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Abstract

Generating text from semantic representations001
such as AMR is a challenging task. Previ-002
ous research formalizes this task as a graph-003
to-sequence learning problem and uses vari-004
ous graph neural networks to model the graph005
structure. Recently, methods based on pre-006
trained models improve the performance sig-007
nificantly due to pre-trained on a large text cor-008
pus. However, these pre-trained model-based009
methods take linearized AMR graphs as input010
and may lose the information of graph struc-011
ture. In addition, these methods don’t con-012
sider the coverage of the AMR graph. There-013
fore, some nodes in the graph may be lost014
or repeated in the generated text. To address015
these problems, we propose a graph structure016
and coverage enhanced model for this task.017
To enhance the information of graph struc-018
ture, we design two auxiliary objectives, re-019
lationship prediction and distance prediction020
of nodes in AMR graphs. To consider the021
coverage of AMR graphs, we design a cover-022
age mechanism to solve the problem of infor-023
mation under-translation or over-translation in024
AMR-to-text generation. Experimental results025
on three standard datasets show that our pro-026
posed method outperforms the existing meth-027
ods significantly.028

1 Introduction029

In recent years, abstract meaning represents (AMR)030

has drawn increasing attention (Banarescu et al.,031

2013; Guo et al., 2019; Wang et al., 2020a; Bevilac-032

qua et al., 2021) for its potential value in many033

applications. AMR abstracts away from the surface034

form of a sentence and encodes its meaning as a035

rooted, directed, and acyclic graph. The nodes in036

the graph represent concepts, and the edges repre-037

sent the relationships between concepts. Figure 1038

illustrates an AMR graph of a sentence.039

The task of AMR-to-text is to recover text that040

represents the same meaning as the given AMR041

graph. The semantic information of the generated042
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Figure 1: An AMR graph of the sentence: These have
become the best spots to observe birds.

text has to be as consistent as possible with the 043

original AMR graph. This task is extremely chal- 044

lenging due to the abstraction of functional words 045

and syntactic realizations in the AMR graph and the 046

lack of description of many details such as tense, 047

number, and determinism. 048

Existing neural machine translation methods 049

have been explored for AMR-to-text genera- 050

tion (Konstas et al., 2017). First, the graph is 051

transformed into a sequence. Then a sequence- 052

to-sequence model (Seq2seq) is used to solve the 053

problem (Song et al., 2017, 2018; Damonte and 054

Cohen, 2019). This approach is simple and effec- 055

tive but risks losing information about the graph 056

structure. 057

Recent studies have viewed this task as a graph- 058

to-sequence learning problem, and these studies 059

have proposed a variety of graph neural networks to 060

encode graphs. Initially, several studies have used 061

gated graph neural networks (GGNN) or graph 062

convolutional networks (GCN) to directly encode 063

AMR graphs (Beck et al., 2018; Guo et al., 2019). 064

However, these graph encoders still could not sig- 065

nificantly outperform the sequence encoders. Sub- 066

sequently, graph transformers were introduced to 067

this task with good results (Cai and Lam, 2020; 068

Wang et al., 2020a). 069

However, these graph-to-sequence models are 070

prone to misrepresentation of semantic relations 071

between concepts, which suggests that some graph 072

structure information is not captured by the node 073
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representation. What’s more, most previous meth-074

