
Do LLMs Understand Constraint Programming?
Zero-Shot Constraint Programming Model

Generation Using LLMs

Yuliang Song and Eldan Cohen

Department of Mechanical and Industrial Engineering,
University of Toronto, Toronto, Canada

yl.song@mail.utoronto.ca, ecohen@mie.utoronto.ca

Abstract. Large language models (LLMs) have gained significant at-
tention for their ability to solve complex tasks such as coding and rea-
soning. In this work, we aim to evaluate their ability to generate con-
straint programming (CP) models in a zero-shot setting, emphasizing
model correctness and conformity to user-specified output formats. We
propose a novel, iterative approach for zero-shot CP modeling that trans-
lates natural language problem descriptions into valid CP models and
supports solution extraction to pre-defined output formats to facilitate
effective adoption by domain experts and enable automated performance
evaluation. To evaluate our approach, we introduce the Constraint Pro-
gramming Evaluation (CPEVAL) benchmark1, derived from a diverse
set of CP problems in CSPLib, coupled with an automated evaluation
suite for large-scale assessment. We augment CPEVAL with paraphrased
variants to assess robustness across linguistic variation and mitigate bias
in the evaluation due to data memorization. Our extensive experiments
across eight prominent LLMs and two CP modeling languages, MiniZinc
and PyCSP3, show that our proposed iterative Two-Step method sig-
nificantly enhances model correctness and conformity to user-specified
output formats. Furthermore, we observe that larger LLMs demonstrate
superior performance, with DeepSeek-R1 emerging as the top performer
across both CP languages. We also observe that LLMs generally perform
better in MiniZinc than in PyCSP3.

Keywords: Constraint Programming · Large Language Models · Bench-
mark · MiniZinc

1 Introduction

Constraint Programming (CP) has proven to be a powerful paradigm for for-
mulating and solving complex combinatorial problems across diverse domains
[29]. Traditionally, when a project arises, domain experts articulate the prob-
lem requirements, while CP experts formalize these into constraint models and
implement them in code [12]. However, the expertise required to formulate and
1 We will make our benchmark publicly available upon acceptance.



2 Y. Song and E. Cohen

encode CP models has been widely recognized as a bottleneck, limiting the
broader adoption of CP [26, 23, 33]. This challenge highlights the need for au-
tomated, adaptive tools to simplify the process of generating CP models from
natural language descriptions.

In recent years, there has been growing interest in addressing this bottleneck
by harnessing large language models (LLMs) for CP modeling [23, 5]. Pre-trained
on extensive web-scale corpora, LLMs have demonstrated remarkable capabilities
in question answering, code generation, and reasoning [10, 38, 16]. This positions
them as promising candidates for the “holy grail” of programming: a scenario
in which domain experts simply provide a natural language description of a
problem, and an LLM-based modeling assistant then produces the corresponding
CP model [13]. Yet, despite their potential and often impressive outputs, LLMs
do not guarantee correctness, consistency, or even relevance [18, 32, 1].

Existing evaluations commonly rely on publicly available problems, raising
concerns that LLMs might recall memorized solutions from training rather than
genuinely modeling the problem [7, 36]. To enable a more rigorous evaluation of
LLM capabilities, we propose a benchmark for CP modeling tasks that assesses
LLMs’ internal knowledge without relying on similar problems or reference mod-
els to guide the modeling process. Moreover, domain experts require not only cor-
rect solutions but also outputs that conform to specific formatting instructions,
facilitating straightforward interpretation, verification, and integration into their
workflows. To address this, we introduce a CP modeling workflow emphasizing
both model correctness and conformity to user-specified output formats.

In this work, we present the first comprehensive zero-shot CP modeling ap-
proach using LLMs, validated across eight prominent LLMs, two widely-used
modeling languages, and a comprehensive benchmark involving linguistic varia-
tions. Specifically, we make the following contributions:

1. We propose a novel, iterative approach for zero-shot CP modeling that trans-
lates natural language problem descriptions into valid CP models and sup-
ports solution extraction to pre-defined output formats to facilitate effective
adoption by domain experts and enable automated performance evaluation.

2. We present a new constraint programming evaluation (CPEVAL) bench-
mark comprised of diverse CP problems from CSPLib, augmented with para-
phrased variants to assess robustness across linguistic variation and mitigate
the impact of data memorization. This benchmark also includes an auto-
mated evaluation suite to support large-scale evaluation of model correctness
and conformity to user-specified output formats.

3. We conduct extensive experimental analysis across eight prominent LLMs
and two popular CP modeling languages, PyCSP3 [20] and MiniZinc [25],
and show: (1) our proposed approach significantly enhances model correct-
ness and output format conformity; Notably, DeepSeek-R1 excels in both
MiniZinc and PyCSP3. (2) Although LLMs exhibit varying levels of CP
modeling capabilities, they all experience performance degradation on para-
phrased tasks, indicating data memorization may bias evaluations and un-
derscoring the need to evaluate LLMs beyond publicly available benchmarks.



