
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

INITIALIZING AND RETROFITTING KEY-VALUE ADAP-
TORS FOR TRACEABLE MODEL EDITING

Anonymous authors
Paper under double-blind review

ABSTRACT

As the insight of knowledge storage in language models deepens, the ability to
perform CRUD (Create, Read, Update, Delete) operations on language models
becomes increasingly indispensable for satisfying the demands of managing rapidly
updating knowledge. Considering the high cost of fine-tuning language models,
model editing methods with low cost are usually required to manipulate models’
knowledge. The evidence suggests that modules carrying knowledge in a Trans-
former module are primarily the MLP blocks, thus we propose iReVa, a method
that explicitly initializes and retrofits key-value pairs into MLP blocks to construct
a new mapping of a piece of knowledge without damaging the irrelevant knowl-
edge. In comparison to existing methods, iReVa reveals better interpretability and
a stronger capacity for carrying traceable edits. Experiment results on a series of
GPT series models show our prominent performance on edit success and general-
ization without influencing specificity. We also made the first attempt to conduct a
knowledge withdrawal test of iReVa. Our codes are available at this website.

1 INTRODUCTION

Language Models (LMs) Brown et al. (2020) are becoming imperative tools for consulting in real-
world scenarios. One significant reason for the prevalence of LMs is their ability to answer factoid
questions. For example, when we ask an LM with the question “Who is president of America ?”, it
returns the answer “Joe Biden”. Even though a mass amount of knowledge is stored in the LMs, we
still face the issue of out-of-date and missing knowledge Petroni et al. (2019); Jiang et al. (2020).
Alternatively, some knowledge may change over years and some domain-specific knowledge may be
absent from the LMs.

To bridge the gap, the task of model editing is introduced to edit the knowledge in LMs, which targets
at modifying the parameters of LMs and inject certain knowledge to them Zhang et al. (2024). The
difficulty of this task lies in the manipulation to the LMs, where the knowledge is implicitly stored
in dense vectors. A naive solution to model editing is fine-tuning an LM with the new knowledge,
whereas the cost is climbing with the surging size of LMs. More recent studies propose to directly
update the models’ weights in mastery phase Jayashri & Kalaiselvi (2018); Bruner (1960) via either
teaching a hyper-network to learn the change of the weights or locating-then-editing knowledge
neurons Cao et al. (2021); Mitchell et al. (2022a); Meng et al. (2023a;b). While the editing methods
above are efficient in updating knowledge in LMs, they encounter the difficulties of differentiating the
existing and new knowledge, which makes the editing hard to control. Methods like life-long model
editing Hartvigsen et al. (2023), MELO Yu et al. (2023), and T-Patcher Huang et al. (2023) propose
to learn the representation for new knowledge and merge this information with the original models.

However, these methods still conform to the paradigm of learning the batch edit Huang et al. (2023);
Hase et al. (2021) as a whole without modeling edit parameters in a traceable way, which can not
conform the edit success to each edit and have a lack interpretability to the editing. In contrast, we
propose a method of Initializing and Retrofitting KEy-Value Adaptors (iReVa), an editing method
that inserts a key-value adaptor to indicate the mapping of an edit data pair and further retrofit the
adaptor with multiple objectives. Moreover, to prevent the unnecessary change to the irrelevant
knowledge, we elaborately design activation mechanism for the knowledge neurons. Experimental
results on series of GPT-like models show that iReVa is able to outperform the SOTA results by

1

https://anonymous.4open.science/r/iReVa-6CFD

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

around 9% and 6% average score improvement on zsRE-10K and PARAREL-10K, respectively.
Moreover, iReVa is able to perform knowledge withdrawal in almost perfect condition.

Our contributions are summarized as follows: 1) We introduce a novel editing method that initializes
and retrofits a key-value adaptor for traceable model editing, which is compatible with most LMs. 2)
Our method outperforms recent baselines on model editing tasks with noticeable margins based on
various evaluation metrics. 3) We validate the interpretability and generalization capabilities of our
method by conducting further analysis such as knowledge withdrawal test and generalization test.

2 RELATED WORK

2.1 INSIGHT OF KNOWLEDGE STORAGE IN LANGUAGE MODELS

Discussion about how LMs store knowledge has emerged. Petroni et al. (2019) introduced the
perspective of treating LMs as knowledge bases and proved its plausibility, which attracted the
subsequent attention towards the exploration of the form of knowledge incorporated by LMs. The
opinion pointed out by Geva et al. (2021) indicates that factual knowledge is stored in the two-
layer-FFN network of a Transformer due to the similar form as key-value memories. This opinion
was followed by Li et al. (2024), which further derives the coefficient between final prediction and
knowledge neurons in MLP blocks. In contrast, Meng et al. (2023a), through a cosine similarity
analysis on hidden states experiment, posed viewpoints that the self-attention module can extract
various types of knowledge. Cao et al. (2021) further validates that the weight update is concentrated
on parameters in the self-attention module when we train models with new knowledge. Our editing
method is built upon the former hypothesis and we focus on the editing to the MLP blocks.

2.2 EDITING LMS BY MANIPULATING KNOWLEDGE

With the frequent updates of the knowledge, the demand for model editing increases. Diverse studies
have been proposed. By analogy with human knowledge acquisition, we can categorize the editing
into three distinct phases. In the recognition phase Bruner (1964), methods such as ERAC and IKE
Mitchell et al. (2022a); Zheng et al. (2023) solved the problem by importing additional memories in
the form of relevant contexts or prompts. In association phase Bruner (1960), parameter-efficient
tuning Hu et al. (2021); Li & Liang (2021); Yu et al. (2023); Hartvigsen et al. (2023) inserts low-rank
adaptors or prefix token embeddings to fine-tune new knowledge and combine them to the original
models. There are also some studies directly changing the weights of Transformers in the mastery
phase Jayashri & Kalaiselvi (2018). For example, Cao et al. (2021) proposed KE, Mitchell et al.
(2022a) proposed MEND and Tan et al. (2024) proposed MALMEN to predict the updated parameters
of a model with a trained hyper-network. Furthermore, ROME Meng et al. (2023a) and MEMIT
Meng et al. (2023b) compute the weight update explicitly with proper representations of knowledge
queries and values. However, none of them focuses on traceable model editing, which allows more
flexible manipulation of the knowledge.

