AMR-to-Text Generation with Graph Structure Reconstruction and
Coverage

Anonymous ACL submission

Abstract

Generating text from semantic representations
such as AMR is a challenging task. Previ-
ous research formalizes this task as a graph-
to-sequence learning problem and uses vari-
ous graph neural networks to model the graph
structure. Recently, methods based on pre-
trained models improve the performance sig-
nificantly due to pre-trained on a large text cor-
pus. However, these pre-trained model-based
methods take linearized AMR graphs as input
and may lose the information of graph struc-
ture. In addition, these methods don’t con-
sider the coverage of the AMR graph. There-
fore, some nodes in the graph may be lost
or repeated in the generated text. To address
these problems, we propose a graph structure
and coverage enhanced model for this task.
To enhance the information of graph struc-
ture, we design two auxiliary objectives, re-
lationship prediction and distance prediction
of nodes in AMR graphs. To consider the
coverage of AMR graphs, we design a cover-
age mechanism to solve the problem of infor-
mation under-translation or over-translation in
AMR-to-text generation. Experimental results
on three standard datasets show that our pro-
posed method outperforms the existing meth-
ods significantly.

1 Introduction

In recent years, abstract meaning represents (AMR)
has drawn increasing attention (Banarescu et al.,
2013; Guo et al., 2019; Wang et al., 2020a; Bevilac-
qua et al., 2021) for its potential value in many
applications. AMR abstracts away from the surface
form of a sentence and encodes its meaning as a
rooted, directed, and acyclic graph. The nodes in
the graph represent concepts, and the edges repre-
sent the relationships between concepts. Figure 1
illustrates an AMR graph of a sentence.

The task of AMR-to-text is to recover text that
represents the same meaning as the given AMR
graph. The semantic information of the generated

:degree

Figure 1: An AMR graph of the sentence: These have
become the best spots to observe birds.

text has to be as consistent as possible with the
original AMR graph. This task is extremely chal-
lenging due to the abstraction of functional words
and syntactic realizations in the AMR graph and the
lack of description of many details such as tense,
number, and determinism.

Existing neural machine translation methods
have been explored for AMR-to-text genera-
tion (Konstas et al., 2017). First, the graph is
transformed into a sequence. Then a sequence-
to-sequence model (Seq2seq) is used to solve the
problem (Song et al., 2017, 2018; Damonte and
Cohen, 2019). This approach is simple and effec-
tive but risks losing information about the graph
structure.

Recent studies have viewed this task as a graph-
to-sequence learning problem, and these studies
have proposed a variety of graph neural networks to
encode graphs. Initially, several studies have used
gated graph neural networks (GGNN) or graph
convolutional networks (GCN) to directly encode
AMR graphs (Beck et al., 2018; Guo et al., 2019).
However, these graph encoders still could not sig-
nificantly outperform the sequence encoders. Sub-
sequently, graph transformers were introduced to
this task with good results (Cai and Lam, 2020;
Wang et al., 2020a).

However, these graph-to-sequence models are
prone to misrepresentation of semantic relations
between concepts, which suggests that some graph
structure information is not captured by the node

representation. What’s more, most previous meth-
ods doesn’t consider the coverage of AMR graph.
As a result, these methods may lose some nodes, or
they may duplicate some nodes when generating
text. For example, given AMR graph represented
in Figure 1 as input, the above models may produce
the following errors: 1) semantic confusion: com-
pared to the gold sentence, it is translated to these
are the best locations for birds to observe them.
The model confuses the semantic relationship be-
tween observe and bird. This is a typical problem
of semantic confusion; 2) under-translation: In
another case, it is translated to these are the best
locations to observe. The model ignores the object
bird. This is a typical under-translation problem; 3)
over-translation: it is translated to these are the
best locations to observe the best birds. The model
repeats the translation of best. This is a typical
problem of over-translation.

More recently, as pre-trained language models,
such as BERT (Devlin et al., 2018), BART (Lewis
et al., 2020), T5 (Raffel et al., 2020), etc., have
achieved good performance on many tasks (Zhang
et al., 2020c; Bao et al., 2020; Zhang et al., 2020a),
some researchers have used them for AMR-to-text
generation. Specifically, Bevilacqua et al. (2021)
proposed a method based on the pre-trained model
BART and achieved the best score in this task. And
the performance of their model were substantially
ahead of the previous methods. Therefore, we fo-
cus on the pre-trained model based methods for this
task. However, most of the pre-trained models are
based on Seq2seq framework. As mentioned above,
using Seq2seq based models for AMR-to-text task
usually leads to loss of graph structure and under-
and over-translation problems.

To tackle the above problems, we enhance a pre-
trained model with graph structure reconstruction
and coverage to improve the quality of AMR-to-
text generation. To enhance the information of
graph structure, we design two auxiliary objectives,
relationship prediction and distance prediction of
nodes in AMR graphs. With these two auxiliary
objectives, we force the model to learn and recon-
struct the graph structure. Inspired by the coverage
mechanism in machine translation (Tu et al., 2016)
and text summarization (See et al., 2017), we pro-
pose a novel coverage mechanism to address the
under- and over-translation problems in AMR-to-
Text generation. This mechanism encourages the
model to cover all nodes and edges in the graph

when decoding. With this mechanism, node loss
or duplication is avoided. We conduct experiments
on three benchmarks and the results show the ef-
fectiveness of our model.

In summary, our contributions are as follows:

* To solve the problem that linearizing AMR
graphs lead to loss of graph structure informa-
tion, we apply graph structure reconstruction
to enhance a pre-trained model.

* The coverage mechanism is designed to solve
the under- and over-translation problems that
tend to occur in AMR-to-Text generation.

