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ABSTRACT

Video quality assessment (VQA) seeks to predict the perceptual quality of a video
in alignment with human visual perception, serving as a fundamental tool for
quantifying quality degradation across video processing workflows. The dominant
VQA paradigm relies on supervised training with human-labeled datasets, which,
despite substantial progress, still suffers from poor generalization to unseen video
content. Moreover, its reliance on human annotations—which are labor-intensive
and costly—makes it difficult to scale datasets for improving model generaliza-
tion. In this work, we explore weak-to-strong (W2S) learning as a new paradigm
for advancing VQA without reliance on large-scale human-labeled datasets. We
first provide empirical evidence that a straightforward W2S strategy allows a
strong student model to not only match its weak teacher on in-domain benchmarks
but also surpass it on out-of-distribution (OOD) benchmarks, revealing a distinct
weak-to-strong effect in VQA. Building on this insight, we propose a novel frame-
work that enhances W2S learning from two aspects: (1) integrating homogeneous
and heterogeneous supervision signals from diverse VQA teachers—including
off-the-shelf VQA models and synthetic distortion simulators—via a learn-to-
rank formulation, and (2) iterative W2S training, where each strong student is
recycled as the teacher in subsequent cycles, progressively focusing on challeng-
ing cases. Extensive experiments show that our method achieves state-of-the-art
results across both in-domain and OOD benchmarks, with especially strong gains
in OOD scenarios. Our findings highlight W2S learning as a principled route to
break annotation barriers and achieve scalable generalization in VQA, with impli-
cations extending to broader alignment and evaluation tasks.

1 INTRODUCTION

Video quality assessment (VQA)1 (Min et al., 2024) plays an important role in modern video pro-
cessing systems, delivering objective quality measurements used to optimize end-user Quality of
Experience (QoE). With the advances in deep neural
networks (DNNs) (He et al., 2016; Dosovitskiy et al.,
2020; Liu et al., 2021) and the increasing availabil-
ity of human-annotated datasets (Hosu et al., 2017;
Sinno & Bovik, 2018; Wang et al., 2019; Ying et al.,
2021), current VQA models (Wu et al., 2022; 2023a;b;
Sun et al., 2024) have achieved significant progress
through supervised learning. Nevertheless, supervised
learning inherently faces a limitation: the generaliza-
tion of the VQA models heavily depends on the di-
versity of the training data. For example, even top-
tier VQA models (Sun et al., 2024; Wu et al., 2022;
2023a;b) exhibit significant performance drops in out-
of-distribution evaluations, as illustrated in Fig. 1.
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Figure 1: Significant performance drop of
state-of-the-art models on out-of-distribution
datasets.

1This work focuses on no-reference (NR) or blind VQA, which assesses video quality without relying on
additional reference information.
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Existing VQA research has primarily focused on constructing scene-specific datasets (Li et al.,
2019b; Madhusudana et al., 2021; Yu et al., 2022; Shang et al., 2023) or large-scale datasets (Götz-
Hahn et al., 2021; Jia et al., 2025) to improve model generalization across different video content and
distortions. However, constructing such datasets is highly resource-intensive. A standardized sub-
jective experiment comprises two key phases: test sample curation and subjective quality annota-
tion. The test sample curation phase necessitates rigorous selection of representative video samples,
as inadequate sampling strategies risk producing oversimplified datasets (i.e., “easy dataset” prob-
lem (Sun et al., 2024; Cao et al., 2024)) and may induce model overfitting. Meanwhile, subjective
annotation—though vital—is laborious and costly. International Telecommunication Union (ITU)
standards (ITU-T P.910, 2008) outline specific recommendations for experimental setups, including
display conditions, stimulus duration, subject count, and rating methodologies. These constraints,
though necessary for statistically meaningful annotations, impede larger-scale dataset expansion due
to prohibitive annotation costs.

Therefore, these limitations naturally raise an important question: Can we train stronger VQA mod-
els without relying on large-scale human-annotated datasets? Prior efforts have investigated self-
supervised and unsupervised VQA approaches (Chen et al., 2021b;a; 2022; Madhusudana et al.,
2023; Mitra & Soundararajan, 2024) which primarily employ contrastive learning with proxy tasks
such as distortion-type or severity classification on synthetically generated data. However, such
methods face two key shortcomings: (1) they fail to capture high-level visual content and aes-
thetic characteristics that are critical for perceptual quality assessment, and (2) they inadequately
model authentic distortion patterns in real-world videos, which often arise from complex nonlin-
ear degradation processes. As a result, their performance still lags significantly behind supervised
counterparts.

Recent progress in weak-to-strong (W2S) generalization provides a promising approach for tack-
ling this open problem. In this paradigm, a strong student model—equipped with higher learning
capacity or powerful pre-trained knowledge—can learn effectively from the supervision of a weaker
model and further generalize to hard examples beyond the teacher’s reach. It is thus natural to
leverage an existing VQA model as a weak teacher to distill a stronger one, obviating the need for
human-annotated labels. This approach raises two critical questions: (1) How effectively does W2S
generalization apply to VQA, a task that inherently involves subjective human perception rather
than deterministic high-level semantics, and (2) How can we enhance its performance to meet the
demands of practical VQA applications?

This work investigates these two problems. First, we empirically demonstrate that a straightfor-
ward W2S generalization approach enables the student model to match the performance of its weak
teacher (e.g.,, off-the-shelf VQA models) on in-domain benchmarks and surpass it on out-of-domain
(OOD) benchmarks, revealing a clear weak-to-strong generalization effect in VQA.

Second, we advance W2S learning for VQA from two aspects: integrating diverse supervision sig-
nals and iterative W2S training. For the former, we incorporate multiple types of “VQA models” as
weak models to refine and diversify the supervised signals, including (1) ensembling homogeneous
VQA models (i.e., off-the-shelf VQA models) to improve the reliability of supervision, and (2) inte-
grating heterogeneous teachers (i.e., synthetic distortion simulators) to enrich the supervision space.
To unify these heterogeneous supervision signals, we reformulate quality regression as a ranking
problem to make the model to learn quality assessment capabilities through pairwise comparisons.
For the latter, we propose an iterative W2S learning strategy with difficulty-guided sampling, where
each trained strong model is recycled as the weak teacher for the next iteration. Within each cycle,
we deliberately select difficult samples so that subsequent models focus on challenging cases be-
yond the reach of weaker teachers, thereby progressively expanding the generalization capacity of
the student model.

Our key contributions are summarized as follows:

• We empirically validate a distinct W2S generalization effect in VQA, providing a new
paradigm for advancing self-supervised and weakly supervised approaches for VQA.

• We introduce a novel W2S generalization framework that integrates heterogeneous super-
vision signals from diverse teachers and incorporates an iterative W2S training strategy.

• Within this framework, our student model achieves state-of-the-art results on both in-
domain and OOD benchmarks, with particularly notable gains on OOD performance.
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2 RELATED WORK

2.1 VQA MODELS

Supervised VQA. Early VQA models (Saad et al., 2014; Mittal et al., 2015) were largely
knowledge-driven, extracting handcrafted features (e.g., natural scene statistics (Mittal et al., 2012),
motion cues (Konrad & Dubois, 1992)) to quantify distortions and training shallow regressors for
quality prediction. Subsequent approaches (Li et al., 2019a; Ying et al., 2021) shifted to represen-
tation learning, employing pre-trained DNNs to extract frame-level quality representations, coupled
with sequence models such as GRUs or Transformers for temporal regression. More recent ef-
forts adopt end-to-end fine-tuning of advanced vision architectures, including Vision Transformers
(ViTs) (Dosovitskiy et al., 2020) and large multimodal models (LMMs) (Wu et al., 2023b), with
the designs such as grid-based mini-patch sampling or key-frame selection to mitigate the compu-
tational burden of full-video training. While these advancements have significantly improved the
performance of VQA models on in-domain datasets, they still struggle to generalize satisfactorily to
OOD datasets.

