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Abstract
We introduce REPLUG, a retrieval-augmented001
language modeling framework that treats the002
language model (LM) as a black box and aug-003
ments it with a tuneable retrieval model. Un-004
like prior retrieval-augmented LMs that train005
language models with special cross attention006
mechanisms to encode the retrieved text, RE-007
PLUG simply prepends retrieved documents to008
the input for the frozen black-box LM. This009
simple design can be easily applied to any ex-010
isting language models. Furthermore, we show011
that the LM can be used to supervise the re-012
trieval model, which can then find documents013
that help the LM make better predictions. Our014
experiments demonstrate that REPLUG with015
the tuned retriever significantly improves the016
performance of GPT-3 (175B) on language017
modeling by 6.3%, as well as the performance018
of Codex on five-shot MMLU by 5.1%.019

1 Introduction020

Large language models (LMs) such as GPT-021

3 (Brown et al., 2020a) and Codex (Chen et al.,022

2021a), have demonstrated impressive performance023

on a wide range of language tasks. These models024

are typically trained on very large datasets and store025

a substantial amount of world or domain knowl-026

edge implicitly in their parameters. However, they027

are also prone to hallucination and cannot represent028

the full long tail of knowledge from the training cor-029

pus. Retrieval-augmented language models (Khan-030

delwal et al., 2020; Borgeaud et al., 2022; Izacard031

et al., 2022b; Yasunaga et al., 2022), in contrast,032

can retrieve knowledge from an external datastore033

when needed, potentially reducing hallucination034

and increasing coverage. Previous approaches of035

retrieval-augmented language models require ac-036

cess to the internal LM representations (e.g., to037

train the model (Borgeaud et al., 2022; Izacard038

et al., 2022b) or to index the datastore (Khandelwal039

et al., 2020)), and are thus difficult to be applied040

to very large LMs. In addition, many best-in-class041

Figure 1: Different from previous retrieval-augmented
approaches (Borgeaud et al., 2022) that enhance a lan-
guage model with retrieval by updating the LM’s pa-
rameters, REPLUG treats the LM as a black box and
augments it with a frozen or tunable retriever. This
black-box assumption makes REPLUG applicable to
large LMs, which are often served via APIs.

LLMs can only be accessed through APIs. Internal 042

representations of such models are not exposed and 043

fine-tuning is not supported. 044

In this work, we introduce REPLUG (Retrieve 045

and Plug), a new retrieval-augmented LM frame- 046

work where the language model is viewed as a 047

black box and the retrieval component is added 048

as a tuneable plug-and-play module. Given an in- 049

put context, REPLUG first retrieves relevant doc- 050

uments from an external corpus using an off-the- 051

shelf retrieval model. The retrieved documents 052

are prepended to the input context and fed into the 053

black-box LM to make the final prediction. Be- 054

cause the LM context length limits the number of 055

documents that can be prepended, we also adopt an 056

ensemble scheme that encodes the retrieved doc- 057

uments in parallel with the same black-box LM, 058

allowing us to easily trade compute for accuracy. 059

As shown in Figure 1, REPLUG is extremely flex- 060

ible and can be used with any existing black-box 061
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LM and retrieval model.062