ods doesn’t consider the coverage of AMR graph.075

As a result, these methods may lose some nodes, or076

they may duplicate some nodes when generating077

text. For example, given AMR graph represented078

in Figure 1 as input, the above models may produce079

the following errors: 1) semantic confusion: com-080

pared to the gold sentence, it is translated to these081

are the best locations for birds to observe them.082

The model confuses the semantic relationship be-083

tween observe and bird. This is a typical problem084

of semantic confusion; 2) under-translation: In085

another case, it is translated to these are the best086

locations to observe. The model ignores the object087

bird. This is a typical under-translation problem; 3)088

over-translation: it is translated to these are the089

best locations to observe the best birds. The model090

repeats the translation of best. This is a typical091

problem of over-translation.092

More recently, as pre-trained language models,093

such as BERT (Devlin et al., 2018), BART (Lewis094

et al., 2020), T5 (Raffel et al., 2020), etc., have095

achieved good performance on many tasks (Zhang096

et al., 2020c; Bao et al., 2020; Zhang et al., 2020a),097

some researchers have used them for AMR-to-text098

generation. Specifically, Bevilacqua et al. (2021)099

proposed a method based on the pre-trained model100

BART and achieved the best score in this task. And101

the performance of their model were substantially102

ahead of the previous methods. Therefore, we fo-103

cus on the pre-trained model based methods for this104

task. However, most of the pre-trained models are105

based on Seq2seq framework. As mentioned above,106

using Seq2seq based models for AMR-to-text task107

usually leads to loss of graph structure and under-108

and over-translation problems.109

To tackle the above problems, we enhance a pre-110

trained model with graph structure reconstruction111

and coverage to improve the quality of AMR-to-112

text generation. To enhance the information of113

graph structure, we design two auxiliary objectives,114

relationship prediction and distance prediction of115

nodes in AMR graphs. With these two auxiliary116

objectives, we force the model to learn and recon-117

struct the graph structure. Inspired by the coverage118

mechanism in machine translation (Tu et al., 2016)119

and text summarization (See et al., 2017), we pro-120

pose a novel coverage mechanism to address the121

under- and over-translation problems in AMR-to-122

Text generation. This mechanism encourages the123

model to cover all nodes and edges in the graph124

when decoding. With this mechanism, node loss 125

or duplication is avoided. We conduct experiments 126

on three benchmarks and the results show the ef- 127

fectiveness of our model. 128

In summary, our contributions are as follows: 129

• To solve the problem that linearizing AMR 130

graphs lead to loss of graph structure informa- 131

tion, we apply graph structure reconstruction 132

to enhance a pre-trained model. 133

• The coverage mechanism is designed to solve 134

the under- and over-translation problems that 135

tend to occur in AMR-to-Text generation. 136

• Experimental results on three datasets demon- 137

strate that our model achieves the best results 138

on all metrics compared to existing methods. 139

2 Related Work 140

Without discussing the statistical methods, most of 141

the current methods for AMR-to-Text generation 142

can be roughly divided into three categories. Next, 143

we detail the progress of the three categories of 144

methods. 145

Seq2seq based models In previous work, the main- 146

stream approach was to linearly serialize the AMR 147

graph and then send these sequences to the seq2seq 148

model. Konstas et al. (2017) defined this task as 149

a translation task, translating sequences of AMR 150

graph serialization into sentences. His model is 151

based on an off-the-shelf RNN. Zhu et al. (2019) 152

was the first to apply transformer to this task. How- 153

ever, these seq2seq based models have some draw- 154

backs. When linearizing the AMR graph, structural 155

information between graph nodes are lost. But the 156

structural information plays an important role in 157

AMR-to-text generation. 158

Graph2seq based models In the past years, this 159

task has gradually become a graph2seq task due 160

to the rise of graph neural networks. Many graph 161

neural network-based models were used for this 162

task. Beck et al. (2018) proposed to transform 163

AMR graphs into Levi graphs to solve the problem 164

of sparse data, and proposed gated graph neural 165

networks. Guo et al. (2019) used a new GCN- 166

based model to solve this task. Then, Wang et al. 167

(2020a) modified a graph transformer-based model 168

to solve the AMR-to-text task with good results. 169

Currently, Wang et al. (2020b) has achieved an 170

advanced score in this task. They use a GAT-based 171

model with an additional structure reconstruction 172
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objective to solve the semantic confusion problem173

in the AMR-to-text generation.174

Pre-trained based models Recently, the pre-175

trained based models have achieved good perfor-176

mance in many NLP downstream tasks, includ-177

ing the AMR-to-text generation task. Mager et al.178

(2020) used GPT-2 and successfully achieved the179

best performance at that time. Then Bevilacqua180

et al. (2021) applied BART to this task and im-181

proved the performance further. Researchers also182

evaluated the performance of different pre-trained183

models for this task (Ribeiro et al., 2020). Com-184

pared to the non-pre-trained models, the pre-trained185

models improved performance with a large margin186

in AMR-to-text generation.187

3 Methodology188

Encoder Decoder

Linearization AMR Graphs Text Tokens

Reconstruction Coverage

Outputs TextReconstruction Loss

Figure 2: The architecture of our whole model

The overall structure of our model is shown in189

Figure 2. We use BART as our backbone model. A190

graph structure reconstruction is proposed to solve191

the semantic confusion, and a coverage mechanism192

is designed to solve the under- and over-translation.193

In this section, we will elaborate our model in three194

parts. First, we show how to transform the AMR195

graph into linear sequence. Second, we present196

how to reconstruct the graph structure in the lin-197

earized AMR graph. Finally, we elaborate how198

our coverage mechanism works and how it allows199

the model to avoid the under- and over-translation200

problems in AMR-to-text generation.201

3.1 BART Inputs202

Following the method proposed by Bevilacqua et al.203

(2021), we chose to linearize the AMR graph using204

a depth search-first algorithm. Special markers205

are used to replace the variable names that appear206

in the PENMAN (Goodman, 2020) linearization.207

The variable names generated by the PENMAN208

PM：( b  /  become-01  :ARG1  ( t  /  this )  :ARG2  ( s /  

spot  :location-of  ( o  /  observe-01  :ARG1  ( b3  / 

bird ) )  :ARG1-of  ( g  /  good-02  :degree  ( m  /  most ) ) ) )

Ours ：(  <P0>  become-01  :ARG1  (  <P1>  this )  :ARG2  

(  <P2>  spot  :location-of  (  <P3> observe-01  :ARG1  

(  <P4>  bird  )  )  :ARG1-of  (  <P5>  good-02  :degree  

(  <P6>  most  )  )  )  ) 