Self-supervised VQA. These methods primarily learn quality-aware representations through con-
trastive learning frameworks with proxy tasks such as next-frame feature discrimination and dis-
tortion type/severity classification (Chen et al., 2021a; Madhusudana et al., 2023), or via en-
coder–decoder reconstruction of pristine videos from distorted inputs (Xie et al., 2024). These
representations are typically adapted for quality prediction by fine-tuning a lightweight linear pro-
jector with human-annotated labels. More recently, researchers (Wu et al., 2023a; Agnolucci et al.,
2024) have explored leveraging the perceptual capability of vision–language models for zero-shot
video quality assessment, for example by estimating the relative likelihood of prompts such as “high
quality” versus “low quality.”

VQA as Ranking. Ranking-based methods reformulate quality prediction from a regression prob-
lem into a ranking problem. To this end, various loss functions such as hinge loss (Liu et al., 2017),
fidelity loss (Zhang et al., 2021), binary cross-entropy loss (Zhu et al., 2024), and differentiable
approximations of Spearman Rank Correlation loss (Li et al., 2022) have been employed to learn
relative quality rankings from pairwise comparisons or groups of samples. Such methods are par-
ticularly effective in mitigating the misalignment of quality scales across different datasets and can
be applied in scenarios where only relative quality labels are available. Consequently, they have
been widely adopted in weakly supervised training and mixed-dataset training. In this work, we also
adopt a learning-to-rank strategy to unify the heterogeneous supervisory signals provided by diverse
weak teachers.

2.2 WEAK-TO-STRONG GENERALIZATION

Weak-to-strong (W2S) generalization studies how strong models can learn from weaker supervision
yet surpass their teachers. Early empirical studies (Burns et al., 2023) showed that simply fine-tuning
a strong model on weak labels already allows the student to outperform its weak teacher across
domains such as NLP, reward modeling, and games. Building on these foundations, subsequent
studies have focused on improving the quality of weak supervision. Co-supervised and mixture-of-
experts approaches (Liu & Alahi, 2024) combine diverse weak teachers to mitigate noise and bias;
ensemble and scalable oversight methods (Sang et al., 2024) enhance teacher reliability through
aggregation and debate mechanisms; and confidence-aware objectives (Burns et al., 2023; Guo et al.,
2024) further balance weak guidance with student predictions to avoid overfitting to noisy labels.
Inspired by these advancements, we leverage diverse weak teachers to diversify and improve the
supervision signals.

3 WEAK-TO-STRONG LEARNING FOR VQA

3.1 PROBLEM SETUP

Assume that we have access to a weak VQA model fweak, which in practice can be instantiated by
existing open-source VQA models. Let Dw2s = {x1, x2, . . . , xn} denote an unlabeled video dataset
with no ground-truth labels. We use fweak to generate predictions ŷj = fweak(xj) for each video
xj ∈ Dw2s, and subsequently train or fine-tune a strong student model fw2s on Dw2s using these

3
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predictions as supervision. The objective is to examine whether fw2s can outperform fweak without
relying on human annotations for training.

3.2 WEAK-TO-STRONG IMPLEMENTATION FOR VQA

Weak Models fweak. We select five open-source VQA
models2 fweak: MinimalisticVQA (VII) (Sun et al.,
2024), MinimalisticVQA (IX) (Sun et al., 2024), FAST-
VQA (Wu et al., 2022), DOVER (Wu et al., 2023a), and
Q-Align (Wu et al., 2023b). All models are trained on
the LSVQ dataset (Ying et al., 2021) and encompass ar-
chitectures including convolutional neural networks, vi-
sion transformers, and LMMs. Detailed descriptions of
these methods are provided in Appendix B.1.

Weak models 𝒇𝒘𝒆𝒂𝒌

teachers

Strong model 𝒇𝒘𝟐𝒔

student

Video dataset 𝑫𝒘𝟐𝒔
No ground-truth labels

Generate 
labels

Supervised
 training

Figure 2: Overview of our weak-to-strong
training pipeline.

Strong Model fw2s. For the strong student model, we adopt LLaVA-OneVision-Chat-7B (Li
et al., 2024), a LMM whose capacity substantially exceeds that of the weak teachers, as the back-
bone. A detailed comparison of model parameters and architecture is provided in Table 4. To better
adapt it to the VQA task, we follow a preprocessing strategy similar to LMM-VQA (Ge et al., 2025):
one key frame per second is sampled for the vision encoder, while motion features are extracted for
each key frame using all frames within that second via SlowFast (Feichtenhofer et al., 2019). These
motion features are then processed by a motion projector and fused with the visual features be-
fore being fed into the language model of the LMM. A detailed description of our student model is
provided in Appendix C.1, and its overall architecture is illustrated in Figure 3.

Training Dataset Dw2s. We first collect a pool of 3 million videos from popular social media plat-
forms, including YouTube, TikTok, Youku, and Bilibili. From this pool, we select a subset using
a mixed-integer programming approach (Vonikakis et al., 2017) to match the target distributions of
LSVQ—the training set of the teacher models—across nine low-level metrics that quantify visual
characteristics: blockiness (Romaniak et al., 2012), blur (Narvekar & Karam, 2011), contrast (Peli,
1990), noise, flickering (Pandel, 2008), colorfulness (Hasler & Suesstrunk, 2003), luminance, tem-
poral information, and spatial information (ITU-T P.910, 2008). We then sample 200k videos from
the matched subset to construct a representative and diverse training set for the student model, cover-
ing a wide range of quality conditions. A detailed description of the dataset construction procedure
and analysis is provided in Appendix A.

Training Protocol. We train fw2s on Dw2s, where supervision is provided by pseudo-labels gener-
ated from fweak, and optimize the model with the standard cross-entropy loss. Training is conducted
with AdamW, an initial learning rate of 1 × 10−4, a cosine decay schedule, and a weight decay of
0.05. We use a batch size of 16 and train for 200k iterations with linear warm-up in the first 6k
steps. All experiments are implemented in PyTorch and trained on 8 NVIDIA A800 GPUs over
approximately two days.

Validation Datasets. To comprehensively assess model performance, we evaluate on ten VQA
benchmarks grouped into in-domain and out-of-distribution (OOD) categories. The in-domain
datasets include LSVQ Test (Ying et al., 2021), LSVQ 1080p (Ying et al., 2021), KoNViD-1k (Hosu
et al., 2017), LIVE-VQC (Sinno & Bovik, 2018), and YouTube-UGC (Wang et al., 2019), all consist-
ing of user-generated content (UGC) videos. The OOD datasets comprise LIVE-YT-Gaming (Yu
et al., 2022), CGVDS (Saha et al., 2023), LIVE-YT-HFR (Madhusudana et al., 2021), Waterloo-
IVC-4K (Li et al., 2019b), and KVQ (Lu et al., 2024), which differ from in-domain benchmarks
in both content distribution and distortion types. Further details of these datasets are provided in
Appendix A.4.

Evaluation Metrics. We adopt two widely used criteria to evaluate the performance of VQA mod-
els: Spearman Rank Correlation (SRCC) and Pearson Linear Correlation (PLCC), which indicate
the prediction monotonicity and prediction linearity, respectively.

2Here, the term “weak” is relative to the student model. In fact, the selected models represent state-of-the-art
VQA approaches.
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Figure 3: Overall architecture of our strong student model. Following LMM-VQA (Ge et al., 2025),
we use a dual-branch visual encoder with an additional motion module for temporal distortion mod-
eling. The model supports both single- and dual-video input strategies with distinct training and
inference designs.

3.3 EXPERIMENTAL RESULTS AND ANALYSIS

We report overall in-domain and OOD performance in Figure 4, with per-dataset results provided
in Appendix D.1. For in-domain benchmarks, the student model achieves performance compara-
ble to its teachers, with an average improvement of 0.24%, indicating that our simple knowledge
distillation approach effectively transfers quality assessment knowledge from weak to strong mod-
els. While for OOD benchmarks, the student exhibits substantial average gains of 7.87% over its
teachers, highlighting a pronounced weak-to-strong generalization effect. Interestingly, for stronger
teacher models such as MinimalisticVQA (IX) and Q-Align, we observe that their student coun-
terparts achieve comparable performance on in-domain benchmarks and even surpass the super-
vised models on OOD benchmarks. We attribute this to the larger training dataset (200k videos),
which, although pseudo-labeled by VQA models, elicits stronger generalization capabilities than the
human-labeled LSVQ dataset (27k videos).