We also introduce REPLUG LSR (REPLUG with063

LM-Supervised Retrieval), a training scheme that064

can further improve the initial retrieval model in065

REPLUG with supervision signals from a black-066

box language model. The key idea is to adapt the067

retriever to the LM, which is in contrast to prior068

work (Borgeaud et al., 2022) that adapts language069

models to the retriever. We use a training objective070

which prefers retrieving documents that improve071

language model perplexity, while treating the LM072

as a frozen, black-box scoring function.073

Our experiments show that REPLUG can im-074

prove the performance of diverse black-box LMs075

on both language modeling and downstream tasks,076

including MMLU (Hendrycks et al., 2021) and077

open-domain QA (Kwiatkowski et al., 2019; Joshi078

et al., 2017). For instance, REPLUG can im-079

prove Codex (175B) performance on MMLU080

by 4.5%, achieving comparable results to the081

540B, instruction-finetuned Flan-PaLM. Further-082

more, tuning the retriever with our training scheme083

(i.e., REPLUG LSR) outperforms various off-the-084

shelf retrievers and leads to additional improve-085

ments, including up to 6.3% increase in GPT-3086

175B language modeling. To the best of our knowl-087

edge, our work is the first to show the benefits of088

retrieval to large LMs (>100B model parameters),089

for both reducing LM perplexity and and improving090

in-context learning performance. We summarize091

our contributions as follows:092

• We introduce REPLUG (§3), the first retrieval-093

augmented language modeling framework for094

enhancing black-box LMs with retrieval. Un-095

like previous methods that require updating096

the LM’s parameters, REPLUG could be easily097

plugged into any existing LM without addi-098

tional finetuning.099

• We propose a training scheme (§4) to further100

adapt an off-the-shelf retrieval model to the101

LM, using the language modeling scores as102

supervision signals, resulting in improved re-103

trieval quality.104

• We are the first to demonstrate that retrieval105

can benefit large-scale, state-of-the-art LMs106

on language modeling (§6) and in-context107

learning tasks. Evaluations show that RE-108

PLUG can improve the performance of var-109

ious language models such as GPT, OPT and110

BLOOM, including very large models with 111

up to 175B parameters. 112

2 Background and Related Work 113

Black-box Language Models Large language 114

models, such as GPT-3 (Brown et al., 2020a), 115

Codex (Chen et al., 2021a), are not open-sourced 116

due to commercial considerations and are only 117

available as black-box APIs, through which users 118

can send queries and receive responses. On the 119

other hand, even open sourced language models 120

such as BLOOM-176B (Scao et al., 2022) require 121

significant computational resources to run and fine- 122

tune locally. For example, finetuning BLOOM- 123

176B requires 72 A100 GPUs (Younes Belkda, 124

2022), making them inaccessible to researchers and 125

developers with limited resources. Traditionally, 126

retrieval-augmented model frameworks (Khandel- 127

wal et al., 2020; Borgeaud et al., 2022; Yu, 2022; 128

Izacard et al., 2022b; Goyal et al., 2022) have fo- 129

cused on the white-box setting, where language 130

models are fine-tuned to incorporate retrieved doc- 131

uments. However, the increasing scale and black- 132

box nature of LLMs makes this approach infeasi- 133

ble. To address these challenges, we investigate 134

retrieval-augmentation in the black-box setting, 135

where users only have access to the model predic- 136

tions and cannot access or modify its parameters. 137

Retrieval-augmented Models Augmenting lan- 138

guage models with relevant information retrieved 139

from knowledge stores has shown to be effective 140

in improving performance on various NLP tasks, 141

including language modeling (Min et al., 2022; 142

Borgeaud et al., 2022; Khandelwal et al., 2020) 143

and open-domain question answering (Lewis et al., 144

2020; Izacard et al., 2022b; Hu et al., 2022). Specif- 145

ically, using the input as query, (1) a retriever first 146

retrieves a set of documents from a corpus and then 147

(2) a language model incorporates the retrieved doc- 148

uments as additional information to make a final 149

prediction. Previous retrieval-augmented LMs re- 150

quire updating the model parameters , which cannot 151

be applied to black-box LMs, which cannot be ap- 152

plied to black-box LMs. For example, Atlas (Izac- 153

ard et al., 2022b) finetunes an encoder-decoder 154

model jointly with the retriever by modeling docu- 155

ments as latent variables, while RETRO (Borgeaud 156

et al., 2022) changes the decoder-only architec- 157

ture to incorporate retrieved texts and pretrains 158

the language model from scratch. Another line of 159

retrieval-augmented LMs such as kNN-LM (Khan- 160
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Figure 2: REPLUG at inference (§3). Given an input context, REPLUG first retrieves a small set of relevant
documents from an external corpus using a retriever (§3.1 Document Retrieval). Then it prepends each document
separately to the input context and ensembles output probabilities from different passes (§3.2 Input Reformulation).