* Experimental results on three datasets demon-
strate that our model achieves the best results
on all metrics compared to existing methods.

2 Related Work

Without discussing the statistical methods, most of
the current methods for AMR-to-Text generation
can be roughly divided into three categories. Next,
we detail the progress of the three categories of
methods.

Seq2seq based models In previous work, the main-
stream approach was to linearly serialize the AMR
graph and then send these sequences to the seq2seq
model. Konstas et al. (2017) defined this task as
a translation task, translating sequences of AMR
graph serialization into sentences. His model is
based on an off-the-shelf RNN. Zhu et al. (2019)
was the first to apply transformer to this task. How-
ever, these seq2seq based models have some draw-
backs. When linearizing the AMR graph, structural
information between graph nodes are lost. But the
structural information plays an important role in
AMR-to-text generation.

Graph2seq based models In the past years, this
task has gradually become a graph2seq task due
to the rise of graph neural networks. Many graph
neural network-based models were used for this
task. Beck et al. (2018) proposed to transform
AMR graphs into Levi graphs to solve the problem
of sparse data, and proposed gated graph neural
networks. Guo et al. (2019) used a new GCN-
based model to solve this task. Then, Wang et al.
(2020a) modified a graph transformer-based model
to solve the AMR-to-text task with good results.
Currently, Wang et al. (2020b) has achieved an
advanced score in this task. They use a GAT-based
model with an additional structure reconstruction

objective to solve the semantic confusion problem
in the AMR-to-text generation.

Pre-trained based models Recently, the pre-
trained based models have achieved good perfor-
mance in many NLP downstream tasks, includ-
ing the AMR-to-text generation task. Mager et al.
(2020) used GPT-2 and successfully achieved the
best performance at that time. Then Bevilacqua
et al. (2021) applied BART to this task and im-
proved the performance further. Researchers also
evaluated the performance of different pre-trained
models for this task (Ribeiro et al., 2020). Com-
pared to the non-pre-trained models, the pre-trained
models improved performance with a large margin
in AMR-to-text generation.

3 Methodology

Reconstruction Loss Outputs Text

. __t

Reconstruction Coverage

Encoder

Decoder

|

Text Tokens

L

Linearization AMR Graphs

Figure 2: The architecture of our whole model

The overall structure of our model is shown in
Figure 2. We use BART as our backbone model. A
graph structure reconstruction is proposed to solve
the semantic confusion, and a coverage mechanism
is designed to solve the under- and over-translation.
In this section, we will elaborate our model in three
parts. First, we show how to transform the AMR
graph into linear sequence. Second, we present
how to reconstruct the graph structure in the lin-
earized AMR graph. Finally, we elaborate how
our coverage mechanism works and how it allows
the model to avoid the under- and over-translation
problems in AMR-to-text generation.

3.1 BART Inputs

Following the method proposed by Bevilacqua et al.
(2021), we chose to linearize the AMR graph using
a depth search-first algorithm. Special markers
are used to replace the variable names that appear
in the PENMAN (Goodman, 2020) linearization.
The variable names generated by the PENMAN

{PM: (b / become-01 :ARGL (t / this) :ARG2 (s/
i spot :location-of (o / observe-01 :ARG1 (b3 / :
i bird)) :ARG1-of (g / good-02 :degree (m / most)))):

Ours : (<P0> become-01 :ARG1 (<P1> this) :ARG2
i(<P2> spot :location-of (<P3> observe-01 :ARG1

i (<P4> bird)) :ARG1-of (<P5> good-02 :degree

i (<P6> most))))

Figure 3: Linearized sequences of PENMAN and ours
for the AMR graph shown in Figure 1

linearization tend to introduce certain confusion
problem. The special token is a good solution to
solve this confusion problem. It also facilitates the
extraction of position of nodes and edges. Figure 3
shows specific differences between PENMAN and
ours.

As we know, BART uses a subword vocabulary
whose tokenization is optimized to handle English,
but it is not well suited to AMR notation. To avoid
AMR notation being divided too finely and thus
affecting performance, we expand BART’s vocab-
ulary with these notations. Specifically, we refer
to the approach of Bevilacqua et al. (2021) and
expand it with three types of tokens: 1) all rela-
tions and frames that occur at least five times in the
training corpus; 2) all the constituent components
of AMR tokens, such as :op; 3) all other special
tokens added in the linearization.

To facilitate graph structure reconstruction, we
must record and extract the position of nodes and
edges in the sequence. Since node may be split into
multiple subwords by BART during the tokeniza-
tion process, it is not easy to extract. Therefore, we
extract the position of special markers instead of
node position. Since each node corresponds to a
special marker, this substitution solves the problem
caused by tokenization effectively.

3.2 Graph Structure Reconstruction

To force the model to reconstruct the graph struc-
ture in the linearized AMR graph, we propose to
optimize two simple but effective auxiliary predic-
tion objectives. The architecture of the graph recon-
struction mechanism is shown in Figure 4. First,
the positions of the specified nodes are extracted
from the linearized sequence. Then, the encoder
hidden states of the specified nodes are extracted
in the encoder hidden states based on the positions
of the nodes. Finally, the encoder hidden states of
these nodes are used for the prediction objectives.
Relationship Prediction The node positions and
the edge positions of the linearization AMR graphs
are usually not closely related. The source, edge

Distance Reconstruction
prediction Loss

Relationship
prediction

N\ 77\
The extracted nodes (Nowe) (ot)
2) \n)/

! (Nude\\‘
representation 1)

Outputs Text

i

Decoder '

‘ Encoder Layer ‘ |

— ! BART
Node Edge | Encoder |
D D !
— (
1 ‘ Encoder Layer ‘
| ‘ Encoder Layer ‘ 1 T

Linearization AMR
Graphs

Text Tokens

Figure 4: The architecture of Graph Structure Recon-
struction

and target nodes are no longer adjacent to each
other in the linear sequence. This leads to the loss
of relevant structural information. To reconstruct
the structure of the graph, we choose to predict the
types of edges between different nodes in the lin-
earized sequence. To make the prediction complete,
we predict not only the types of edges between ad-
jacent nodes, but also whether non-adjacent nodes
are adjacent to each other.