In summary, our results empirically demonstrate
a clear weak-to-strong generalization effect in
VQA, where the most significant improvements
arise on OOD data unseen during training. This
finding is particularly important for VQA, as in-
domain performance on existing benchmarks has
largely saturated and even risks overfitting, while
current methods suffer from severe degradation
on OOD scenarios. Weak-to-strong generaliza-
tion therefore offers a promising paradigm for
addressing this challenge, and in the next section
we present a practical solution.
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Figure 4: Student model performance under
pseudo-labels from five weak models: Minimal-
isticVQA (VII), MinimalisticVQA (IX), FAST-
VQA, DOVER, and Q-Align (left to right).

4 IMPROVING WEAK-TO-STRONG LEARNING FOR VQA

We enhance weak-to-strong generalization in VQA from two aspects: (1) unifying diverse supervi-
sion signals and (2) iterative W2S training, both aimed at expanding the generalization capacity of
the student model.

4.1 UNIFYING DIVERSE SUPERVISION SIGNALS

4.1.1 RANKING-BASED VQA METHOD

Absolute quality scores obtained from different labeling manners may be inconsistent in their ranges
and scales, making them unsuitable for regression-based training. In contrast, the relative quality
ranks of video pairs within the same manner are consistent. To unify these heterogeneous supervi-
sion signals, we reformulate quality prediction as a ranking problem, enabling the model to learn
quality assessment capability through pairwise comparisons.
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Figure 5: Our pairwise quality annotations consist of two types: (1) pseudo-labeling based on en-
sembling homogeneous teachers, and (2) quality ranking derived from integrating heterogeneous
teachers.

Specifically, given a video pair (xA,xB), we input them into the student model defined in Sec-
tion 3.2, which is trained to predict their relative quality. Following (Zhu et al., 2024), we adopt
ranking labels {“superior”, “better”, “similar”, “worse”, “inferior”} to refine ranking accuracy. Dur-
ing inference, we employ the adaptive soft comparison method (Zhu et al., 2024) to derive quality
scores. It first computes a soft probability matrix over ranking categories by comparing each test
video against anchor videos, and then applies maximum a posteriori (MAP) estimation (Tsukida
et al., 2011) under Thurstone’s Case V model (Thurstone, 2017) to obtain calibrated quality scores.
The detailed inference procedure is provided in Appendix C.3.

4.1.2 ENSEMBLING HOMOGENEOUS TEACHERS

In Section 3.3, we observe that stronger teacher models generally yield more capable students,
in some cases even surpassing fully supervised counterparts. A naı̈ve strategy is thus to enhance
the accuracy of teacher models. To this end, we adopt a simple approach: averaging ensemble
predictions from five VQA methods in Section 3.2 to improve the reliability of the supervision
signals.

For video pair generation, given a pair (xA, xB), each VQA model fweak,i produces quality scores ŷAi
and ŷBi . We compute the mean scores yA and yB3, and the score variances σ2

A and σ2
B . Assuming

the quality difference ∆ = yA − yB follows a Gaussian distribution N (∆; 0, σ2
∆) with σ∆ =√

σ2
A + σ2

B , labels are assigned according to the statistical significance thresholds in (Zhu et al.,
2024): “superior” if ∆ > 2σ∆, “better” if σ∆ < ∆ ≤ 2σ∆, “similar” if −σ∆ < ∆ ≤ σ∆, “worse”
if −2σ∆ < ∆ ≤ −σ∆, and “inferior” if ∆ ≤ −2σ∆.

4.1.3 INTEGRATING HETEROGENEOUS TEACHERS

Another complementary approach is to diversify the teacher models in order to enrich the supervi-
sion signals. In this work, we leverage synthetic distortion simulators as specialized VQA models,
which do not require human annotations for training and can be easily scaled. Concretely, we in-
troduce three categories of synthetic distortions to emulate typical real-world degradations: spatial
distortions, temporal distortions, and streaming distortions. Spatial distortions include resolu-
tion downscaling, Gaussian blur, Gaussian noise, darkening, and brightening, simulating capture-
related artifacts. Temporal distortions cover jitter and stuttering, which mimic playback issues often
observed in practice. Streaming distortions involve H.264 and H.265 compression, capturing com-
pression artifacts introduced by modern media delivery platforms. The detailed simulation proce-
dures are provided in Appendix A.3.

We leverage distortion severity levels (e.g., constant rate factor for compression) as pseudo-labels to
infer relative quality. Given a primary video x0 and a synthetic distortion simulator S, we degrade
x0 across NS severity levels to generate distorted videos {xi

S}
NS
i=1. Pairs (xi

S , x
j
S) are randomly

sampled. Pairs with a severity difference |i−j| > 1 are labeled as “superior” or “inferior” depending
on the relative order of i and j, while pairs with |i−j| = 1 receive “better” or “worse”. The “similar”
label is intentionally excluded, as i− j = 0 implies identical videos.

3These weak models are trained on the same dataset and thus share the same score scale.
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Figure 6: The framework of our iterative weak-to-strong training strategy.

4.2 ITERATIVE WEAK-TO-STRONG TRAINING STRATEGY

Within our W2S training framework, we have demonstrated that the student model can surpass its
teacher models. This observation naturally motivates an iterative strategy: once a student model is
trained, it can be promoted to act as a new teacher, thereby enabling another round of weak-to-
strong training. Through such iterative cycles, the student progressively inherits knowledge from its
predecessors while further enhancing its generalization capability. Therefore, we adopt this iterative
paradigm to continually refine the student model.

From the data perspective, we expect the training samples in the next iteration to pose challenges
beyond the capacity of the current teacher models, thereby further expanding the capability of the
student. To this end, we introduce a difficult-sample selection strategy for both types of supervi-
sion signals in Section 4.1. Specifically, given a student model f (i)

w2s trained in the i-th iteration, the
construction of difficult samples is straightforward for synthetic distortion pairs described in Sec-
tion 4.1.2, since ground-truth labels can be directly derived from the distortion levels. We use f

(i)
w2s

to infer the relative quality of these pairs and select only those misclassified by the student as the
training data for the (i+ 1)-th iteration.

While for the video pairs described in Section 4.1.2, no ground-truth labels are available. To address
this, we adopt the group maximum differentiation (gMAD) competition framework (Ma et al., 2018)
to select pairs that exhibit the largest disagreement between VQA models. Given the weak model
set {f j

weak}
Nweak
j=1 used to train f

(i)
w2s, we first partition the video pool D(i+1)

w2s into ξ uniform quality
levels based on the predictions of f j

weak, within which videos are assumed to have similar perceptual
quality. We then select pairs that are maximally differentiated by the trained student model f (i)

w2s
while indistinguishable to the weak model f j

weak by

(x̂A, x̂B) ∈ arg max
xA,xB∈D

(i+1)
w2s

[
f
(i)
w2s(x

A)− f
(i)
w2s(x

B)
]

s.t.
∣∣f j

weak(x
A)− f j

weak(x
B)

∣∣ ≤ ξ. (1)

Moreover, we also reverse the roles of f j
weak and f

(i)
w2s to capture cases where the student perceives

similar quality but the weak model disagrees. This strategy systematically exploits the decision
boundary mismatches between student and teacher models, generating informative and challenging
samples that drive further improvements in next-round W2S training.

4.3 TRAINING STRATEGY

We employ the standard cross-entropy loss as a baseline objective. However, weak annotations
inevitably contain noise, and directly supervising the student with cross-entropy risks overfitting to
erroneous labels. To mitigate this, we introduce an auxiliary confidence loss (Burns et al., 2023;
Guo et al., 2024) that encourages the student to reinforce its own confident predictions, particularly
when they diverge from weak labels. The overall objective is formulated as

L = (1− λ)LCE + λLconf, (2)

where LCE denotes the cross-entropy loss, Lconf the confidence loss, and λ adaptively balances label
reliability against model predictions. Details of the confidence loss are provided in Appendix C.2.2.

For training data, we construct a total of 700k annotated video pairs using the procedure described
in Section 4.1.2 and Section 4.1.3. These pairs are partitioned into three subsets of 500k, 100k, and
100k, denoted as D(1)

w2s, D
(2)
w2s, and D

(3)
w2s, corresponding to the three stages of iterative training. A de-
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Table 1: Performance comparison with state-of-the-art methods. Best and second-best results are
marked in bold and underline, respectively. “Overall” represents the weighted average results based
on the number of videos in each dataset.