3 PROBLEM FORMULATION

We follow the previous studies Mitchell et al. (2022b); Yu et al. (2023); Hartvigsen et al. (2023)
to formulate the task. Suppose we are given a pre-trained language model fΦ parameterized by Φ,
model editing aims at editing fΦ with a dataset Din = {(x1, y1), ..., (xi, yi)..., (xn, yn)}, where
(xi, yi) denotes the edit input-output pairs. Initially, for xi ∈ Din, the base model makes prediction
ŷi = f(xi) but ŷi ̸= yi. In this case, we change fΦ by editing its parameters to Φ∗. A good model
editing to fΦ∗ should satisfy: 1) for any xi ∈ Din, the edited model fΦ∗ should output desired
predictions, that is fΦ∗(xi) = yi; 2) for any input out of the scope of Din, which is denoted as Dout,
the edited model fΦ∗ should retain the original predictions, that is fΦ∗(xi) = fΦ(xi); 3) the edit of
(xi, yi) towards fΦ∗ should not influence any prior edits x<i ∈ Din.

4 METHOD

To develop an editing method that supports traceable edits to knowledge neurons, we introduce a novel
method “iReVa” that initializes and Retrofits kEy-Value Adaptors for traceable model editing. The

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Key interpretability:
𝑥!:	The Divine Comedy
is written by ?
…
𝑥": Who is the
president of America ?

Value interpretability:
𝑦!: Dante
𝑦#: Donald Trump
…
𝑦": Joe Bidden
𝑦$: New York City

𝑥!

𝑥"

𝑥#

𝑥$

𝑥%

𝑥&

𝑜i

𝑥"

𝑥%

𝑥&
𝑥%

𝑥!

𝑥%

𝑥&
0

𝑥%

𝑥!

(a) Training process

max-pool

key weights K&

value weights V&
𝑉&

𝑦!:	Donald Trump

𝑦":	Joe Bidden

𝑦#:	Dante

𝑦’'
Joe
Bidden

𝑦(
“Dante”

(b) Inference process for in-scope edit

(c) Inference process for out-of-scope edit

max-pool

𝐾*

[𝑉 ⊕ 𝑉&]⊺𝑔*+,([𝐾 ⊕𝐾*]⊺i)

original knowledge
neurons

new knowledge
neurons

Figure 1: Architecture of iReVa. The left block shows the training procedure with the newly inserted
knowledge neurons. The middle block shows the inference procedure with in-scope and out-of-scope
edits. We interpret the inference phase by giving some explicit examples (Please note we omit some
neurons during inference due to the space limit.). When the query falls in the in-scope edit, our
key-value adaptor will be activated and retrieve the corresponding knowledge. When the query falls
in the out-of-scope edit, our key-value adaptor is inactive and the model retrieves knowledge from
the original memory.

pre-trained LM fΦ usually contains Transformer blocks, which consist of intertwined self-attention
and feed-forward layers. The prior studies Geva et al. (2021) have shown that the inside MLP blocks
are commonly deemed as the neurons for storing implicit knowledge. Our method is able to insert
new knowledge without damaging the irrelevant knowledge in the models by inserting and retrofitting
the key-value adaptors to these blocks.

Figure 1 depicts the architecture of our proposed method. For a two-layer-FFN MLP block in the l-th
layer of the original model fΦ, we denote the weights of the first FFN layer as Kl ∈ Rd1×d2 and the
second FFN as Vl ∈ Rd2×d1 . Assume a hidden state hl ∈ Rd1 is an input of the FFN of l-th layer,
the above block processes the input as follows:

il = LAYER_NORM(hl + SELF_ATTN(hl)) (1)

ol = Vl⊺gact(K
l⊺il) (2)

hl+1 = SELF_ATTN(il + ol) (3)

where gact is the activation layer and hl+1 ∈ Rd1 is the input of the next Transformer block. Here, Kl

and Vl emulate neural memories, where keys capture input patterns and values are stored knowledge
to be retrieved. When there comes an input vector, it first computes a distribution over the keys, then
retrieves the expected knowledge. As the process is just the same for each layer, we can choose any
of the layers to edit, we omit l for simplicity in the following description.

Our method inserts a key-value adaptor into the existing MLP block. Specifically, we update Φ by
inserting a new knowledge neuron to store the edit. Two matrices K̂ ∈ Rd1×n and V̂ ∈ Rn×d1

perform as the key-value pair to memorize n edited knowledge, where the knowledge is well-indexed
by n dimensions. Therefore, Equation 2 becomes:

o = [V ⊕ V̂]⊺gact([K⊕ K̂]⊺i) (4)

= V⊺gact(K
⊺i) + V̂⊺gact(K̂

⊺i), (5)

where ⊕ denotes concatenation. As we can see, the key-value adaptor appends more information to
o, which could overwrite the original output. And original parameter set Φ is extended to Φ∗ with the
new included parameters K̂ and V̂. Therefore, we aim to find a good key-value adaptor for model

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

editing that can collaborate with the original knowledge neurons. Considering the independence of
the above two function terms and the potential more flexible combination to the output, we relax
the formulation of the adaptor to ADAPTOR(i; K̂, V̂) = αV̂⊺gact(K̂

⊺i), which may be a more
expressive function with a scaling factor α Hu et al. (2021). Next, we will introduce how to find such
an optimal adaptor that not only satisfies the edit success but preserves the original model behavior.