The relationship prediction requires the model
to predict the semantic relationship of a given node
pair. For a given pair of nodes, we concatenate the
representations of the two nodes and use a multi-
layer perceptron to predict the corresponding se-
mantic relationship as follows:

hij = MLP([hs; hy]) (1)
Ti; = softmax (W, [h;"j} +by) 2)

where W, € READXdmoder e REAL and [is
the number of semantic label types in the AMR
graph, h; is the encoder hidden states of the node
¢ after linearization. For the pair of nodes that
are adjacent in the graph, the gold relation label is
exactly the given semantic relation r; ;. For the pair
of nodes that are not adjacent in the AMR graph,
the gold label is non-adjacent.

Distance Prediction After we linearize the AMR
graph, many adjacent nodes in the AMR graph be-
come non-adjacent nodes in the sequence. Then
this phenomenon means that our model cannot
perceive the structural information in the original
AMR graph, which leads to the problem of seman-
tic confusion. So it is not enough to predict the

semantic relationships of node pairs. In order to re-
construct the structure of the graph completely, we
also predict the distances of node pairs to reduce
the problem of semantic confusion.

The Distance prediction is to predict the distance
between two nodes. The distance between a pair of
nodes is defined as the length of the shortest path
from node ¢ to node j regardless of the direction
of the edges. We use a multi-layer perceptron to
predict the distance between two nodes via:

h; = MLP([hs; hy]) (3)

dij = softmaz(Wy[h$;] + ba) 4)

where W,; € RP+DXdmoder p, € RPHL D is
the maximum diameter of the AMR graphs in the
dataset.

Optimization Objective In order to learn better
node representation and generate higher-quality
text, we optimize the two proposed graph recon-
struction objectives in the loss function. The rela-
tionship prediction objective is defined as follows:

Ly=— >

(4,3,ri,5)€EE

_ % A, Z

(i:4,ri,5) ¢ E
where 7; ; is the golden label to the relationship
between nodes v; and v; (note that when two nodes
are not adjacent, the golden label is set to non-
adjacent), 0 is for the model parameters. NN is the
number of nodes, and F is the set of edges. We
sample NV pairs of non-adjacent nodes as negative
samples. % and \,, is used to balance the weight of
negative samples. P(r; ;|i, j, #) is computed from
the predicted probability 7; ; in Equation 2. The
distance prediction objective is defined as follows:

1 N N
Li=—7:> > logp(digl)) (6)

i=1 j=1

log P(Ti,j |7’7 jv 0)

)
lOg P(’I"Z,]’Z, .jv 9)

where d; ; is the golden label to the distance be-
tween nodes v; and vj, % is used to balance the
weight of negative samples. p(d; ;|f) can com-
puted from from the predicted probability cf” in
Equation 4.

Finally, we add these two additional optimiza-
tion objectives to original optimization objective
and the final loss is:

Ltotal = Ltext + Ar * Lr +)\d * Ld (7)

where Ly, is the loss of text generation. A, and Ay

Outputs Text

Addition =

Encoder hidden states| Coverage

Attention

——>‘ Decoder Layer T Coverage
R BART

I Decoder
——>‘ Decoder Layer ‘ .

—‘V‘ Decoder Layer ‘ 1

Last Cross
Attention

| Encoder |

i

Graphs

Linearization AMR
Text Tokens

Figure 5: The architecture of Coverage Mechanism

are the hyperparameters to make a trade-off among
different losses.

3.3 Coverage Mechanism

Repetition and omission are common problems in
machine translation. In traditional statistical ma-
chine translation, a coverage mechanism is usually
used to solve this problem (Koehn, 2009). Inspired
by this idea, Tu et al. (2016) applied a coverage
mechanism in neural machine translation to solve
the under- and over-translation problems. And See
et al. (2017) further simplified this mechanism and
achieved good results in text summarization. They
use a LSTM based decoder and update the cov-
erage vector in chronological order (Greff et al.,
2016). In short, these methods use coverage vector
to track attention history on source tokens. When
predicting next target token, the coverage vector
is fed back to the attention model to help adjust
future attention, which allows the model to take
more account of untranslated source tokens.

However, most previous works on AMR-to-text
generation ignored these two key problems (Wang
et al., 2020b; Ribeiro et al., 2020; Zhang et al.,
2020b). Therefore, we design a novel coverage
mechanism to solve under- and over-translation
problems in AMR-to-text generation. In contrast,
we do not use a LSTM based model, which means
that the coverage vector cannot be updated based
on the time steps as Tu et al. (2016) and See et al.
(2017) do. Next, we elaborate on our coverage
mechanism in detail.

The architecture of coverage mechanism is
shown in Figure 5. Since in transformer based
model the outputs of all time steps are computed
in parallel when training, adding dependencies be-

tween time steps can significantly slow down the
training speed. Therefore, as an alternative, we
treat a layer of the transformer as a time step. There-
fore, the cross attention of the last decoder layer
Ajqst in the decoder is chosen as our coverage vec-
tor C.