delwal et al., 2020; Zhong et al., 2022) retrieves161

a set of tokens and interpolates between the LM’s162

next token distribution and kNN distributions com-163

puted from the retrieved tokens at inference. kNN-164

LM requires access to internal LM representations165

to compute the kNN distribution, which are not166

available for black-box LMs such as GPT-3. In this167

work, we investigate ways to improve large black-168

box language models with retrieval. While con-169

current work (Mallen et al., 2022; Si et al., 2023)170

has demonstrated that using a frozen retriever can171

improve GPT-3 performance on open-domain ques-172

tion answering, we approach the problem in a more173

general setting, including language modeling and174

understanding tasks. We additionally adopt an en-175

semble method to incorporate more documents and176

a training scheme to further adapt the retriever to177

large LMs.178

3 REPLUG179

We introduce REPLUG (Retrieve and Plug), a new180

retrieval-augmented LM paradigm where the LM181

is treated as black box and the retrieval component182

is added as a potentially tuneable module.183

As shown in Figure 2, given an input context,184

REPLUG first retrieves a small set of relevant doc-185

uments from an external corpus using a retriever186

(§3.1). Then we pass the concatenation of each187

retrieved document with the input context through188

the LM in parallel, and ensemble the predicted189

probabilities (§3.2).190

3.1 Document Retrieval191

Given an input context x, the retriever aims to192

retrieve a small set of documents from a corpus193

D = {d1...dm} that are relevant to x. Following 194

prior work (Qu et al., 2021; Izacard and Grave, 195

2021a; Ni et al., 2021), we use a dense retriever 196

based on the dual encoder architecture, where an 197

encoder is used to encode both the input context 198

x and the document d. Specifically, the encoder 199

maps each document d ∈ D to an embedding E(d) 200

by taking the mean pooling of the last hidden rep- 201

resentation over the tokens in d. At query time, 202

the same encoder is applied to the input context x 203

to obtain a query embedding E(x). The similarity 204

between the query embedding and the document 205

embedding is computed by their cosine similarity: 206

s(d, x) = cos(E(d),E(x)) (1) 207

The top-k documents that have the highest simi- 208

larity scores when compared with the input x are 209

retrieved in this step. For efficient retrieval, we pre- 210

compute the embedding of each document d ∈ D 211

and construct FAISS index (Johnson et al., 2019) 212

over these embeddings. 213

3.2 Input Reformulation 214

The retrieved top-k documents provide rich infor- 215

mation about the original input context x and can 216

potentially help the LM to make a better prediction. 217

One simple way to incorporate the retrieved docu- 218

ments as part of the input to the LM is to prepend x 219

with all k documents. However, this simple scheme 220

is fundamentally restricted by the number of docu- 221

ments (i.e., k) we can include, given the language 222

model’s context window size. To address this lim- 223

itation, we adopt an ensemble strategy described 224

as follows. Assume D′ ⊂ D consists of k most 225

relevant documents to x, according to the scoring 226
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function in Eq. (1). We prepend each document227

d ∈ D′ to x, pass this concatenation to the LM228

separately, and then ensemble output probabilities229

from all k passes. Formally, given the input context230

x and its top-k relevant documents D′, the output231

probability of the next token y is computed as a232

weighted average ensemble:233

p(y | x,D′) =
∑
d∈D′

p(y | d ◦ x) · λ(d, x),234

where ◦ denotes the concatenation of two se-235

quences and the weight λ(d, x) is based on the236

similarity score between the document d and the237

input context x:238

λ(d, x) =
es(d,x)∑

d∈D′ es(d,x)
239

4 REPLUG LSR: Training the Dense240

Retriever241

Instead of relying only on existing neural dense242

retrieval models (Karpukhin et al., 2020a; Izacard243

et al., 2022a; Su et al., 2022), we further propose244

REPLUG LSR (REPLUG with LM-Supervised Re-245

trieval), which adapts the retriever in REPLUG by246

using the LM itself to provide supervision about247

which documents should be retrieved.248

Inspired by Sachan et al. (2022), our approach249

can be seen as adjusting the probabilities of the re-250

trieved documents to match the probabilities of the251

output sequence perplexities of the language model.252

In other words, we would like the retriever to find253

documents that result in lower perplexity scores.254

As shown in Figure 3, our training algorithm con-255

sists of the four steps: (1) retrieving documents and256

computing the retrieval likelihood (§4.1), (2) scor-257

ing the retrieved documents by the language model258

(§4.2), (3) updating the retrieval model parameters259

by minimizing the KL divergence between the re-260

trieval likelihood and the LM’s score distribution261

(§4.3), and (4) asynchronous update of the datas-262

tore index (§4.4).263

4.1 Computing Retrieval Likelihood264

We retrieve k documents D′ ⊂ D with the highest265

similarity scores from a corpus D given an input266

context x, as described in §3.1. We then compute267

the retrieval likelihood of each retrieved document268

d:269

PR(d | x) = es(d,x)/γ∑
d∈D′ es(d,x)/γ

270

where γ is a hyperparameter that controls the temer- 271

ature of the softmax. Ideally, the retrieval likeli- 272

hood is computed by marginalizing over all the 273

documents in the corpus D, which is intractable in 274

practice. Therefore, we approximate the retrieval 275

likelihood by only marginalizing over the retrieved 276

documents D′. 277

4.2 Computing LM likelihood 278

We use the LM as a scoring function to mea- 279

sure how much each document could improve 280

the LM perplexity. Specifically, we first compute 281

PLM (y | d, x), the LM probability of the ground 282

truth output y given the input context x and a docu- 283

ment d. The higher the probability, the better the 284

document di is at improving the LM’s perplexity. 285

We then compute the LM likelihood of each docu- 286

ment d as follows: 287

Q(d | x, y) = ePLM (y|d,x)/β∑
d∈D′ ePLM (y|d,x)/β 288

where β is another hyperparameter. 289

4.3 Loss Function 290

Given the input context x and the corresponding 291

ground truth continuation y, we compute the re- 292

trieval likelihood and the language model likeli- 293

hood. The dense retriever is trained by minimizing 294

the KL divergence between these two distributions: 295

L =
1

|B|
∑
x∈B

KL
(
QLM(d | x, y) ∥ PR(d | x)

)
, 296

where B is a set of input contexts. When minimiz- 297

ing the loss, we can only update the retrieval model 298

parameters. The LM parameters are fixed due to 299

our black-box assumption. 300

4.4 Asynchronous Update of the Datastore 301

Index 302

Because the parameters in the retriever are updated 303

during the training process, the previously com- 304

puted document embeddings are no longer up to 305

date. Therefore, following Guu et al. (2020), we 306

recompute the document embeddings and rebuild 307

the efficient search index using the new embed- 308

dings every T training steps. Then we use the new 309

document embeddings and index for retrieval, and 310

repeat the training procedure. 311
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Figure 3: REPLUG LSR training process (§4). The retriever is trained using the output of a frozen language
model as supervision signals.

