True” node (assignment 1) and every pair of paths
from two distinct trees “matches”. According to the definition of “matching” paths, this means that
there is no feature i for which paths in two different trees disagree on the assignment of that feature.
Consequently, we can adopt the partial assignment zi for each feature i that is assigned a value in one
of these paths. Let us denote this partial assignment as zS′ for some S′ ⊆ S. It therefore, follows
that if we fix the features in S′ to their values in z, the prediction of each one of the distinct trees:
f ′′
1 , . . . , f

′′
j will be classified as 1. This is equivalent to stating that for any S′′ ⊆ S̄′, the following

holds:

∀z′ ∈ F [f ′′
1 (zS′′ ; z′S̄\S′′) = f ′′

2 (zS′′ ; z′S̄\S′′) = . . . = f ′′
j (zS′′ ; z′S̄\S′′) = 1] =⇒

∃z′ ∈ F [f ′′
1 (zS′′ ; z′S̄\S′′) = f ′′

2 (zS′′ ; z′S̄\S′′) = . . . = f ′′
j (z

′
S′′ ; z′S̄\S′′) = 1]

(55)

If we consider j ≥ ⌈k2 ⌉, then it clearly follows that:

∃z′ ∈ F [f ′(zS′′ ; z′S̄\S′′) = 1] (56)

Therefore, we can assign yS̄ := (zS′′ ; z′
S̄\S′′) and it will be established that:

∃y ∈ F [f ′(yS̄) = 1] (57)

For the other direction, let us assume that there is no set of j ≥ ⌈k2 ⌉ trees that terminate at a 1 “True”
assignment, such that there is a viable choice of path αi in each tree f ′′

i where each pair of distinct
paths in this set of trees “matches”. From this assumption, it follows that there is no group of j ≥ ⌈k2 ⌉
trees for which a partial assignment zS′ , with S′ ⊆ S, can be fixed to z ensuring that the prediction of
all the trees f ′′

1 , . . . , f
′′
j will remain 1. More specifically, this indicates that there is no set of j ≥ ⌈k2 ⌉

trees for which an assignment to S guarantees that the prediction of all f ′′
1 , . . . , f

′′
j trees will remain

1.

Since there are no j ≥ ⌈k2 ⌉ trees where an assignment to S leads to all these trees predicting 1, the
value of f ′ will consistently be 0 for any possible assignment to the features in S. Therefore, it is
established that:

∀y ∈ F [f ′(yS̄) = 0] (58)

This concludes this segment of the proof. We have now demonstrated that S is not a sufficient reason
concerning ⟨f, x⟩ if and only if there exists a subset of j ≥ ⌈k2 ⌉ trees, each with a different path that
finishes at a positive terminal node, and where each pair of paths “match”. We will now proceed to
prove the following claim, which will conclude our general proof:

Claim 12. In the aforementioned reduction construction, there is a clique of size greater than
k′ ≥ ⌈k2 ⌉ in G if and only if there exist k′ distinct trees in f ′ with k′ distinct paths (one per tree) that
end at a True “1” node, and each pair of distinct paths “match”.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Proof. Assuming that there are k′ ≥ ⌈k2 ⌉ paths in k′ distinct trees that “match” and end at a 1 (True)
node, the reduction construction implies that each of these paths corresponds to a vertex in G (as they
terminate on a 1 node). Furthermore, given that these paths "match" according to our construction,
there will be an edge connecting each pair of vertices. Consequently, the set of these k′ vertices forms
a clique in G, establishing the existence of a clique of size k′ in G.

For the second direction, suppose there is no subset of k′ trees or more. This equivalently means
that for any subset of j ≥ ⌈k2 ⌉ paths chosen from j distinct trees that end on a 1 node, there exists at
least one pair of distinct paths that do not match. According to our construction, this implies that
the subgraph G′ ⊆ G, corresponding to these vertices (each representing one of the paths), is not a
clique. Therefore, it follows that for any subgraph G′ ⊆ G with ⌈k2 ⌉ or more vertices, G′ is not a
clique. This completes the reduction.

Membership for weighted Vote. In our previous proof, we conditioned f on the partial assignment
xS to derive the model f ′. We demonstrated that S not being sufficient with respect to ⟨f, x⟩ equates
to a satisfying assignment in f ′. We will now extend this proof to the weighted version, where a
satisfying assignment does not necessarily correspond to a set of ⌈k2 ⌉ trees with a “1” classification.
In this version, each tree f ′

i is associated with a weight ϕi, and f ′ is defined as follows:

f ′(x) := step(
∑

1≤i≤n

ϕi · f ′
i(x)) (59)

Therefore, we can implement the following procedure: Iterate over the power set of all possible
trees (representing all potential sets of different trees), which includes iterating over subsets S′ ⊆
{1, . . . , k}. This enumeration is bounded by O(2k) and thus can be performed in FPT time. For each
selected combination S′, representing a choice of |S′| distinct trees, we check whether:

step(
∑
i∈S′

ϕi · f ′
i(x)) > 0 (60)

This corresponds to checking whether:

step(
∑
i∈S′

ϕi · f ′
i(x)) = step(

∑
i∈S′

ϕi · f ′
i(x) +

∑
i∈S̄′

ϕi · f ′
i(x)) = step(

∑
1≤i≤n

ϕi · f ′
i(x)) > 0 (61)

Thus, we only need to “check” subsets S′ where equation 62 is satisfied (as these alone correspond to
a positive instance of f ′). In our reduction, for each subset, S′ satisfying equation 62, we construct a
subgraph G′ in the same manner as in the previous reduction: each path for each tree associated with
S′ becomes a vertex in G′, and an edge between two vertices is formed between two edges iff two
distinct paths "match". Additionally, we add k − |S′| extra vertices to each such graph, which are
connected to all other vertices in G′. We then construct G as the union of all such sub-graphs G′ that
were derived from each S′, and the reduction results in ⟨G, k⟩.
Previously, in the classic majority-vote scenario, we demonstrated that a positive assignment in f ′

corresponds to a clique in G, with each vertex in the clique representing its associated path in f ′.
Thus, in our current construction, if there is a positive assignment to f ′, then there exists some subset
S′ such that:

step(
∑
i∈S′

ϕi · f ′
i(x)) > 0 (62)

This implies that there is a subset S′ of distinct trees within a subgraph G′ that forms a clique of size
|G′| (where each vertex in G′ corresponds to a path in f ′). Since these vertices are also connected to
an additional k − |S′| vertices included in our construction, there is also a corresponding clique of
size k within G′, and thus in G as well.

However, if a positive assignment for f ′ does not exist, it indicates that for any subset of trees S′ in
f ′, there is no corresponding clique of size |S′| where each vertex corresponds to a path in f ′. This
implies that any clique is of size less than k−|S′|+ |S′|. Since this holds for any subgraph G′ within
G, it follows that there is no clique of size k in G, thereby concluding the reduction.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Hardness. To demonstrate that CSR for a k-ensemble of FBDDs is coW[1]-Hard, we will establish
a many-to-one FPT reduction from the complementary version of the multi-color clique problem,
which is known to be W[1]-Complete.

Multi Color Clique:
Input: A graph G = ⟨V,E⟩, such that V := ⟨V1, . . . , Vk⟩ where each Vi denotes a set of distinct
vertices of some color, for which any two vertices associated with a color are not neighbors (for all i
there is no edge (u, v) ∈ E where u, v ∈ Vi).
Parameter: k (the number of colors).
Output: Yes, if there exists a clique of size k in G.

Let us consider an instance ⟨G, k⟩, where G is a multi-colored graph with k distinct colors. We can
assume that |V1| = |V2| = . . . = |Vk| = m. This assumption is valid because we can take the set
with the maximum number of vertices, denoted maxV , and “pad” the parts of the graph with fewer
than maxV vertices by adding extra vertices that are unconnected (thereby not affecting the size of
any potential clique). Consequently, the total number of vertices is m · k.

The reduction constructs a model f , which is an ensemble of FBDDs, in the following manner:
Initially, each vertex is associated with a unique binary string of length log(m), ensuring that vertices
of the same color have different strings. We then iterate over pairs of distinct colors, ranging from
1 ≤ i < j ≤ k. For each pair, we create a tree fi,j , which is a complete binary tree with a depth of
2log(m). This tree comprises features xi

1, x
i
2, . . . , x

i
log(m) (representing all possible assignments for

the tree associated with color i) and xj
1, x

j
2, . . . , x

j
log(m) (representing all possible assignments for the

tree associated with color j). Each of the 2log(m) nodes in the tree corresponds to an assignment of
all features of xi and xj . Each terminal node in the tree, which corresponds to some path, represents
a pair of vertices in colors i and j. If there is an edge between these two vertices, this terminal node
is marked with a 1 (a “True” assignment); if not, it is marked with a 0 (a “False” assignment).

Now, for each constructed tree (totaling
(
k
2

)
trees), we also construct an additional “dummy” tree that

consistently returns “False” (assignment 0). Consequently, the total number of trees in the constructed
ensemble is

(
k
2

)
· 2.

We initially observe that we can assume the existence of at least one pair of vertices (u, v) from
different colors i, j that are not adjacent (if all pairs were adjacent, there would trivially exist a
clique of size k). Therefore, we select an assignment where fi,j reaches a “False” (0) terminal
node. Arbitrary assignments can be chosen for all other features. Let us denote this complete feature
assignment by x. Given that there is at least one tree among the first

(
k
2

)
trees that results in a

“False” (0) classification, and all the additional
(
k
2

)
“dummy” trees are designed to reach a “False” (0)

outcome, the majority of trees in f will classify x as 0. Thus, it is established that f(x) = 0. The final
structure of the reduction is ⟨f, x, S := ∅⟩. Notably, the number of models in f is 2 ·

(
k
2

)
, setting the

parameter for the instance ⟨f, x, S := ∅⟩ at k′ := 2 ·
(
k
2

)
, which is within the bounds of a computable

function g(k), thereby maintaining the FPT reduction.

We first note that this reduction operates in FPT time, as the size of f is capped by log(n) ·O(k2),
which is naturally bounded by O(g(k)·nk) for some computable function g. We will now demonstrate
that a multi-colored clique of size k or greater exists in G if and only if S := ∅ is not a sufficient
reason with respect to ⟨f, x⟩.
Assume there exists a multi-colored clique of size k, denoted as G′, within G. This implies that for
any two vertices u, v in G′, (u, v) ⊆ E. Given that no edges exist between vertices of the same color,
selecting two distinct colors i, j ensures that there is at least one edge connecting a vertex from color
i to a vertex from color j. Therefore, for each tree fi,j associated with a pair of two different colors
i, j, we can select the corresponding path that aligns with the edge connecting these two vertices, and
which terminates at a “True” (1) leaf node, as per our construction.