Zero-shot Constraint Modeling with LLMs 3

2 Background

2.1 Constraint Programming

CP is a powerful paradigm for solving combinatorial problems by representing
them in terms of decision variables, their domains, and constraints that define
relationships among these variables [34]. A classical constraint satisfaction prob-
lem (CSP) involves finding assignments of values to a set of variables X from
their respective domains D such that all constraints C are satisfied. Extending
this framework, a constraint optimization problem (COP) incorporates an ob-
jective function O to optimize while still satisfying all specified constraints. We
denote a CP model as M and it’s solution as A such that A = M(X,C,D,O).

2.2 Large Language Models

Language Models (LMs) are probabilistic models parameterized by θ and trained
on extensive corpora to predict the probability distribution of the next token,
conditioned on a given prompt and the sequence of tokens generated so far.
Given a prompt I = (x1, x2, . . . , xn) of length n, where each xi is a token in the
input sequence, the model predicts each token yt in the output sequence at time
step t by conditioning its probability on the input prompt I and the previously
generated tokens y<t = (y1, y2, . . . , yt−1). The joint probability of a sequence
y = (y1, y2, . . . , yl), where l is the maximum allowed length of the sequence is:

pθ(y | I) =
l∏

t=1

pθ(yt | y<t, I) (1)

LMs generate text in an autoregressive manner by selecting the next token yt
at each time step t based on the conditional distribution pθ(yt | y<t, I), typically
via sampling. Given logits ϕ(yt | y<t, I) for each possible next token yt, the
conditional probability is computed as:

pθ(yt | y<t, I) =
exp

(
ϕ(yt|y<t,I)

T

)
∑

y′ exp
(

ϕ(y′|y<t,I)
T

) (2)

where T is the sampling temperature. A value of T < 1 sharpens the distribu-
tion, making the model more deterministic by favoring high-probability tokens.
Conversely, a higher temperature of T > 1 flattens the distribution, encouraging
the model to explore a broader range of potential outputs [10].

LLMs improve over the capabilities of standard LMs by significantly increas-
ing the complexity of the model and its training data. Typically built on trans-
former architectures, LLMs incorporate billions of parameters and are trained
on massive and diverse text corpora sourced from the web and specialized do-
mains. This scaling enables LLMs to capture nuanced linguistic patterns, ex-
tensive world knowledge, and advanced reasoning capabilities [18]. In practice,



4 Y. Song and E. Cohen

prompting acts as the interface to guide LLM behavior through natural lan-
guage instructions, where zero-shot methods rely solely on task descriptions and
the LLM’s pre-trained knowledge, while few-shot methods provide contextual
exemplars to implicitly define task patterns, enabling in-context learning [8].

Self-Improvement. Using LLMs to solve complex programming challenges in
a single attempt often proves difficult [28]. To address this limitation, previous
work has explored various forms of self-improvement techniques, which prompted
the model to critically review and correspondingly improve its own outputs [22].
Under this framework, the model first generates an initial response and then
iteratively refines it using additional feedback. This feedback may be derived
from external sources, such as automated tests in code generation [11] or analysis
of error messages [39]. Alternatively, feedback can be generated internally, for
instance, through self-produced test cases [9] or self-assessment [35].

3 Zero-Shot CP Modeling with LLMs

We propose a workflow that leverages LLMs for automated CP modeling. Our
system interprets task descriptions in natural language, translates them into CP
models, and iteratively tests and refines the generated code.

3.1 Problem Definition

The input to our system consists of: (1) PNL: A natural-language description
of the problem; (2) Pparam: A concise description of input parameters, speci-
fying their meanings, data formats, and types; (3) POF: Specifications of the
expected output formats, namely a list of required variables and their descrip-
tion and data type, as well as an example output. Subsequently, our system,
denoted as F , transforms these components into a CP model M, formally,
M = F(PNL, Pparam, POF ). See Fig. 1 for example PNL, POF , and Pparam

for the well-known N-Queens problem.
The motivation for including explicit output format specification stems from

the variety of valid equivalent ways to model the same problem (e.g., disjunctive
vs. time-indexed formulation for scheduling problems [6]). Consequently, the
representation of solutions can vary significantly, placing an additional burden
on users who must interpret the generated model with potentially unfamiliar
solution representations.

3.2 Iterative Modeling Workflow

We consider two workflows for iterative generation. First, we introduce the Di-
rect Instruction method, which takes the problem context and explicitly instructs
the LLM to generate code that solves the problem and outputs the solution in
the user-specified output format. However, enforcing a complex output format



Zero-shot Constraint Modeling with LLMs 5

Fig. 1: Illustration of the proposed methods using the classic N-Queens problem
from the CPEVAL benchmark.

increases the difficulty of the generation task, especially when the required for-
mat has an intricate structure (e.g., scheduling timetable or game board layout).
To address this, we propose a Two-Step method, where the first step focuses on
generating the CP model, and the second focuses on extracting the solution vari-
ables and transforming them into the user-specified output format. For effective
output format validation, we implement an automated output format checker
that takes the data types from POF , assesses the output’s conformity to the



6 Y. Song and E. Cohen

prescribed requirements, and produces error reports when it fails to meet the
expected format.