4.1 INITIAL KEY-VALUE ADAPTORS FOR IN-SCOPE EDITING

Given an edit (xi, yi) ∈ Din, we first initialize its knowledge neuron k̂0 ∈ Rd1 and v̂0 ∈ Rd1 . For
k̂0, we initialize each key to the xi using the cached input i predicted by fΦ(xi) at layer l, which
results in a high probability of matching to the input pattern. For v̂0, we initialize it using the weights
corresponding to yi from the last layer of fΦ. Specifically, fΦ(xi) takes charge of generating the next
token which can be deemed as the prediction to xi. Thus, we extract the corresponding column of
the ground truth token yi from the weights W ∈ Rd1×|V | for generating the next token distribution,
where |V | and d1 are the sizes of the vocabulary and dimension of the last layer, respectively 1. After
initialization, we build a mapping from xi to yi in a Transformer.

4.2 RETROFIT ADAPTORS FOR MODEL EDITING (TRAINING PHASE)

To prevent the effect of the inconsistent scaling brought by built-in parameters in Equation 1, we first
normalize i to ensure that its mean value is close to 0 before it is fed into the adaptor. Given (xi, yi),
we can have the initialized key-value adaptor as follows:

ADAPTOR(i; K̂, V̂) = α(v̂0)⊺gact((k̂
0)⊺i).

To avoid the inserted adaptor from distracting the original knowledge stored in existing neurons, we
propose to use activation functions that can activate the memory with a large matching value and
ignore the memory with a small value. When we deploy the adaptor to models, the activation function
usually remains consistent with the base model. Moreover, we apply a hyper-parameter margin θ > 0,
which allows memory to be active if x > θ, otherwise inactivate. For example, we use GeLU Shazeer
(2020) for GPT Radford et al. (2018) series model and our activation function can be denoted as:

gact(x) = GeLU(x− θ). (6)

The motivations behind the above design in our activation function are two-fold: First, the activation
function works as a neuronal inhibitor to inhibit the activation of new knowledge neurons, which
retains the original output in most cases. Second, the involvement of the margin further raises the bar
to activate the new knowledge neurons. If a certain input is out of the editing scope, it fails to match
any memory, all inserted neurons will be inhibited after the activation function as shown in Figure 1.

In practice, edit input xi is shown in the form of a sequence of tokens such as “{the, capital, of,
China, is}” and yi is the single-token answer “Beijing”. This indicates that we have a sequence of
hidden states {h1,h2, ...,hs} corresponding to input xi = {w1, w2, ..., ws}. To avoid damaging the
original behavior of the edit model, the edit block merely works on the final token, which is the last
token before generation:

ADAPTOR(ij ; K̂, V̂) =

{
0 j ̸= s

αV̂⊺gact(K̂
⊺ij) j = s

. (7)

where ij is the input corresponding to the j-th hidden state hj in the sequence. As a result, the
new knowledge is activated only when the entire input sequence is fed into the model, which not
only prevents the dramatic change to the original model but also benefits the gradient update to the
key-value pairs2.

Fine-tuning adaptors with multiple objectives. While the above initialization effectively builds
the mapping from a certain edit input to the edit output, its impact on irrelevant knowledge may
lead to catastrophic forgetting McCloskey & Cohen (1989) issue, which is caused by the extending
key-value pairs of the adaptor. In other words, we expect ADAPTOR(i; K̂, V̂) could dominate the

1See Appendix 9.1 for detailed description of initialization of k̂0 and v̂0.
2See the discussion of gradient back-propagation of k̂ and v̂ in Appendix 9.2.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

output for each xi ∈ Din but maintain unchanged prediction for xi ∈ Dout and x<i ∈ Din. Inspired
by the elastic weight consolidation for neural networks Kirkpatrick et al. (2017), we set optimization
goals to retrofit Φ∗ with the consideration of the following perspectives.

(1) To maximize the prediction of yi from the last layer, we maximize the probability of the ground
truth edit output given the edit input:

Ledit = − log[Pf∗
Φ
(yi|xi)] (8)

(2) Even though Ledit enables models to fit the mapping from xi to yi effectively, it may push our
adaptor far from the initialization, which may damage the initialized key distribution and lead to
overfitting. Hence, we propose an additional term to prevent the dramatic change of the update of k̂:

Lrec = ||(k̂0 − k̂)⊺i||22 (9)

(3) Importantly, to prevent the fine-tuning from changing the irrelevant knowledge, we sample some
out-of-scope edit data to form Dout

3 and retain the original outputs from the model:

Lirr = − 1

|Dout|
∑

(xi,yi)∈Dout

max(k̂⊺xi − θ, 0) (10)

Hence, we comprehend each aspect to form the final objective to retrofit the key-value adaptor:
L = Ledit + aLrec + bLirr (11)

where a, b are hyper-parameters denoting the importance of the different objective aspects. Note that
we edit one knowledge neuron once, but we still support sequential editing by iteratively inserting
key-value pairs. During training, all parameters except for k̂ and v̂ for the current edit are frozen.
That is, we freeze the prior edit knowledge neurons and simply update the neuron inserted for current
edit. This procedure repeats until we have conducted edit over the entire dataset. Compared with
parameter high-efficient tuning methods Hu et al. (2021); Liu et al. (2023), which injects the new
knowledge into a pre-trained LM as a whole, iReVa focuses on editing parameters in a traceable
manner. In other words, we can locate the edited knowledge neurons. At the end, we display the
training procedure of iReVa in Algorithm 1.