In-domain Datasets LSVQtest LSVQ1080p KoNViD-1k LIVE-VQC YouTube-UGC Overall

# of videos 7,182 3,573 1,200 585 1,020 -

Methods SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

State-of-the-art VQA Methods - teachers
MinimalisticVQA(VII) (Sun et al., 2024) 0.861 0.859 0.740 0.784 0.843 0.841 0.757 0.813 0.775 0.779 0.817 0.830
MinimalisticVQA(IX) (Sun et al., 2024) 0.885 0.882 0.792 0.828 0.862 0.859 0.775 0.821 0.826 0.821 0.849 0.859
FAST-VQA (Wu et al., 2022) 0.880 0.880 0.781 0.813 0.859 0.854 0.826 0.845 0.730 0.747 0.838 0.849
DOVER (Wu et al., 2023a) 0.878 0.866 0.782 0.813 0.874 0.869 0.817 0.840 0.771 0.781 0.842 0.845
Q-Align (Wu et al., 2023b) 0.886 0.884 0.761 0.822 0.876 0.878 0.783 0.819 0.834 0.846 0.844 0.861
State-of-the-art VQA Methods - others
VQA2 (Jia et al., 2024) 0.878 0.872 0.794 0.821 0.881 0.880 0.785 0.830 0.811 0.823 0.847 0.854
VQAThinker (Cao et al., 2025) 0.883 0.880 0.798 0.834 0.881 0.884 0.808 0.847 0.860 0.863 0.855 0.866
Our Weak-to-Strong VQA Methods
(I): Ensembling homogeneous teachers 0.883 0.877 0.804 0.829 0.883 0.876 0.799 0.830 0.843 0.845 0.856 0.860
(II): (I) + Integrating heterogeneous teachers 0.886 0.880 0.803 0.830 0.891 0.888 0.797 0.832 0.845 0.849 0.858 0.863
(III): (II) + Confidence loss 0.885 0.881 0.803 0.831 0.890 0.891 0.797 0.833 0.849 0.856 0.857 0.865
(IV): (III) + Iterative stage W2S training 0.886 0.883 0.803 0.834 0.898 0.897 0.810 0.841 0.858 0.864 0.860 0.868
(V): (IV) + Iterative stage W2S training 0.893 0.889 0.807 0.837 0.902 0.901 0.818 0.846 0.852 0.858 0.865 0.872

Out of Distribution Datasets LIVE-YT-Gaming CGVDS LIVE-YT-HFR Waterloo-IVC-4K KVQ Overall

# of videos 600 357 480 1,200 2,926 -

Methods SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

State-of-the-art VQA Methods - teachers
MinimalisticVQA(VII) (Sun et al., 2024) 0.596 0.682 0.681 0.733 0.061 0.130 0.275 0.338 0.604 0.659 0.490 0.551
MinimalisticVQA(IX) (Sun et al., 2024) 0.686 0.746 0.797 0.816 0.301 0.388 0.459 0.502 0.615 0.661 0.574 0.622
FAST-VQA (Wu et al., 2022) 0.631 0.677 0.725 0.747 0.326 0.415 0.327 0.363 0.518 0.526 0.486 0.512
DOVER (Wu et al., 2023a) 0.647 0.728 0.694 0.747 0.360 0.465 0.368 0.418 0.559 0.593 0.519 0.569
Q-Align (Wu et al., 2023b) 0.611 0.681 0.756 0.798 0.329 0.342 0.414 0.497 0.613 0.655 0.555 0.606
State-of-the-art VQA Methods - others
VQA2 (Jia et al., 2024) 0.613 0.698 0.656 0.741 0.332 0.413 0.415 0.474 0.678 0.689 0.583 0.623
VQAThinker (Cao et al., 2025) 0.767 0.806 0.856 0.845 0.528 0.610 0.573 0.624 0.586 0.626 0.615 0.658
Our Weak-to-Strong VQA Methods
(I): Ensembling homogeneous teachers 0.688 0.756 0.769 0.808 0.456 0.497 0.455 0.502 0.649 0.682 0.602 0.643
(II): (I) + Integrating heterogeneous teachers 0.697 0.752 0.799 0.829 0.481 0.525 0.552 0.614 0.690 0.725 0.650 0.693
(III): (II) + Confidence loss 0.708 0.763 0.796 0.829 0.523 0.606 0.579 0.643 0.713 0.742 0.672 0.717
(IV): (III) + Iterative stage W2S training 0.711 0.770 0.807 0.831 0.606 0.678 0.657 0.737 0.759 0.782 0.722 0.765
(V): (IV) + Iterative stage W2S training 0.723 0.776 0.799 0.828 0.683 0.749 0.698 0.758 0.772 0.807 0.745 0.789

tailed breakdown of the dataset, as well as the complete training setup, is provided in Appendix A.1
and Appendix C.2.1.

4.4 EXPERIMENTAL RESULTS

We present the experimental results in Table 1, highlighting five progressively enhanced models of
our method: models (I)–(III) incrementally add components in Stage 1, while model (IV) and model
(V) introduce iterative training in Stage 2 and Stage 3, respectively. We analyze them from the
following aspects:

Ensembling Homogeneous Teachers. Compared with single-teacher supervision, we find that en-
sembling multiple teachers yields stronger student models that outperform all individual teachers
as well as their corresponding students. This result further highlights the weak-to-strong effect in
VQA and shows that improving the quality of teacher supervision amplifies this effect, consistent
with prior findings.

Integrating Heterogeneous Teachers. We incorporate synthetic distortion simulators as special-
ized VQA models to extend the capability of the teacher ensemble. With synthetic distortion pairs,
the student model achieves consistent improvements across all benchmarks, yielding marginal gains
on in-domain datasets and substantial enhancements on OOD benchmarks. These results demon-
strate that incorporating diverse VQA models as teachers enables joint supervision that consistently
fosters more generalizable quality assessment.

Confidence Loss. Incorporating Lconf yields clear gains on OOD datasets. This indicates that con-
fidence loss mitigates the adverse impact of noisy weak labels and enables the student to reinforce
its own reliable predictions.
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Iterative W2S Training. We observe consistent improvements across both in-domain and OOD
datasets as the student progresses through three iterative training stages. This provides strong em-
pirical evidence that our iterative weak-to-strong strategy enhances model capacity through pro-
gressive self-teaching. Notably, substantial gains are achieved on challenging benchmarks where
existing models struggle: after three iterations, relative SRCC improvements of 30.59%, 20.55%,
and 8.27% are obtained on LIVE-YT-HFR, Waterloo-IVC-4K, and KVQ, respectively.

Comparison with SOTAs. We compare our Stage 3 student model with state-of-the-art baselines.
Our model surpasses all competitors, including the five teacher models and two recent LMM-based
approaches, VQA2 (Jia et al., 2024) and VQAThinker (Cao et al., 2025). Notably, VQA2 is trained
on over 157k labeled samples, while VQAThinker leverages reinforcement learning with advanced
LMM backbones. In contrast, our weak-to-strong learning strategy achieves state-of-the-art perfor-
mance without any human-labeled data, underscoring its effectiveness and practical value.

5 DISCUSSION

Developing generalized VQA models remains a fundamental challenge due to the vast diversity of
real-world distortions and the strong influence of video content. Supervised learning on human-
labeled data cannot feasibly cover this space, highlighting the urgent need for unsupervised and
weakly supervised paradigms. In this work, we demonstrate that it is possible to learn from weak
VQA models and even surpass their performance. Building on this insight, we propose a framework
that integrates diverse homogeneous and heterogeneous VQA teachers through a learning-to-rank
formulation, and further enhances generalization via an iterative W2S training strategy, where pro-
gressively stronger students are recycled as new teachers. This design enables cumulative transfer
of knowledge beyond any single teacher and drives the model’s self-evolution toward increasingly
generalized quality assessment.

Looking forward, this paradigm suggests a pathway toward scalable VQA foundation models. The
community can leverage a broad spectrum of supervision sources, leveraging expert-domain VQA
models (e.g., VMAF for video compression), utilizing powerful LMMs with carefully designed
prompt engineering, and employing text-to-video generation algorithms to synthesize videos of
varying quality through specified prompts. By unifying these heterogeneous signals, future research
may move toward constructing foundation models for VQA that generalize across content domains,
distortion types, and application scenarios—ultimately serving as universal quality assessors for
both natural and generative videos.