Direct Instruction (DI) Fig. 1 (Method 1) illustrates the direct instruction
workflow. The first step is to prompt the LLM with the problem context P , in-
structing it to generate a CP model in the chosen modeling language and output
a final solution in the user-specified format POF . The generated code is extracted
and compiled in an IDE with runtime information collected. If compilation fails,
a self-improvement process (§3.3) is triggered to correct the code and reattempt
compilation. Once the generated code passes the syntax check, it is executed, and
the solver status is extracted upon completion or timeout. If the solver returns
UNKNOWN or UNSATISFIABLE, the model is deemed semantically incorrect,
and the generation workflow is aborted. Otherwise, if the solver returns a SATIS-
FIABLE or OPTIMAL status, an output format checker evaluates whether the
data types of the output variables align with the user-specified formats POF .
Subsequently, if discrepancies are detected, an error message detailing the dis-
crepancies is sent to the LLM, prompting it to revise the output format through
the self-improvement process. The generated code is accepted once its outputs
conform to the user-specified output format.

Two-Step Method (2S) Fig. 1 (Method 2) presents the Two-Step Method
workflow. In the modeling stage, the problem context (PNL, Pparam) and user-
specified output format (POF ) are provided to the LLM for modeling. However,
the LLM is explicitly instructed to only consider the output format requirements
but not to generate any code to comply with them. The hypothesis code is then
evaluated for syntax correctness, and if it fails, an iterative self-improvement
process is triggered for debugging. Upon successfully passing the syntax check,
the solver must return a SATISFIABLE or OPTIMAL status; otherwise, the
model is deemed semantically incorrect, and the workflow is aborted.

Once the model is solved, all decision variables used in the model are saved
to a local file, and the workflow proceeds to the formatting stage. The LLM is
now instructed to generate Python code that transforms the stored decision vari-
ables into the user-specified format. This step requires the LLM to interpret the
problem context and may involve generating code for additional calculations or
adjustments to ensure compliance with POF . Similar to the DI method, the gen-
erated output is then validated by an output format checker, and if mismatches
arise, a self-improvement process is triggered to correct them.

3.3 Self-Improving

We employ an iterative self-debugging approach following [11], as illustrated
in Appendix C. This process targets two types of code defects: syntax errors
identified through IDE compilation and output format mismatches detected by
the output format checker. In the initial step, we input the defective code, along
with any error messages, to the same LLM that generated the original code.



Zero-shot Constraint Modeling with LLMs 7

In case of syntax errors, the IDE’s runtime error messages are used to guide
debugging. In cases of output format mismatches detected by the output format
checker, a message outlining discrepancies between the generated output and the
expected format is provided to facilitate refinement. Subsequently, the LLM is
instructed to provide a concise explanation of the error’s cause and to produce a
revised version of the code which is then executed in the corresponding IDE. If
new errors are encountered, the updated code and corresponding error messages
are fed back to the LLM for further review and correction. This iterative process
continues until the hypothesis code passes its corresponding checker or a user-
specified self-improving attempt limit is reached.

4 Experimental Setup

4.1 Models

We employed seven prominent open-source models including Llama-3.3-70B2,
DeepSeek-V3-685B [21] and it’s reasoner variant, DeepSeek-R1 [15], QWen2.5-
70B and QWen2.5-Coder-32B [37], Phi-3.5 mini (3.8B) [2], and Phi-4 (14.7B)
[3], as well as the closed-source model ChatGPT-4o (2024-08-06)3.

4.2 Datasets

We employ CSPLib [14] as the primary source of problems to construct the
CPEVAL benchmark. Each problem consists of a natural language description,
reference models in various CP languages, and instance data files, when appli-
cable.

Due to time and computational cost constraints associated with large-scale
evaluation, problems were selected based on criteria facilitating evaluation pur-
poses. We included all problems that have a reference MiniZinc model and can
be solved within 10 minutes. As a result, the CPEVAL dataset comprises 30
problems, including 9 COPs and 21 CSPs across seven categories and varying
levels of complexity. Each problem in CPEVAL comprises three key components:

Problem Description (PNL) We pre-process the problem descriptions to exclude
any images, references, unrelated information, and example solving steps.