5 Training Setup312

In this section, we describe the details of our train-313

ing procedure. We first describe the model setting314

in REPLUG (§5.1) and then describe the procedure315

for training the retriever in REPLUG LSR (§5.2).316

5.1 REPLUG317

In theory, any type of retriever, either318

dense (Karpukhin et al., 2020b; Ni et al.,319

2021) or sparse (Robertson et al., 2009), could be320

used for REPLUG. Following prior work (Izacard321

et al., 2022b), we use the Contriever (Izacard et al.,322

2022a) as the retrieval model for REPLUG, as it323

has demonstrated strong performance.324

5.2 REPLUG LSR325

For REPLUG LSR, we initialize the retriever with326

the Contriever model (Izacard et al., 2022a). We327

use GPT-3 Curie (Brown et al., 2020b) as the su-328

pervision LM to compute the LM likelihood.329

Training data We use 800K sequences of 256 to-330

kens each, sampled from the Pile training data (Gao331

et al., 2020), as our training queries. Each query is332

split into two parts: the first 128 tokens are used333

as the input context x, and the last 128 tokens are334

used as the ground truth continuation y. For the335

external corpus D, we sample 36M documents of336

128 tokens from the Pile training data. To avoid337

trivial retrieval, we ensure that the external corpus338

documents do not overlap with the documents from339

which the training queries are sampled.340

Training details To make the training process341

more efficient, we pre-compute the document em-342

beddings of the external corpus D and create a343

FAISS index (Johnson et al., 2019) for fast sim- 344

ilarity search. Given a query x, we retrieve the 345

top 20 documents from the FAISS index and com- 346

pute the retrieval likelihood and the LM likelihood 347

with a temperature of 0.1. We train the retriever 348

using the Adam optimizer (Kingma and Ba, 2015) 349

with a learning rate of 2e-5, a batch size of 64, and 350

a warmup ratio of 0.1. We re-compute the docu- 351

ment embeddings every 3k steps and fine-tune the 352

retriever for a total of 25k steps. 353

6 Experiments 354

We perform evaluations on both language modeling 355

(§6.1) and downstream tasks such as MMLU (§6.2) 356

and open-domain QA (§6.3). In all settings, RE- 357

PLUG ĩmprove the performance of various black- 358

box language models, showing the effectiveness 359

and generality of our approach. 360

6.1 Language Modeling 361

Datasets The Pile (Gao et al., 2020) is a language 362

modeling benchmark that consists of text sources 363

from diverse domains such as web pages, code and 364

academic papers. Following prior work, we report 365

bits per UTF-8 encoded byte (BPB) as the metric 366

on each subset domain. 367

Baselines We consider GPT-3 and GPT-2 family 368

LMs as the baselines. The four models from GPT-3 369

(Davinci, Curie, Baddage and Ada) are black-box 370

models that are only accessible through API. 371

Our model We add REPLUG and REPLUG LSR 372

to the baselines. We randomly subsampled Pile 373

training data (36M documents of 128 tokens) and 374

use them as the retrieval corpus for all models. As 375
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Model # Parameters Original + REPLUG Gain % + REPLUG LSR Gain %

GPT-2 Small 117M 1.33 1.26 5.3 1.21 9.0
Medium 345M 1.20 1.14 5.0 1.11 7.5
Large 774M 1.19 1.15 3.4 1.09 8.4
XL 1.5B 1.16 1.09 6.0 1.07 7.8

GPT-3 Ada 350M 1.05 0.98 6.7 0.96 8.6
(black-box) Babbage 1.3B 0.95 0.90 5.3 0.88 7.4

Curie 6.7B 0.88 0.85 3.4 0.82 6.8
Davinci 175B 0.80 0.77 3.8 0.75 6.3

Table 1: Both REPLUG and REPLUG LSR consistently enhanced the performance of different language
models. Bits per byte (BPB) of the Pile using GPT-3 and GPT-2 family models (Original) and their retrieval-
augmented versions (+REPLUG and +REPLUG LSR. The gain % shows the relative improvement of our models
compared to the original language model.