We will now prove that when we select these specific paths, any two pairs of distinct paths “match”.
This occurs due to the following reason: Consider two paths chosen from two distinct trees. Initially,

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

assume the first tree fi,j is associated with a pair of colors i, j and the second tree fk,l is associated
with a pair k, l, where i ̸= j ̸= k ̸= l. Since the features of the tree fi,j are not shared with
those of the tree fk,l, any two paths from these trees “match” (they do not conflict over any feature
assignment). The more complex scenario arises when two distinct trees, fi,j and fj,k, involve the
colors i, j and j, k, where i ̸= j ̸= k. In this case, the features corresponding to i, k are different, but
those associated with color j are shared. However, because a clique of size k in a k-partite graph
includes exactly one vertex from each color, the vertex corresponding to color j associated with the
paths chosen for both fi,j and fj,k is the same. Consequently, the binary string representing the path
associated with these features is identical, ensuring these two paths do not conflict over any feature
assignment. Thus, in any scenario, any pair of distinct paths selected in this manner for these trees
“match”.

Therefore, we can assign each of the features in these paths to their respective values within the path.
This is feasible because all these paths “match” and have no conflicting assignments. Given that all
of these trees are complete, all features can be assigned (i.e., this constitutes a full assignment, not a
partial one). We will denote this assignment by z ∈ F. As previously noted, and according to our
construction, all of these paths terminate at a “True” (1) leaf node. Consequently, the assignment z
results in the first

(
k
2

)
trees receiving a (1) assignment. Since exactly half of the trees in the ensemble

are assigned a value of 1, the overall classification by f is 1. In summary, there exists an assignment
z for which:

∃z ∈ F [f(z) = 1 ̸= f(x) = 0] (63)

If no clique of size k exists in G, then any subgraph G′ of G containing k vertices is not a clique.
Consider such a subgraph G′ with k vertices. Since it is not a clique, this means there must be at
least one pair of vertices (u, v) within it that are not connected by an edge.

Consider some assignment z ∈ F. When examining the specific path associated with fi,j(x) (for
1 ≤ i, j ≤ k), it follows a designated path leading to a specific terminal node of the tree fi,j .
Additionally, any pair of distinct paths from two distinct trees associated with z necessarily “match”
(since otherwise, they would not correspond to a non-contradicting assignment). Suppose, for the
sake of contradiction, that each of these paths ends at a “True” (“1” classification) node.

For each tree fi,j , we can identify the pair of vertices (u, v) that correspond to the path representing
the binary string of that path. This involves selecting vertices (u, v) associated with two distinct
colors i, j. Consequently, this specific assignment z gives rise to a subgraph G′, which includes at
least one vertex from each color (since every tree fi,j is associated with two vertices —– one for
each color). However, we will now prove that there must be exactly one vertex from each color in
G′. Assume, for the sake of contradiction, that there are two vertices v1, v2 of the same color i in
G′. Since v1, v2 are in G′, there exist (without loss of generality) two distinct trees fi,j and fi,k
where i ̸= k, and the path associated with fi,j includes vertex v1, while the path associated with fi,k
includes vertex v2. This configuration implies that the paths for fi,j and fi,k do not “match” (as the
vertex chosen for color i in these two trees differs and is associated with a different binary string).

We have established that G′, the graph associated with a specific assignment z, contains exactly one
vertex from each color in G, and therefore has a size of k. From the assumption of this direction
in the reduction, this indicates that G′ is not a clique. Consequently, this also means there must be
two vertices (u, v) from two different colors i ̸= j where (u, v) ̸⊆ E. In terms of our reduction
construction, this means that examining fi,j , the binary string associated with vertices u, v leads to a
“False” (0) terminal node, which contradicts our initial assumption.

Thus, we have demonstrated that if there is no clique in G of size k, then for any arbitrary assignment
z, not all of the first ⌈

(
k
2

)
⌉ trees in f receive a 1 assignment. In simpler terms, at least one tree receives

a 0 assignment. Consequently, in the ensemble, any assignment results in at least ⌈
(
k
2

)
⌉ + 1 trees

being assigned 0, ensuring that the ensemble classification is always 0. In other words:

∀z ∈ F [f(z) = 0 = f(x)] (64)

This indicates that S := ∅ is a sufficient reason with respect to ⟨f, x⟩, thereby concluding our
reduction.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

Lemma 14. The CC query for a k-ensemble of FBDDs is #W[1]-Complete.

Proof. We note that the CC query is the counting version for the CSR query, for which we already
proved coW[1]-Completness. The proofs of membership and hardness where from the k-Clique, and
k-Multicolored-Clique problems. It is well known that the counting version of k-Clique is #W[1]-
Complete Flum & Grohe (2004). Moreover, there exist FPT reductions to and from k Multi-Color
Clique to k-Clique, which shows us that Multicolored clique is also #W[1]-Complete. Finally, we
arrive at that the CC query for a k ensemble of FBDDs is #W[1]-Complete.

Lemma 15. The MCR query for a k-ensemble of FBDDs is W[1]-Hard and in W[P].

Proof. Hardness. Specifically, the hardness results are consistent with those presented by Ordyniak
et al. (2024). However, we can also directly prove hardness by presenting a reduction from the
previous (complement of) the CSR problem for ensembles of FBDDs, which we have shown to be
coW[1]-Complete (via FPT reductions from k-Clique and k-Multicolored Clique). The complement
of the CSR problem is equivalent to validating whether, given some f, x, and a subset S, it can be
checked whether S is not a sufficient reason for ⟨f, x⟩. This is equivalent to checking whether S is a
contrastive reason for ⟨f, x⟩.
Hence, given an instance ⟨f, x, S⟩, we can apply Lemma 8, which states that ensembles of FBDDs
are closed underr conditioning. We will condition f on xS to construct f ′. The resulting model f ′

will have |S| features, and it holds that:

∀z ∈ F [f ′(zS̄) = f(xS ; zS̄)] (65)

Now, given the instance ⟨f, x, S⟩, the reduction will construct: ⟨f ′, x, k := |S|⟩. If S is not a
sufficient reason for ⟨f, x⟩, this implies that S is a contrastive reason for ⟨f, x⟩, and therefore:

∃z ∈ F [f(xS ; zS̄) ̸= f(x)] (66)

This further implies that:

∃z ∈ F [f ′(zS̄) = f(xS ; zS̄) ̸= f(x) = f ′(xS̄)] (67)

which indicates that S is a contrastive reason for ⟨f ′, x⟩. Therefore, there exists a contrastive reason
of size |S| for ⟨f ′, x⟩. If we assume that S is a sufficient reason for ⟨f, x⟩, then it holds that:

∀z ∈ F [f(x) = f(xS ; zS̄)] ⇐⇒
∀z ∈ F [f ′(xS̄) = f(x) = f(xS ; zS̄) = f ′(zS̄)]

(68)

This indicates that S is not a contrastive reason for ⟨f ′, x⟩, and that any subset S′ ⊆ S is also not
a contrastive reason for ⟨f ′, x⟩. Hence, it follows that there is no contrastive reason of size |S| or
smaller for ⟨f ′, x⟩. This completes the reduction, thereby proving that the MCR query for an ensemble
of k FBDDs is W[1]-Hard.

Membership. We will prove membership in W[P] by reducing the MCR query for k-ensemble
FBDDs to the WCS[Cd,t] problem, as described in Section B. Given an instance ⟨f, x, D⟩, where D
represents the size of the contrastive reason we are looking for, we construct a Boolean circuit C.
Although the weft of C is 2 (and could be reduced to 1 with a more refined construction), its depth
will depend on a parameter D and will not be bounded by a constant.

Our reduction begins by creating a modified model f ′ based on the original model f and the input x.
Essentially, f and f ′ will maintain the same structure; however, the vector 1n (consisting solely of
1s) in f ′ will correspond to the vector x in f , and conversely, the vector ¬x in f will correspond to
the vector 0n (consisting solely of 0s) in f ′.

To carry out this construction, we start by replicating f to create f ′. For each FBDD fi in the
ensemble f , we examine every node v within fi. For each node assignment vi ∈ {0, 1} where

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

vi ̸= xi, we reverse the 0 and 1 assignments, with the typical convention that 1 represents the right
branch and 0 the left branch. This flipping will be done such that 1 will now correspond to the left
branch. If vi = xi, we retain the original order. This process is repeated across all paths in each
FBDD of the ensemble. As a result, we generate a new model f ′ where each assignment to a value of
xi in f corresponds to an assignment to 1 in f ′. If f(x) = 1, we can apply the negation principle
using Lemma 9 to negate f ′, and if f(x) = 0, we can leave it as is. Consequently, any vector z ∈ F
where f(z) ̸= f(x) translates to a vector z′ ∈ F for which f ′(z) ̸= 1. Therefore, the problem of
determining whether there exists a subset S of size D such that f(xS̄ ; zS) ̸= f(x) equates to finding
a vector z′ ∈ F with D assignments to 1 (i.e., of Hamming weight D) where f ′(z′) ̸= 1.

Now, with f ′ in place, we will develop a Boolean circuit C, as outlined earlier. Specifically, we will
create a Boolean circuit C with a weft of 2 and arbitrary depth, designed to return True if f ′ has
a positive assignment of Hamming weight D, and False otherwise. The construction will proceed
through the following steps:

1. In our ensemble of k trees, for each leaf v in every tree f ′
i , we will designate y{v,f ′

i} as
an input node in the circuit. We will consider two input nodes, y{v,f ′

i} and y{v′,f ′
j}, as

inconsistent if i = j and v ̸= v′. In such cases, we will introduce a node: [¬y{v,f ′
i}] ∨

[¬y{v′,f ′
i}], which is equivalent to ¬[y{v,f ′

i} ∧ y{v′,f ′
i}], where both y{v,f ′

i} and y{v′,f ′
i}

are input nodes. This setup essentially encodes the k-Clique problem, except for the final
AND encoding involving all input nodes, which we will address in the last step. Recalling
our proof for the CSR query, the reduction to the k-Clique problem assists in determining
whether a positive assignment exists for f ′. We are now tasked with a more challenging
problem: determining whether there is a positive assignment to f ′ with a Hamming weight
of d. This necessitates the inclusion of additional constraints.

2. To this circuit C, currently encoding the Clique problem, we will introduce more nodes. For
each feature i ∈ [n], we will create a new node ui functioning as an OR gate. This node will
take inputs from any y{v,f ′

j} where the assignment represented by the leaf v assigns “True”
(i.e., a 1 assignment) to feature i.