Algorithm 1 Training Procedure of iReVa
1: Input In-scope editing pairs Din; out-of-scope editing pairs Dout; Original model fΦ; Iteration

number T
2: Initial Φ∗ ← Φ
3: for (xi, yi) ∈ Din do
4: Initial k̂← i; v̂←W[yi,:] ▷ Initialize key-value adaptor as shown in Section 4.1
5: Φ∗ ← Φ∗ ⋃ k̂

⋃
v̂

6: for t = {1, 2, .., T} do
7: L ← Ledit + aLrecon + bLirr ▷ Retrofit key-value adaptor as shown in Section 4.2
8: k̂← Adam(k̂,∇Lk̂)
9: v̂← Adam(v̂,∇Lv̂)

return fΦ∗

4.3 ACTIVATE MAX-MATCHING KEY IN ADAPTOR (INFERENCE PHASE)

As we iteratively append k̂ and v̂ to the knowledge neurons. The above procedure will sequentially
generate mappings from the edit input to the edit output. Eventually, we obtain two concatenated
matrices K̂ ∈ Rd1×n and V̂ ∈ Vn×d1 . During inference, we further control the amount of active
neurons and highlight the max-matching memory. To this end, we introduce a max-pooling layer to
extract the memory with the maximum matching score:

ADAPTOR(i; K̂, V̂) = αV̂⊺
j gact(K̂

⊺
j i), (12)

where j = argmaxt(K̂
⊺
t i) and K̂t denotes the j-th column of K̂. As we can see, when there comes

a new input, this layer will highlight the inserted knowledge neurons with the highest similarity to
the input as shown in Figure 1. It’s worth noting that we exclude the max-pooling layer during the
training phase because this may impede the back-propagation due to the inactivation of the neurons.

3Here, Dout is generated randomly. See Appendix 9.4 for details.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

5 EXPERIMENTAL SETUP

5.1 DATASETS

We perform extensive experiments on two modeling editing tasks: zsRE Mitchell et al. (2022a) is
a commonly used model editing task derived from a reading comprehension benchmark. Totally
19, 086 examples are included, each example includes a source question, paraphrase question, and
corresponding answer. We construct another PARAREL Elazar et al. (2021) dataset. Each sentence
in PARAREL is derived from a triplet (s, r, o), and the object o was replaced with a “[MASK]” token,
and a paraphrased version is involved. To apply PARAREL in model editing task, we selected those
sentences that end with “[MASK]” token to conform to the format of next-token-prediction4. For both
datasets, we sample irrelevant examples from NQ to evaluate the preservation of out-of-scope editing.
We test 10K edit in a batch and denote them as zsRE-10K and PARAREL-10K, respectively.

5.2 BASELINES

We compare our iReVa with 6 advanced baselines that support batch editing: NO EDITING denotes
we do not modify the base model and utilize its original prediction; FT Zhu et al. (2021) is the simple
fine-tuning with a constraint on specific parameters. MEMIT Meng et al. (2023b) and ROME Meng
et al. (2023a) are two methods employing a causal analysis to detect the most significant hidden states.
They view the editing as a minimum optimization and edit the weight directly, which is effective
in batch edit; MEND Mitchell et al. (2022a) applies rank-one decomposition to divide the model
into two rank-one matrices, which is able to carry mass knowledge in the dense metrics; MELO Yu
et al. (2023) activates specific LoRA block corresponding to specific queries for multiple edits,
which support large-scale editing in just one process. Note that T-Patcher Huang et al. (2023) whose
forward propagation resembles our method is not included, now that it can be merely applied on
encoder-decoder LMs. Specifically, the patcher is only embedded in the encoder which is inapplicable
to the decoder.

5.3 EVALUATION METRICS

We follow the commonly-used evaluation metrics Meng et al. (2023a;b) to measure the effect of our
editing method.

1. Edit Success (ES) measures the models’ prediction accuracy on edited data xi ∈ Din by calculat-
ing ES = 1

N

∑N
i=0 I(yi = fΦ(xi)), which represents whether the new knowledge is successfully

injected into the base model.
2. Generalization (Paraphrase Success, PS) measures the models’ prediction accuracy on paraphrase

questions provided by benchmarks. We compute paraphrase success with the same formulation
but for xi in the paraphrase questions set. Paraphrase success indicates whether the model can
recognize similar expressions and provide edited answers.

3. Specificity (Neighborhood Success, NS) measures the models’ prediction accuracy on irrelevant
questions. Different from Dout, these questions are only used for preventing data leakage.
We compute neighborhood success with the same formulation but for xi in the neighborhood
questions set. Neighborhood success manifests the capability of solving catastrophic forgetting
and preserving irrelevant knowledge stored in model.

4. Score is the average of the three aforementioned metrics.

5.4 IMPLEMENTATION DETAILS

Regarding editing datasets, we pre-process the edit input-output pairs differently from previous studies.
If the multiple tokens form a single prediction, we decompose the multiple tokens into multiple data
pairs by greedily appending the previous token in the edit output at the end of the edit input5. For
model selection, we conduct the experiments on GPT2-XL (1.5 Billion parameters) Radford et al.
(2019) due to its wide application in existing model editing studies. We trained iReVa on a single
NVIDIA A800 80G GPU. On two evaluated benchmarks, we set a = 1e− 3, b = 1e− 3, α = 2e− 1,

4Appendix 9.6 demonstrates the pre-processing step to PARAREL in detail.
5The processing procedure is displayed in Appendix 9.5

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

and iReVa is applied in 47-th (48 layers totally) layer inspired by the assertion in Geva et al. (2021).
For the margin in activation function, we set θ = 0.75 for zsRE, θ = 0.65 for PARAREL. During
training, we conduct experiments on GPT2-XLwith setting learning rate as 5e−2, batch size as 1, and
epoch number as 5. We set the learning rate as 5e−3 for GPT-J-6B and apply gradient-free method
on GPT-NEO-2.7B. More implementation details of baselines are displayed in Appendix 9.7. We
re-implement the comparable baselines using the same configuration reported in existing studies.