6 CONCLUSION

This paper introduces a weak-to-strong (W2S) paradigm for video quality assessment that lever-
ages multiple weak teachers and iterative self-teaching to train stronger students without relying
on human annotations. Through the integration of homogeneous and heterogeneous teachers un-
der a ranking-based formulation, and the use of iterative W2S training, our approach consistently
surpasses the teacher models across ten benchmarks, with particularly strong gains on challeng-
ing out-of-distribution benchmarks. The results highlight the potential of W2S as a scalable and
effective alternative to traditional annotation-dependent training pipelines.

LLM Usage Statement. Large language models are used to aid in polishing the writing of this
paper, but they are not involved in the research design, experimental process, or analysis.

Ethics Statement. All videos used in this work are obtained through a filtering pipeline that ensures
only publicly available content with permissive licenses is included.

Reproducibility Statement. Detailed descriptions of the data processing pipeline, training and
inference configurations are provided in the main paper and appendix. Our anonymous code link:
https://anonymous.4open.science/r/W2S-VQA-814E/.

REFERENCES

Lorenzo Agnolucci, Leonardo Galteri, and Marco Bertini. Quality-aware image-text alignment for
real-world image quality assessment. arXiv preprint arXiv:2403.11176, 2024.

9

https://anonymous.4open.science/r/W2S-VQA-814E/


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker, Leo Gao, Leopold Aschenbren-
ner, Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan Leike, et al. Weak-to-strong general-
ization: Eliciting strong capabilities with weak supervision. arXiv preprint arXiv:2312.09390,
2023.

Linhan Cao, Wei Sun, Weixia Zhang, Xiangyang Zhu, Jun Jia, Kaiwei Zhang, Dandan Zhu, Guang-
tao Zhai, and Xiongkuo Min. Vqathinker: Exploring generalizable and explainable video quality
assessment via reinforcement learning. arXiv preprint arXiv:2508.06051, 2025.

Peibei Cao, Dingquan Li, and Kede Ma. Image quality assessment: Integrating model-centric and
data-centric approaches. In Conference on Parsimony and Learning, pp. 529–541, 2024.

Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics
dataset. In proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
6299–6308, 2017.

Pengfei Chen, Leida Li, Jinjian Wu, Weisheng Dong, and Guangming Shi. Contrastive self-
supervised pre-training for video quality assessment. IEEE transactions on image processing,
31:458–471, 2021a.

Pengfei Chen, Leida Li, Jinjian Wu, Weisheng Dong, and Guangming Shi. Unsupervised curriculum
domain adaptation for no-reference video quality assessment. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 5178–5187, 2021b.

Pengfei Chen, Leida Li, Haoliang Li, Jinjian Wu, Weisheng Dong, and Guangming Shi. Dynamic
expert-knowledge ensemble for generalizable video quality assessment. IEEE Transactions on
Circuits and Systems for Video Technology, 33(6):2577–2589, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, G Heigold, S Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. In International Conference on Learn-
ing Representations, 2020.

Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast networks for video
recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
6202–6211, 2019.

Qihang Ge, Wei Sun, Yu Zhang, Yunhao Li, Zhongpeng Ji, Fengyu Sun, Shangling Jui, Xiongkuo
Min, and Guangtao Zhai. Lmm-vqa: Advancing video quality assessment with large multimodal
models. IEEE Transactions on Circuits and Systems for Video Technology, 2025.
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Figure 7: Examples of videos from different categories in our large dataset.

A MORE DETAILS OF OUR DW2S DATABASE

A.1 ANALYSIS OF THE COLLECTED VIDEOS

As shown in Fig. 8, our dataset is collected from multiple popular social media platforms with
relatively uniform sampling, comprising 20% from Bilibili, 20% from Youku, 25% from YouTube,
and 35% from TikTok. All videos are obtained through a filtering pipeline that ensures only
publicly available content with permissive licenses is included. Notably, our dataset covers a
diverse range of content categories, exceeding twenty in total. In addition to common categories
such as lifestyle, food, and animals, it also includes specialized categories such as gaming, AI-
generated content, and high-resolution content. To illustrate the diversity of our dataset, we present a
variety of video samples in Fig. 7, showcasing the broad range of content available in our large-scale
video quality assessment (VQA) dataset. Unlike existing datasets, which often focus on specific
formats, our dataset encompasses a wider variety of formats, including both landscape and portrait
orientations, as well as various resolutions. This diversity enhances the comprehensiveness of our
dataset, making it more suitable for evaluating video quality across a wide kinds of scenarios. A
detailed breakdown of our database, including pair types and the corresponding number of videos,
is provided in Table 2.

Multiple
social 
media

platforms

TikTok
35%

Youku
20%

Biliili
20%

Youtube
25%

Lifestyle
8.62%

Food
7.81

%

Animals
7.32%

Comedy
4.24%

AI-Generated
Content
4.29%

Beauty & 
Make up
4.30% Sports

4.46%
Dance
4.93% Entertainment

4.97%

Animation
5.02%

News & 
Information

7.04%

Parenting
7.04%

Music
2.77%

various 
categories 

of 
content

Variety Show
2.97%

High-Resolution
3.02%

Scenery
4.10%

Technology
2.75%

Gaming
3.6%

Automobile
2.69%

Education
1.87% Else

1.08%

Film &
Television

5.13%

Figure 8: Our dataset is collected from multiple popular social media platforms and encompasses a
wide range of content categories.
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Table 2: Statistics of raw videos and video pairs in the Dw2s dataset.

Category Subtype Videos Video Pairs

D
(1)
w2s D

(2)
w2s D

(3)
w2s D

(1)
w2s D

(2)
w2s D

(3)
w2s

Ensembling homogeneous teachers - 200k 100k 50k 250k 85k 85k

Integrating heterogeneous teachers
Spatial 50k 2k 2k 160k 5k 5k

Temporal 20k 1k 1k 40k 5k 5k
Compression 10k 1k 1k 50k 5k 5k

Total 280k 384k 438k 500k 600k 700k

A.2 ANALYSIS OF LOW-LEVEL METRICS

Our data selection strategy is based on a mixed-integer programming method (Vonikakis et al.,
2017), which optimizes dataset composition by aligning feature histograms. Specifically, we utilize
this approach to match the distributions of nine low-level metrics (blockiness (Romaniak et al.,
2012), blur (Narvekar & Karam, 2011), contrast (Peli, 1990), noise, flickering (Pandel, 2008),
colourfulness (Hasler & Suesstrunk, 2003), luminance, spatial information (SI) (ITU-T P.910,
2008), and temporal information (TI) (ITU-T P.910, 2008)) between our dataset and the LSVQ
dataset. Each metric is computed as follows:
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Figure 9: Distribution of nine metrics on the LSVQ dataset, as well as on our dataset before and
after sampling.

Blockiness (Romaniak et al., 2012) is quantified by analyzing the luminance differences between
pixels within and across encoding blocks. Specifically, we compute the absolute luminance differ-
ences between adjacent pixel pairs within the same encoding block (internal pixel pairs) and those
spanning adjacent blocks (external pixel pairs). The blockiness metric is then determined as the ratio
of the total sum of internal pixel difference values to the total sum of external pixel difference values
across the entire video frame:

B =

∑
(x,y)∈I |I(x, y)− I(x+ 1, y)|∑
(x,y)∈E |I(x, y)− I(x+ 1, y)|

, (3)

where I(x, y) represents the luminance value at pixel location (x, y), I denotes the set of internal
pixel pairs, and E represents the set of external pixel pairs. A higher blockiness value indicates
stronger blocking artifacts, which typically result from aggressive video compression.