3. For the final component, we will add another layer to our circuit. For every 1 ≤ j ≤ n and
for every 0 ≤ d′ ≤ D, we define a variable u{j,d′}. This variable is configured to be set to
True if and only if exactly d′ of the features 1, . . . , j are set to True. Specifically, u{1,0} will
take ¬u1 as its input, and u{1,1} will take u1 as its input. All other u{1,d′} variables are set
to False. For j > 1, we construct u{j,d′} to take the input:

[u{j−1,d′−1} ∧ uj] ∨ [u{j−1,d′−1} ∧ ¬uj] (69)

4. Finally, the output of the circuit is derived from a large AND node that collects inputs from
all nodes established in step 2 and those from step 4 of the form un,d′ , where d′ ranges from
0 to D.

Since that circuit C effectively encodes a scenario where f ′ receives a positive assignment of
Hamming weight D, and considering that C possesses a weft of 2 and arbitrary depth, we conclude
that the MCR query for ensembles of FBDDs is in W[P].

The W[1]-W[P] gap for the MCR query. We note that while we have proven the MCR query for
ensembles of FBDDs is W[1]-Hard and belongs to W[P], the exact complexity class for which this
problem is complete remains unknown. Unfortunately, the current definition of the W-hierarchy
is not well-suited to capture the complexity of this problem. Specifically, containment in W[t] for
a fixed constant t means that the problem instance at hand should be encoded using a Boolean
circuit of constant depth (as well as weft t), so that the instance at hand is a yes-instance if and
only if the circuit has a satisfying assignment having exactly k variables assigned true, where k is
the parameter (or k is bounded by a function of the parameter) of the instance at hand. We refer to
Chapter 13.3 in Cygan et al. (2015) for more information. However, our problem involves a “weight
measure” d (the Hamming distance) that may be arbitrarily larger than k. In particular, encoding that
a potential solution to the instance at hand assigns true to at most d variables cannot be done with a
constant-depth circuit, as this requires the implementation of a counter.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

The problem described above is a fundamental one in the definition of the W-hierarchy in the context
of weighted problems in general, where the desired total weight of the solution is not bounded by
the parameter. Indeed, it is not known how to classify basic W[1]-hard problems in the field such as
Weighted k-Clique, where given a vertex-weighted graph, along with integers k and w, we seek a
clique of size exactly k and weight at least/at most W , and the parameter is k. The same situation
holds for problems where the “weight measure” is implicit similarly to our problem, such as the
Partial Vertex Cover problem, where given a (non-weighted) graph G and integers k and t, we seek a
set of vertices of size exactly k that altogether cover at least t edges. From personal communications
with other researchers in the field, we have gathered that the definition and study of a “Weighted
W-Hierarchy” can be a topic of independent interest in parameterized complexity, but this is outside
the scope of this paper.

Lemma 16. The SHAP query for a k-ensemble of FBDDs is #W[1]-Hard, and in XP.

proof. Hardness. We begin by proving that this problem is #W[1]-Hard. Our approach follows
the proof outlined by (Arenas et al. (2023)), which demonstrates a link between the computation of
Shapley values and the model counting problem. First, we provide a definition of the model counting
problem. Given a model f : {0, 1}n → {0, 1}, we denote #f as the number of assignments where f
outputs 1. In other words:

#f := |{z ∈ F, f(z) = 1}| (70)

Now, the work of (Arenas et al. (2023)) demonstrates the following relationship when the feature
distribution Dp is assumed to be the uniform distribution, which is a specific case of the fully
factorized distribution considered in this paper. For any f, x, it holds that:

#f := f(x)− 2n ·
∑

i∈{1,...,n}

ϕi(f, x) (71)

This provides direct proof that computing the Shapley value under a uniform distribution (and
consequently for the fully factorized distribution) is as difficult as the model counting problem.
It remains to be shown that the model counting problem for an ensemble of k FBDDs is #W[1]-
Complete, when parameterized by k. Since we have already established that the CC query for a
k-ensemble of FBDDs is #W[1]-Complete, we can demonstrate an FPT many-one reduction from the
model counting problem to the computation of the CC query.

Given a model f , we start by selecting an arbitrary vector x ∈ F. If f(x) = 1, the reduction calculates
the count for ⟨f, x, S := ∅⟩, which we denote as #CC(f, x, S). If f(x) = 0, the reduction computes
2n −#CC(f, x, S). We note that 2n can be computed in polynomial time, as n (representing the
number of input assignments) is provided in unary.

The completion count seeks the number of assignments where the complement of S (which, in
this case, includes all possible assignments) results in a classification of 1. Thus, if f(x) = 1, we
have #f = #CC(f, x, S), and if f(x) = 0, we have #f = 2n −#CC(f, x, S), concluding the
reduction.

Membership. We will prove membership in XP by presenting an algorithm that computes Shapley
values for ensembles of k-FBDDs in O(|X |k) time. We utilize the following relation, established
by (Van den Broeck et al. (2022)), concerning Shapley values under conditional expectations and
assuming feature independence. The following relation has been proven:

SHAP(f, i,Dp, x) =P Ez∼Dp
[f(z)] (72)

In other words — the computational complexity of obtaining a Shapley value under this formalization
is equivalent (under polynomial reductions) to the complexity of computing Ez∼Dp[f(z)]. This means
we can focus on determining the complexity of obtaining Ez ∼ Dp[f(z)], which can sometimes be
easier to handle.

We now present the following algorithm for computing Ez∼Dp
[f(z)] for ensembles of FBDDs in

O(|X |k) time. The algorithm iterates over every combination of selecting one path from each tree

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

in the ensemble f . We assume that j of these selected paths correspond to trees that classify as
“1”, while the remaining k − j trees classify as “0”. We first check whether this selection of j trees
f ′
1, . . . , f

′
j that classify as “1” can result in a positive classification for f . For unweighted majority

voting, this is equivalent to verifying whether j ≥ ⌈k2 ⌉, and for weighted voting, it involves checking
whether the weights ϕi associated with each tree f ′i satisfy

∑
1 ≤ i ≤ jϕi > 0.

We can then verify whether each pair of paths chosen from the set of paths across all trees satisfies
that any two paths “match” (i.e., they do not contain any features with conflicting assignments). For
each combination of trees, we examine the partial assignment to all features involved in these paths
(there must be only one such assignment since the paths “match”). In practice, this is equivalent to
iterating over all possible positive assignments of the ensemble f . However, we note that a single
iteration over a selection of paths in each tree may yield only a partial assignment to some features,
denoted zS′ for some S′ ⊆ [n]. As a result, this assignment corresponds to any assignment of the
form (zS′ ; z′

S̄′) for any z′ ∈ F (all of which are also classified as “1”).

We note that this entire process is bounded by O(mk), where m represents the maximum number of
leaves in a tree and k is the number of trees. This is also bounded by O(|X |O(k)). We now proceed
to prove the following claim:
Claim 13. For two distinct partial assignments zS and z′S′ , obtained by iterating through the
aforementioned procedure of selecting j paths in j distinct trees, it holds that there exists a feature
i ∈ S, S′ such that zi ̸= z′i.

Proof. Since zS and z′S′ are selected from iterating over two distinct choices of paths from trees,
there must be at least one tree where the paths chosen for zS and z′S′ differ. Any two distinct
paths in a tree contain at least one feature with differing assignments for some feature i. Therefore,
based on the previous construction, it follows that there exists at least one feature i where the partial
assignments of zS and z′S′ differ.

By definition, the following sum holds:

Ez∼Dp
[f(z)] =

∑
z∈F,f(z)=1

Dp(z) =
∑

z∈F,f(z)=1

(∏
i∈[n],zi=1

p(i)
)
·
(∏
i∈[n],zi=0

(1− p(i))
)

(73)

That is, computing the expectation involves summing eachDp(z) for every positive assignment. Now,
assume we have some partial assignment zS obtained in the previous phase. Since this is only a
partial assignment, we need to account for all possible completions of zS , or, in other words, any
vector of the form (zS ; z′S̄). Let the set of all partial assignments computed using the aforementioned
procedure be denoted by S. Since any two partial assignments have a conflicting feature that does not
“match”, there is no “overlap” in the assignment completions corresponding to two distinct partial
assignments. In other words, for two distinct partial assignments zS and z′S′, it holds that for all
z′′ ∈ F, (zS ; z′′S̄) ̸= (z′S′; z′′S̄′). This leads to the following equivalence:

Ez∼Dp [f(z)] =
∑
zS∈S

(∑
z′
S̄
∈{0,1}|S|

Dp(zS ; z′S̄)
)

(74)

We do note, however, that for a fixed partial assignment zS , the following holds:∑
z′
S̄
∈{0,1}|S|

Dp(zS ; z′S̄) =
∑

z′
S̄
∈{0,1}|S|

(∏
i∈[n],(zS ;z′

S̄
)i=1

p(i)
)
·
(∏
i∈[n],(zS ;z′

S̄
)i=0

(1− p(i))
)
=

∑
z′
S̄
∈{0,1}|S|

(∏
i∈S,zi=1

p(i)
)(∏

i∈S,zi=0

(1− p(i))
)(∏

i∈S,z′i=1

p(i)
)(∏

i∈S,z′i=0

(1− p(i))
)
=

(∏
i∈S,zi=1

p(i)
)
·
(∏
i∈S,zi=0

(1− p(i))
) (75)

Overall, we obtain that:

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

Ez∼Dp
[f(z)] =

∑
zS∈S

(∏
i∈S,zi=1

p(i)
)
·
(∏
i∈S,zi=0

(1− p(i))
)

(76)

Hence, after computing S in O(|X |O(k)) time, we can iterate over each partial assignment, compute
its corresponding weight, and sum all the weights to obtain Ez∼Dp[f(z)]. This proves that the
complexity of computing Ez ∼ Dp[f(z)] is in XP.

As explained earlier, this also establishes that the complexity of computing SHAP for some
⟨f, x, i,Dp⟩ is likewise in XP.

We have demonstrated that solving SHAP when Dp represents any fully factorized distribution is
#W[1]-Hard and in XP. However, if we specifically set Dp to the uniform distribution (i.e., where
for any i ∈ [n], p(i) = 1

2), a specific type of fully factorized distribution, then this query becomes
#W[1]-Complete.
Lemma 17. Assuming that Dp is the uniform distribution, then the SHAP query for ensembles of
k-FBDDs is #W[1]-Complete.

Proof. The hardness is derived directly from our proof concerning fully factorized distributions,
assuming a uniform distribution. For membership, we leverage the analysis by (Arenas et al. (2021c)),
which demonstrates that when Dp is uniform, computing SHAP can be polynomially reduced to the
problem of model counting (i.e., computing #f). As outlined in Proposition 14, the task of model
counting for a k-ensemble of FBDDs is #W [1]-Complete. Thus, we conclude that computing SHAP
under the uniform distribution for k-ensembles of FBDDs also achieves #W[1]-Complete status.

J PROOF OF PROPOSITION 6

Proposition 6. The MSR query for a k-ensemble of FBDDs is para-NP-Hard and ix in XNP.