Input Parameters (Pparam) The input parameters are derived from the CSPLib
parameter file, each accompanied by a description of its data type, structure, and
meaning. We verify each problem instance for validity; if multiple instances are
available, we select up to three of the simplest ones based on computational com-
plexity (e.g., preferring a 4-queens instance over a 100-queens instance). During
modeling, the LLM is instructed to generate code that loads these parameters
from the file, conditioned on this description. This approach prevents long, com-
plex parameter structures from distracting the LLM and consuming unnecessary
tokens, enabling the evaluation of more complex problems.
2 https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_3/
3 https://openai.com/index/gpt-4o-system-card/



8 Y. Song and E. Cohen

Required Output Format (POF) For each CSPLib problem, we provide a pre-
defined output format requirement that states the data type, structure, and
representation of all needed output variables.

4.3 Paraphrase Generation

The original CSPLib problems are widely known, and their solutions are publicly
available, raising concerns that evaluation problems have been used to train the
LLM, which could lead to over-estimation of models’ performance due to memo-
rization of the solution rather than CP modeling capabilities. To assess whether
LLMs can effectively interpret a given problem context and generate correct
CP models, we therefore opt to evaluate LLMs’ performance under linguistic
variations. Specifically, an LLM is instructed to paraphrase the original prob-
lem description to simulate how a user might request a modeling service from
a CP expert. The goal is to introduce varied linguistic expressions and simulate
different linguistic framings, allowing for the evaluation of the LLM on prob-
lems presented in unfamiliar or diverse linguistic forms, all while preserving the
original underlying semantics. To ensure a diverse set of paraphrases that could
effectively challenge the LLM’s understanding and generalization capabilities,
we introduce two paraphrasing styles: Precision mode, which minimally alters
semantics while preserving technical accuracy, and Colloquial mode, which uses
a casual, conversational tone closer to a layperson’s request for assistance. For
each original problem, we employ Claude-3.5-Sonnet4 to generate three para-
phrased versions in each style, with each paraphrase treated as a distinct prob-
lem instance, resulting in 180 paraphrased problems overall. Since generating
paraphrases with the same LLM being evaluated could bias the paraphrases to-
ward that model’s language patterns and understanding, we excluded the Claude
series from the evaluation. We note that the paraphrased descriptions are not
guaranteed to be semantically equivalent to the original ones. In Appendix B, we
analyze their semantic similarity using established metrics from the literature.
A thorough human evaluation of semantic fidelity is left to future work.

4.4 Implementation Details

We evaluated the Direct Instruction Method and the Two-Step Method across
the CP modeling languages PyCSP3 (using the ACE solver) and MiniZinc (using
Gecode). A timeout of 10 minutes was set for each solver. For both syntax and
output format errors, the number of self-improvement attempts was limited to 3.
The Direct Instruction method was also compared against a Standalone Mode,
where the LLM receives the same instruction prompt but is allowed only a single
attempt to deliver the required output without iterative refinement.

For all LLMs, we set the temperature to zero for deterministic decoding and
generate one model per problem. However, we observed that ChatGPT-4o, with
a temperature setting of zero, did not follow greedy decoding, consistent with
4 https://www.anthropic.com/claude/sonnet



Zero-shot Constraint Modeling with LLMs 9

prior findings [27]. To mitigate bias to a single given sample, we sampled multiple
models per problem from ChatGPT-4o and reported average performance across
samples. Specifically, five models were sampled for each original problem, and
three models were sampled for each paraphrased problem.

We did not report model generation durations because models were accessed
through different public cloud API providers with potentially varied infrastruc-
ture, making direct wall-clock time comparison unreliable.

4.5 Evaluation

To evaluate the system’s performance in both modeling capability and generating
output that aligns with user requirements, we focus on two criteria: (1) Output
Format Alignment, which checks whether the generated output complies with
the user-specified format; and (2) Model Equivalence, which verifies whether
each generated model is semantically equivalent to a reference model M . We
begin by introducing an output format alignment measurement, followed by a
manual model equivalence check. However, manually interpreting and aligning
diverse output formats is expensive and only feasible on a small scale. To enable
large-scale evaluation, we also present an automated, unit-test-based approach
that closely approximates our manual evaluation.

Output Format Alignment The required output variables are evaluated us-
ing the output format checker described in(§3.2). The output produced by a
generated model is deemed to align with the required output format POF if it
passes the output format checker, denoted as FC(POF ,A) = 1; otherwise, 0. The
output format alignment rate (OFAR) across all N problems is then defined as:

OFAR =
1

N

N∑
i=1

FC(POF ,A). (3)

Manual Model Equivalence Checker We consider two CP models to be
equivalent if they have semantically equivalent constraints and produce seman-
tically equivalent solutions. To assess model equivalence, we performed manual
evaluation from two perspectives: (1) Model alignment: we interpret the prob-
lem description, extract its key logical components, and determine whether the
generated model aligns with the reference model in terms of constraints and ob-
jectives; (2) Solution verification: we then extract the final assignment of decision
variables from the generated model and manually map them to the decision vari-
ables used in the reference model. Next, we insert these mapped values into the
reference model to verify consistency with its constraints. Note that the model
equivalence check does not require compliance with any specific output format;
if the mapped assignment satisfies the reference model’s constraints, it is consid-
ered a pass. Both perspectives must pass for a generated model to be considered
equivalent, denoted as I(M̂i ≡ Mi) = 1; otherwise, 0. Based on this, the manual