Figure 3: Linearized sequences of PENMAN and ours
for the AMR graph shown in Figure 1

linearization tend to introduce certain confusion 209

problem. The special token is a good solution to 210

solve this confusion problem. It also facilitates the 211

extraction of position of nodes and edges. Figure 3 212

shows specific differences between PENMAN and 213

ours. 214

As we know, BART uses a subword vocabulary 215

whose tokenization is optimized to handle English, 216

but it is not well suited to AMR notation. To avoid 217

AMR notation being divided too finely and thus 218

affecting performance, we expand BART’s vocab- 219

ulary with these notations. Specifically, we refer 220

to the approach of Bevilacqua et al. (2021) and 221

expand it with three types of tokens: 1) all rela- 222

tions and frames that occur at least five times in the 223

training corpus; 2) all the constituent components 224

of AMR tokens, such as :op; 3) all other special 225

tokens added in the linearization. 226

To facilitate graph structure reconstruction, we 227

must record and extract the position of nodes and 228

edges in the sequence. Since node may be split into 229

multiple subwords by BART during the tokeniza- 230

tion process, it is not easy to extract. Therefore, we 231

extract the position of special markers instead of 232

node position. Since each node corresponds to a 233

special marker, this substitution solves the problem 234

caused by tokenization effectively. 235

3.2 Graph Structure Reconstruction 236

To force the model to reconstruct the graph struc- 237

ture in the linearized AMR graph, we propose to 238

optimize two simple but effective auxiliary predic- 239

tion objectives. The architecture of the graph recon- 240

struction mechanism is shown in Figure 4. First, 241

the positions of the specified nodes are extracted 242

from the linearized sequence. Then, the encoder 243

hidden states of the specified nodes are extracted 244

in the encoder hidden states based on the positions 245

of the nodes. Finally, the encoder hidden states of 246

these nodes are used for the prediction objectives. 247

Relationship Prediction The node positions and 248

the edge positions of the linearization AMR graphs 249

are usually not closely related. The source, edge 250

3



Encoder Layer

Encoder Layer

Encoder Layer

……

Linearization AMR 

Graphs

BART 

EncoderNode 

ID

Edge 

ID

……Node 

1

Node 

2
Node 

n

The extracted nodes 

representation

Relationship 

prediction

Distance 

prediction

Text Tokens

Outputs Text

Decoder

Reconstruction 

Loss

Figure 4: The architecture of Graph Structure Recon-
struction

and target nodes are no longer adjacent to each251

other in the linear sequence. This leads to the loss252

of relevant structural information. To reconstruct253

the structure of the graph, we choose to predict the254

types of edges between different nodes in the lin-255

earized sequence. To make the prediction complete,256

we predict not only the types of edges between ad-257

jacent nodes, but also whether non-adjacent nodes258

are adjacent to each other.259

The relationship prediction requires the model260

to predict the semantic relationship of a given node261

pair. For a given pair of nodes, we concatenate the262

representations of the two nodes and use a multi-263

layer perceptron to predict the corresponding se-264

mantic relationship as follows:265

hrij = MLP([hi;hj ]) (1)266

r̂i,j = softmax(Wr[h
r
ij ] + br) (2)267

where Wr ∈ R(L+1)×dmodel , br ∈ RL+1 and L is268

the number of semantic label types in the AMR269

graph, hi is the encoder hidden states of the node270

i after linearization. For the pair of nodes that271

are adjacent in the graph, the gold relation label is272

exactly the given semantic relation ri,j . For the pair273

of nodes that are not adjacent in the AMR graph,274

the gold label is non-adjacent.275

Distance Prediction After we linearize the AMR276

graph, many adjacent nodes in the AMR graph be-277

come non-adjacent nodes in the sequence. Then278

this phenomenon means that our model cannot279

perceive the structural information in the original280

AMR graph, which leads to the problem of seman-281

tic confusion. So it is not enough to predict the282

semantic relationships of node pairs. In order to re- 283

construct the structure of the graph completely, we 284

also predict the distances of node pairs to reduce 285

the problem of semantic confusion. 286

The Distance prediction is to predict the distance 287

between two nodes. The distance between a pair of 288

nodes is defined as the length of the shortest path 289

from node i to node j regardless of the direction 290

of the edges. We use a multi-layer perceptron to 291

predict the distance between two nodes via: 292

hdij = MLP([hi;hj ]) (3) 293

d̂i,j = softmax(Wd[h
d
ij ] + bd) (4) 294

where Wd ∈ R(D+1)×dmodel , bd ∈ RD+1, D is 295

the maximum diameter of the AMR graphs in the 296

dataset. 297

Optimization Objective In order to learn better 298

node representation and generate higher-quality 299

text, we optimize the two proposed graph recon- 300

struction objectives in the loss function. The rela- 301

tionship prediction objective is defined as follows: 302

Lr =−
∑

(i,j,ri,j)∈E

logP (ri,j |i, j, θ)

− 1

N
λn

∑
(i,j,ri,j)/∈E

logP (ri,j |i, j, θ)
(5) 303

where ri,j is the golden label to the relationship 304

between nodes vi and vj (note that when two nodes 305

are not adjacent, the golden label is set to non- 306

adjacent), θ is for the model parameters. N is the 307

number of nodes, and E is the set of edges. We 308

sample N pairs of non-adjacent nodes as negative 309

samples. 1
N and λn is used to balance the weight of 310

negative samples. P (ri,j |i, j, θ) is computed from 311

the predicted probability r̂i,j in Equation 2. The 312

distance prediction objective is defined as follows: 313

Ld = − 1

N

N∑
i=1

N∑
j=1

log p(di,j |θ) (6) 314

where di,j is the golden label to the distance be- 315

tween nodes vi and vj , 1
N is used to balance the 316

weight of negative samples. p(di,j |θ) can com- 317

puted from from the predicted probability d̂i,j in 318

Equation 4. 319

Finally, we add these two additional optimiza- 320

tion objectives to original optimization objective 321

and the final loss is: 322

Ltotal = Ltext + λr ∗ Lr + λd ∗ Ld (7) 323

whereLtext is the loss of text generation. λr and λd 324
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are the hyperparameters to make a trade-off among325