Proof Sketch. To prove membership, we devise an algorithm that initially computes all minimal
contrastive reasons during a preprocessing phase in O(|X |k) time. In the second phase, the algorithm
leverages the Minimal-Hitting-Set (MHS) duality between sufficient and contrastive reasons (Ignatiev
et al. (2020)), allowing the algorithm to non-deterministically identify the MHS among all minimal
contrastive reasons.

Proof. Hardness. Para-NP hardness is straightforward since the MSR query for a single FBDD is
already NP-Hard Barceló et al. (2020) and hence is obtained for k = 1.

Membership. For membership in XNP we need to show that there exists a non-deterministic
algorithm that solves this problem in O(|X |k) time. Specifically, we will make use of the minimum-
hitting-set (MHS) duality between sufficient and contrastive reasons to prove this claim Ignatiev et al.
(2020). First, we will define the MHS:
Definition 6. Given a collection S of sets from a universe U, a hitting set h for S is a set such that
∀S ∈ S, h∩S ̸= ∅. A hitting set h is said to be minimum when it has the smallest possible cardinality
among ll hitting sets.

We note that a subset minimal contrastive (sufficient) reason S of ⟨f, x⟩ is a contrastive (sufficient)
reason that ceases to be a contrastive (Sufficient reason) when any feature i is removef from it. In
other words, for all i, it holds that S \ i is not sufficient (contrastive). We now are in a position to use
the following MHS duality between sufficient and contrastive reasons Ignatiev et al. (2020):
Lemma 18. The MHS of all subset minimal contrastive reasons with respect to ⟨f, x⟩ is a cardinally
minimal sufficient reason of ⟨f, x⟩. Moreover, the MHS of all subset minimal sufficient reasons with
respect to ⟨f, x⟩ is a cardinally minimal contrastive reason of ⟨f, x⟩.

Now, we describe the following preprocessing stage which runs in time O(|X |k) and computes all of
the subset minimal contrastive reasons of ⟨f, x⟩.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

Claim 14. Given an ensemble of FBDDs f with k FBDDs, there exists an algorithm that computes
all of the subset minimal contrastive reasons of ⟨f, x⟩ in time O(mk), where m denotes the maximal
number of leaf nodes in an FBDD within f .

Proof. We iterate over combinations of choosing one leaf (which corresponds to one path) from every
distinct tree in f . This process can be done in O(mk) time. We check whether two conditions hold.
First, we check whether every pair of two distinct paths that belong to two distinct trees “matches”
and whether more than ⌈k2 ⌉ of these trees terminate over a leaf with a ¬f(x) assignment. For any
combination of k distinct paths in which any two paths “match”, it means that there is some partial
assignment zS′ , which describes the corresponding assignments in each one of these paths (there is
necessarily one such assignment since each two paths “match”) and it holds that:

∀y ∈ F [f ′(zS′ ; yS̄′) ̸= f(x)] (77)

We now will denote by S′′, the subset of features in zS′ that do not match with x. More specifically:

S′′ := |{i ∈ {1, . . . S′} zi ̸= xi| (78)

For each combination of k paths, for which the corresponding two conditions hold, we compute S′′.
We denote the set of all such subsets as S. We will now prove the following claim, which will finish
the proof of our lemma:

Claim 15. Any subset minimal contrastive reason of ⟨f, x⟩ is contained in S

Proof. Let us assume towards contradiction that this claim does not hold. In other words, there exists
a subset S which is a subset minimal contrastive reason of ⟨f, x⟩ and that is not chosen to be in S by
our algorithm. Since S is a contrastive reason it holds that:

∃z ∈ F [f(xS̄ ; zS) ̸= f(x)] (79)

However, we will prove a stronger property that holds if S is a subset minimal contrastive reason of
⟨f, x⟩. Specifically, it holds that:

[f(xS̄ ;¬xS) ̸= f(x)] (80)

or in other words the specific vector z for which fixing S to, changes the classification is ¬x. The
proof to this claim is straightforward — let us assume towards contradiction that this is not the case,
or in other words, it holds that:

[f(xS̄ ;¬xS) = f(x)] (81)

Since S is a contrastive reason, this means that there exists some other assignment to the features
of S (which is not ¬x, which causes the classification to change. In other words, there exists some
y ̸= ¬x for which:

[f(xS̄ ; yS) ̸= f(x)] (82)

Since y ̸= ¬x over the features in S, this means that there is at least one feature i ∈ S for which
yi = xi. Let us now denote S0 := S \ {i}. We hence get that:

[f(xS̄ ; yS) = f(xS̄0
;¬xS0

) ̸= f(x)] (83)

This implies that S0 is a contrastive reason of ⟨f, x⟩, hence contradicting the subset minimality of
S. This concludes the proof of this claim, and we hence derive in the fact that since S is a subset
minimal contrastive reason of ⟨f, x⟩, it must hold that:

[f(xS̄ ;¬xS) ̸= f(x)] (84)

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

We hence can take the assignment (xS̄ ;¬xS) and propagate it through f . The assignment fi(xS̄ ;¬xS)
will lead to some path, for which there are at least ⌈k2 ⌉ which terminate on a ¬f(x) node. These
paths, of course “match” (meaning any pair of two distinct paths “match”), because they correspond
to one assignment of features, and hence will be chosen as a combination of paths by our algorithm.

We recall that our algorithm chooses the partial assignment which assigns a value to each one of
the features in each path of each tree (there exists one such assignment). In our case this will be
some partial assignment of (xS̄ ;¬xS). The algorithm then chooses the subset S′′ which is the subset
of features whose values (in our case of (xS̄ ;¬xS)) that are different than those of x. Hence, it
necessarily holds that S′′ ⊆ S.

We note that S′′ is a contrastive reason concerning ⟨f, x⟩, since by construction, it describes a subset
of features such that if we set them to values that are not of x (specifically ¬x), ⌈k2 ⌉ or more trees in
the ensemble terminate on a ¬fi(x) assignment. Since we have proven that S′′ ⊆ S, then it must
hold that S′′ = S, since otherwise, this will contradict the subset minimality of S. We hence derive
in the fact that S′′ = S is chosen during our algorithm to be in S, contradicting the assumption that S
is not in S. This concludes the proof that any subset minimal contrastive reason of ⟨f, x⟩ is in S.

We will now use the MHS duality to conclude our proof regarding membership in XNP. We recall
that if S is the set containing all subset minimal contrastive reasons of ⟨f, x⟩, then the MHS of S is
the cardinally minimal sufficient reason of ⟨f, x⟩. We note that if we add to S (which contains all
subset minimal contrastive reasons of ⟨f, x⟩ other (non-subset-minimal) contrastive reasons of ⟨f, x⟩
the MHS of S will remain the same. This is true since the hitting set of any two subsets S and S′,
when S ⊆ S′, is equal to S.

We have proven that the set S that is obtained by our algorithm contains all subset minimal contrastive
reasons of ⟨f, x⟩, as well as perhaps other contrastive reasons. Hence, the MHS of S is a cardinally
minimal sufficient reason of ⟨f, x⟩.
Hence, we can simply non-deterministically guess some subset S1 ⊆ {1, . . . , n}, and check whether
S1 intersects with all subsets in S (and hence is the MHS of S, and a cardinally minimal sufficient
reason of ⟨f, x⟩. If |S1| ≤ d, our algorithm can return true, and otherwise, it will return false. Overall,
the entire algorithm that we described performs a preprocessing step in O(mk) time (and hence is
bounded by O(|X |k) time), and then performs a non-deterministic step, also bounded by O(|X |k)
time. This concludes the proof that solving the MHS query for an ensemble of k FBDDs is contained
in XNP.

K PROOF OF PROPOSITION 7

Proposition 7. Obtaining a subset-minimal sufficient reason for a k-ensemble of FBDDs is in XP.

Proof. The specific result aligns with a result demonstrated by Ordyniak et al. (2023). However,
we can further establish this result as a direct extension of the complexity result for the CSR query
(Lemma 13). To show this, we use a common greedy algorithm that computes a subset-minimal
sufficient reason by invoking a linear number of queries, each checking whether a given subset is a
sufficient reason Ignatiev et al. (2019b). Intuitively, the algorithm attempts to “free” a feature from
the subset S at each iteration, until finally converging to a subset-minimal sufficient reason.

Lemma 13 proved that the CSR query for an ensemble of FBDDs is in coW[1] (and hence is also
in XP). In essesnse, algorithm K implies that a linear number of queries to the CSR query produces
a subset-minimal sufficient reason. It hence, directly follows that obtaining some subset minimal
sufficient reason for some ⟨f, x⟩ is also in XP.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

Algorithm 2 Greedy Subset Minimal Sufficient Reason Search
Input f , x

1: S ← {1, . . . , n}
2: for each i ∈ {1, ..., n} by some arbitrary ordering do
3: if S \ {i} is a sufficient reason w.r.t ⟨f, x⟩ then
4: S ← S \ {i}
5: end if
6: end for
7: return S ▷ S is a subset minimal sufficient reason

L PROOF OF PROPOSITION 8

Proposition 8. k-ensemble-Perceptrons are (i) para-coNP Complete with respect to CSR, (ii) para-
NP-Complete with respect to MCR, (iii) para-ΣP

2 -Complete with respect to MSR, and (iv) para-#P -
Hard with respect to CC and SHAP.

Proof. All membership results are a direct result from the non-parameterized complexity results 1,
and from the reasons described under the proof of Proposition 4. We now will prove each hardness
result seperattley.
Lemma 19. The CSR query for a k-ensemble of Perceptrons is para-coNP Hard.

Proof. We will equivalently prove that the CSR query for an ensemble containing only 2 perceptrons is
coNP Complete. We will reduce from the Subset-sum problem (SSP), which is a classic NP-Complete
problem.

SSP (Subset Sum):
Input: (z1, z2, . . . , zn) set of positive integers and a positive (target) integer T
Output: Yes, if there exists a subset S ⊆ (1, 2, . . . , n) such that

∑
i∈S zi = T , and No otherwise.

We reduce CSR for an ensemble with k = 2 of Perceptrons from SSP . Given some
⟨(z1, z2, . . . , zn), T ⟩, the reduction constructs the two following Perceptrons f1 := ⟨w1, b1⟩ and
f2 := ⟨w2, b2⟩, where w1 := (−z1,−z2, . . . ,−zn), b1 := T − 1

2 , w2 := (z1, z2, . . . , zn), and
b2 := −T − 1

2 . The reduction constructs ⟨f := (f1, f2), x := 0n, S := ∅⟩, and 0n denotes a vector
of size n where all values are set to 0.

First, we notice that:

f1(x) = f1(0n) = T − 1

2
> 0 ∧

f2(x) = f2(0n) = −T −
1

2
< 0

(85)

Since f1(x) is positive and f2(x) is negative, then the ensemble f = ⟨f1, f2⟩ returns 1 for the input x
(is positive), by definition.