To guide attention with the coverage vector,
we define a new attention layer after the decoder,
which takes into account the historical attention
distribution C'. The coverage vector, the encoder
hidden states and the decoder hidden states are
used as inputs to this attention. The new attention
distribution is computed as follows:

Hlast * ET
ast - Tene 4 Y7«) (8)
Vv dmodel)

where H,,,; represents the hidden states of the last
decoder layer, E.,. is the final hidden states of the
encoder.

Then we multiply the obtained coverage atten-
tion with the hidden states of the encoder to obtain
new weighted context vectors as follows:

Hcov = Acov * Egjnc (9)
Subsequently, we add a residual layer, in which
we add new weighted context vectors to the de-

coder hidden states to get the final hidden states as
follows:

Acov = softmaz(

Hfinal = Hlast + Heop (10)
Then, we add layer normalization as follows:
Hyorm = LayerNorm(H fipnar) an

Finally, the normalized result H,,,,, are used to
predict words.

4 Experimental Settings

We now describe the experimental settings for
AMR-to-text generation.

Datasets

We use three standard English AMR corpora as
evaluation datasets, AMR 1.0 (LDC2014T12),
AMR 2.0 (LDC2017T10), and AMR 3.0
(LDC2020T02). They contains 13,051, 39,260,
and 59,255 manually-created sentence-AMR pairs
respectively. Notice that AMR 2.0 is a superset
of AMR 1.0 and AMR 3.0 is a superset of AMR
2.0. Each dataset is randomly split into training
set, development set, and test set.

Setup

We mainly refer to the experimental parameter set-
tings of Bevilacqua et al. (2021). The same settings
are used on the BART-Large as specified in Hug-
gingface’s transformers. The model is trained for

Model

AMR 1.0 AMR 2.0

BLEU METEOR CHRF++ BLEU METEOR CHRF++

GraphLSTM (Song et al., 2018) 233 - - -

GGNN (Beck et al., 2018) - - 27.5 53.5
DenselyGCN (Guo et al., 2019) 28.2 - - 30.4 - 59.6
GraphTransformer (Cai and Lam, 2020) 27.4 329 56.4 29.8 35.1 59.4
StructuralTransformer-SA (Zhu et al., 2019) 29.7 35.5 63.0 31.5 36.0 63.8
HetGT (Yao et al., 2020) 31.8 36.9 63.8 34.0 38.1 65.6
BetterG-Transformer (Wang et al., 2020b) 32.1 36.1 64.0 33.9 37.1 65.8
GPT-2 (Mager et al., 2020) - - - 33.0 37.7 63.9
BART 40.4 40.1 70.7 427 40.7 72.2
SPRING 41.8 41.0 71.4 453 41.0 73.5
Ours(Recon + Coverage) 42.8 41.5 72.2 454 42.4 73.6

Table 1: Results on the test set of AMR 1.0 and AMR 2.0

30 epochs using cross-entropy with a batch size
of 500. We use the RAdam optimizer (Liu et al.,
2019) with a learning rate of 1075. The gradient
accumulation is 10 batches. Dropout is set to 0.25.
A depth-first search method is used for lineariza-
tion. Special tokens are added in the linearization
process. The vocabulary of the BART model is ex-
panded with these spcial tokens. For prediction, we
follow the usual practice of neural machine trans-
lation (Yang et al., 2018) and set the beam size to
5.

Baseline Models

For AMR 1.0 and AMR 2.0 datasets, the baselines
are divided into three main categories.

The first category of models uses graph neu-
ral network models to solve this task: 1)
GraphLSTM (Song et al., 2018) uses an LSTM
structure to directly encode graph-level semantic
graphs; 2) GGNN (Beck et al., 2018) couples the
Gated Graph Neural Networks with an input trans-
formation; 3) DenselyGCN (Guo et al., 2019) in-
troduces a dense connection strategy, proposing
a novel Densely Connected Graph Convolutional
Networks.

The second category is a series of models of
transformer variants (Vaswani et al., 2017): 1)
GraphTransformer (Cai and Lam, 2020), a graph-
based parser iteratively refining an incrementally
constructed graph; 2) StructuralTransformer-
SA (Zhu et al., 2019), a transformer-based
method that enhances structural awareness of self-
attention; 3) HetGT (Yao et al., 2020), a graph
transformer-based model for encoding the repre-
sentation of heterogeneous subgraphs; 4) BetterG-
Transformer (Wang et al., 2020b), a transformer-
based model that generates sentences with addi-
tional structural reconstruction goals.

The third category is systems that use pre-trained

models: 1) GPT-2 (Mager et al., 2020) is a fine-
tuned GPT-2 model (Radford et al., 2019) to pre-
dict Penman linearization of AMR graphs; 2)
SPRING (Bevilacqua et al., 2021) uses BART to
make AMR-to-text and Text-to-AMR in one sys-
tem; 3) BART (Lewis et al., 2020) is also reported
in Bevilacqua et al. (2021), which uses the pre-
trained model BART without any changes. It lin-
earizes the AMR graph using Penman and gener-
ates the text directly.

For AMR 3.0, since this dataset is the latest re-
lease, there are fewer baselines to compare, and we
compare two baselines: 1) LDGCN (Zhang et al.,
2020b) is a Lightweight Dynamic Graph Convolu-
tional Networks that capture richer non-local inter-
actions by synthesizing higher-order information
from the input graphs; 2) SPRING (Bevilacqua
et al., 2021) uses BART to make AMR-to-text and
Text-to-AMR 1in one system.

Evaluation

We follow the previous methods and use three com-
mon natural language generation (NLG) measures
for evaluation: BLEU (Papineni, 2002), chrF++
(Popovié, 2017), and Meteor (Banerjee and Lavie,
2005). Tokenization is performed with the script
provided by JAMR (Flanigan et al., 2014).