6 RESULTS AND ANALYSES

6.1 COMPARISONS TO EXISTING METHODS

Table 1 exemplifies performances of iReVa and baselines on zsRE and PARAREL with 10K edits in
batch. As we can see, iReVa outperforms all baselines on average scores with noticeable margins.
Even without retrofitting, our method is able to outperform the SOTA results by around 9% and
6% average score improvement on zsRE-10K and PARAREL-10K, respectively. Among all the
baseline methods, FT achieves good results on ES and PS, this indicates that fine-tuning is simple
but effective to inject knowledge but it could easily distract the irrelevant knowledge, resulting in
a poor NS. Whereas other baselines can not guarantee the editing success in a batch, resulting in
poor ES and PS. In comparison, iReVa achieves impressive results on all the evaluation metrics. It
achieves close to 100% ES without detriment to the original NS. We observe a slight improvement
from the results of iReVa to iReVa+L on zsRE-10K dataset, it verifies our rationale deduce for the
initialization of key-value pairs. However, the improvement brought by fine-tuning is not maintained
on PARAREL-10K, we suspect this is because the involvement of irrelevant knowledge brings in
little unexpected noise with possibility.

Table 1: Editing results on various model editing tasks with GPT2-XL as the base model. In our
methods, +L represents iReVa with fine-tuning as described in Section 4.2.

Method zsRE-10K PARAREL-10K
Score ES PS NS Score ES PS NS

NO EDITING 24.17 22.89 21.96 27.65 20.03 18.66 17.24 24.18

FT 57.29 82.80 64.51 24.57 52.64 83.32 53.06 21.55
MEND 15.94 12.43 12.04 23.35 0.16 0.00 0.00 0.50
ROME 11.10 17.26 14.24 1.80 5.35 9.65 6.23 0.17
MEMIT 42.51 52.62 47.29 27.63 46.17 62.60 52.71 23.20
MELO 32.51 42.75 28.12 26.65 25.95 34.19 20.83 22.83

iReVa 66.27 97.88 74.89 26.03 58.17 93.49 56.86 24.18
iReVa +L 66.77 97.47 76.38 26.47 56.80 89.85 56.37 24.18

6.2 EDIT WITHDRAWAL TEST

Compared with the existing editing methods, our method has the unique advantage of interpretability
and traceability, that is we can clearly identify the edit for each newly inserted key-value pair. This
provides a chance to conduct an edit withdrawal test. Most existing methods can’t perform the
withdrawal test for their batch training mechanism, and stream-fashion methods like GRACE may
encounter the forgetting Hartvigsen et al. (2023) challenge which will induce a withdrawal failure.

Specifically, we test, after editing on 10K examples, if iReVa is able to withdraw certain edits
and recover the original output from the base model without much loss. To this end, we inhibit
corresponding knowledge neurons as withdrawing the edit, which is denoted as f−k̂

Φ∗ . For evaluation,
we introduce two metrics, namely Retrieve Success and Consistency. They are formulated as
RS = 1

N

∑N
i=0 I(fΦ∗(xi) ̸= f−k̂i

Φ∗) and Con = 1
N

∑N
i=0 I(fΦ(xi) = f−k̂i

Φ∗), respectively. The
evaluation result on zsRE-10K is shown in Table 2. The results which are close to 100% prove that
iReVa can explicitly manipulate the activation of knowledge neurons and easily withdraw the updated
knowledge. Notably, this test is not applicable to any other editing methods as their edited parameters
are untraceable. This is the first attempt at conducting more flexible knowledge editing.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Results of edit withdrawal on zsRE-10K dataset with GPT2-XL as the base model.

Method Retrieve success Consistency

iReVa 98.02% 93.03%

6.3 EFFICIENCY ANALYSIS

We discuss the spatial and time complexities of iReVa. Regarding time complexity during inference,
iReVa only inserts the adaptor in a single l-th layer and the insertion only affects the final token
prediction of the input. With i ∈ R1×d1 , K̂ ∈ Rd1×n, V̂ ∈ Rn×d1 and averaged length l of target
tokens (l = 2.69 for zsRE and l = 1.15 for PARAREL), the extra time consumption is O(ld21n),
which is unrelated to the input length and number of layers. Regarding spacial complexity, as we
insert two vectors for each edit in a single layer, the extra spacial consumption is O(2lnd1). In
practice, for GPT2-XL with 1.5B parameters, the adaptor merely possesses 0.08B parameters with
10K edits. There is no additional spacial complexity involved in the training phase, given that only
2d1 parameters are learnable for each edit token. We empirically record that 10K edits with iReVa
cost 7.5/1.6 hours (fine-tuning/without fine-tuning) with a single NVIDIA A800 GPU, compared to
9.16 hours for ROME and 5.4 hours for MEMIT.

6.4 ABLATION STUDY

Table 3 shows iReVa’s performance on zsRE-10K when we iteratively remove sub-modules: (1) w/o
activation function denotes that we remove the activation function proposed in Equation 6. (2) w/o
max-pooling denotes that we involve all knowledge neurons during inference instead of the design
of Equation 12. (3) w/o Lrec denotes that we train iReVa without initialization and set a = 0 in
Equation 11. (4) w/o Lirr means we do not apply Lirr by setting b = 0 in Equation 11. As we
can see, all the modules contribute to the good results. In comparison, the activation function is
important to preserve the out-of-scope edit. Without an activation function, we can attain better
results on ES and PS, but NS will decrease sharply. We also find that the influence of max-pooling is
significant, which may be attributed to noisy data added by a large amount of active but irrelevant
knowledge neurons. Besides, excluding Lrec will lead to an observable drop on the three metrics
because we discord the effective initialization on K̂ and V̂. Finally, disabling Lirr may induce a
marginal improvement in ES and PS, but at the cost of a reduction in NS.

Table 3: Results of ablation study on zsRE dataset with GPT2-XL as the base model.