If ⟨(z1, z2, . . . , zn), T ⟩ ∈ SSP then there does not exist a subset of features S′ ⊆ (1, 2, . . . , n) such
that

∑
i∈S′ zi = T . Since these are integers, this implies that any subset S′ ⊆ (1, 2, . . . , n) is either

equal or greater than T +1 or equal and smaller than T − 1. Let us mark S′ as some subset for which
it holds that

∑
i∈S′ zi ≥ T +1. Let us denote x′ = (1S′ ;0S̄′). Or in other words x′ denotes a vector

where all the values in S′ are set to 1 and the rest to 0. It clearly holds that:

f1(x
′) =

∑
i∈S̄′

x′
i ·w1

i + b1 =

−
∑
i∈S′

zi + b1 ≤

−(T + 1) + T − 1

2
= −3

2
< 0

(86)

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

It also holds that:

f2(x
′) =

∑
i∈S̄′

x′
i ·w2

i + b2 =

∑
i∈S′

zi + b2 ≥

(T + 1) + (−T − 1

2
) =

1

2
> 0

(87)

This implies f1(x′) is negative and f2(x
′) is positive, and overall we get that for the ensemble f it

holds that f(x′) is positive.

Now, let us assume that
∑

i∈S′ zi ≤ T − 1. Again, let us denote x′ = (1S′ ;0S̄′). It clearly holds
that:

f1(x
′) =

∑
i∈S̄′

x′
i ·w1

i + b1 =

−
∑
i∈S′

zi + b1 ≥

−(T − 1) + T − 1

2
=

1

2
> 0

(88)

It also holds that:

f2(x
′) =

∑
i∈S̄′

x′
i ·w2

i + b2 =

∑
i∈S′

zi + b2 ≤

(T − 1) + (−T − 1

2
) = −3

2
< 0

(89)

Implying, that under this scenario the opposite case occurs: f1(x′) is positive and f2(x
′) is negative,

and overall we get again that for the ensemble f it holds that f(x′) is positive.

This shows, that for any feasible value of x′, f(x′) is positive, and this implies that S = ∅ is a
sufficient reason of ⟨f, x = 0n⟩.

If ⟨(z1, z2, . . . , zn), T ⟩ ̸∈ SSP , this means that there does exist a subset S′ ⊆ {1, . . . , n} for which∑
i∈S′ zi = T . We again denote x′ = (1S′ ;0S̄′). It holds that:

f1(x
′) =

∑
i∈S̄′

x′
i ·w1

i + b1 =

−
∑
i∈S′

zi + b1 =

−(T) + T − 1

2
= −1

2
< 0

(90)

It also holds that:

f2(x
′) =

∑
i∈S̄′

x′
i ·w2

i + b2 =

∑
i∈S′

zi + b2 =

(T) + (−T − 1

2
) = −1

2
< 0

(91)

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

This means that both f1(x
′) and f2(x

′) are negative and hence the ensemble f(x′) is also negative.
Since f(x) = f(0n) is positive, it holds that S = ∅ is not a sufficient reason of ⟨f, x⟩, which
concludes the reduction.

Lemma 20. The MCR query for a k-ensemble of Perceptrons is para-NP Hard.

We will equivalently show that the MCR query for an ensemble of k=2 Perceptrons is NP-Complete.
We use a refined version of the SSP problem — kSSP, which is also known to be NP-Complete.

kSSP (k Subset Sum):
Input: (z1, z2, . . . , zn) set of positive integers, a positive integer k, and a positive (target) integer T .
Output: Yes, if there exists a subset S ⊆ (1, 2, . . . , n) such that |S| = k and

∑
i∈S zi = T , and No

otherwise.

We reduce MCR for an ensemble with 2 Perceptrons from kSSP . Given some
⟨(z1, z2, . . . , zn), k, T ⟩, the reduction constructs the two following Perceptrons f1 := ⟨w1, b1⟩
and f2 := ⟨w2, b2⟩, where w1 := (−z1,−z2, . . . ,−zn), b1 := T − 1

2 , w2 := (z1, z2, . . . , zn), and
b2 := −T − 1

2 . The reduction constructs ⟨f := (f1, f2), x := 0n, k⟩, and 0n denotes a vector of size
n where all values are set to 0.

First, we notice that:

f1(x) = f1(0n) = T − 1

2
> 0 ∧

f2(x) = f2(0n) = −T −
1

2
< 0

(92)

Since f1(x) is positive and f2(x) is negative, then the ensemble f = ⟨f1, f2⟩ returns 1 for the input x
(is positive), by definition.

If ⟨(z1, z2, . . . , zn), k, T ⟩ ̸∈ SSP then there does not exist a subset of features S′ ⊆ (1, 2, . . . , n)
such that

∑
i∈S′ zi = T . Since these are integers, this implies that any subset S′ ⊆ (1, 2, . . . , n) of

size k is either equal or greater than T + 1 or equal and smaller than T − 1. Let us mark S′ as some
subset of size k for which it holds that

∑
i∈S′ zi ≥ T +1. Let us denote x′ = (1S′ ;0S̄′). Or in other

words x′ denotes a vector where all the values in S′ are set to 1 and the rest to 0. It clearly holds that:

f1(x
′) =

∑
i∈S̄′

x′
i ·w1

i + b1 =

−
∑
i∈S′

zi + b1 ≤

−(T + 1) + T − 1

2
= −3

2
< 0

(93)

It also holds that:

f2(x
′) =

∑
i∈S̄′

x′
i ·w2

i + b2 =

∑
i∈S′

zi + b2 ≥

(T + 1) + (−T − 1

2
) =

1

2
> 0

(94)

This implies f1(x′) is negative and f2(x
′) is positive, and overall we get that for the ensemble f it

holds that f(x′) is positive.

Now, let us assume that
∑

i∈S′ zi ≤ T − 1. Again, let us denote x′ = (1S′ ;0S̄′). It clearly holds
that:

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

f1(x
′) =

∑
i∈S̄′

x′
i ·w1

i + b1 =

−
∑
i∈S′

zi + b1 ≥

−(T − 1) + T − 1

2
=

1

2
> 0

(95)

It also holds that:

f2(x
′) =

∑
i∈S̄′

x′
i ·w2

i + b2 =

∑
i∈S′

zi + b2 ≤

(T − 1) + (−T − 1

2
) = −3

2
< 0

(96)

Implying, that under this scenario the opposite case occurs: f1(x′) is positive and f2(x
′) is negative,

and overall we get again that for the ensemble f it holds that f(x′) is positive.

This shows that for any subset S′ of size k the value of f(x′) remains positive. Since the value of
f(x) is also positive, this implies that there is no contrastive reason S′ of size k with respect to ⟨f, x⟩.
This also clearly implies that there is no contrastive reason S′ of size smaller than k with respect to
⟨f, x⟩.
If ⟨(z1, z2, . . . , zn), T ⟩ ∈ SSP , this means that there does exist a subset S′ ⊆ {1, . . . , n} of size k
for which

∑
i∈S′ zi = T . We again denote x′ = (1S′ ;0S̄′). It holds that:

f1(x
′) =

∑
i∈S̄′

x′
i ·w1

i + b1 =

−
∑
i∈S′

zi + b1 =

−(T) + T − 1

2
= −1

2
< 0

(97)

It also holds that:

f2(x
′) =

∑
i∈S̄′

x′
i ·w2

i + b2 =

∑
i∈S′

zi + b2 =

(T) + (−T − 1

2
) = −1

2
< 0

(98)

This means that both f1(x
′) and f2(x

′) are negative and hence the ensemble f(x′) is also negative.
Since f(x) = f(0n) is positive, it holds that there exists a contrastive reason (S′) of size k with
respect to ⟨f, x⟩, concluding the reduction.

Lemma 21. The CC and SHAP queries are para-#P -Hard for a k ensemble of Perceptrons.

Proof. The Hardness of the CC query follows from tbe fact that this problem is already #P -Hard for
a single perceptron Barceló et al. (2020) (k = 1). For the SHAP query, we follow the proof suggested
by Arenas et al. (2023) who showed a connection between the exact computation of shapley values
computations and the model counting problem. Given some model f , we define #f as the number of
assignments which output 1. More formally: #f : |{z | f(z) = 1}|. Arenas et al. (2023) showed

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2025

the following connection for the specific case where Dp is taken to be the uniform distribution. It
holds that for all x ∈ F it holds that:

#f = 2n
(
f(x)−

∑
i∈[n]

ϕi(f, x)
)

(99)

where the following relation is a consequence of the well-known efficiency property of shapley
values. This result establishes a direct reduction from the SHAP query to the model counting problem.
Moreover, the model counting problem is simply a private case of the CC query where S := ∅. This
establishes a polynomial reduction from the CC to the SHAP query. We hence conclude that SHAP is
also #P -Hard for an ensemble consisting of only a single Perceptron.

Lemma 22. The MSR query for a k-ensemble of Perceptrons is ΣP
2 -Complete.

Proof. Membership. We establish membership in para-ΣP
2 using the direct definition of the

complexity class since we can non-deterministically guess a subset S and then utilize a coNP oracle
to verify whether S is sufficient.

Hardness. We will equivalently show that the MSR query for an ensemble of k = 5 Perceptrons
is ΣP

2 -Hard. First, we will present the Generalized Subset Sum problem, which is known to be
ΣP

2 -complete-complete Schaefer & Umans (2002).

GSSP (Generalized Subset Sum):
Input: Two vectors of positive integers u = (u1,u2, . . . ,ul) and b = (b1, b2, . . . , bm), and a positive
(target) integer T .
Output: Yes, if there exists a binary vector x ∈ {0, 1}l such that for any binary vector y ∈ {0, 1}m,
it holds that: Σl

i=1(xi · ui) + Σm
j=1(yj · bj) ̸= T ; and No otherwise.

We will actually use a very close modified version of this problem which we term k-Generalized
Subset Sum, which requires an additional constraint that the size of the vector x is equal to some input
integer k. More formally, the problem is defined as follows:

k-GSSP (k-Generalized Subset Sum):
Input: Two vectors of positive integers u = (u1,u2, . . . ,ul) and b = (b1, b2, . . . , bm), an integer k,
and a positive (target) integer T .
Output: Yes, if there exists a binary vector x ∈ {0, 1}l such that ∥x∥1 = k, and for any binary vector
y ∈ {0, 1}m, it holds that: Σl

i=1(xi · ui) + Σm
j=1(yj · bj) ̸= T ; and No otherwise.

We next prove the following claim:
Claim 16. The query k-GSSP is ΣP

2 -complete-hard.