different losses.326

3.3 Coverage Mechanism327

Repetition and omission are common problems in328

machine translation. In traditional statistical ma-329

chine translation, a coverage mechanism is usually330

used to solve this problem (Koehn, 2009). Inspired331

by this idea, Tu et al. (2016) applied a coverage332

mechanism in neural machine translation to solve333

the under- and over-translation problems. And See334

et al. (2017) further simplified this mechanism and335

achieved good results in text summarization. They336

use a LSTM based decoder and update the cov-337

erage vector in chronological order (Greff et al.,338

2016). In short, these methods use coverage vector339

to track attention history on source tokens. When340

predicting next target token, the coverage vector341

is fed back to the attention model to help adjust342

future attention, which allows the model to take343

more account of untranslated source tokens.344

However, most previous works on AMR-to-text345

generation ignored these two key problems (Wang346

et al., 2020b; Ribeiro et al., 2020; Zhang et al.,347

2020b). Therefore, we design a novel coverage348

mechanism to solve under- and over-translation349

problems in AMR-to-text generation. In contrast,350

we do not use a LSTM based model, which means351

that the coverage vector cannot be updated based352

on the time steps as Tu et al. (2016) and See et al.353

(2017) do. Next, we elaborate on our coverage354

mechanism in detail.355

The architecture of coverage mechanism is356

shown in Figure 5. Since in transformer based357

model the outputs of all time steps are computed358

in parallel when training, adding dependencies be-359

tween time steps can significantly slow down the 360

training speed. Therefore, as an alternative, we 361

treat a layer of the transformer as a time step. There- 362

fore, the cross attention of the last decoder layer 363

Alast in the decoder is chosen as our coverage vec- 364

tor C. 365

To guide attention with the coverage vector, 366

we define a new attention layer after the decoder, 367

which takes into account the historical attention 368

distribution C. The coverage vector, the encoder 369

hidden states and the decoder hidden states are 370

used as inputs to this attention. The new attention 371

distribution is computed as follows: 372

Acov = softmax(
Hlast ∗ ET

enc√
dmodel

+Wc ∗ C) (8) 373

where Hlast represents the hidden states of the last 374

decoder layer, Eenc is the final hidden states of the 375

encoder. 376

Then we multiply the obtained coverage atten- 377

tion with the hidden states of the encoder to obtain 378

new weighted context vectors as follows: 379

Hcov = Acov ∗ ET
enc (9) 380

Subsequently, we add a residual layer, in which 381

we add new weighted context vectors to the de- 382

coder hidden states to get the final hidden states as 383

follows: 384

Hfinal = Hlast +Hcov (10) 385

Then, we add layer normalization as follows: 386

Hnorm = LayerNorm(Hfinal) (11) 387

Finally, the normalized result Hnorm are used to 388

predict words. 389

4 Experimental Settings 390

We now describe the experimental settings for 391

AMR-to-text generation. 392

Datasets 393

We use three standard English AMR corpora as 394

evaluation datasets, AMR 1.0 (LDC2014T12), 395

AMR 2.0 (LDC2017T10), and AMR 3.0 396

(LDC2020T02). They contains 13,051, 39,260, 397

and 59,255 manually-created sentence-AMR pairs 398

respectively. Notice that AMR 2.0 is a superset 399

of AMR 1.0 and AMR 3.0 is a superset of AMR 400

2.0. Each dataset is randomly split into training 401

set, development set, and test set. 402

Setup 403

We mainly refer to the experimental parameter set- 404

tings of Bevilacqua et al. (2021). The same settings 405

are used on the BART-Large as specified in Hug- 406

gingface’s transformers. The model is trained for 407

5



Model AMR 1.0 AMR 2.0

BLEU METEOR CHRF++ BLEU METEOR CHRF++
GraphLSTM (Song et al., 2018) 23.3 - - - - -
GGNN (Beck et al., 2018) - - - 27.5 - 53.5
DenselyGCN (Guo et al., 2019) 28.2 - - 30.4 - 59.6
GraphTransformer (Cai and Lam, 2020) 27.4 32.9 56.4 29.8 35.1 59.4
StructuralTransformer-SA (Zhu et al., 2019) 29.7 35.5 63.0 31.5 36.0 63.8
HetGT (Yao et al., 2020) 31.8 36.9 63.8 34.0 38.1 65.6
BetterG-Transformer (Wang et al., 2020b) 32.1 36.1 64.0 33.9 37.1 65.8
GPT-2 (Mager et al., 2020) - - - 33.0 37.7 63.9
BART 40.4 40.1 70.7 42.7 40.7 72.2
SPRING 41.8 41.0 71.4 45.3 41.0 73.5
Ours(Recon + Coverage) 42.8 41.5 72.2 45.4 42.4 73.6