Activation Max Loss Loss Metrics
function pooling Lrec Lirr Score ES PS NS

✓ ✓ ✓ ✓ 66.77 97.47 76.38 26.47
✓ ✓ ✓ × 67.00 97.84 76.73 26.43
✓ ✓ × ✓ 63.22 92.28 73.25 24.13
✓ × ✓ ✓ 44.93 56.07 52.41 26.31
× ✓ ✓ ✓ 60.27 99.41 78.52 2.87

6.5 GENERALIZATION CAPABILITIES OF IREVA

Layer generalization. To evaluate the effect of iReVa in various layers, we iteratively apply iReVa
and the other two baseline editing methods to different layers of GPT2-XL, which consists of 48
layers in total. Figure 2 illustrates the influence of three metrics on different layers with intervals.
The tendency shows that the edit in the higher layer results in better editing results. This indicates
that LMs’ final prediction primarily depends on the information retrieved from higher layers and the
knowledge stored in lower layers may be overshadowed. For ROME and MEMIT, apparently, they
show distinct generalizations in edit layer. Their ES and PS peak at the middle layer like 17 or 22,
which proves that the layer generalization is remarkably relevant to the characteristics of different
methods. Even though MEMIT achieves good performance in NS when the edit happens in lower
layers, overall iReVa outperforms the baselines regarding the comprehensive evaluation metrics.

LMs generalization. We also test iReVa on different LLMs as base models, table 4 shows iReVa’s
generality on different backbones. We apply a larger LM GPT-NEO-2.7B Gao et al. (2020),

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 2: Results of edits in various layers on zsRE dataset with GPT2-XL as the base model.

GPT-J-6B Wang & Komatsuzaki (2021), and smaller LM GPT2-LARGE Radford et al. (2019) to
evaluate the effect of iReVa on LMs with different sizes. All of these base models contain two-layer-
FFN MLP blocks. IReVa can be deemed as a plug-in module for causal-decoder LMs, which can be
applied to more LMs. From the figure, we observe that iReVa can achieve the best average score on
all LMs, which shows its general effect.

Table 4: Results on zsRE dataset with GPT2-LARGE, GPT-NEO-2.7B, GPT-J-6B as the base
models.

Engine Method Score ES PS NS

ROME 29.09 38.59 36.41 12.27
GPT2-LARGE MEMIT 43.72 56.25 49.25 25.67

iReVa 62.41 91.22 72.36 23.65

ROME 34.56 49.43 45.61 8.64
GPT-NEO-2.7B MEMIT 59.68 80.83 69.38 28.83

iReVa 62.20 88.23 70.71 27.66

ROME 40.86 53.81 49.89 18.87
GPT-J-6B MEMIT 66.41 94.04 72.48 32.70

iReVa 69.70 99.71 77.10 32.27

Edit quantity generalization. We discuss the influence on iReVa’s performance with the variation
of edit quantity, we simply increase the number of edits in the batch and evaluate ES, PS, and NS.
Figure 3 shows the tendency of three metrics along with the comparison to baselines ROME and
MEMIT. As we can see, iReVa is robust to the number of edit in the batch. It consistently surpasses
the other baselines when dealing with the various number of edits. MEMIT performs poorly even
with a small number of edits. ROME drops dramatically as the edit number grows.

Figure 3: Results of edits with various size on zsRE dataset with GPT2-XL as the base model.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

7 LIMITATION

We also conclude iReVa’s limitation as follows: a) iReVa performs poorly when the target prompt
is a long sentence because it constructs a knowledge neuron for each token in the target prompt,
thereby increasing the training time cost. Additionally, during inference, the high number of neurons
increases the probability of errors; b) To maintain iReVa’s interpretability, its application is limited,
including that iReVa can be only applied on GPT-like models and generation task; c) The behavior of
iReVa (ES and PS) won’t enhance noticeably as the scale of base model grows.

8 CONCLUSIONS

In this paper, we propose iReVa, a model editing method with traceable knowledge storage, which
inserts edit key-value adaptor into the MLP module of a transformer model explicitly. iReVa displays
prominent abilities of edit success, generalization, and specificity and outperforms baselines with an
observable margin. Besides, iReVa first successfully demonstrates its capacity for the knowledge
withdrawal. For further research, we will focus on generalizing iReVa to more LM architectures.

REFERENCES

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Jérôme Seymour Bruner. The process of education. 1960. URL https://api.
semanticscholar.org/CorpusID:177285798.

Jérôme Seymour Bruner. The course of cognitive growth. American Psychologist, 19:1–15, 1964.
URL https://api.semanticscholar.org/CorpusID:145196722.

Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models, 2021.

Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhilasha Ravichander, Eduard Hovy, Hinrich Schütze,
and Yoav Goldberg. Measuring and improving consistency in pretrained language models, 2021.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027, 2020.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories, 2021.

Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an invariant
mapping. In 2006 IEEE computer society conference on computer vision and pattern recognition
(CVPR’06), volume 2, pp. 1735–1742. IEEE, 2006.

Thomas Hartvigsen, Swami Sankaranarayanan, Hamid Palangi, Yoon Kim, and Marzyeh Ghassemi.
Aging with grace: Lifelong model editing with discrete key-value adaptors, 2023.

Peter Hase, Mona Diab, Asli Celikyilmaz, Xian Li, Zornitsa Kozareva, Veselin Stoyanov, Mohit
Bansal, and Srinivasan Iyer. Do language models have beliefs? methods for detecting, updating,
and visualizing model beliefs. arXiv preprint arXiv:2111.13654, 2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou, Wenge Rong, and Zhang Xiong. Transformer-
patcher: One mistake worth one neuron. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=4oYUGeGBPm.

N Jayashri and K Kalaiselvi. Knowledge acquisition–scholarly foundations with knowledge manage-
ment. International Journal of Advanced Studies of Scientific Research, 3(12), 2018.

10

https://api.semanticscholar.org/CorpusID:177285798
https://api.semanticscholar.org/CorpusID:177285798
https://api.semanticscholar.org/CorpusID:145196722
https://openreview.net/forum?id=4oYUGeGBPm

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham Neubig. How can we know what language
models know? Transactions of the Association for Computational Linguistics, 8:423–438, 2020.
doi: 10.1162/tacl_a_00324. URL https://aclanthology.org/2020.tacl-1.28.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114
(13):3521–3526, 2017.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun Ma, and Jie Yu. Pmet: Precise model
editing in a transformer. Proceedings of the AAAI Conference on Artificial Intelligence, 38(17):
18564–18572, Mar. 2024. doi: 10.1609/aaai.v38i17.29818. URL https://ojs.aaai.org/
index.php/AAAI/article/view/29818.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. Gpt
understands, too. AI Open, 2023.