Proof. We present a polynomial-time reduction from GSSP to k-GSSP, enabling us to conclude
that k-GSSP is ΣP

2 -hard. Given ⟨u = (u1,u2, . . . ,ul), b = (b1, b2, . . . , bm), T ⟩, we define some
G > 0. The reduction then constructs ⟨u′ = (u1 +G,u2 +G, . . . ,ul +G,G1, . . . , Gl), v’ := v =
(b1, b2, . . . , bm), k′ := l, T ′ := T + (l ·G)⟩ (where Gi is the i-th occurrence of the value G).

First, assume that ⟨u, b, T ⟩ ∈ GSSP. By construction, this implies that:

∃x ∈ {0, 1}l ∀y ∈ {0, 1}m Σl
i=1(xi · ui) + Σm

j=1(yj · bj) ̸= T (100)

Let x be an element of {0, 1}l. Therefore, for this x, the following holds:

∀y ∈ {0, 1}m Σl
i=1(xi · ui) + Σm

j=1(yj · bj) ̸= T (101)

We express: ∥x∥1 = r ≤ l. Next, we divide the l summations into two parts: the first sum will
include the corresponding values in u with non-zero coordinates in x, and the other part will include

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2025

the remaining values in u. For simplicity and w.l.o.g., we also reindex the coordinates accordingly so
that, w.l.o.g., all r nonzero coordinates are the first ones of x (this is w.l.o.g. since we can reorder the
corresponding coordinates in u accordingly). Next, given this x, we can construct a new binary vector
x′ ∈ {0, 1}2l where the first l coordinates are identical to the given vector x, and the remaining l
coordinates are constructed as follows: the first (l−r) coordinates of the second half, i.e., coordinates
(l + 1) to (2l − r) of x′, will be “1”, while the remaining coordinates of x′, i.e., from (2l − r + 1) to
(2l), will be “0”.

Σ2l
i=1(x

′
i · u′

i) =

Σr
i=1(x

′
i · u′

i) + Σl
i=r+1(x

′
i · u′

i) + Σ2l−r
i=l+1(x

′
i · u′

i) + Σ2l
i=2l−r+1(x

′
i · u′

i) =

Σr
i=1(xi · (ui +G)) + Σl

i=r+1(0 · (ui +G)) + Σ2l−r
i=l+1(1 ·G) + Σ2l

i=2l−r+1(0 ·G) =

Σr
i=1(xi · ui) + (r ·G) + ((l − r) ·G)

(102)

And as (w.l.o.g.) the last (l − r) coordinates for x are “0”, it follows that for this constructed x′, we
can sum up to l (and not “only” r):

Σ2l
i=1(x

′
i · u′

i) = Σl
i=1(xi · ui) + (l ·G) (103)

Now, suppose, by contradiction, that for this constructed x′, it holds that:

∃y ∈ {0, 1}m Σ2l
i=1(x

′
i · u′

i) + Σm
j=1(yj · bj) = T ′ (104)

Then, according to Eq. 103, it follows that:

∃y ∈ {0, 1}m Σl
i=1(xi · ui) + (l ·G) + Σm

j=1(yj · bj) = T ′ (105)

And from the definition T ′ := T + (l ·G), we infer from our assumption that:

∃y ∈ {0, 1}m Σl
i=1(xi · ui) + (l ·G) + Σm

j=1(yj · bj) = T + (l ·G) ⇐⇒
∃y ∈ {0, 1}m Σl

i=1(xi · ui) + Σm
j=1(yj · bj) = T

(106)

However, this contradicts the outcome from Eq. 101 concerning this specific x. Therefore, our
assumption is incorrect, and thus for the constructed x′ ∈ {0, 1}2l, with ∥x′∥1 = l = k′, it follows
that:

∀y ∈ {0, 1}m Σ2l
i=1(x

′
i · u′

i) + Σm
j=1(yj · bj) ̸= T ′ (107)

Therefore, we can conclude that: ⟨u′, b′, k′, T ′⟩ ∈ k-GSSP.

Now, suppose ⟨u, v, T ⟩ /∈ GSSP. This implies that ∀x ∈ {0, 1}l:

∃y ∈ {0, 1}m Σl
i=1(xi · ui) + Σm

j=1(yj · bj) = T (108)

We need to prove that this implies the following:

∀x′ ∈ {0, 1}2l s.t ∥x′∥1 = k′,

∃y ∈ {0, 1}m, Σ2l
i=1(x

′
i · u′

i) + Σm
j=1(yj · b′j) = T ′ (109)

Let us assume, for the sake of contradiction, that this is not the case, i.e.:

∃x′ ∈ {0, 1}2l s.t ∥x′∥1 = k′,

∀y ∈ {0, 1}m Σ2l
i=1(x

′
i · u′

i) + Σm
j=1(yj · b′j) ̸= T ′ (110)

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2025

Let x′ ∈ {0, 1}2l represent a binary input x′ ∈ {0, 1}2l. Therefore, ∥x′∥1 = k′ := l. Assume
1 ≤ s ≤ l corresponds to the number of “1” entries in x′ located in the first l coordinates of u’, with
the remaining (k′ − s) = (l − s) “1” entries of x′ located in the second half of u’. Further, assume
without loss of generality that the first s coordinates of x′

[1...l] are “1”, and similarly, without loss of
generality, that the first (l − s) coordinates of x′

[(l+1)...2l] (i.e., the second half of x′’s l coordinates)
represent the locations of the remaining (l − s) “1” values. Therefore, we establish that for this x′:

∀y ∈ {0, 1}m, Σs
i=1(x

′
i · u′

i) + Σl
i=s+1(x

′
i · u′

i) + Σ2l−s
i=l+1(x

′
i · u′

i)+

Σ2l
i=2l−s+1(x

′
i · u′

i) + Σm
j=1(yj · b′j) ̸= T ′ ⇐⇒

∀y ∈ {0, 1}m, Σs
i=1(x

′
i · u′

i) + Σl
i=s+1(0 · u′

i) + Σ2l−s
i=l+1(x

′
i · u′

i)+

Σ2l
i=2l−s+1(0 · u′

i) + Σm
j=1(yj · b′j) ̸= T ′ ⇐⇒

∀y ∈ {0, 1}m, Σs
i=1(x

′
i · u′

i) + Σ2l−s
i=l+1(x

′
i · u′

i) + Σm
j=1(yj · b′j) ̸= T ′ ⇐⇒

∀y ∈ {0, 1}m, Σs
i=1(x

′
i · (ui +G)) + Σ2l−s

i=l+1(x
′
i ·G) + Σm

j=1(yj · b′j) ̸= T ′

(111)

Similarly, by partitioning the summation and considering the coordinates of x′, we can deduce that
the aforementioned equation can be rewritten as:

∀y ∈ {0, 1}m, Σs
i=1(1 · ui) + Σs

i=1(1 ·G)+

Σ2l−s
i=l+1(1 ·G) + Σm

j=1(yj · b′j) ̸= T ′ ⇐⇒
∀y ∈ {0, 1}m Σs

i=1(1 · ui) + (s+ (l − s)) ·G+

Σm
j=1(yj · b′j) ̸= T ′ = T + (l ·G) ⇐⇒

∀y ∈ {0, 1}m Σs
i=1(1 · ui) + Σm

j=1(yj · b′j) ̸= T

(112)

Equivalently:

∀y ∈ {0, 1}m, Σs
i=1(1 · ui) + Σ2l

i=s+1(0 · ui) + Σm
j=1(yj · b′j) ̸= T (113)

Let us define an input x′′ ∈ {0, 1}l, such that the first 1 ≤ s ≤ l coordinates are “1”, and the
remaining ones are“0”. In other words, x′′ := x′[1...l]. Therefore, given Eq. 113 and the specified
x′′ ∈ {0, 1}l, it follows that:

∀y ∈ {0, 1}m Σl
i=1(x

′′
i · ui) + Σm

j=1(yj · bj) ̸= T (114)

However, this contradicts Eq. 108, and therefore we determine that our initial assumption is erroneous
(i.e., no such x′ ∈ {0, 1}2l exists), and:

∀x′ ∈ {0, 1}2l s.t ∥x′∥1 = k′,

∃y ∈ {0, 1}m Σ2l
i=1(x

′
i · u′

i) + Σm
j=1(yj · b′j) = T ′ (115)

Thus, ⟨u′, b′, k′, T ′⟩ /∈ k-GSSP. To conclude, we have proved that: ⟨u, b, T ⟩ ∈ GSSP ⇐⇒
⟨u′, b′, k′, T ′⟩ ∈ k-GSSP, completing our reduction.

Next, we introduce a variant of the k-GSSP problem, which we refer to as the k-GSSP* problem.

k-GSSP* (Constrained k Generalized Subset Sum):
Input: A set of positive integers (z1, z2, . . . , zn), a subset S0, an integer k, and a positive (target)
integer T .
Output: Yes, if there exists a subset of features (indices) S ⊆ S0, such that, |S| = k, and for all
subsets S′ ⊆ S̄ it holds that Σi∈S(zi) + Σj∈S′(zj) ̸= T ; and No otherwise.

Now, we will establish the hardness of this refined query by demonstrating the following claim:

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2025

Claim 17. The query k-GSSP* is ΣP
2 -complete-hard.

Proof. We will demonstrate ΣP
2 -complete-hardness through a reduction from the k-GSSP prob-

lem. Starting with ⟨u = (u1,u2, . . . ,ul), b = (b1, b2, . . . , bm), k, T ⟩, we produce ⟨z =
(z1, z2, . . . , zn), S0 = (1, . . . , l), k′, T ′⟩. The vector z is formed by concatenating u and b in the
following manner:

• z := (u′⌢b′) ∈ Nn:=(l+m), i.e., for any 1 ≤ i ≤ l: zi = ui, and for any (l + 1) ≤ j ≤
(l +m): zj = bj−l.

• u′ := [(2n+ 1) · u] + 1, i.e., u′
j = [(2n+ 1) · uj] + 1

• b′ := (2n+ 1) · b, i.e., b′i = (2n+ 1) · bi

We also set T ′ := T (2n+ 1) + k and k′ := k. We then will prove that: ⟨u, b, k, T ⟩ ∈ k-GSSP ⇐⇒
⟨z, S0, k

′, T ′⟩ ∈ k-GSSP*.

First, suppose ⟨u, bk, T ⟩ ∈ k-GSSP. Then, there exists a binary vector x ∈ 0, 1l such that ∥x∥1 = k,
and for any binary vector y ∈ 0, 1m, the following condition is met: Σl

i=1(xi ·ui)+Σm
j=1(yj ·bj) ̸= T .