Table 1: Results on the test set of AMR 1.0 and AMR 2.0

30 epochs using cross-entropy with a batch size408

of 500. We use the RAdam optimizer (Liu et al.,409

2019) with a learning rate of 10−5. The gradient410

accumulation is 10 batches. Dropout is set to 0.25.411

A depth-first search method is used for lineariza-412

tion. Special tokens are added in the linearization413

process. The vocabulary of the BART model is ex-414

panded with these spcial tokens. For prediction, we415

follow the usual practice of neural machine trans-416

lation (Yang et al., 2018) and set the beam size to417

5.418

Baseline Models419

For AMR 1.0 and AMR 2.0 datasets, the baselines420

are divided into three main categories.421

The first category of models uses graph neu-422

ral network models to solve this task: 1)423

GraphLSTM (Song et al., 2018) uses an LSTM424

structure to directly encode graph-level semantic425

graphs; 2) GGNN (Beck et al., 2018) couples the426

Gated Graph Neural Networks with an input trans-427

formation; 3) DenselyGCN (Guo et al., 2019) in-428

troduces a dense connection strategy, proposing429

a novel Densely Connected Graph Convolutional430

Networks.431

The second category is a series of models of432

transformer variants (Vaswani et al., 2017): 1)433

GraphTransformer (Cai and Lam, 2020), a graph-434

based parser iteratively refining an incrementally435

constructed graph; 2) StructuralTransformer-436

SA (Zhu et al., 2019), a transformer-based437

method that enhances structural awareness of self-438

attention; 3) HetGT (Yao et al., 2020), a graph439

transformer-based model for encoding the repre-440

sentation of heterogeneous subgraphs; 4) BetterG-441

Transformer (Wang et al., 2020b), a transformer-442

based model that generates sentences with addi-443

tional structural reconstruction goals.444

The third category is systems that use pre-trained445

models: 1) GPT-2 (Mager et al., 2020) is a fine- 446

tuned GPT-2 model (Radford et al., 2019) to pre- 447

dict Penman linearization of AMR graphs; 2) 448

SPRING (Bevilacqua et al., 2021) uses BART to 449

make AMR-to-text and Text-to-AMR in one sys- 450

tem; 3) BART (Lewis et al., 2020) is also reported 451

in Bevilacqua et al. (2021), which uses the pre- 452

trained model BART without any changes. It lin- 453

earizes the AMR graph using Penman and gener- 454

ates the text directly. 455

For AMR 3.0, since this dataset is the latest re- 456

lease, there are fewer baselines to compare, and we 457

compare two baselines: 1) LDGCN (Zhang et al., 458

2020b) is a Lightweight Dynamic Graph Convolu- 459

tional Networks that capture richer non-local inter- 460

actions by synthesizing higher-order information 461

from the input graphs; 2) SPRING (Bevilacqua 462

et al., 2021) uses BART to make AMR-to-text and 463

Text-to-AMR in one system. 464

Evaluation 465

We follow the previous methods and use three com- 466

mon natural language generation (NLG) measures 467

for evaluation: BLEU (Papineni, 2002), chrF++ 468

(Popović, 2017), and Meteor (Banerjee and Lavie, 469

2005). Tokenization is performed with the script 470

provided by JAMR (Flanigan et al., 2014). 471

5 Results 472

5.1 Main Results 473

First, we test the baseline and our overall model on 474

the AMR 1.0 and AMR 2.0 datasets. The results 475

are shown in table 1. From table 1, we can see 476

that our model achieves the best performance on 477

all metrics. Specifically, on AMR 1.0, the BLEU 478

score, METEOR score and CHRF++ score are im- 479

proved by 1.0, 0.5 and 0.8 points, respectively. On 480

AMR 2.0, the BLEU score, METEOR score and 481
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Model AMR 3.0

BLEU METEOR CHRF++
LDGCN (Zhang et al., 2020b) 34.3 38.2 63.7
SPRING 44.9 40.6 72.9
ours(Recon +Coverage) 45.7 42.8 73.7