the Pile dataset has made efforts to deduplicate doc-376

uments across train, validation and test splits (Gao377

et al., 2020), we did not do additional filtering. For378

both REPLUG and REPLUG LSR, we use a length379

of 128-token context to do retrieval and adopt the380

ensemble method (Section 3.2) to incorporate top381

10 retrieved documents during inference.382

Results Table 1 reports the results of the origi-383

nal baselines, baselines augmented with the RE-384

PLUG, and baselines augmented with the REPLUG385

LSR. We observe that both REPLUG and REPLUG386

LSR significantly outperform the baselines. This387

demonstrates that simply adding a retrieval mod-388

ule to a frozen language model (i.e., the black-box389

setting) is effective at improving the performance390

of different sized language models on language391

modeling tasks. Furthermore, REPLUG LSR con-392

sistently performs better than REPLUG by a large393

margin. Specifically, REPLUG LSR results in 7.7%394

improvement over baselines compared to 4.7% im-395

provement of REPLUG averaged over the 8 models.396

This indicates that further adapting the retriever to397

the target LM is beneficial.398

6.2 MMLU399

Datasets MMLU (Hendrycks et al., 2021) is a400

multiple choice QA dataset that covers exam ques-401

tions from 57 tasks including mathematics, US402

history and etc. The 57 tasks are grouped into 4403

categories: humanities, STEM, social sciences and404

other. Following Chung et al. (2022a), we evaluate405

REPLUG in the 5-shot in-context learning setting.406

Baselines We consider two groups of strong407

previous models as baselines for comparisons.408

The first group of baselines is the state-of-409

the-art LLMs including Codex1 (Chen et al.,410

1Code-Davinci-002

2021b), PaLM (Chowdhery et al., 2022), and Flan- 411

PaLM (Chung et al., 2022b). According to Chung 412

et al. (2022b), these three models rank top-3 in the 413

leaderboard of MMLU. Additionally, we include 414

strong open-source LMs such as LLaMA (Touvron 415

et al., 2023). The second group of baselines con- 416

sists of retrieval-augmented language models. We 417

only include Atlas (Izacard et al., 2022b) in this 418

group, as no other retrieval-augmented LMs have 419

been evaluated on the MMLU dataset. Atlas trains 420

both the retriever and the language model, which 421

we consider a white-box retrieval LM setting. 422

Our model We add REPLUG and REPLUG LSR 423

to Codex and LLaMA because other models such 424

as PaLM and Flan-PaLM are not accessible to the 425

public. We use the test question as the query to 426

retrieve 10 relevant documents from Wikipedia 427

(2018, December) and prepend each retrieved doc- 428

ument to the test question, resulting in 10 separate 429

inputs. These inputs are then separately fed into 430

the language models, and the output probabilities 431

are ensemble together. The retriever interacts with 432

Codex and LLaMA through black-box access. 433

Results Table 2 presents the results from the base- 434

lines, REPLUG, and REPLUG LSR on the MMLU 435

dataset. We observe that both the REPLUG and RE- 436

PLUG LSR improve the original Codex model by 437

4.5% and 5.1%, respectively. In addition, REPLUG 438

LSR largely outperforms the previous retrieval- 439

augmented language model, Atlas, demonstrating 440

the effectiveness of our black-box retrieval lan- 441

guage model setting. Although our models slightly 442

underperform Flan-PaLM, this is still a strong re- 443

sult because Flan-PaLM has three times more pa- 444

rameters. We would expect that the REPLUG LSR 445

could further improve Flan-PaLM, if we had access 446

to the model. 447
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Model # Parameters Humanities Social. STEM Other All

Codex 175B 74.2 76.9 57.8 70.1 68.3
PaLM 540B 77.0 81.0 55.6 69.6 69.3
Flan-PaLM 540B - - - - 72.2
LLaMA 13B - - - - 55.6

Atlas 11B 46.1 54.6 38.8 52.8 47.9

Codex + REPLUG 175B 76.0 79.7 58.8 72.1 71.4
Codex + REPLUG LSR 175B 76.5 79.9 58.9 73.2 71.8
LLaMA + REPLUG 13B - - - - 58.8
LLaMA + REPLUG LSR 13B - - - - 59.3

Table 2: REPLUG and REPLUG LSR improves Codex by 4.5% and 5.1% respectively. Performance on MMLU
broken down into 4 categories. The last column averages the performance over these categories. All models are
evaluated based on 5-shot in-context learning with direct prompting.