Assuming, without loss of generality, that the first k entries of u align with this particular binary
vector x ∈ {0, 1}l (note that ∥x∥1 = k), we define the subset S to include all corresponding
indices, thus S := {i|xi = 1} = {1, . . . , k} ⊆ S0. We will now establish that for all subsets
S′ ⊆ S̄ := {(k+1), . . . , l, (l+1), . . . , n := (l+m)}, the following holds true for our chosen set S:

Σi∈S(zi) + Σj∈S′⊆S̄(zj) ̸= T ′ (116)

We will demonstrate this in two parts: initially by considering subsets of S̄ that include only features
from {(l + 1), . . . , (l + m)}, and subsequently by considering subsets of S̄ that intersect with
{(k + 1), . . . , l}. In the first scenario, consider all S′ ⊆ S̄ where S′ ⊆ {(l + 1), . . . , (l +m) = n},
meaning the features correspond exclusively to those in the original b vector. For this particular
x ∈ {0, 1}l, it is established that for any y ∈ {0, 1}m:

Σl
i=1(xi · ui) + Σm

j=1(yj · bj) ̸= T ⇐⇒
(2n+ 1)Σl

i=1(xi · ui) + (2n+ 1)Σm
j=1(yj · bj) ̸= T (2n+ 1) ⇐⇒

(2n+ 1)Σl
i=1(xi · ui) + (2n+ 1)Σm

j=1(yj · bj) + k ̸= T (2n+ 1) + k = T ′

(117)

Given that ∥x∥1 = k, we proceed under the assumption (w.l.o.g.) that the first k indices of x are set
to “1”, while the remaining (l − k) coordinates are 0”. Therefore, for any y ∈ {0, 1}m:

(2n+ 1)Σk
i=1(xi · ui) + (2n+ 1)Σl

i=k+1(xi · ui)+

(2n+ 1)Σm
j=1(yj · bj) + k ̸= T ′ ⇐⇒

Σk
i=1((2n+ 1) · xi · ui) + Σl

i=k+1((2n+ 1) · xi · ui)+

Σm
j=1((2n+ 1) · yj · bj) + k ̸= T ′

(118)

And, assuming (w.l.o.g.) that the first k coordinates of x are “1”, with the remaining ones set to “0”,
it follows that for any y ∈ {0, 1}m:

Σk
i=1((2n+ 1) · 1 · ui) + Σl

i=k+1((2n+ 1) · 0 · ui)+

Σm
j=1((2n+ 1) · yj · bj) + k ̸= T ′ ⇐⇒

Σk
i=1((2n+ 1) · 1 · ui) + Σm

j=1((2n+ 1) · yj · bj) + k ̸= T ′ ⇐⇒
Σk

i=1([(2n+ 1) · uj] + 1) + Σm
j=1(yj · (2n+ 1) · bj) ̸= T ′

(119)

Given our definitions of u′ and b′, it follows that for any y ∈ {0, 1}m:

Σk
i=1(u

′
i) + Σm

j=1(yj · b′j) ̸= T ′ (120)

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2025

Since S encompasses the first k coordinates of u’ (which align with the k “1” coordinates of the
specified x, by design), it results that for any y ∈ {0, 1}m:

Σi∈S(zi) + Σm
j=1(yj · zl+j) ̸= T ′ (121)

Therefore, for all S′ ⊆ S̄ where S′ ⊆ {(l + 1), . . . , (l +m)}, it is established that:

Σi∈S(zi) + Σi∈S′⊆S̄(zi) ̸= T ′ (122)

In the second scenario, we consider any subset S′ ⊆ S̄ that intersects with {(k+ 1), . . . , l}, meaning
there is at least one feature i ∈ S′ such that (k + 1) ≤ i ≤ l. We note that, according to our
construction, S contains exactly k indices, each corresponding to a value of [(2n+ 1) · ui] + 1. In
this second case, S′ ⊆ S̄ includes at least one index that corresponds to a value of [(2n+ 1) · ui] + 1
(corresponding to u′) and potentially other values of (2n+1) ·bi (corresponding to b′). Consequently,
when adding the values associated with the indices from S and S′, we obtain at least (k + 1) values
(and at most, n), with at least k + 1 values t being such that t mod (2n+ 1) = 1. Therefore, the
total sum will yield a value with a modulus of at least k + 1 over (2n+ 1), implying that:

[Σi∈S(zi)]mod(2n+ 1) = k =⇒
1 ≤ [Σi∈S′⊆S̄(zi)]mod(2n+ 1) ≤ l − k =⇒
(Σi∈S(zi) + Σi∈S′⊆S̄(zi))mod(2n+ 1) ̸= k

(123)

Lastly, given that T ′ := (2n+ 1)T + k, it follows that (T ′) mod (2n+ 1) = k, therefore:

Σi∈S(zi) + Σi∈S′⊆S̄(zi) ̸= T ′ = (2n+ 1)T + k (124)

Thus, we have demonstrated in both scenarios that for our defined S ⊆ S0, it is true that |S| = k and
for all subsets S′ ⊆ S̄ := {(k + 1), . . . , l, (l + 1), . . . , n := (l +m)}, it holds that:

Σi∈S(zi) + Σj∈S′⊆S̄(zj) ̸= T ′ (125)

Hence, ⟨z, S0, k
′, T ′⟩ ∈ k-GSSP*

For the other direction, if ⟨u, b, k, T ⟩ /∈ k-GSSP, then for every binary vector x ∈ {0, 1}l with
∥x∥1 = k, there exists a binary vector y′ ∈ {0, 1}m such that: Σl

i=1(xi · ui) + Σm
j=1(y′j · bj) = T .

For every k-sized subset S ⊆ S0, we define x′ := 1i∈S . Additionally, for each fixed S, we define the
set S′ ⊆ S̄ to be:

S′ := {(|u|+ i)|y′i = 1} (126)

for the corresponding y′ that aligns with the indicator x′ associated with S′. Next, we observe that:

Σi∈S(zi) + Σj∈S′⊆S̄(zj) =
(∗)

Σi∈S(u′
i) + Σj∈S′⊆S̄(b

′
j) =

Σi∈S((2n+ 1)ui + 1) + Σj∈S′⊆S̄((2n+ 1)bi) =

(2n+ 1)[Σi∈S(ui) + Σj∈S′⊆S̄(bi)] + |S| · 1 =
(∗∗)

(2n+ 1)[Σl
i=1(x

′
i · ui) + Σm

j=1(y
′
j · bj)] + k =

(2n+ 1)[T] + k =

(2n+ 1)[
T ′ − k

2n+ 1
] + k =

[T ′ − k] + k

(127)

Where (*) arises because we have selected S′ ⊆ S̄ to exclusively contain indices of values pertaining
to v’ (i.e., S′ ∩ 1, . . . , l ̸= ∅), and (**) is due to considering any subset S ⊆ S0 with a size of |S| = k.

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2025

Therefore, we conclude that for all k-sized subsets S ⊆ S0, it is established that there exists a subset
S′ ⊆ S̄ such that:

Σi∈S(zi) + Σj∈S′⊆S̄(zj) = T ′ (128)

Thus, ⟨z, S0, k
′, T ′⟩ /∈ k-GSSP*, as required.

We will now present the final component of this proof by establishing the following claim:

Claim 18. The MSR query for an ensemble of k-Perceptrons is ΣP
2 -complete-hard for k = 5.

Proof. We will outline a polynomial-time reduction from k-GSSP* to k-perceptron-MSR, specifically
for k = 5. Given ⟨z, S0, k, T ⟩, our polynomial-time reduction produces ⟨(f1, . . . , f5), x′, k⟩, in the
following manner: Initially, the reduction verifies (in polynomial time) whether: Σi=1(zi) = T .
If this condition is met, then since z consists solely of strictly positive integers, any strict k-sized
subset of these will not sum to T . Consequently, ⟨z, S0, k, T ⟩ qualifies as belonging to k-GSSP*.
As a result, the reduction returns, within polynomial time, ⟨(f1 := True, . . . , f5 := True), x′, k⟩ for
k-Perceptron-MSR, as any k-sized set of features sufficiently justifies the condition. Otherwise, if
Σi=1(zi) ̸= T , the following steps are taken: we initialize x′ := 1n and k′ := k. For each 1 ≤ i ≤ 5,
the perceptron fi is defined as follows:

• f1 := (w1, b1), for w1 := (−z1, . . . ,−zn), and b1 := T − 1
2

• f2 := (w2, b2), for w2 := (z1, . . . , zn), and b2 := −T − 1
2

• f3 := (w3, b3), for w3 := (1S0
;0S̄0

) and b3 := −k it holds that: f3(x) = 1 ⇐⇒
Σn

i=1(xi) − k ≥ 0 ⇐⇒ Σn
i=1(xi) ≥ k ⇐⇒ Σ

|S0|
i=1(1S0 ∧ xi) + Σn

i=|S0|+1(1S0 ∧ xi) ≥
k ⇐⇒ Σ

|S0|
i=1(1S0

∧ xi) ≥ k ⇐⇒ |{xi|xi = 1 ∧ xi ∈ S0} | ≥ k, i.e., f3 classifies as “1”
if and only if the input has at least k “1” values in S0.

• f4 := (w4, b4), for w4 := (0, . . . , 0), and b4 := 1, i.e., f4=True

• f5 := 11n , i.e., f5(x) = 1 ⇐⇒ x := 1n (i.e., f5 acts as a Perceptron serving as an
indicator function for the constructed input x := 1n. This setup can be implemented in
polynomial time, as demonstrated in ?.)

First, we observe that the ensemble (f1, . . . , f5) classifies x’ := 1n as “1”. This classification results
from a majority of at least three (out of five) ensemble members designating the input 1n as “1”:

f3(x’) = step(Σ
|S0|
i=1(x

′
i − k) = step(Σ

|S0|
i=1(1)− k) = step(|S0| − k) = 1 (129)

Thus, f3(x’) = f3(1
n) = 1. Additionally, f4(1n) = 1, as it classifies every input as “1”, and

f5(1
n) = 1 as it functions as an indicator for this very input. We will prove that: ⟨z, S0, k, T ⟩ ∈

k-GSSP* ⇐⇒ ⟨(f1, . . . , f5), x’, k′⟩ ∈MSR for k-ensembles of Perceptrons when k = 5.