Table 2: Results on the test set of AMR 3.0

CHRF++ score are improved by 0.1, 1.4 and 0.1482

points, respectively.483

Compared with the first category of GNN based484

methods, the second category of transformer based485

methods performs better. Because transformer han-486

dles long distance dependencies better through in-487

troducing self-attention structure. Compared with488

transformer based models, the pre-trained based489

methods improve the performance significantly.490

The pre-trained models can leverage knowledge ob-491

tained by training on large-scale text corpus, thus492

they achieve better results than the non-pre-trained493

models. This is why we chose BART as our back-494

bone model. Even so, our model outperforms the495

pre-trained based methods significantly, including496

BART baseline. This indicates that our proposed497

graph structure reconstruction and coverage mecha-498

nism contributes to improving the quality of AMR-499

to-text generation.500

Second, we test baselines and our overall model501

on the AMR 3.0 dataset and Table 2 shows the502

results. The results also demonstrate the effective-503

ness of our model. Compared with the previous504

best method, our model improves BLEU score,505

METEOR score, and CHRF++ score by 0.8, 2.2,506

and 0.8, respectively.507

5.2 Ablation Results508

To verify the validity of two components in our509

model, we conduct ablation experiments on AMR510

2.0 and AMR 3.0. Specifically, we compare our511

overall model with three variants: 1) Base model:512

our backbone model BART which only contains513

an encoder and a decoder; 2) +Recon: our back-514

bone model with graph structure reconstruction515

component; 3) +Coverage: our backbone model516

with coverage mechanism. The results are shown517

in Table 3.518

Compared to our backbone model, both of graph519

structure reconstruction and coverage mechanism520

improve the scores of the three main metrics.521

Specifically, on AMR 2.0, both individual mod-522

els improve METEOR scores, by 1.2 and 1.4, re-523

spectively. On AMR 3.0, both individual mod-524

Model AMR 2.0 AMR 3.0

B M C B M C
Base model 45.3 41.0 73.5 44.9 40.6 72.9
+Recon 44.9 42.2 73.2 45.6 42.7 73.6
+Coverage 45.2 42.4 73.3 45.1 42.3 73.2
+Recon +Coverage 45.4 42.4 73.6 45.7 42.8 73.7

Table 3: Ablation results on the test set of AMR 2.0 and
AMR 3.0. B for the BLEU scores. M for the METEOR
scores. C for the CHRF++ scores.

els improve all three metrics. The graph struc- 525

ture reconstruction model improve BLEU, ME- 526

TEOR, and CHRF++, by 0.7, 2.1, and 0.7, re- 527

spectively on AMR 3.0. The coverage mechanism 528

model improve on AMR 3.0 for BLEU, METEOR, 529

and CHRF++, by 0.2, 1.7, and 0.3, respectively. 530

This shows that both of our proposed components 531

achieve a score improvement. 532

Similarly, compared to our overall model, remov- 533

ing either of the two modules decreases its score. 534

Specifically, removing the graphical structure re- 535

construction leads to a decrease in all metrics for 536

both datasets. This demonstrates the effectiveness 537

of the graph structure reconstruction module on 538

solving the problem of semantic confusion. With- 539

out the coverage mechanism, the metrics scores 540

are also inferior to our overall model. This shows 541

that the coverage mechanism is effective in reduc- 542

ing the under- and over-translation problems. This 543

demonstrates that both of components are useful, 544

and removing either one have a negative effect on 545

the results. 546

5.3 Case Study 547

We first perform error analysis on the results gener- 548

ated by baselines. Specifically, we calculate three 549

metrics for each sample in the test set of AMR 2.0, 550

and samples with the lower score are considered as 551

bad cases. We analyze bad cases and summarized 552

three common errors in AMR-to-text generation. 553

Then we analyze results generated by our model. 554

Compared with baselines, our model addresses two 555

of these common errors: semantic confusion and in- 556

formation loss. Next, we introduce three common 557

errors in detail and show how our model solves the 558

first two errors. Due to space limitation, there is 559

only one case for each common error, and more 560

cases are shown in the Appendix A. And we only 561

show the results of a strong baseline SPRING in 562

case study. 563

Semantic confusion The first common error is se- 564

mantic confusion. That is, the semantic relations of 565
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the generated sentences are confused or opposite566

to the original meaning. An example is shown in567

Figure 6. The original sentence is “China consid-568

ers Germany the most important trading partner of569

Europe”, while our baseline translates as “China is570

considered Germany’s the most important trading571

partner in Europe”. This is a common example of572

confusing semantic relations. This problem may573

be due to the loss of graphical structure informa-574

tion during linearization, which leads to the con-575

fusion of subject-verb-object relationships in the576

sentences. And it can be seen that our model trans-577

lates it correctly, which shows the effectiveness of578

our model. This indicates that the graph structure579

reconstruction module in our model distinguishes580

the semantic relationships between nodes well and581

improves the quality of AMR-to-text generation.582

AMR Graph：
(c / consider-01      

:ARG0 (c2 / country :wiki "China"           

:name (n / name :op1 "China"))      

:ARG1 (p / partner-01            

:ARG1 (c4 / country :wiki "Germany"                  

:name (n3 / name :op1 “Germany”))            

:mod (i / important                  

:degree (m / most))            

:mod (t / trade-01)           

:location (c3 / continent :wiki "Europe"                  

:name (n2 / name :op1 "Europe"))))

Gold： China considers Germany the most important 

trade partner of Europe.

Baseline： China is considered Germany's most important 

trading partner in Europe.

Ours： China considers Germany to be its most 

important trading partner in Europe.

Figure 6: A comparison of our model and the baseline
model to generate the result cases

Information loss The problem of information loss583

is very common. We show an example of infor-584

mation loss in Figure 7. In the original sentence,585

“wen is expressing concern and sympathy for the586

situation in Iraq and the Iraqi people”. However,587

our baseline model loses the object the situation in588

Iraq and generates only one object, which is dif-589

ferent from the original sentence’s meaning. Since590

baseline does not consider the coverage of AMR591

graphs, some nodes information may be missing592

when generating them. Our model, however, does593

not have this problem and generates the original594

meaning of the sentence intactly. This proves the595

effectiveness of our coverage mechanism, which596

ensures the integrity of the information by consid-597

ering the coverage of the graph.598

Correct but low scores The third type is that the599

generated sentences have the correct meaning, but600

AMR Graph：
(s / state-01

:ARG0 (p / person :wiki "Wen _ Jiabao" :name (n / name :op1 "Wen"))

:ARG1 (a / and

:op1 (c / concern-01

:ARG0 (s2 / situation

:time (c3 / current)

:location (c4 / country :wiki "Iraq" :name (n3 / name :op1 

"Iraq")))

:ARG1 (c2 / country :wiki "China" :name (n2 / name :op1 

"China"))

:ARG1-of (d / deep-02))

:op2 (s3 / sympathize-01

:ARG0 c2

:ARG1 (p2 / people

:mod c4))))

Gold： Wen stated that China is deeply concerned with the current 

situation in Iraq and is sympathetic to the Iraqi people.