Blur is measured using the Cumulative Probability of Blur Detection (CPBD) (Narvekar &
Karam, 2011), which evaluates perceptual sharpness based on edge width distribution. A higher
CPBD value indicates a sharper image. Given an edge pixel ei, its width w(ei) is compared with
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the Just Noticeale Blur (JNB) threshold, determining the blur detection probability wJNB(ei). The
final CPBD score is computed as:

CPBD = P (PBLUR ≤ PJNB) =

PJNB∑
PBLUR=0

P (PBLUR). (4)

Contrast is a measure of the dispersion of pixel intensity values within the video frame and can
be quantified using the standard deviation of grayscale intensities (Peli, 1990). Specifically, for a
grayscale image I(x, y), the mean intensity µ is first computed as:

µ =
1

M ×N

M∑
x=1

N∑
y=1

I(x, y), (5)

where M and N denote the width and height of the image, respectively, and I(x, y) represents the
intensity at pixel (x, y). The contrast value σ is then obtained by calculating the standard deviation
of intensity values:

σ =

√√√√ 1

M ×N

M∑
x=1

N∑
y=1

(I(x, y)− µ)2. (6)

The standard deviation σ represents the contrast of the video frame, where a higher σ value indicates
a greater dispersion of intensity values and thus a higher contrast.

Flickering occurs when an encoder skips macroblocks to conserve bitrate, especially in low-
texture, slow-motion regions (Pandel, 2008). It is quantified by counting macroblock transitions
from an “unupdated” to an “updated” state, with a threshold Tf ensuring only significant changes
are considered. The flickering metric is computed as:

F =
1

M ×N

M∑
x=1

N∑
y=1

I (|It(x, y)− It−1(x, y)| > Tf ) , (7)

where It(x, y) is the luminance at pixel (x, y) in frame t, and I(·) is an indicator function. A higher
F indicates stronger flickering artifacts.

Colourfulness quantifies color distribution differences across RGB channels, following (Hasler &
Suesstrunk, 2003). Given a frame with RGB channels R,G,B, we compute:

rg = R−G, yb =
1

2
(R+G)−B. (8)

The Colourfulness metric is then:

C =
√
σ2
rg + σ2

yb
+ 0.3×

√
µ2
rg + µ2

yb
, (9)

where σ and µ denote the standard deviations and means of rg and yb, respectively.

Luminance is measured as the combined intensity of the three RGB channels, defined as:

L = R+G+B. (10)
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Raw video frame Level 1 Level 2 Level 3 Level 4 Level 5

Blur
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Resize
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Figure 10: Illustration of different levels of spatial distortion video frames in our large-scale dataset.

SI measures spatial complexity using the Sobel filter. The standard deviation of the Sobel-filtered
frame over all pixels is computed, and the maximum value over time represents the SI:

SI = max
time

{stdspace [Sobel(Fn)]} . (11)

TI measures motion intensity by calculating the difference between consecutive frames. The tem-
poral difference at pixel (i, j) is:

Mn(i, j) = Fn(i, j)− Fn−1(i, j). (12)

The TI value is the maximum standard deviation of Mn(i, j) over time and space:

TI = max
time

{stdspace[Mn(i, j)]} . (13)

To optimize computational efficiency, all metrics are extracted at a sampling rate of one frame per
second.
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H.264
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CRF 40

CRF 44CRF 48

Figure 11: Illustration of different levels of streaming distortion video frames in our large-scale
dataset.

A.3 MORE DETAILS ON SYNTHETIC DISTORTION DATA

A.3.1 SPATIAL DISTORTIONS

We introduce five common spatial distortions: resizing, Gaussian blur, Gaussian noise, darkening,
and brightening. Each distortion is applied at five different levels to simulate varying degrees of
degradation, ranging from mild to severe. Fig. 10 illustrates examples of these distortions, where
the quality of video frames progressively deteriorates as the distortion level increases. Below, we
provide details on how these spatial distortions are generated, where I represents the original frame,
and I ′ denotes the distorted frame.

Resizing: The frame is first downsampled by a scaling factor s and then upsampled back to its
original size. This process reduces spatial details and introduces pixelation artifacts, simulating
resolution loss. The transformation is defined as:

I ′ = Upsample(Downsample(I, s), s), (14)

where s takes values from the set {2, 3, 4, 8, 16}.

Gaussian Blur: The frame is convolved with a Gaussian kernel, where the standard deviation
σblur controls the extent of the blur. A larger σblur results in a wider spread of the Gaussian function,
leading to a stronger blurring effect by averaging pixel intensities over a larger neighborhood. The
blurring process is defined as:

I ′ = I ∗G(σblur), (15)

where G(σblur) is a Gaussian kernel with standard deviation σblur which takes values from the set
{0.1, 0.5, 1, 2, 5}, and ∗ denotes the convolution operation.

Gaussian noise: Gaussian noise is introduced by adding random variations to each pixel, follow-
ing a normal distribution with mean µ and standard deviation σnoise. The noise level is controlled
by adjusting σnoise, where higher values result in more pronounced noise artifacts. The process is
defined as:
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Table 3: An overview of our testing datasets.
Dataset Year # of Videos # of Scenes Resolution Duration Frame Rate Distortion Type

KoNViD-1k (Hosu et al., 2017) 2017 1,200 1,200 540p 8 24, 25, 30 In-the-wild
LIVE-VQC (Sinno & Bovik, 2018) 2018 585 585 240p–1080p 10 30 In-the-wild
YouTube-UGC (Wang et al., 2019) 2019 1,380 1,380 360p–4K 20 30 In-the-wild
LSVQ (Ying et al., 2021) 2021 38,811 38,811 99p–4K 5–12 < 60 In-the-wild

Waterloo-IVC-4K (Li et al., 2019b) 2019 1200 20 540p, 1080p, 4k 9-10 24, 25, 30 H.264 compression
LIVE-YT-HFR (Madhusudana et al., 2021) 2021 480 16 1080p 6-10 24, 30, 60, 82, 98, 120 Frame rate, VP9 compression
LIVE-YT-Gaming (Yu et al., 2022) 2022 600 600 360p–1080p 8–9 30, 60 PGC, UGC
CGVDS (Saha et al., 2023) 2023 360 15 480p, 720p, 1080p 30 20, 30, 60 H.264 compression
KVQ (Lu et al., 2024) 2024 4200 600 - 3-8 - UGC

I ′ = I +N(µ, σ2
noise), (16)

where N(µ, σ2
noise) represents Gaussian noise with mean µ and variance σ2

noise, added indepen-
dently to each pixel. σ takes values from the set {0.001, 0.002, 0.003, 0.005, 0.01}.

Darkening: Darkening is applied by reducing the luminance component in the color space. The
effect is controlled by a parameter p, which determines the degree of brightness reduction. The
luminance channel L is adjusted using an interpolation function f(L, p) as follows:

L′ = f(L, p). (17)

The parameter p is selected from a predefined set of values {0.05, 0.1, 0.2, 0.4, 0.8}, with larger
values leading to stronger darkening effects.

Brightening: In contrast, brightening is achieved by enhancing the luminance component in the
color space. The luminance channel L is modified using a nonlinear transformation function g(L, p):

L′ = g(L, p), (18)

The parameter p is selected from {0.1, 0.2, 0.4, 0.7, 1.1}, with larger values producing a stronger
brightening effects.

A.3.2 TEMPORAL DISTORTIONS

We introduce two types of temporal distortions: jitter and stuttering, each distortion maintain three
different levels.

Jitter: Jitter introduces random shifts and random cropping followed by resizing of video frames.
The amount of shift is determined by the jitter level, which controls the extent of spatial displace-
ment.

For each frame, random horizontal and vertical shifts are applied using an affine transformation
matrix, which shifts the frame along the x- and y-axes. Additionally, each frame is cropped by
a small amount from the edges and resized back to its original dimensions, simulating pixelation
effects or lower-quality views. The transformation matrix is described as follows:

M =

[
1 0 random shift x
0 1 random shift y

]
(19)

where random shift x and random shift y are random values determined by the jitter level.

Stuttering: Stuttering is introduced by randomly dropping frames at a controlled rate. The drop
rate pd is determined by the distortion level, where higher levels correspond to increased frame loss.
For each frame It, a random probability is drawn and compared with pd. If the frame is dropped, it
is replaced by the previous frame It−1, simulating temporal freezing in the video. The process can
be formulated as:
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I ′t =

{
It−1, if r < pd,

It, otherwise
(20)

where r ∼ U(0, 1) is a random variable drawn from a uniform distribution.