10 Y. Song and E. Cohen

model equivalence rate (MMER), representing the fraction of generated models
equivalent to their reference models across all N problems, is then defined as:

MMER =
1

N

N∑
i=1

I(M̂i ≡ Mi) (4)

Automated Model Equivalence Checker We approximate the human eval-
uation process by creating evaluation scripts that contain a set of unit tests for
each problem. Specifically, these evaluation scripts require the generated code
to output solutions in a predefined format and verify whether the solutions sat-
isfy the problem’s constraints and logic as outlined in the problem description.
For COPs, the unit tests also recalculate the objective value from the output
solution to verify optimality. If it passes the checker, it is deemed equivalent to
the reference model, denoted as PI(M̂i ≡ Mi) = 1; otherwise, 0. The automated
model equivalence rate (AMER) is defined as:

AMER =
1

N

N∑
i=1

PI(M̂i ≡ Mi) (5)

5 Results

In Section 5.1, we present results from a small-scale manual evaluation on the
original CPEVAL problems, validating the effectiveness of the automated model
equivalence checker with the manual approach. As described in §4.5, we also ex-
amine output format alignment under our proposed methods to assess the confor-
mity to the user-requested format. Then, in Section 5.2, we perform a large-scale
automated evaluation across eight LLMs, evaluating their performance on the
original CPEVAL problems as well as the paraphrased variants.

Table 1: Evaluation results on original problems using ChatGPT-4o with 5 sam-
ples per problem. Method marked with † indicates a standalone model without
self-improvement.

Method Lang. MMER

(%)
OFAR

(%)
MMER ∩OFAR

(%)
AMER

(%)
Match

(Jaccard)

Direct Instr.† mzn 50 49 31 31 1
pycsp3 13 19 13 13 1

Direct Instr. mzn 69 63 55 55 1
pycsp3 53 60 53 53 1

Two-Step mzn 67 79 67 66 0.98
pycsp3 54 63 54 54 1



Zero-shot Constraint Modeling with LLMs 11

5.1 Small Scale Manual Evaluation

We start with a small-scale evaluation on the original CPEVAL problems using
ChatGPT-4o with manual model equivalence checking, as presented in Table 1.
Here, MMER∩OFAR denotes the proportion of hypothesis models that pass both
the manual model equivalence check and the output format checker. “Match”
denotes the Jaccard similarity between the set of problem instances passing
MMER ∩OFAR and the set of problem instances passing AMER.

Comparison of Modeling Methods Direct Instruction† (ChatGPT-4o in
standalone mode) exhibits relatively low performance in generating semanti-
cally correct models in both MiniZinc and PyCSP3, with MMER scores of 50%
and 13%, respectively. Upon investigation into the failed cases, we observed
that this poor performance is primarily due to syntax errors stemming from
the absence of a self-improvement process. Additionally, its ability to align with
the predefined output format is weak, resulting in the lowest MMER ∩ OFAR
score for both MiniZinc and PyCSP3. In contrast, Direct Instruction with self-
refinement demonstrates a notable improvement in MMER scores for MiniZinc
(50% → 69%) and PyCSP3 (19% → 53%), along with a significantly higher
MMER∩OFAR scores for MiniZinc (31% → 55%) and PyCSP3 (13% → 53%).

While the Two-Step Method achieves comparable MMER scores to Direct In-
struction in MiniZinc (67% vs. 69%), it is significantly more effective at ensuring
correct output formatting, leading to a significantly higher OFAR score than Di-
rect Instruction (79% vs. 63%). Additionally, the Two-Step Method consistently
outperforms Direct Instruction in OFAR across all evaluated CP modeling lan-
guages and LLMs (Appendix D). Therefore, we focus on the Two-Step Method
in the following sections.

Effectiveness of Automated Evaluation We gauge the effectiveness of the
automated evaluation by comparing the alignment between the MMER∩OFAR
score (models that are semantically correct and deliver solution in the predefined
format) and the AMER score. Notably, across all methods and CP languages,
AMER aligns closely with MMER ∩ OFAR. We also observe consistently high
Match scores, with a value of 1 across all methods and CP modeling languages,
except for the Two-Step Method on MiniZinc (0.98). This indicates that our
automated model equivalence checker reliably identifies models that are seman-
tically equivalent to their reference counterparts and output solutions in the
predefined format.

5.2 Large Scale Automated Evaluation

Table 2 presents the results of our large-scale automated (unit test-based) eval-
uation for original and paraphrased problems across eight prominent LLMs.
Overall, we observe that larger models tend to achieve higher AMER scores.



12 Y. Song and E. Cohen

Table 2: Results of automated evaluation on original and paraphrased problems
using the Two-Step Method.