Baseline：Wen stated that China is deeply concerned and sympathetic to 

the Iraqi people.

Ours： Wen stated that China is deeply concerned about the current 

situation in Iraq and sympathizes with the Iraqi people.

Figure 7: A comparison of our model and the baseline
model to generate the result cases

AMR Graph：
(p / possible-01 :polarity -

:ARG1 (v / verify-01

:ARG1 (t / thing

:ARG1-of (c / claim-01

:ARG0 (c2 / country :wiki "Iran"

:name (n / name :op1 "Iran")))))) 

Gold： There is no way to verify Iran's claims.

Baseline: Iran's claims cannot be verified. 

Ours： Iran's claims are impossible to verify.

Figure 8: A comparison of our model and the baseline
model to generate the result cases

the scores are low on all three measures. We show 601

an example related to this problem in Figure 8. The 602

meaning of the generated sentence is the same as 603

the original sentence, regardless of baseline model 604

or our model. However, since the generated sen- 605

tence differs in expression, the used metrics can 606

not handle this difference. In other words, the third 607

error is made by metrics, not by our model or base- 608

line. Therefore, in the future, we can add human 609

evaluation or design new automatic metrics in eval- 610

uation of AMR-to-text generation. 611

6 Conclusion 612

We propose a BART-based model with graph struc- 613

ture reconstruction and coverage mechanism to im- 614

prove the quality of AMR-to-text. We design two 615

auxiliary objectives, relationship prediction and 616

distance prediction of nodes in AMR graphs, to 617

enhance the information of the graph structure. To 618

consider the coverage of AMR graphs, we design 619

a coverage mechanism to address the under- and 620

over-translation problems in AMR-to-text gener- 621

ation. Experimental results on three benchmarks 622

show that our model achieves the best performance 623

compared to existing methods. 624
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A Appendix795

As stated in the main text, we report more case796

studies below.797

A.1 Semantic confusion798

AMR Graph：
(c / check-07

:ARG1 (t / terrorism

:ARG0-of (c2 / cross-02

:ARG1 (b / border))))

Gold： Check cross-border terrorism.

Baseline: Cross-border terrorism checks

Ours： Check cross-border terrorism.

AMR Graph：
(r / road

:destination (n / nowhere))

Gold： A road to no where.

Baseline： There is no road to nowhere.

Ours： A road to nowhere.

AMR Graph：
(p / possible-01

:ARG1 (h / have-03

:ARG0 (c / country :wiki "China" :name (n / name :op1 "China"))

:ARG1 (g / girl

:ARG1-of (p2 / pure-02)

:ARG1-of (i / innocent-01)))

:time (a / amr-unknown))

Gold： When can China have a pure, innocent girl?

Baseline： How can China have pure innocent girls?

Ours： When can China have pure innocent girls?

Figure 9: A comparison of our model and the baseline
model to generate the result cases

The first common error is semantic confusion.799

That is, the semantic relations of the generated800

sentences are confused or opposite to the origi-801

nal meaning. Three examples are shown in the802

Figure 9. The original sentence of Example 1 is803

“Check cross-border terrorism ”, while our baseline804

translates to “Cross-border terrorism checks”. Ex-805

ample 2 is “A road to no where”, while the baseline806

translation is “There is no road to nowhere”. Both807

of these are common examples of confusing seman-808

tic relationships because they reverse the subject809

and object. Example 3 is "When can China have a810

pure, innocent girl?" but the baseline translation is811

"How can China have pure innocent girls? "This812

example confuses a time question with a manner813

question. This problem may be due to the loss of814

graphical structure information during lineariza-815

tion, which leads to the confusion of subject-verb-816

object relationships in the sentences. And it can817

be seen that our model can be translated correctly,818

which shows the validity of our model. This indi-819

cates that the graph structure reconstruction module820

in our model can distinguish the semantic relation-821

ships between nodes well and improve the quality822

of AMR-to-text generation.823

A.2 Information loss 824

AMR Graph：
(s / station      

:mod (t / television            

:ARG1-of (l / local-02))      

:domain (c / channel :wiki "ABS-CBN _Corporation" :name (n2 / name :op1 

"ABS-CBN")            

:mod (n / news))      

:location (c2 / city :wiki "Manila" :name (n3 / name :op1 "Manila")))

Gold： ABS-CBN news channel is a local television station in Manila.

Baseline：ABS-CBN is a local television station in Manila.

Ours： ABS-CBN news channel is a local television station in Manila.