5 Results

5.1 Main Results

First, we test the baseline and our overall model on
the AMR 1.0 and AMR 2.0 datasets. The results
are shown in table 1. From table 1, we can see
that our model achieves the best performance on
all metrics. Specifically, on AMR 1.0, the BLEU
score, METEOR score and CHRF++ score are im-
proved by 1.0, 0.5 and 0.8 points, respectively. On
AMR 2.0, the BLEU score, METEOR score and

AMR 3.0

Model

BLEU METEOR CHRF++
LDGCN (Zhang et al., 2020b) 34.3 38.2 63.7
SPRING 44.9 40.6 72.9
ours(Recon +Coverage) 45.7 42.8 73.7

Table 2: Results on the test set of AMR 3.0

CHRF++ score are improved by 0.1, 1.4 and 0.1
points, respectively.

Compared with the first category of GNN based
methods, the second category of transformer based
methods performs better. Because transformer han-
dles long distance dependencies better through in-
troducing self-attention structure. Compared with
transformer based models, the pre-trained based
methods improve the performance significantly.
The pre-trained models can leverage knowledge ob-
tained by training on large-scale text corpus, thus
they achieve better results than the non-pre-trained
models. This is why we chose BART as our back-
bone model. Even so, our model outperforms the
pre-trained based methods significantly, including
BART baseline. This indicates that our proposed
graph structure reconstruction and coverage mecha-
nism contributes to improving the quality of AMR-
to-text generation.

Second, we test baselines and our overall model
on the AMR 3.0 dataset and Table 2 shows the
results. The results also demonstrate the effective-
ness of our model. Compared with the previous
best method, our model improves BLEU score,
METEOR score, and CHRF++ score by 0.8, 2.2,
and 0.8, respectively.

5.2 Ablation Results

To verify the validity of two components in our
model, we conduct ablation experiments on AMR
2.0 and AMR 3.0. Specifically, we compare our
overall model with three variants: 1) Base model:
our backbone model BART which only contains
an encoder and a decoder; 2) +Recon: our back-
bone model with graph structure reconstruction
component; 3) +Coverage: our backbone model
with coverage mechanism. The results are shown
in Table 3.

Compared to our backbone model, both of graph
structure reconstruction and coverage mechanism
improve the scores of the three main metrics.
Specifically, on AMR 2.0, both individual mod-
els improve METEOR scores, by 1.2 and 1.4, re-
spectively. On AMR 3.0, both individual mod-

Model AMR 2.0 AMR 3.0

B M C B M C
Base model 453 41.0 735 449 406 729
+Recon 449 422 732 456 427 736
+Coverage 452 424 733 451 423 732

+Recon +Coverage 454 424 73.6 457 428 73.7

Table 3: Ablation results on the test set of AMR 2.0 and
AMR 3.0. B for the BLEU scores. M for the METEOR
scores. C for the CHRF++ scores.

els improve all three metrics. The graph struc-
ture reconstruction model improve BLEU, ME-
TEOR, and CHRF++, by 0.7, 2.1, and 0.7, re-
spectively on AMR 3.0. The coverage mechanism
model improve on AMR 3.0 for BLEU, METEOR,
and CHRF++, by 0.2, 1.7, and 0.3, respectively.
This shows that both of our proposed components
achieve a score improvement.

Similarly, compared to our overall model, remov-
ing either of the two modules decreases its score.
Specifically, removing the graphical structure re-
construction leads to a decrease in all metrics for
both datasets. This demonstrates the effectiveness
of the graph structure reconstruction module on
solving the problem of semantic confusion. With-
out the coverage mechanism, the metrics scores
are also inferior to our overall model. This shows
that the coverage mechanism is effective in reduc-
ing the under- and over-translation problems. This
demonstrates that both of components are useful,
and removing either one have a negative effect on
the results.

5.3 Case Study

We first perform error analysis on the results gener-
ated by baselines. Specifically, we calculate three
metrics for each sample in the test set of AMR 2.0,
and samples with the lower score are considered as
bad cases. We analyze bad cases and summarized
three common errors in AMR-to-text generation.
Then we analyze results generated by our model.
Compared with baselines, our model addresses two
of these common errors: semantic confusion and in-
formation loss. Next, we introduce three common
errors in detail and show how our model solves the
first two errors. Due to space limitation, there is
only one case for each common error, and more
cases are shown in the Appendix A. And we only
show the results of a strong baseline SPRING in
case study.

Semantic confusion The first common error is se-
mantic confusion. That is, the semantic relations of

the generated sentences are confused or opposite
to the original meaning. An example is shown in
Figure 6. The original sentence is “China consid-
ers Germany the most important trading partner of
Europe”, while our baseline translates as “China is
considered Germany’s the most important trading
partner in Europe”. This is a common example of
confusing semantic relations. This problem may
be due to the loss of graphical structure informa-
tion during linearization, which leads to the con-
fusion of subject-verb-object relationships in the
sentences. And it can be seen that our model trans-
lates it correctly, which shows the effectiveness of
our model. This indicates that the graph structure
reconstruction module in our model distinguishes
the semantic relationships between nodes well and
improves the quality of AMR-to-text generation.

AMR Graph:
(c / consider-01
:ARGO (c2 / country :wiki "China"
:name (n / name :op1 "China"))
:ARG1 (p / partner-01
:ARG1 (c4 / country :wiki "Germany"
:name (n3 / name :op1 “Germany”))
:mod (i /important
:degree (m / most))
:mod (t / trade-01)
:location (c3 / continent :wiki "Europe"
:name (n2 / name :op1 "Europe"))))
Gold: China considers Germany the most important
trade partner of Europe.
Baseline: China is considered Germany's most important
trading partner in Europe.
Ours: China considers Germany to be its most
important trading partner in Europe.