Original Paraphrased

Model Params Lang. OFAR
(%)

AMER
(%)

OFAR
(%)

AMER
(%)

DeepSeek-R1 685B MZN 80 80 80 74
PYCSP3 67 63 61 54

DeepSeek-V3 685B MZN 80 70 76 58
PYCSP3 60 50 62 51

ChatGPT-4o Unknown MZN 79 66 76 65
PYCSP3 63 54 59 47

llama3.3 70B MZN 67 57 57 45
PYCSP3 43 30 33 23

QWen2.5 70B MZN 63 60 59 49
PYCSP3 47 33 46 33

QWen2.5-
Coder 32B MZN 63 47 54 41

PYCSP3 53 43 45 30

Phi-4 14.7B MZN 20 17 16 13
PYCSP3 37 20 33 26

Phi-3.5 mini 3.8B MZN 0 0 3 0
PYCSP3 7 0 9 2

Among all LLMs, DeepSeek-R1 attains the highest AMER score with MiniZ-
inc (80%) and PyCSP3 (63%), followed by DeepSeek-V3 (70%) for MiniZinc
and ChatGPT-4o (54%) for PyCSP3. Interestingly, QWen2.5-Coder outperforms
Llama3.3 and QWen2.5, both significantly larger, on PyCSP3, demonstrating the
potential benefits of code-related pre-training in Python code generation tasks.
The smaller model Phi-4 obtains significantly lower AMER scores, whereas the
even smaller Phi-3.5 mini struggles to generate valid CP models.

CP Languages Comparison We observe that modeling with MiniZinc con-
sistently outperforms PyCSP3 in terms of the AMER score across all LLMs.
This suggests that while LLMs demonstrate strong proficiency in generating
Python code, this ability does not directly translate into effective CP modeling
with PyCSP3. Moreover, we observe that the robustness of models to linguistic
variations varies across the two modeling languages, as discussed below.

Performance on Paraphrased Problems All LLMs exhibit degradation
in AMER when moving from the original problems to the paraphrased prob-
lems, though the extent of degradation varies. DeepSeek-R1 achieves the highest
AMER for the original problems and experiences a moderate drop on para-
phrased tasks for both MiniZinc (80% → 74%) and PyCSP3 (63% to 54%),
though it still outperforms other LLMs. DeepSeek-V3, another strong performer,
undergoes a notable performance drop on MiniZinc for paraphrased problems
(70%→58%) but maintains relatively stable AMER scores for PyCSP3 (50%
→ 51%). In contrast, ChatGPT-4o’s AMER on paraphrased tasks with MiniZ-



Zero-shot Constraint Modeling with LLMs 13

inc remains closely aligned with its performance on the original problems (66%
→ 65%), while its results for PyCSP3 shows greater sensitivity to paraphrased
problems with a significant drop in AMER (54% → 47%).

Among the remaining open-source models, Llama3.3-70B shows a consistent
performance drop across all CP languages, while QWen2.5-70B demonstrates a
notable decline on MiniZinc (60% → 49%) but remains stable on PyCSP3 (33%).
Conversely, QWen2.5-Coder-32B experiences a significant AMER reduction on
both MiniZinc (47% → 41%) and PyCSP3 (43% → 30%), highlighting differ-
ences in sensitivity across problem formulations and languages. Phi-4 drops on
MiniZinc (17% → 13%) but improves on PyCSP3 (20% → 26%).

6 Related Works

Several studies have explored using LLMs to generate code for modeling and
solving mathematical optimization problems from natural language descriptions.
Ramamonjison et al. [30] proposed a workflow for assisting linear programming
(LP) problem formulation based on natural language descriptions, followed by
the introduction of the NL4Opt competition benchmark focused on LP problems
[31]. Ahmaditeshnizi et al. [4] presented a workflow for modeling LP problems
and proposed NLP4Opt, a benchmark encompassing LP and mixed-integer lin-
ear programming (MILP). In addition, Mostajabdaveh et al. [24] proposed a
benchmark for LP, MILP, and quadratic programming (QP) with Zimpl, along
with a multi-agent modeling system evaluated on that benchmark. Hao et al.
[17] extract planning tasks from natural language and encode them as SMT
optimization models to compute plans.