Another interesting observation is that the RE-448

PLUG LSR outperforms the original model by449

1.9% even in the STEM category. This suggests450

that retrieval may improve a language model’s451

problem-solving abilities.452

6.3 Open Domain QA453

Lastly, we conduct evaluation on two open-454

domain QA datasets: Natural Questions455

(NQ) (Kwiatkowski et al., 2019) and Trivi-456

aQA (Joshi et al., 2017).457

NQ TQA

Model k-shot Full k-shot Full

Chinchilla 35.5 - 64.6 -
PaLM 39.6 - - -
Codex 40.6 - 73.6 -
LLaMA 29.0 - 69.6

RETRO† - 45.5 - -
R2-D2† - 55.9 - 69.9
Atlas† 30.9 60.4 74.5 79.8

Codex + REPLUG 44.7 - 76.8 -
Codex + REPLUG LSR 45.5 - 77.3 -
LLaMA + REPLUG 36.1 - 73.3 -
LLaMA + REPLUG LSR 37.2 - 74.1 -

Table 3: Performance on NQ and TQA. We report re-
sults for both k-shot (64 shots for Chinchilla, PaLM, and
Atlas; 16 shots for Codex-based models) and full data
settings. Note that models with † are finetuned using
training examples, while others use in-context learning.

Datasets NQ and TriviaQA are two open-domain458

QA datasets. Following prior work (Izacard and459

Grave, 2021b; Si et al., 2023), we report Exact460

Match for the filtered set of TriviaQA. We consider461

the k-shot setting where the model is only given a462

few training examples and full data setting where463

the model is given all the training examples.464

Baselines We compare our model with several465

state-of-the-art baselines, both in a few-shot set-466

ting and with full training data. The first group 467

of models consists of powerful large language 468

models, including Chinchilla (Hoffmann et al., 469

2022), PaLM (Chowdhery et al., 2022), Codex and 470

LLaMA 13B (Touvron et al., 2023). These models 471

are all evaluated using in-context learning under 472

the few-shot setting, with Chinchilla and PaLM 473

evaluated using 64 shots, and Codex using 16 shots. 474

The second group of models for comparison in- 475

cludes retrieval-augmented language models such 476

as RETRO (Borgeaud et al., 2021), R2-D2 (Fajcik 477

et al., 2021), and Atlas (Izacard et al., 2022b). All 478

of these retrieval-augmented models are finetuned 479

on the training data, either in a few-shot setting 480

or with full training data. Specifically, Atlas is 481

finetuned on 64 examples in the few-shot setting. 482

Our model We add REPLUG and REPLUG LSR 483

to Codex and LLaMA 13B with Wikipedia as the 484

retrieval corpus and evaluate them in a 16-shot in 485

context learning. We incorporate top-10 retrieved 486

documents using our proposed ensemble method. 487

Results As shown in Table 3, REPLUG LSR sig- 488

nificantly improves the performance of the original 489

Codex by 12.0% on NQ and 5.0% on TQA. It out- 490

performs the previous best model, Atlas, which was 491

fine-tuned with 64 training examples, achieving a 492

new state-of-the-art in the few-shot setting. How- 493

ever, this result still lags behind the performance of 494

retrieval-augmented language models fine-tuned on 495

the full training data. This is likely due to the pres- 496

ence of near-duplicate test questions in the training 497

set (e.g., Lewis et al. (2021) found that 32.5% of 498

test questions overlap with the training sets in NQ). 499

7 Analysis 500

7.1 REPLUG is applicable to diverse models 501

Here we further study whether REPLUG could en- 502

hance diverse language model families that have 503

7



Figure 4: Ensembling random documents does not
result in improved performance. BPB of Curie aug-
mented with different methods (random, REPLUG and
REPLUG LSR) when varying the number of documents.

Figure 5: LM-supervised retriever (Contriever LSR)
outperforms other off-the-shelf retrievers.