Figure 6: A comparison of our model and the baseline
model to generate the result cases

Information loss The problem of information loss
is very common. We show an example of infor-
mation loss in Figure 7. In the original sentence,
“wen is expressing concern and sympathy for the
situation in Iraq and the Iraqi people”. However,
our baseline model loses the object the situation in
Irag and generates only one object, which is dif-
ferent from the original sentence’s meaning. Since
baseline does not consider the coverage of AMR
graphs, some nodes information may be missing
when generating them. Our model, however, does
not have this problem and generates the original
meaning of the sentence intactly. This proves the
effectiveness of our coverage mechanism, which
ensures the integrity of the information by consid-
ering the coverage of the graph.

Correct but low scores The third type is that the
generated sentences have the correct meaning, but

AMR Graph:
(s / state-01
:ARGO (p / person :wiki "Wen _ Jiabao" :name (n / name :op1 “Wen"))
:ARG1 (a/and
:opl (c / concern-01
:ARGO (s2 / situation
:time (c3 / current)
:location (c4 / country :wiki “Irag” :name (n3 / name :op1

"Irag")))

:ARG1 (c2 / country :wiki "China" :name (n2 / name :opl
“China"))

:ARG1-of (d / deep-02))

:0p2 (s3 / sympathize-01
:ARGO c2
:ARG1 (p2 / people
:mod c4))))

Gold: Wen stated that China is deeply concerned with the current
situation in Iraq and is sympathetic to the Iragi people.
Baseline: Wen stated that China is deeply concerned and sympathetic to
the Iraqi people.
Ours: Wen stated that China is deeply concerned about the current
situation in Iraq and sympathizes with the Iraqi people.

Figure 7: A comparison of our model and the baseline
model to generate the result cases

AMR Graph:
(p/ possible-01 :polarity -
:ARG1 (v / verify-01
:ARG1 (t/ thing
:ARG1-of (c / claim-01
:ARGO (c2 / country :wiki "Iran"
:name (n / name :op1 “lran"))))))

Gold: There is no way to verify Iran's claims.
Baseline: Iran's claims cannot be verified.
Ours: Iran's claims are impossible to verify.

Figure 8: A comparison of our model and the baseline
model to generate the result cases

the scores are low on all three measures. We show
an example related to this problem in Figure 8. The
meaning of the generated sentence is the same as
the original sentence, regardless of baseline model
or our model. However, since the generated sen-
tence differs in expression, the used metrics can
not handle this difference. In other words, the third
error is made by metrics, not by our model or base-
line. Therefore, in the future, we can add human
evaluation or design new automatic metrics in eval-
uation of AMR-to-text generation.

6 Conclusion

We propose a BART-based model with graph struc-
ture reconstruction and coverage mechanism to im-
prove the quality of AMR-to-text. We design two
auxiliary objectives, relationship prediction and
distance prediction of nodes in AMR graphs, to
enhance the information of the graph structure. To
consider the coverage of AMR graphs, we design
a coverage mechanism to address the under- and
over-translation problems in AMR-to-text gener-
ation. Experimental results on three benchmarks
show that our model achieves the best performance
compared to existing methods.

References

L. Banarescu, C. Bonial, C. Shu, M. Georgescu, and
N. Schneider. 2013. Abstract meaning representa-
tion for sembanking. In Proceedings of the 7th
Linguistic Annotation Workshop and Interoperabil-
ity with Discourse.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings
of the acl workshop on intrinsic and extrinsic evalu-
ation measures for machine translation and/or sum-
marization, pages 65-72.

Siqi Bao, Huang He, Fan Wang, Hua Wu, and Haifeng
Wang. 2020. Plato: Pre-trained dialogue generation
model with discrete latent variable. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 85-96.

D Beck, G. Haffari, and T. Cohn. 2018. Graph-
to-sequence learning using gated graph neural net-
works. Meeting of the Association for Computa-
tional Linguistics.

Michele Bevilacqua, Rexhina Blloshmi, and Roberto
Navigli. 2021. One spring to rule them both: Sym-
metric amr semantic parsing and generation without
a complex pipeline. In Proceedings of the AAAI
Conference on Artificial Intelligence.

Deng Cai and Wai Lam. 2020. Graph transformer
for graph-to-sequence learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 7464-7471.

Marco Damonte and Shay B Cohen. 2019. Structural
neural encoders for amr-to-text generation. arXiv
preprint arXiv:1903.11410.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jeffrey Flanigan, Sam Thomson, Jaime G Carbonell,
Chris Dyer, and Noah A Smith. 2014. A discrim-
inative graph-based parser for the abstract mean-
ing representation. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1426—
1436.

M. W. Goodman. 2020. Penman: An open-source li-
brary and tool for amr graphs. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations.

Klaus Greff, Rupesh K Srivastava, Jan Koutnik, Bas R
Steunebrink, and Jiirgen Schmidhuber. 2016. Lstm:
A search space odyssey. IEEE transactions on neu-
ral networks and learning systems, 28(10):2222—
2232.

Z. Guo, Y. Zhang, Z. Teng, and W. Lu. 2019. Densely
connected graph convolutional networks for graph-
to-sequence learning. Transactions of the Associa-
tion for Computational Linguistics, 7(2):297-312.

Philipp Koehn. 2009. Statistical machine translation.
Cambridge University Press.