In the context of CP model generation from natural language descriptions,
research remains comparatively limited. Almonacid et al. [5] performed a pre-
liminary exploration of using ChatGPT-3.5 to generate MiniZinc code. However,
different from our work, they do not focus on generating correct CP models for
optimization problems based on natural language description. Instead, their ap-
proach is focused on prompting LLMs to generate MiniZinc code templates (e.g.,
“A source code with an array of discrete variables with domain and without
constraints”). Tsouros et al. [33] presented a position paper discussing poten-
tial strategies for LLM-based CP modeling, though these ideas were not imple-
mented or evaluated. Additionally, Lawless et al. [19] studied the use of LLMs
to generate CP-based scheduling constraints in an interactive meeting schedul-
ing system. The most relevant prior work is by Michailidis et al. [23], which
focuses on CP modeling in CPMpy using a few-shot approach supplemented
by retrieval-augmented generation (RAG). During modeling, their method pro-
vides the LLM with several similar problems and corresponding solution models
to guide generation. In contrast, our workflow is designed for zero-shot CP model
generation, relying solely on the LLM’s internal knowledge augmented with an
iterative modeling workflow that effectively boosts modeling performance with-
out requiring similar example problems or models. Moreover, our comprehensive
evaluation spans eight state-of-the-art LLMs, two CP modeling languages, and



14 Y. Song and E. Cohen

attempts to mitigate evaluation bias due to data memorization, an aspect that
was not considered in prior work on CP model generation.

7 Conclusion and Discussion

In this paper, we propose methods for leveraging LLMs for CP modeling, empha-
sizing both model correctness and conformity to output format specification. We
also introduce CPEVAL, a benchmark with an automated evaluation framework
designed to assess LLMs’ performance in CP modeling. Through an empirical
evaluation of our proposed workflows across eight prominent LLMs and two
popular CP modeling languages, we observe that (1) our two-step method with
iterative self-improvement significantly enhances the performance of LLMs and
(2) DeepSeek-R1 outperforms all other evaluated models, and MiniZinc gener-
ally achieves better results than PyCSP3 across most LLMs. By paraphrasing
the original CSPLib problem descriptions, we further examine the robustness of
LLMs when presented with varied linguistic expressions and framings. Although
all models exhibit a notable performance degradation on paraphrased problems,
the extent of this degradation varies across both models and CP languages.

Our work raises several promising directions for future research: (1) Devel-
oping specialized prompting strategies that incorporate CP-specific knowledge
to guide LLM in CP modeling can enhance the performance of our approach.
(2) Transferring knowledge from larger LLMs with strong modeling and cod-
ing capabilities to enhance the performance of smaller, more efficient LLMs in
CP tasks. (3) Extending CPEVAL with additional problems would enable more
comprehensive evaluations of LLMs’ capabilities in CP tasks. (4) Building on our
iterative modeling framework and the CPEVAL suite, future work could explore
reinforcement learning-based fine-tuning of LLMs using structured feedback sig-
nals (e.g., syntax errors, semantic failures, and output format mismatches) as a
form of supervision.

References

1. Abbasi-Yadkori, Y., Kuzborskij, I., György, A., Szepesvari, C.: To believe or not
to believe your llm: Iterativeprompting for estimating epistemic uncertainty. In:
NeurIPS (2024)

2. Abdin, M., Aneja, J., Awadalla, H., Awadallah, A., Awan, A.A., Bach, N., Bahree,
A., Bakhtiari, A., Bao, J., Behl, H., et al.: Phi-3 technical report: A highly capable
language model locally on your phone. arXiv:2404.14219 (2024)

3. Abdin, M., Aneja, J., Behl, H., Bubeck, S., Eldan, R., Gunasekar, S., Harrison,
M., Hewett, R.J., Javaheripi, M., Kauffmann, P., et al.: Phi-4 technical report.
arXiv:2412.08905 (2024)

4. AhmadiTeshnizi, A., Gao, W., Udell, M.: Optimus: Optimization modeling using
mip solvers and large language models. arXiv:2310.06116 (2023)

5. Almonacid, B.: Towards an automatic optimisation model generator assisted with
generative pre-trained transformer. arXiv:2305.05811 (2023)



Zero-shot Constraint Modeling with LLMs 15

6. Azem, S., Aggoune, R., Dauzère-Pérès, S.: Disjunctive and time-indexed formula-
tions for non-preemptive job shop scheduling with resource availability constraints.
In: IEEE IEEM. pp. 787–791 (2007)

7. Balloccu, S., Schmidtová, P., Lango, M., Dušek, O.: Leak, cheat, repeat: Data
contamination and evaluation malpractices in closed-source llms. In: EACL. pp.
67–93 (2024)

8. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot
learners. Advances in neural information processing systems 33, 1877–1901 (2020)

9. Chen, B., Zhang, F., Nguyen, A., Zan, D., Lin, Z., Lou, J.G., Chen, W.: Codet:
Code generation with generated tests. In: ICLR (2023)

10. Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H.P.D.O., Kaplan, J., Edwards,
H., Burda, Y., Joseph, N., Brockman, G., et al.: Evaluating large language models
trained on code. arXiv:2107.03374 (2021)

11. Chen, X., Lin, M., Schärli, N., Zhou, D.: Teaching large language models to self-
debug. In: ICLR (2024)

12. Epstein, S.L., Freuder, E.C.: Collaborative learning for constraint solving. In: CP.
pp. 46–60. Springer (2001)

13. Freuder, E.: In pursuit of the holy grail. ACM CSUR 28(4es), 63–es (1996)
14. Gent, I.P., Walsh, T.: Csplib: a benchmark library for constraints. In: CP. pp.