A.3.3 STREAMING DISTORTIONS

As illustrated in Fig. 11, we select the two most common compression standards, H.264 and H.265,
to simulate video quality degradation for the compression distortion. These distortions are applied
using the ffmpeg tool, a widely used multimedia framework, to encode the videos with different
compression settings. Specifically, we chose four fixed constant rate factor (CRF) values for each
compression standard to control the level of distortion.

For H.264 compression, we selected the fast encoding mode, which provides a good balance
between encoding speed and compression efficiency, making it suitable for real-time applications.
To cover a wide range of compression levels, we applied H.264 compression using CRF values of
24, 36, 48, and 63, ensuring the simulation of various quality degradation scenarios.

In contrast, for H.265 compression, we selected the very slow encoding mode, which prioritizes
compression efficiency over speed, leading to higher quality video at the cost of longer encoding
times. To achieve fine-grained quality simulation, we applied H.265 compression with a narrower
CRF range of 36, 40, 44, and 48, allowing for precise control over compression artifacts.

These encoding settings help to simulate typical real-world compression scenarios, where differ-
ent modes and CRF values are chosen based on the trade-off between video quality and encoding
performance.

A.4 MORE DETAILS ON TESTING DATASETS

Table 3 provides an overview of our testing datasets, which encompass diverse content types, res-
olutions, durations, frame rates, and distortion types. The first four datasets consist of in-the-wild
videos containing various authentic distortions, while the remaining datasets focus on specific con-
tent types and distortion factors. For example, LIVE-YT-Gaming is dedicated to gaming content,
LIVE-YT-HFR targets frame rate distortions, and Waterloo-IVC-4K covers different types of com-
pression artifacts. By evaluating our model across these nine datasets, we demonstrate its robustness
and effectiveness in both in-domain and out-of-distribution (OOD) quality assessment scenarios.

B MORE DETAILS OF QUALITY ANNOTATION

B.1 WEAK MODELS FOR PSEUDO-LABELING

Table 4: Comparison of model parameters and architecture.
Model Parameters (M) Architecture

MinimalisticVQA(VII) 86.93 Swin-B
MinimalisticVQA (IX) 121.59 Swin-B + SlowFast
FAST-VQA 29.97 Swin-Tiny
DOVER 58.06 Swin-Tiny + Conv-Tiny
Q-Align 8204.56 mPLUG-Owl2
Our strong model 8075.24 LLaVA-OneVision-Chat + SlowFast

We choose five SOTA VQA models: MinimalisticVQA (VII) (Sun et al., 2024), MinimalisticVQA
(IX) (Sun et al., 2024), FAST-VQA (Wu et al., 2022), DOVER (Wu et al., 2023a), and Q-Align (Wu
et al., 2023b) as weak teachers to formulate our pseudo quality annotation. The detail introduction
of the five models is as follows:

MinimalisticVQA (VII) employs Swin Transformer-B (Liu et al., 2022), pre-trained on
ImageNet-1K (Deng et al., 2009), as the spatial quality analyzer to extract quality-aware spatial
features from key frames, ensuring robust spatial quality assessment.
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MinimalisticVQA (IX) builds upon MinimalisticVQA (VII) by incorporating a temporal qual-
ity analyzer to account for motion distortions. The temporal quality analyzer, implemented using
the SlowFast (Feichtenhofer et al., 2019) network pre-trained on the Kinetics-400 (Carreira & Zis-
serman, 2017) dataset, extracts motion-related features from video chunks, enhancing the model’s
ability to assess temporal quality variations.

FAST-VQA introduces Grid Mini-patch Sampling (GMS) strategy, which preserves local quality
by sampling patches at raw resolution and maintains global quality through uniformly sampled mini-
patches. These mini-patches are spliced and temporally aligned into fragments. To process these
fragments, the Fragment Attention Network (FANet) is designed to effectively extract video qual-
ity features. Combining GMS and FANet, FAST-VQA achieves efficient end-to-end video quality
assessment with effective feature representation learning.

DOVER builds upon FAST-VQA as its technical branch to capture low-level distortions, while
introducing an additional aesthetic branch to assess high-level semantic composition, which relates
to user preferences and content recommendation. By disentangling these two perspectives, DOVER
establishes a more human-aligned and interpretable framework for video quality assessment.

Q-Align presents a novel training strategy for large multimodal model (LMM) in VQA by re-
placing direct numerical score predictions with discrete, text-defined rating levels (e.g., “excellent”,
“good”, “fair”, “poor”, “bad”) as learning targets. During inference, Q-Align extracts the log prob-
abilities of each rating level, applies softmax normalization to obtain a probability distribution, and
computes a weighted average to derive the final predicted quality score.

B.2 PROMPTS FOR MODEL TRAINING

We construct the label prompts for our large-scale dataset using a fixed template. For the single-
video input:

Question: "You will now receive a video: <image>. Please
watch the video carefully and answer the following question:
What is your overall rating of the quality of this video?"
Answer: "[quality score]"

For the dual-video input:

Question: "You will now receive two videos. The first
video: <image>. The second video: <image>. Please watch
both videos carefully and answer the following question:
Compared to the first video, how would you rate the quality
of the second video?"
Answer: "The quality of the second video is [level] compared
to the first video."

C MORE DETAILS OF OUR STRONG STUDENT MODEL

C.1 MODEL STRUCTURE

As illustrated in Fig. 3, our model comprises three components: a visual feature extractor, a text
tokenizer, and an LLM decoder.

Visual Feature Extractor. The visual feature extractor adopts a dual-branch design: a spatial branch
with image encoder FI (i.e., SigLIP) processes key frames, while a temporal branch with pre-trained
motion encoder FM (i.e., SlowFast) analyzes frame sequences. Both branches employ dedicated
projection layers PI and PF (i.e., two-layer MLPs) to map spatial and temporal features into visual
tokens aligned with language space. Specifically, given an input video x = {xi}N−1

i=0 containing N

frames at frame rate r, we first partition it into Nc = ⌊N/r⌋ continuous chunks {ck}Nc−1
k=0 , where
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each chunk ck = {xj}(k+1)∗r
j=k∗r spans r frames. Spatial features fs

k are extracted from the first frame
xkr of each chunk, while temporal features f t

k are computed over all frames in ck. The feature
extraction process is formally expressed as:

fs
k = PI(FI(xkr)), f t

k = PM (FM (ck)),

fv = Concat
(
[fs

k ,f
t
k]

Nc−1
k=0

)
,

(21)

where fv is the extracted visual features of x. Given a video pair (xA,xB), we can derive the visual
features (fv

A,f
v
B).

Feature Fusion via the LLM. Given an input prompt p, we first encode it into text tokens fp =
T (p) using tokenizer T . The visual features of a video pair (fv

A,f
v
B) are then concatenated with

f t and fed to a pretrained LLM decoder (i.e., Qwen-2) for multimodal fusion to derive the output
response for quality ranking:

r = L(fv
A,f

v
B ,f

p), (22)
where r is expected to belong to {“superior”, “better”, “similar”, “worse”, “inferior”}.

C.2 TRAINING DETAILS

C.2.1 TRAINING SETUP

The model is trained using the DeepSpeed framework with mixed-precision floating-point opera-
tions to optimize memory and computational efficiency. The training is conducted for one epoch
with a batch size of 2 per device and a gradient accumulation step of 1. The optimizer follows
AdamW with a initial learning rate of 1 × 10−4, a cosine learning rate schedule, and a warm-up
ratio of 0.03.

We employ a joint training strategy for images and videos. For the image encoder, videos are
sampled at a rate of one frame per second, with each sampled frame resized to a resolution of
384× 384, while images are directly resized to the same resolution. For the motion encoder, videos
are fully encoded across all frames to capture temporal dynamics, whereas images, which lack
temporal information, are assigned an all-zero tensor as their temporal representation.

C.2.2 AUXILIARY CONFIDENCE LOSS

As mentioned in Section 4.3, we introduce an auxiliary confidence loss to encourage the model to
maintain high-confidence predictions, especially in the presence of noisy weak supervision. The
final training objective is a dynamically weighted combination of the cross-entropy loss LCE and the
confidence loss Lconf:

L = (1− λ) · LCE + λ · Lconf, (23)

where λ is an adaptive weighting factor that balances between trusting the weak labels and relying
on the model’s own confidence. The confidence loss is defined as the average entropy over the
predicted token probability distributions:

Lconf =
1

N

N∑
i=1

H(pθ(xi)) = − 1

N

N∑
i=1

∑
c

pθ(c|xi) log pθ(c|xi), (24)

where pθ(c|xi) denotes the predicted probability of vocabulary token c given input xi. By mini-
mizing the entropy of the predicted distribution, we encourage the model to produce more confident
next-token predictions.