Initially, assuming that ⟨z, S0, k, T ⟩ ∈ k-GSSP*, there exists a subset S ⊆ S0 with |S| = k and for
every S′ ⊂ S̄ it holds that Σi∈S(zi) + Σj∈S′(zj) ̸= T . We then contend that S serves as a k-sized
explanation for input x’ := 1n within the 5-Perceptron ensemble (f1, . . . , f5). When considering S,
we conclude that for every S′ ⊆ S̄: Σi∈S(zi) + Σj∈S′(zj) ̸= T , or equivalently, for each S′:

[Σi∈S(zi) + Σj∈S′(zj) ≥ T + 1] ∨ [Σi∈S(zi) + Σj∈S′(zj) ≤ T − 1] (130)

We will demonstrate that in both cases, exactly one of f1 and f2 classifies an input as “1”, while the
other classifies it as “0”. In the scenario where Σi∈S(zi) + Σj∈S′(zj) ≥ T + 1, for any input x ∈
{0, 1}n with xS = 1S, we construct (xS ; yS̄), applicable for x ∈ {0, 1}n and for every y ∈ {0, 1}n,
ensuring that both f2((xS ; yS̄)) = 1 and f1((xS ; yS̄)) = 0. Moreover, f2((xS ; yS̄)) = 1‘, based on
the following:

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2025

f2((xS ; yS̄)) =

step([(xS ; yS̄) · w2] + b2) =

step([(xS ; yS̄) · (z1, . . . , zn)] + (−T − 1

2
)) =

step(Σi∈S(xi · zi) + Σj∈S̄(yi · zj)− T − 1

2
) ≥

step((T + 1)− T − 1

2
) = step(

1

2
) = 1

(131)

In this case, it also true that f1((xS ; yS̄)) = 0, as the following holds:

f1((xS ; yS̄)) =

step([(xS ; yS̄) · w1] + b1) =

step([(xS ; yS̄) · (−z1, . . . ,−zn)] + (T − 1

2
)) =

step(−Σi∈S(zi)− Σj∈S̄(zj) + (T − 1

2
)) ≤

step(−(T + 1) + (T − 1

2
)) = step(−3

2
) = 0

(132)

With the last transition justified by the assumption that: Σi∈S(zi) + Σj∈S′(zj) ≥ T + 1, and we
also observe that we have selected S′ := S̄ (which is valid since trivially S̄ ⊆ S̄). In the situation
where Σi∈S(zi) + Σj∈S′(zj) ≤ T − 1, for any input x ∈ {0, 1}n with xS = 1, we construct
(xS ; yS̄), suitable for x ∈ {0, 1}n and for every y ∈ {0, 1}n, ensuring that both f1((xS ; yS̄)) = 1
and f2((xS ; yS̄)) = 0. Additionaly, f1((xS ; yS̄)) = 1, based on the following:

f1((xS ; yS̄)) =
step([(xS ; yS̄) · w1] + b1) =

step([(xS ; yS̄) · (−z1, . . . ,−zn)] + (T − 1

2
)) =

step(−[Σi∈S(xi · zi) + Σj∈S̄(yi · zj)] + T − 1

2
) ≥

step((−1)(T − 1) + T − 1

2
) = step(1− T + T − 1

2
) = step(

1

2
) = 1

(133)

In this scenario, it also holds that f2((xS ; yS̄)) = 0, as the following holds:

f2((xS ; yS̄)) =
step([(xS ; yS̄) · w2] + b2) =

step([(xS ; yS̄) · (z1, . . . , zn)] + (−T − 1

2
)) =

step(Σi∈S(zi) + Σj∈S̄(zj) + (−T − 1

2
)) ≤

step(T − 1 + (−T − 1

2
)) = step(−3

2
) = 0

(134)

The last transition remains valid under the assumption: Σi∈S(zi) + Σj∈S′(zj) ≤ T − 1. We further
observe that S′ := S̄, which is valid since S̄ ⊆ S̄ by definition. Therefore, when Σi∈S(zi) +
Σj∈S′(zj) ̸= T , it follows that exactly one of the Perceptrons in the pair (f1, f2) classifies the input
(xS ; yS̄) as “1”, while the other classifies it as “0”.

Furthermore, f3((xS ; yS̄)) = 1 because (xS ; yS̄) contains k “1” values, which is the threshold
required by f3 to activate. It is also observed that f4((xS ; yS̄)) ≥ 0, implying that it evaluates to
True (classifying all inputs as 1”). Therefore, when k values of “1” are set in S, one of two outcomes
occurs: either the majority (f2, f3, f4) or the majority (f1, f3, f4) classifies every input (xS , yS̄) as

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2025

“1” for every possible y ∈ {0, 1}n. Consequently, S serves as a k-sized sufficient reason for input
1n with respect to (f2, . . . , f5), thus ⟨(f1, . . . , f5), x’, k′⟩ ∈MSR for k-ensemble Perceptrons when
k = 5.

For the second direction, assume that ⟨z, S0, k, T ⟩ /∈ k-GSSP*. We aim to demonstrate that this
leads to ⟨(f1, . . . , f5), x’, k′⟩ /∈ MSR for k-ensemble Perceptrons when k = 5. For the sake
of contradiction, suppose the opposite is true, i.e., ⟨(f1, . . . , f5), x’, k′⟩ ∈ MSR for k-ensemble
Perceptrons when k = 5. In other words, we posit that there are k features in x = 1n which, when
fixed, result in the ensemble consistently classifying as “1”. We will prove this to be impracticable by
examining the only two scenarios: (i) that these features are all contained within S0; (ii) that at least
one of the fixed k features resides in S̄0.

In the first scenario, assume that all k features are within S0. Yet, since ⟨z, S0, k, T ⟩ /∈ k-GSSP*, it
follows that for any input (xS ; yS̄) (for any k-sized subset S ⊆ S0 and any x ∈ {0, 1}n), there exists
a corresponding y ∈ {0, 1}n such that:

Σi∈S(zi) + Σj∈S′(zj) = T (135)

This suggests that both f1 and f2 classify the input (xS ; yS̄) as “0”, which we will demonstrate below.
Additionally, f1((xS ; yS̄)) = 0, as evidenced by the following:

f1((xS ; yS̄)) =

step([(xS ; yS̄) · w1] + b1) =

step([(xS ; yS̄) · (−z1, . . . ,−zn)] + (T − 1

2
)) =

step(−[Σi∈S(xi · zi) + Σj∈S̄(yi · zj)] + T − 1

2
) =

step(−T + T − 1

2
) = step(−1

2
) = 0

(136)

Additionally, f2((xS ; yS̄)) = 0, as the following holds:
f2((xS ; yS̄)) =

step([(xS ; yS̄) · w2] + b2) =

step([(xS ; yS̄) · (z1, . . . , zn)] + (−T − 1

2
)) =

step(Σi∈S(xi · zi) + Σj∈S̄(yi · zj)− T − 1

2
) =

step(T − T − 1

2
) = step(−1

2
) = 0

(137)

Therefore, under the assumption that all k fixed features are within S0, there exists an input
y ∈ {0, 1}n such that for the input (xS ;yS̄), both f1 and f2 classify f1((xS ;yS̄)) = 0 and
f2((xS ;yS̄)) = 0. Next, we will demonstrate that the input (1S ;0S̄) ̸= 1n, i.e., it contains at least
one feature with value “0”. This is because, for the defined f1 and f2, it is not possible that both
f1(1

n) = 0 and f2(1
n) = 0, as this would require:

f1(1
n) = 0 ∧ f2(1

n) = 0 ⇐⇒

[step(Σn
i=1(1 · −zi) + (T − 1

2
)) = 0] ∧ [step(Σn

i=1(1 · zi) + (−T − 1

2
)) = 0] ⇐⇒

[Σn
i=1(1 · −zi) + (T − 1

2
) < 0] ∧ [Σn

i=1(1 · zi) + (−T − 1

2
) < 0] ⇐⇒

[Σn
i=1(1 · zi) > T − 1

2
] ∧ [Σn

i=1(1 · zi) < T +
1

2
] ⇐⇒

T − 1

2
< Σn

i=1(1 · zi) < T +
1

2

(138)

Given that the zi values are positive integers, this is only true if Σn
i=1(1·zi) = T , which contradicts our

assumption. Therefore, for 1n, it is not the case that both f1(1
n) = 0 and f2(1

n) = 0. Consequently,

60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2025

the existing input y ∈ {0, 1}n such that both f1((xS ; yS̄)) = 0 and f2((xS ; yS̄)) = 0 is not 1n, i.e.,
(1S ;0S̄) ̸= (1S ;1S̄) = 1n. In this scenario, it also holds that for this input f5((1S ;0S̄)) = 0, since
f3 is an indicator for the input 1n. Therefore, for any k fixed inputs originating solely from S0,
there always exists an (1S ;0S̄), such that the perceptron majority (f1, f2, f5), and thus the ensemble
overall, classifies this input (1S ;0S̄) as “0”, contrary to the initial classification. Consequently, given
our premise that ⟨z, S0, k, T ⟩ /∈ k-GSSP*, no k features from S0 qualify as a sufficient reason with
respect to 1n.

In the second scenario, we examine the case where not all k fixed features are in S0, which, under our
assumption, means the MSR (Minimum Sufficient Reason) consists of at most (k− 1) fixed values of
“1” in S0. We will show why this is also infeasible. We consider any completion with exactly |S| − k
“0” values in the features of S to illustrate this point. Using the same logic as previously, based on the
configuration of f1 and f2, it is established that for any input -—- at least one of f1 or f2 classifies it
as “0”. As demonstrated, exactly one Perceptron of the pair classifies it as “0” when the summation
of zi-s does not equal T , and both of them classify it as “0” when the summation equals T .

Furthermore, any input with at most k − 1 “0” values in features corresponding to S is classified
by f5 as “0”, since f3 activates only when it detects at least k of S’s features as “1”. Additionally,
any input that includes more than a single zero value is clearly not equal to 1n and, therefore, will
also result in f5 classifying it as “0”, given that f5 serves as an indicator for 1n (classifying any
other input as 0”). Thus, in this scenario as well, there is a majority of (f1, f3, f5) or (f2, f3, f5), and
consequently the entire ensemble, classifying any such input as “0”.

This indicates that any sufficient reason for our ensemble must have a size of at least (k + 1), and
therefore: ⟨(f1, . . . , f5), x′, k′⟩ /∈MSR for k-ensembles of Perceptrons when k = 5. In summary,
we have demonstrated that ⟨z, S0, k, T ⟩ ∈ k-GSSP* ⇐⇒ ⟨(f1, . . . , f5), x′, k′⟩ ∈ MSR for k-
ensembles of Perceptrons when k = 5. Thus, solving the MSR query for k-ensemble Perceptrons is
para-ΣP

2 -hard.

61

	Introduction
	Main Contributions

	Preliminaries
	Explainability Queries
	Ensemble Models Are Less Interpretable
	Complexity Gap in Simple Base Models
	No Complexity Gap in Complex Base Models

	Impact of Base-Model Count and Size on Ensemble Interpretability
	Impact of Base-Model Sizes on Ensemble Interpretability
	Impact of Number of Base-Models on Ensemble Interpretability
	The Number of Decision Trees in an Ensemble
	The Number of Linear Models in an Ensemble

	Related Work
	Limitations and Future Work
	Conclusion
	Ensembles and Base-Model Types
	Ensemble Formalization
	Base-Model Types

	Parameterized Complexity Background
	Parameterized Reductions
	Parameterized Complexity Classes.

	Additional Query Formalizations
	Framework Extensions
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Proposition 6
	Proof of Proposition 7
	Proof of Proposition 8