Michael McCloskey and Neal J. Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. volume 24 of Psychology of Learning and Motivation, pp. 109–165.
Academic Press, 1989. doi: https://doi.org/10.1016/S0079-7421(08)60536-8. URL https:
//www.sciencedirect.com/science/article/pii/S0079742108605368.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt, 2023a.

Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, and David Bau. Mass-editing
memory in a transformer, 2023b.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D. Manning. Fast model
editing at scale, 2022a.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D. Manning, and Chelsea Finn. Memory-
based model editing at scale, 2022b.

Fabio Petroni, Tim Rocktäschel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, Alexander H. Miller,
and Sebastian Riedel. Language models as knowledge bases?, 2019.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Chenmien Tan, Ge Zhang, and Jie Fu. Massive editing for large language models via meta learning,
2024. URL https://arxiv.org/abs/2311.04661.

Ben Wang and Aran Komatsuzaki. GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model.
https://github.com/kingoflolz/mesh-transformer-jax, May 2021.

Lang Yu, Qin Chen, Jie Zhou, and Liang He. Melo: Enhancing model editing with neuron-indexed
dynamic lora, 2023.

Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang, Shumin Deng, Mengru Wang, Zekun Xi,
Shengyu Mao, Jintian Zhang, Yuansheng Ni, Siyuan Cheng, Ziwen Xu, Xin Xu, Jia-Chen Gu,
Yong Jiang, Pengjun Xie, Fei Huang, Lei Liang, Zhiqiang Zhang, Xiaowei Zhu, Jun Zhou, and
Huajun Chen. A comprehensive study of knowledge editing for large language models, 2024.

Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong Wu, Jingjing Xu, and Baobao Chang. Can
we edit factual knowledge by in-context learning?, 2023.

11

https://aclanthology.org/2020.tacl-1.28
https://ojs.aaai.org/index.php/AAAI/article/view/29818
https://ojs.aaai.org/index.php/AAAI/article/view/29818
https://www.sciencedirect.com/science/article/pii/S0079742108605368
https://www.sciencedirect.com/science/article/pii/S0079742108605368
https://arxiv.org/abs/2311.04661
https://github.com/kingoflolz/mesh-transformer-jax

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh Bhojanapalli, Daliang Li, Felix Yu, and Sanjiv
Kumar. Modifying memories in transformer models, 2021. URL https://openreview.
net/forum?id=KubHAaKdSr7.

9 APPENDIX

9.1 DETAILED DESCRIPTION OF INITIALIZATION OF KEY-VALUE ADAPTOR

We describe how we initialize k and v in detail. Given the input xi = {w1, w2, ..., ws}, we first obtain
the corresponding embeddings for each token, such that xi = {w1,w2, ...,ws}. After encoded via
l Transformer layers, we obtain a sequence of hidden representations as input {hl

1,h
l
2, ...,h

l
s}. In

the two-layer-FFN MLP block of l-th layer, after self-attention and layer norm, we have the hidden
representation of the last token as:

ils = LAYER_NORM(hl
s + SELF_ATTN(hl

s))

ol
s = Vl⊺gact(K

l⊺ils)

hl+1
s = SELF_ATTN(ils + ol

s)

We extract il+1
s as the initialization of k̂0. Subsequently, {hl+1

1 ,hl+1
2 , ...,hl+1

s } are further processed
via the higher layers. In the last layer, we make prediction based on the hidden representation in L-th
layer, which can be denoted as:

PfΦ(yi|xi) = SOFTMAX(W⊺hL
s),

where W ∈ Rd1×|V | and each column denotes the representation of a token. We extract the column
corresponding to the ground truth edit out token yi, that is v̂0 = W[:,yi].

9.2 DISCUSSION OF BACK PROPAGATION OF KEY-VALUE ADAPTOR

Recall the knowledge neurons of our key-value adaptor are:

o = v⊺gact(k
⊺i) + v̂⊺gact(k̂

⊺i)

Given L, the gradients are computed as:

dL
dk̂

= g′act(k̂
⊺i) · v̂ · i⊺ dL

do

dL
dv̂

= gact(k̂
⊺i)

dL
do

dL
di

= [g′act(k
⊺i)v⊺k+ g′act(k̂

⊺i)v̂⊺k̂]
dL
do

.

where g′act is the derivative of the activation function. We have multiple observations of the gradients:
First, we would like the newly inserted neuron to be activated initially, namely gact > 0. Otherwise,
the gradients are close to 0 and the neurons are likely to be dead. This is the reason why we initialize
the k̂ and v̂ with the consideration of having a high matching value. Second, when we update k̂ and
v̂, they are unrelated to k and v, which makes it possible to isolate the irrelevant knowledge.

For the knowledge neurons without our key-value adaptor, we have the propagation:

o = v⊺gact(k
⊺i).

The gradients of i are computed as:

dL
di

= g′act(k
⊺i)v⊺k

dL
do

.

As we can see, excluding the key-value adaptor in the neuron makes the gradients simply derived
from k and v, which maintains the original knowledge in the neurons.

12

https://openreview.net/forum?id=KubHAaKdSr7
https://openreview.net/forum?id=KubHAaKdSr7

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

9.3 INFLUENCE OF θ AND a

The influence of θ is illustrated in 9.3. The figure shows the trade-off between the three metrics
smoothly. The primary affected metric is Neighborhood Success, and Edit Success and Paraphrased
Success exhibit a slight downward trend. For a, we find that merely Paraphrase Success peaks
while a = 1e− 2, meanwhile Edit Success and Neighborhood Success do not continue to improve
with the increase of a.