I. Konstas, S. Iyer, M. Yatskar, Y. Choi, and L. Zettle-
moyer. 2017. Neural amr: Sequence-to-sequence
models for parsing and generation. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-

pers).

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871-7880, Online. Association
for Computational Linguistics.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu
Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei Han.
2019. On the variance of the adaptive learning rate
and beyond. arXiv preprint arXiv:1908.03265.

M. Mager, R. F. Astudillo, T. Naseem, M. A. Sultan,
and S. Roukos. 2020. Gpt-too: A language-model-
first approach for amr-to-text generation. Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics.

S. Papineni. 2002. Blue ; a method for automatic eval-
uation of machine translation. In Meeting of the As-
sociation for Computational Linguistics.

Maja Popovié. 2017. chrf++: words helping character
n-grams. In Proceedings of the second conference
on machine translation, pages 612-618.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Lan-
guage models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,

21:1-67.

Leonardo FR Ribeiro, Martin Schmitt, Hinrich Schiitze,
and Iryna Gurevych. 2020. Investigating pretrained
language models for graph-to-text generation. arXiv
preprint arXiv:2007.08426.

A. See, P. J. Liu, and CD Manning. 2017. Get to
the point: Summarization with pointer-generator net-
works. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers).

https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703

L. Song, Y. Zhang, Z. Wang, and D. Gildea. 2018. A
graph-to-sequence model for amr-to-text generation.
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers).

Linfeng Song, Xiaochang Peng, Yue Zhang, Zhiguo
Wang, and Daniel Gildea. 2017. Amr-to-text gener-
ation with synchronous node replacement grammar.
arXiv preprint arXiv:1702.00500.

.Tu,Z. Lu, L. Yang, X. Liu, and L. Hang. 2016. Mod-
eling coverage for neural machine translation. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998-6008.

Wang, X. Wan, and H. Jin. 2020a. Amr-to-text gen-
eration with graph transformer. Transactions of the
Association for Computational Linguistics, 8(1):19—
33.

Wang, X. Wan, and S. Yao. 2020b. Better amr-to-
text generation with graph structure reconstruction.
In Twenty-Ninth International Joint Conference on
Artificial Intelligence and Seventeenth Pacific Rim

International Conference on Artificial Intelligence
IJCAI-PRICAI-20.

Yilin Yang, Liang Huang, and Mingbo Ma. 2018.
Breaking the beam search curse: A study of (re-)
scoring methods and stopping criteria for neural ma-
chine translation. arXiv preprint arXiv:1808.09582.

Shaowei Yao, Tianming Wang, and Xiaojun Wan.
2020. Heterogeneous graph transformer for graph-
to-sequence learning. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7145-7154.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter Liu. 2020a. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In In-
ternational Conference on Machine Learning, pages
11328-11339. PMLR.

Y. Zhang, Z. Guo, Z. Teng, W. Lu, and L. Bing. 2020b.
Lightweight, dynamic graph convolutional networks
for amr-to-text generation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Yizhe Zhang, Sigi Sun, Michel Galley, Yen-Chun Chen,
Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing
Liu, and William B Dolan. 2020c. Dialogpt: Large-
scale generative pre-training for conversational re-
sponse generation. In Proceedings of the 58th An-
nual Meeting of the Association for Computational

Linguistics: System Demonstrations, pages 270-
278.

10

J. Zhu, J. Li, M. Zhu, L. Qian, M. Zhang, and G. Zhou.
2019. Modeling graph structure in transformer for
better amr-to-text generation. Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-1JCNLP).

A Appendix

As stated in the main text, we report more case
studies below.

A.1 Semantic confusion

AMR Graph:
(c / check-07
:ARGL1 (t/ terrorism
:ARGO-of (c2 / cross-02
:ARG1 (b / border))))

Gold: Check cross-border terrorism.
Baseline: Cross-border terrorism checks
Ours: Check cross-border terrorism.

AMR Graph:
(r/ road

:destination (n / nowhere))
Gold: Aroad to no where.
Baseline: There is no road to nowhere.
Ours: Aroad to nowhere.

AMR Graph:
(p/ possible-01
:ARG1 (h/ have-03
:ARGO (c / country :wiki "China" :name (n / name :op1 "China"))
:ARG1 (g / girl
:ARG1-of (p2/ pure-02)
:ARG1-of (i / innocent-01)))
:time (a / amr-unknown))
Gold: When can China have a pure, innocent girl?
Baseline: How can China have pure innocent girls?
Ours: When can China have pure innocent girls?

Figure 9: A comparison of our model and the baseline
model to generate the result cases

The first common error is semantic confusion.
That is, the semantic relations of the generated
sentences are confused or opposite to the origi-
nal meaning. Three examples are shown in the
Figure 9. The original sentence of Example 1 is
“Check cross-border terrorism ”, while our baseline
translates to “Cross-border terrorism checks”. Ex-
ample 2 is “A road to no where”, while the baseline
translation is “There is no road to nowhere”. Both
of these are common examples of confusing seman-
tic relationships because they reverse the subject
and object. Example 3 is "When can China have a
pure, innocent girl?" but the baseline translation is
"How can China have pure innocent girls? "This
example confuses a time question with a manner
question. This problem may be due to the loss of
graphical structure information during lineariza-
tion, which leads to the confusion of subject-verb-
object relationships in the sentences. And it can
be seen that our model can be translated correctly,
which shows the validity of our model. This indi-
cates that the graph structure reconstruction module
in our model can distinguish the semantic relation-
ships between nodes well and improve the quality
of AMR-to-text generation.