To dynamically adjust λ during training, we introduce a temperature-based confidence estimation
mechanism. Specifically, we define:

λ = α ·min

(
1.0,

t

Twarmup

)
, (25)
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where t denotes the current training step ratio (normalized to [0, 1]), and Twarmup is the warm-up
period, which we set to 10% of the total training steps. This warm-up phase ensures that the strong
model gradually learns to rely on its own confidence, while initially being guided by the weak labels.
The factor α is computed as the ratio between the temperature-scaled exponentials of the two losses:

α =
exp(Lconf/T )

exp(Lconf/T ) + exp(LCE/T )
. (26)

Here, T is a temperature parameter that controls the sharpness of the weighting between the two
loss components. We linearly decrease T from 0.5 to 0.1 during the warm-up period to gradually
increase the sensitivity of α to differences in the two loss values.

C.3 INFERRING DETAILS

C.3.1 PROBABILITY MODELING

Though we employ video pairs to train our model by enabling it to determine whether the second
video is better than the first, our goal during inference is to obtain an absolute quality score for a
single video. To achieve this, we propose a method that converts the probability of a test video being
better or worse than anchor videos into a final quality score.

First, we describe how to construct the probability distribution for comparative quality assessments.
The comparative token set is defined as:

S = {sk}5k=1 = {inferior,worse, similar, better, superior}. (27)

The probability of each token is computed using the softmax function:

qsk =
esk∑r

m=1 e
sm

, (28)

where qsk represents the probability of the k-th token, and r denotes the number of levels.

To obtain a quality score for the test video veval, we aggregate its comparative probabilities against
anchor videos using a weighted summation:

P (vanchor, veval) =

r∑
k=1

αkqsk (vanchor, veval) , r = 1 . . . p. (29)

where αk are fixed weights that reflect the comparative levels. Specifically, the weights are defined
as:

{αk}5k=1 = {0, 0.25, 0.5, 0.75, 1}. (30)

This approach enables the model to generate a continuous quality score for a single video by lever-
aging its relative comparisons against anchor videos in the training set.

C.3.2 SCORE MODELING

Finally, we construct a probability matrix based on pairwise comparisons with a set of anchor videos.
Given a set of five anchor videos, we first define a probability matrix:

Mr ∈ R5×5, (31)

where each entry P (b(i), b(j)) represents the probability that anchor video b(i) is preferred over b(j).
This probability satisfies:

P (b(i), b(j)) = 1− P (b(j), b(i)), P (b(i), b(i)) = 0.5. (32)

To evaluate a test video vtest, we compute its comparative probabilities against all anchor videos,
forming the probability vector:
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Table 5: Performance of weak-to-strong models trained with pseudo-labels from weak models. For
comparison, we also report the performance of our model trained directly on the LSVQ dataset.

In-domain Datasets LSVQtest LSVQ1080p KoNViD-1k LIVE-VQC YouTube-UGC Overall

# of videos 7,182 3,573 1,200 585 1,020 -

Methods SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

Weak Teachers
MinimalisticVQA(VII) 0.861 0.859 0.740 0.784 0.843 0.841 0.757 0.813 0.775 0.779 0.817 0.830
MinimalisticVQA(IX) 0.885 0.882 0.792 0.828 0.862 0.859 0.775 0.821 0.826 0.821 0.849 0.859
FAST-VQA 0.880 0.880 0.781 0.813 0.859 0.854 0.826 0.845 0.730 0.747 0.838 0.849
DOVER 0.878 0.866 0.782 0.813 0.874 0.869 0.817 0.840 0.771 0.781 0.842 0.845
Q-Align 0.886 0.884 0.761 0.822 0.876 0.878 0.783 0.819 0.834 0.846 0.844 0.861
Weak-to-Strong Students
MinimalisticVQA(VII)-labeled 0.855 0.852 0.762 0.795 0.859 0.857 0.771 0.813 0.808 0.821 0.824 0.833
MinimalisticVQA(IX)-labeled 0.879 0.878 0.794 0.826 0.869 0.871 0.786 0.822 0.843 0.846 0.849 0.859
FAST-VQA-labeled 0.871 0.868 0.785 0.819 0.849 0.855 0.798 0.833 0.825 0.834 0.840 0.850
DOVER-labeled 0.877 0.869 0.780 0.813 0.870 0.875 0.792 0.829 0.819 0.831 0.843 0.850
Q-Align-labeled 0.878 0.876 0.794 0.824 0.873 0.880 0.781 0.825 0.833 0.853 0.848 0.859
Supervised Student
LSVQ-labeled 0.881 0.878 0.797 0.834 0.874 0.874 0.797 0.828 0.830 0.838 0.851 0.861

Out of Distribution Datasets LIVE-YT-Gaming CGVDS LIVE-YT-HFR Waterloo-IVC-4K KVQ Overall

# of videos 600 357 480 1,200 2,926 -

Methods SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

Weak Teachers
MinimalisticVQA(VII) 0.596 0.682 0.681 0.733 0.061 0.130 0.275 0.338 0.604 0.659 0.490 0.551
MinimalisticVQA(IX) 0.686 0.746 0.797 0.816 0.301 0.388 0.459 0.502 0.615 0.661 0.574 0.622
FAST-VQA 0.631 0.677 0.725 0.747 0.326 0.415 0.327 0.363 0.518 0.526 0.486 0.512
DOVER 0.647 0.728 0.694 0.747 0.360 0.465 0.368 0.418 0.559 0.593 0.519 0.569
Q-Align 0.611 0.681 0.756 0.798 0.329 0.342 0.414 0.497 0.613 0.655 0.555 0.606
Weak-to-Strong Students
MinimalisticVQA(VII)-labeled 0.632 0.717 0.718 0.773 0.318 0.386 0.356 0.412 0.604 0.652 0.536 0.593
MinimalisticVQA(IX)-labeled 0.687 0.748 0.763 0.810 0.383 0.461 0.459 0.515 0.638 0.676 0.591 0.639
FAST-VQA-labeled 0.658 0.766 0.752 0.785 0.392 0.422 0.414 0.493 0.585 0.624 0.550 0.604
DOVER-labeled 0.662 0.758 0.752 0.809 0.449 0.482 0.435 0.519 0.574 0.627 0.554 0.617
Q-Align-labeled 0.671 0.738 0.744 0.785 0.437 0.480 0.450 0.525 0.620 0.668 0.581 0.636
Supervised Student
LSVQ-labeled 0.643 0.713 0.713 0.770 0.451 0.490 0.451 0.485 0.619 0.636 0.577 0.608

c =
[
P (b(1), vtest), P (b(2), vtest), . . . , P (b(5), vtest)

]
. (33)

Next, we integrate this vector into the complete probability matrix:

M ∈ R(5+1)×(5+1),M =

[
Mr c

(1− c)⊤ 0.5

]
. (34)

With this probability matrix, we estimate the final quality score using maximum a posteriori
(MAP) (Tsukida et al., 2011) estimation under Thurstone’s Case V model (Thurstone, 2017). This
is formulated as the following convex optimization problem:

argmax
q̂

∑
i,j

Mi,j log
(
Φ(q̂(i) − q̂(j))

)
−
∑
i

q̂(i)

2
, s.t.

∑
i

q̂(i) = 0.

(35)

Here, Φ(·) denotes the standard normal cumulative distribution function, and the final score q̂(n+1)

corresponds to the estimated quality of the test video.
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D MORE DETAILS OF EXPERIMENTAL RESULTS

D.1 MORE DETAILS OF WEAK-TO-STRONG GENERALIZATION EFFECT

Table 5 presents the per-dataset results from the experiments described in Section 3.3. For in-
domain benchmarks, the student model achieves performance comparable to its teachers, with slight
improvements, demonstrating that our simple knowledge distillation approach effectively transfers
quality assessment knowledge from weak to strong models. For OOD benchmarks, the student
model shows substantial improvements over its teachers, highlighting a pronounced weak-to-strong
generalization effect.
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