been pre-trained using different data and methods.504

Specifically, we focus on three groups of language505

models with varying sizes: GPT-2 (117M, 345M,506

774M, 1.5B parameters) (Brown et al., 2020a),507

OPT (125M, 350M, 1.3B, 2.7B, 6.7B, 13B, 30B,508

66B) (Zhang et al., 2022) and BLOOM (560M,509

1.1B, 1.7B, 3B and 7B) (Scao et al., 2022). We510

evaluate each model on Wikitext-103 (Stephen511

et al., 2017) test data and report its perplexity.512

For comparison, we augment each model with RE-513

PLUG that adopts the ensemble method to incorpo-514

rate top 10 retrieved documents. Following prior515

work (Khandelwal et al., 2020), we use Wikitext-516

103 training data as the retrieval corpus.517

Figure 6 in Appendix A shows the performance518

of different-sized LMs with and without REPLUG.519

We observe that the performance gain brought by520

REPLUG stays consistent with model size. For521

example, OPT-125M achieves 6.9% perplexity im-522

provement, while OPT-66B achieves 5.6% perplex-523

ity improvement. Additionally, REPLUG improves524

the perplexity of all the model families, which in-525

dicates that REPLUG is applicable to diverse lan-526

guage models with different sizes.527

7.2 REPLUG performance gain does not 528

simply come from the ensembling effect 529

The core of our method design is the use of an en- 530

semble method that combines output probabilities 531

of different passes, in which each retrieved docu- 532

ment is prepended separately to the input and fed 533

into a language model. To study whether the gains 534

come solely from the ensemble method, we com- 535

pare our method to ensembling random documents. 536

For this, we randomly sample several documents, 537

concatenated each random document with the input, 538

and ensemble the outputs of different runs (referred 539

to as "random"). As shown in Figure 4, we evalu- 540

ated the performance of GPT-3 Curie on Pile when 541

augmented with random documents, documents 542

retrieved by REPLUG, and documents retrieved 543

by REPLUG LSR. We observed that ensembling 544

random documents leads to worse performance, in- 545

dicating that the performance gains of REPLUG 546

do not come from the ensembling effect. Instead, 547

ensembling the relevant documents is crucial for 548

the success of REPLUG. Additionally, as more doc- 549

uments were ensembled, the performance of RE- 550

PLUG and REPLUG LSR improved monotonically. 551

However, a small number of documents (e.g., 10) 552

was sufficient to achieve large performance gains. 553

7.3 LSR retriever outperforms other 554

off-the-shelf retrievers 555

We investigate the effectivenss of tunable retriever 556

(LSR) compared with off-the-shelf retrievers. 557

Specifically, we compare LM-supervised contriever 558

(LSR) with other dense retrievers such as BERT- 559

base (Borgeaud et al., 2022), DPR (Karpukhin 560

et al., 2020b) and a sparse retriever BM25 (Robert- 561

son et al., 2009). Figure 5 shows Wikitext- 562

103 perplexity of GPT-2 XL (1.5B) and GPT-2 563

Large (774M) augmented with different retrievers. 564

Among all off-the-shelf retrievers, the sparse re- 565

triever BM25 performs best. However, it still lags 566

behind our LM supervised retriever (Contriever 567

LSR), demonstrating the effectiveness of our train- 568

ing scheme that adapts the retriever to LMs. 569

8 Conclusion 570

We introduce REPLUG, a retrieval-augmented LM 571

paradigm that augments black-box LMs with a 572

tuneable retriever. This work opens up new possi- 573

bilities for integrating retrieval into large black-box 574

LMs and is the first to demonstrate even the state- 575

of-the-art LLMs could benefit from retrieval. 576

8



9 Limitations577

Interpretability REPLUG exhibits limitations in578

interpretability. It’s unclear when the model re-579

lies on retrieved knowledge or on knowledge en-580

coded within its own parameters. Future research581

could work towards the development of more in-582

terpretable retrieval-augmented language models.583

Such models could trace the source of the gener-584

ated answers, whether it’s from retrieved data or585

internal parameters, thus providing a clear knowl-586

edge provenance.587

On-demand retrieval REPLUG always perform588

retrieval no matter if the external information is589

needed. This approach runs the risk of presenting590

irrelevant documents, which can potentially dis-591

tract the models, while also incurring additional592

computational overheads. Future studies could ex-593

plore methods that allow the language model to594

determine when external knowledge is required.595

Database size In line with prior research, RE-596

PLUG uses Wikipedia and Pile as the targeted597

search databases. However, these resources might598

only encompass a minor fraction of the exter-599

nal knowledge needed by LMs. Future research600

should explore methods to efficiently expand these601

databases and examine how an LM’s performance602

scales with the size of the database.603
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Empirical Methods in Natural Language Processing911
(EMNLP).912

A REPLUG is applicable to diverse 913

models 914

B Qualitative Analysis: Rare Entities 915

Benefit from Retrieval 916

To understand why the REPLUG improves lan- 917

guage modeling performance, we conducted man- 918

ual analysis of examples in which the REPLUG 919

results in a decrease in perplexity. We find that 920

REPLUG is more helpful when texts contain rare 921

entities. Figure 7 shows a test context and its con- 922

tinuation from the Wikitext-103 test set. For RE- 923

PLUG, we use the test context as a query to retrieve 924

a relevant document from Wikitext-103 training 925

data. We then compute the perplexity of the contin- 926

uation using the original GPT-2 1.5B and its RE- 927

PLUG enhanced version. After incorporating the 928

retrieved document, the perplexity of the continu- 929

ation improves by 11%. Among all tokens in the 930

continuation, we found that REPLUG is most help- 931

ful for the rare entity name "Li Bai". This is likely 932

because the original LM does not have sufficient 933

information about this rare entity name. However, 934

by incorporating the retrieved document, REPLUG 935

was able to match the name with the relevant in- 936

formation in the retrieved document, resulting in 937

better performance. 938

C Prompts used for MMLU and 939

open-domain QA 940

Please see Table 4 and Table 5. 941

D Dense Retriever vs. Sparse Retriever 942

The proposed model uses Contriever, a dense re- 943

triever, as its retriever backbone. Additionally, we 944

investigate the performance of a sparse retriever in 945

comparison to the dense retriever. For our sparse 946

model, we employ BM25. As depicted in Figure 947

8, we observe that BM25 consistently outperforms 948

Contriever but falls short when compared to LM- 949

supervised Contriever, thus highlighting the effec- 950

tiveness of our proposed training scheme. 951
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Figure 6: GPT-2, BLOOM and OPT models of varying sizes consistently benefit from REPLUG. The x-axis
indicates the size of the language model and the y-axis is its perplexity on Wikitext-103.