AMR Graph：
(m / multi-sentence

:snt1 (a / agree-01

:ARG1 (p / person

:ARG0-of (e / entertain-01)

:mod (j / just)

:ARG1-of (c / cheap-02)))

:snt2 (s3 / sense-02

:ARG1 (t2 / thing

:ARG2-of (r / repute-01

:ARG1 (t / they)

:location (c2 / country :wiki "China" :name (n / name :op1 "China")

:mod (f / feudal))))

:degree (s2 / somewhat)))

Gold： Agree, just cheap entertainers. Their reputation in feudal China 

somewhat makes sense. 

Baseline：Agreed, they are just entertainers, their rep in feudal China makes 

somewhat sense.

Ours： Agree, just cheap entertainers. Their rep in feudal China makes 

somewhat sense.

Figure 10: A comparison of our model and the baseline
model to generate the result cases

The problem of missing information is very com- 825

mon. We show several examples of missing infor- 826

mation in Figure 10 and Figure 11 respectively. 827

The original sentence of Example 1 is “ABS-CBN 828

news channel is a local television station in Manila.” 829

However, our baseline model loses news, which is 830

different from the meaning of the original sentence. 831

This leads to a change in the subject of the sentence. 832

Similarly, in Example 2, the original sentence reads 833

“Agree, just cheap entertainers. Their reputation in 834

feudal China somewhat makes sense.” and the base- 835

line loses the adjective cheap, which is the same 836

as in Example 1. In Example 3, which is in Fig- 837

ure 11, the original sentence reads “Reportedly one 838

of the most important drugs- and gun-smuggling 839

routes in supplying Europe with cocaine runs from 840

Colombia across the northern tier of the Amazon 841

to Suriname .” The baseline translation is missing 842

Reportedly. Since the baseline does not take into ac- 843

count the coverage of the AMR graph, some node 844

information may be lost during generation. How- 845

ever, our model does not have this problem and 846

generates the original meaning of the sentences 847

intact. This proves the effectiveness of our cov- 848

erage mechanism, which ensures the integrity of 849

the information by considering the coverage of the 850

graph. 851
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AMR Graph：
(r / run-04

:ARG1 (r2 / route

:ARG1-of (i / include-91

:ARG2 (r3 / route

:mod (i2 / important

:degree (m / most)

:purpose (s2 / supply-01

:ARG1 (c / cocaine)

:ARG2 (c2 / continent :wiki "Europe"

:name (n / name :op1 "Europe"))))

:path-of (s / smuggle-01

:ARG1 (a / and

:op1 (d / drug)

:op2 (g / gun))))))

:ARG3 (c3 / country :wiki "Colombia"

:name (n2 / name :op1 "Colombia"))

:ARG4 (c4 / country :wiki "Suriname"

:name (n3 / name :op1 "Suriname"))

:ARG1-of (r5 / report-01)

:path (a2 / across

:location (t / tier

:mod (n4 / north)

:part-of (w / world-region :wiki "Amazon_basin"

:name (n5 / name :op1 "Amazon")))))

Gold： Reportedly one of the most important drug- and gun-smuggling 

routes in supplying Europe with cocaine runs from Colombia across the 

northern tier of the Amazon to Suriname .

Baseline：One of the most important routes for smuggling drugs and guns 

from Colombia to Europe runs across the northern Amazon basin to 

Suriname.

Ours： One of the most important routes for supplying cocaine to 

Europe reportedly runs across the northern tier of the Amazon from 

Colombia to Suriname smuggling drugs and guns.

Figure 11: A comparison of our model and the baseline
model to generate the result cases

AMR Graph：
(t2 / train-01

:ARG2 (t / they)

:location (i / indoor)

:degree (m / most)

:location (h / home)) 

Gold： At home , they carry out indoor training mostly.

Baseline: They are mostly trained indoor at home .

Ours： They are mostly being trained indoor at home.

AMR Graph：
(d / do-02

:ARG0 (i / i)

:topic (d2 / disease :wiki "Obsessive–compulsive_disorder"

:name (n / name :op1 "OCD"))

:mod (e / emoticon :value ":P")

:subevent (c / class

:topic (p / psychology)

:time (t / today))) 

Gold： I did about OCD in psycology today :P.

Baseline: :P I did a psychology class today on OCD.

Ours： In my psychology class today, I did about OCD ( :P).

AMR Graph：
(d2 / disguise-01

:ARG1 (s / suffer-01

:quant (m / more))

:ARG2 (l / look-02

:ARG1 (g / glorious))

:ARG2-of (d / dispute-01

:ARG1-of (p / possible-01 :polarity -)))

Gold：More suffering is under the disguise of glorious looks, 'tis the undisputable

fact.

Baseline: More suffering disguised as a glorious look is indisputable.

Ours： The more suffering disguised as a glorious look is indisputable.

Figure 12: A comparison of our model and the baseline
model to generate the result cases

A.3 Correct but low scores 852

The third type is that the generated sentences have 853

the correct meaning, but the scores are low on all 854

three measures. We show three examples related 855

to this problem in Figure 12. The meanings of the 856

generated sentences are the same as the original 857

sentences, regardless of the baseline model or our 858

model. However, since the generated sentences 859

differ in expression, the used metrics are not suffi- 860

cient to reflect this difference. In other words, the 861

third error is made by metrics, not by our model 862

or baseline. Therefore, in the future, we can add 863

human evaluation or design new automatic metrics 864

in the evaluation of AMR-to-text generation. 865
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