Figure 4: Correlation between three metrics and θ(left) or a(right) of iReVa, ROME, MEMIT

9.4 SAMPLE OUT-OF-SCOPE EXAMPLES FOR IREVA

To enhance iReVa’s Specificity, we generate 3 kinds of irrelevant questions q ∈ Dout for each
(x, y) ∈ Din to minimize K̂⊺

i · xout, where xout is the dense representations of q. These questions
are listed as follows: a) Randomly generated questions produced by feeding base model with a bos
(begin of sentence) token. b) Questions generated by base model with feeding the subject s of the x
provided by the benchmark. c) Questions sampled from other examples in training dataset, whose
opinion is similar to contrastive learning Hadsell et al. (2006). During iReVa training, we generate 2
questions in a), 2 questions in b), and 6 questions in c) for each training example.

9.5 PRE-PROCESSING PROCEDURE OF ZSRE

Shown in 2, we split each (x, y) pair into multiple (x′, y′) to ensure y′ is a single-token edit out. This
procedure is also applied in the evaluation of zsRE and PARAREL, which measures the (i+ 1)-th
token of edit-out prediction accuracy given edit-in and i prefixes of edit-out.

Algorithm 2 Pre-processing Procedure of PARAREL
1: Input Raw dataset zsRE D, tokenization function encode;
2: Init D′ = [];
3: for (x, y) ∈ D do
4: Init tokens = encode(y);
5: for i ∈ {0, 1, 2...len(tokens)− 1} do
6: D′.append((x+ tokens[: i], y[i]));

return D′

9.6 PRE-PROCESSING PROCEDURE OF PARAREL

This section details the pre-processing method on close text dataset PARAREL Elazar et al. (2021).
PARAREL contains 34 types of relations r, with an average of 900 question bags b per relation,

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Algorithm 3 Pre-processing Procedure of PARAREL
1: Input Raw dataset PARAREL D; Raw NQ dataset Dloc; Function lcs computes the longest

common sub-array of two strings, tokenization function encode, detokenization function decode;
2: Init D′ = [];
3: for (ri, vi) ∈ D do ▷ For each relation and in-relation questions in D
4: for (bij , aij) ∈ vi do ▷ For specific questions, rephrased versions and answers in vi
5: If len(bij) ≤ 1, then continue;
6: Init subject = bij [0];
7: Init compatible_questions = [];
8: for qijk ∈ bij [1 :] do
9: subject = lcs(encode(qijk), encode(subject));

10: If qijk.endswith(”[MASK]”), then compatible_questions.append(qijk);
11: src_question = compatible_questions[0];
12: subject = decode(subject)
13: If (subject = ””) ∨ (subject = src_question), then continue
14: rephrased_question = random.choice(compatible_questions[1 :]);
15: D′.append((src_question, aij , rephrased_question, subjcet,Dloc.next()))

16: return D′

totaling 27,738 distinct questions q. And for each question bag, around 9 rephrased versions are
recorded with a sole answer a.

The entire pre-process algorithm is shown in 3. To make PARAREL applicable for the next-token-
prediction task, we reserve the sentences that end with a special token “[MASK]”. After a round of
filtering, we removed question bags b with only 1 valid sentence that ends with “[MASK]” for both
Edit Success and Paraphrase Success need to be computed. During this filtering, we collect the
subject of question s bag by calculating the longest common sub-array of all q ∈ b tokenized by
GPT2Tokenizer Radford et al. (2019) simultaneously for specific methods require the subject of a
question. The next screening occurs at b whose subject s is an empty string or identical to b[0]. With
residual question bags b′, we choose b′[0] as the source question and a randomly sampled question
from b′[1 :] as the paraphrase question.

Empirically, we believe PARAREL is harder than zsRE because the average token length of edit
target is shorter, thus model can’t give more empirical predictions based on given prefix of the target,
which is mentioned in 9.5. In other words, the account for first-token prediction may influence the
difficulty of datasets noticeably.

9.7 IMPLEMENTATION DETAILS OF COMPARABLE BASELINES

9.7.1 FINE TUNING(FT)

We implement fine tuning on two feed-forward networks (mlp.c_fc, mlp.c_proj) at the layer
of 46 with GPT2-XL. The base model is trained for 20 epochs with lr = 1e− 4,batch size = 32.

9.7.2 MEND

We do not load the pre-trained MEND Mitchell et al. (2022a) weight, but apply MEND directly.
Hyper-parameters of MEND keep consistent with the configuration of MEND’s open-source code.

9.7.3 ROME, MEMIT

ROME Meng et al. (2023a) and MEMIT Meng et al. (2023b)’s setups on GPT2-XL also remain
identical to the source code. On GPT-NEO-2.7B and GPT-J-6B, we alter the edit layer to 5 for
ROME and {3,4,5,6,7,8} for MEMIT.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

9.7.4 MELO

Due to larger edit amount and different backbone for zsRE, we modify several configurations to make
MELO Yu et al. (2023) comparable to our methods. For MELO’s code book, we enlarge the number
of blocks (clusters) to 100. Besides, we rewrite MELO’s training loss to make it compatible with
causal decoder.

15

	Introduction
	Related Work
	Insight of Knowledge Storage in Language Models
	Editing LMs by Manipulating Knowledge

	Problem Formulation
	Method
	Initial Key-Value Adaptors for In-Scope Editing
	Retrofit Adaptors for Model Editing (Training Phase)
	Activate Max-Matching Key in Adaptor (Inference Phase)

	Experimental Setup
	Datasets
	Baselines
	Evaluation Metrics
	Implementation Details

	Results and Analyses
	Comparisons to Existing Methods
	Edit Withdrawal Test
	Efficiency Analysis
	Ablation Study
	Generalization Capabilities of iReVa

	Limitation
	Conclusions
	Appendix
	Detailed Description of Initialization of Key-Value Adaptor
	Discussion of Back Propagation of Key-Value Adaptor
	Influence of and a
	Sample out-of-scope examples for iReVa
	Pre-processing procedure of zsRE
	Pre-processing Procedure of PARAREL
	Implementation Details of Comparable Baselines
	Fine Tuning(FT)
	MEND
	ROME, MEMIT
	MELO