11

A.2 Information loss

AMR Graph:
(s / station
:mod (t / television
:ARG1-of (I/ local-02))

:domain (c / channel :wiki "ABS-CBN _Corporation” :name (n2 / name :op1
"ABS-CBN")

:mod (n / news))

:location (c2 / city :wiki "Manila" :name (n3 / name :op1 "Manila")))
Gold: ABS-CBN news channel is a local television station in Manila.
Baseline: ABS-CBN is a local television station in Manila.

Ours: ABS-CBN news channel is a local television station in Manila.

AMR Graph:
(m / multi-sentence
:sntl (a/ agree-01
:ARGL1 (p / person
:ARGO-of (e / entertain-01)
:mod (j / just)
:ARG1-of (c / cheap-02)))
:snt2 (s3 / sense-02
:ARGL (t2 / thing
:ARG2-of (r / repute-01
:ARGL1 (t/ they)
:location (c2 / country :wiki "China" :name (n / name :op1 “China")
:mod (f / feudal))))
:degree (s2 / somewhat)))
Gold: Agree, just cheap entertainers. Their reputation in feudal China
somewhat makes sense.
Baseline: Agreed, they are just entertainers, their rep in feudal China makes
somewhat sense.
Ours: Agree, just cheap entertainers. Their rep in feudal China makes
somewhat sense.

Figure 10: A comparison of our model and the baseline
model to generate the result cases

The problem of missing information is very com-
mon. We show several examples of missing infor-
mation in Figure 10 and Figure 11 respectively.
The original sentence of Example 1 is “ABS-CBN
news channel is a local television station in Manila.”
However, our baseline model loses news, which is
different from the meaning of the original sentence.
This leads to a change in the subject of the sentence.
Similarly, in Example 2, the original sentence reads
“Agree, just cheap entertainers. Their reputation in
feudal China somewhat makes sense.” and the base-
line loses the adjective cheap, which is the same
as in Example 1. In Example 3, which is in Fig-
ure 11, the original sentence reads “Reportedly one
of the most important drugs- and gun-smuggling
routes in supplying Europe with cocaine runs from
Colombia across the northern tier of the Amazon
to Suriname .” The baseline translation is missing
Reportedly. Since the baseline does not take into ac-
count the coverage of the AMR graph, some node
information may be lost during generation. How-
ever, our model does not have this problem and
generates the original meaning of the sentences
intact. This proves the effectiveness of our cov-
erage mechanism, which ensures the integrity of
the information by considering the coverage of the
graph.

AMR Graph:
(r/ run-04
:ARGL1 (r2 / route
:ARG1-of (i / include-91
:ARG2 (r3 / route
:mod (i2 / important
:degree (m / most)
:purpose (s2 / supply-01
:ARGL1 (c / cocaine)
:ARG2 (c2 / continent :wiki "Europe"
:name (n / name :op1 "Europe"))))
:path-of (s / smuggle-01
:ARG1 (a/and
:opl (d/ drug)
:0p2 (g /gun))))))
:ARG3 (c3 / country :wiki "Colombia"
:name (n2 / name :op1 “Colombia"))
:ARG4 (c4 / country :wiki "Suriname"
:name (n3 / name :op1l "Suriname™))
:ARG1-of (r5 / report-01)
:path (a2 / across
:location (t / tier
:mod (n4 / north)
:part-of (w / world-region :wiki "Amazon_basin"
:name (n5/ name :opl "Amazon")))))
Gold: Reportedly one of the most important drug- and gun-smuggling
routes in supplying Europe with cocaine runs from Colombia across the
northern tier of the Amazon to Suriname .
Baseline: One of the most important routes for smuggling drugs and guns
from Colombia to Europe runs across the northern Amazon basin to
Suriname.
Ours: One of the most important routes for supplying cocaine to
Europe reportedly runs across the northern tier of the Amazon from
Colombia to Suriname smuggling drugs and guns.

Figure 11: A comparison of our model and the baseline
model to generate the result cases

AMR Graph:
(t2 / train-01

:ARG2 (t/ they)

:location (i / indoor)

:degree (m / most)

:location (h / home))
Gold: Athome, they carry out indoor training mostly.
Baseline: They are mostly trained indoor at home .
Ours: They are mostly being trained indoor at home.

AMR Graph:
(d/do-02
:ARGO (i /1)
‘topic (d2 / disease :wiki "Obsessive—-compulsive_disorder"
:name (n/ name :op1 "OCD"))
:mod (e / emoticon :value ":P")
:subevent (c / class
:topic (p / psychology)
:time (t / today)))
Gold: |did about OCD in psycology today :P.
Baseline: :P | did a psychology class today on OCD.
Ours: In my psychology class today, | did about OCD (:P).

AMR Graph:
(d2 / disguise-01
:ARGL1 (s / suffer-01
:quant (m / more))
:ARG2 (I / look-02
:ARGL1 (g / glorious))
:ARG2-of (d / dispute-01
:ARG1-of (p / possible-01 :polarity -)))
Gold: More suffering is under the disguise of glorious looks, 'tis the undisputable
fact.
Baseline: More suffering disguised as a glorious look is indisputable.
Ours: The more suffering disguised as a glorious look is indisputable.

Figure 12: A comparison of our model and the baseline
model to generate the result cases

12

A.3 Correct but low scores

The third type is that the generated sentences have
the correct meaning, but the scores are low on all
three measures. We show three examples related
to this problem in Figure 12. The meanings of the
generated sentences are the same as the original
sentences, regardless of the baseline model or our
model. However, since the generated sentences
differ in expression, the used metrics are not suffi-
cient to reflect this difference. In other words, the
third error is made by metrics, not by our model
or baseline. Therefore, in the future, we can add
human evaluation or design new automatic metrics
in the evaluation of AMR-to-text generation.