Knowledge: Arctic Ocean. Although over half of Europe’s original forests disappeared through the centuries of deforestation,
Europe still has over one quarter of its land area as forest, such as the broadleaf and mixed forests, taiga of Scandinavia
and Russia, mixed rainforests of the Caucasus and the Cork oak forests in the western Mediterranean. During recent times,
deforestation has been slowed and many trees have been planted. However, in many cases monoculture plantations of conifers
have replaced the original mixed natural forest, because these grow quicker. The plantations now cover vast areas of land, but
offer poorer habitats for many European
Question: As of 2015, since 1990 forests have in Europe and have in Africa and the Americas.
A. "increased, increased" B. "increased, decreased" C. "decreased, increased" D. "decreased, decreased"
Answer: B

Knowledge: Over the past decades, the political outlook of Americans has become more progressive, with those below the age of
thirty being considerably more liberal than the overall population. According to recent polls, 56% of those age 18 to 29 favor gay
marriage, 68% state environmental protection to be as important as job creation, 52% "think immigrants śtrengthen the country
with their hard work and talents,"́ 62% favor a "tax financed, government-administrated universal health care" program and 74%
"say ṕeopleś willśhould have more influence on U.S. laws than the Bible, compared to 37%, 49%, 38%, 47% and 58% among the
Question: As of 2019, about what percentage of Americans agree that the state is run for the benefit of all the people?
A. 31% B. 46% C. 61% D. 76%
Answer: B
...
Knowledge: last week at a United Nations climate meeting in Germany, China and India should easily exceed the targets they
set for themselves in the 2015 Paris Agreement... India is now expected to obtain 40 percent of its electricity from non-fossil fuel
sources by 2022, eight years ahead of schedule." Solar power in Japan has been expanding since the late 1990s. By the end
of 2017, cumulative installed PV capacity reached over 50 GW with nearly 8 GW installed in the year 2017. The country is a
leading manufacturer of solar panels and is in the top 4 ranking for countries
Question: Which of the following countries generated the most total energy from solar sources in 2019?
A. China B. United States C. Germany D. Japan

Table 4: Prompt for MMLU
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Knowledge: received 122,000 buys (excluding WWE Network views), down from the previous yearś 199,000 buys. The event
is named after the Money In The Bank ladder match, in which multiple wrestlers use ladders to retrieve a briefcase hanging
above the ring. The winner is guaranteed a match for the WWE World Heavyweight Championship at a time of their choosing
within the next year. On the June 2 episode of "Raw", Alberto Del Rio qualified for the match by defeating Dolph Ziggler. The
following week, following Daniel Bryan being stripped of his WWE World Championship due to injury, Stephanie McMahon
changed the
Question: Who won the mens money in the bank match?
Answer: Braun Strowman

Knowledge: in 3D on March 17, 2017. The first official presentation of the film took place at Disneyś three-day D23 Expo in
August 2015. The world premiere of "Beauty and the Beast" took place at Spencer House in London, England on February
23, 2017; and the film later premiered at the El Capitan Theatre in Hollywood, California, on March 2, 2017. The stream was
broadcast onto YouTube. A sing along version of the film released in over 1,200 US theaters nationwide on April 7, 2017. The
United Kingdom received the same version on April 21, 2017. The film was re-released in
Question: When does beaty and the beast take place
Answer: Rococo-era
...
Knowledge: Love Yourself "Love Yourself" is a song recorded by Canadian singer Justin Bieber for his fourth studio album
"Purpose" (2015). The song was released first as a promotional single on November 8, 2015, and later was released as the albumś
third single. It was written by Ed Sheeran, Benny Blanco and Bieber, and produced by Blanco. An acoustic pop song, "Love
Yourself" features an electric guitar and a brief flurry of trumpets as its main instrumentation. During the song, Bieber uses a
husky tone in the lower registers. Lyrically, the song is a kiss-off to a narcissistic ex-lover who did
Question: love yourself by justin bieber is about who

Table 5: Prompt for open-domain QA

Figure 7: Rare entities benefit from retrieval. After
incorporating the retrieved document during inference,
the entity "Li Bai" and the token "greatest" in the contin-
uation show the most improvement in perplexity (15%
for "Li Bai" and 5% for "greatest"). Other tokens’ per-
plexity changes are within 5%.
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Figure 8: PPL of GPT-2 models on Witext-103 with no retrieval (Origin), Contriever (REPLUG), LM-supervised
Contriever (REPLUG LSR) and BM25.
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