480–481 (1999)
15. Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R., Zhu, Q., Ma, S.,

Wang, P., Bi, X., et al.: Deepseek-r1: Incentivizing reasoning capability in llms via
reinforcement learning. arXiv:2501.12948 (2025)

16. Hao, S., Gu, Y., Ma, H., Hong, J., Wang, Z., Wang, D., Hu, Z.: Reasoning with
language model is planning with world model. In: EMNLP. pp. 8154–8173 (2023)

17. Hao, Y., Zhang, Y., Fan, C.: Planning anything with rigor: General-purpose
zero-shot planning with llm-based formalized programming. arXiv preprint
arXiv:2410.12112 (2024)

18. Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng,
W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models:
Principles, taxonomy, challenges, and open questions. ACM TOIS (2023)

19. Lawless, C., Schoeffer, J., Le, L., Rowan, K., Sen, S., St. Hill, C., Suh, J., Sar-
rafzadeh, B.: “i want it that way”: Enabling interactive decision support using large
language models and constraint programming. ACM TIIS 14(3), 1–33 (2024)

20. Lecoutre, C., Szczepanski, N.: Pycsp3: modeling combinatorial constrained prob-
lems in python. arXiv:2009.00326 (2020)

21. Liu, A., Feng, B., Xue, B., Wang, B., Wu, B., Lu, C., Zhao, C., Deng, C., Zhang,
C., Ruan, C., et al.: Deepseek-v3 technical report. arXiv:2412.19437 (2024)

22. Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao, L., Wiegreffe, S., Alon, U.,
Dziri, N., Prabhumoye, S., Yang, Y., et al.: Self-refine: Iterative refinement with
self-feedback. NeurIPS 36 (2024)

23. Michailidis, K., Tsouros, D., Guns, T.: Constraint modelling with llms using in-
context learning. In: CP (2024)

24. Mostajabdaveh, M., Yu, T.T., Ramamonjison, R., Carenini, G., Zhou, Z., Zhang,
Y.: Optimization modeling and verification from problem specifications using a
multi-agent multi-stage llm framework. INFOR: Information Systems and Opera-
tional Research 62(4), 599–617 (2024)

25. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: Minizinc:
Towards a standard cp modelling language. In: CP. pp. 529–543 (2007)



16 Y. Song and E. Cohen

26. O’Sullivan, B.: Automated modelling and solving in constraint programming. In:
AAAI. pp. 1493–1497 (2010)

27. Ouyang, S., Zhang, J.M., Harman, M., Wang, M.: An empirical study of the non-
determinism of chatgpt in code generation. ACM TOSEM (2024)

28. Pan, L., Saxon, M., Xu, W., Nathani, D., Wang, X., Wang, W.Y.: Automatically
correcting large language models: Surveying the landscape of diverse self-correction
strategies. arXiv:2308.03188 (2023)

29. Petropoulos, F., Laporte, G., Aktas, E., Alumur, S.A., Archetti, C., Ayhan, H.,
Battarra, M., Bennell, J.A., Bourjolly, J.M., Boylan, J.E., et al.: Operational re-
search: methods and applications. JORS 75(3), 423–617 (2024)

30. Ramamonjison, R., Li, H., Yu, T., He, S., Rengan, V., Banitalebi-Dehkordi, A.,
Zhou, Z., Zhang, Y.: Augmenting operations research with auto-formulation of
optimization models from problem descriptions. In: EMNLP. pp. 29–62 (2022)

31. Ramamonjison, R., Yu, T., Li, R., Li, H., Carenini, G., Ghaddar, B., He, S., Mosta-
jabdaveh, M., Banitalebi-Dehkordi, A., Zhou, Z., et al.: Nl4opt competition: For-
mulating optimization problems based on their natural language descriptions. In:
NeurIPS 2022 Competition Track. pp. 189–203. PMLR (2023)

32. Simhi, A., Herzig, J., Szpektor, I., Belinkov, Y.: Distinguishing ignorance from
error in llm hallucinations. arXiv:2410.22071 (2024)

33. Tsouros, D., Verhaeghe, H., Kadıoğlu, S., Guns, T.: Holy grail 2.0: From natural
language to constraint models. arXiv:2308.01589 (2023)

34. Van Hentenryck, P., van Hoeve, W.J.: Constraint Programming, pp. 1–16. Springer
International Publishing (2020)

35. Wang, Y., Zeng, J., Liu, X., Meng, F., Zhou, J., Zhang, M.: Taste: Teaching large
language models to translate through self-reflection. arXiv:2406.08434 (2024)

36. Xu, R., Wang, Z., Fan, R.Z., Liu, P.: Benchmarking benchmark leakage in large
language models. arXiv:2404.18824 (2024)

37. Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu, B., Li, C., Liu, D., Huang,
F., Wei, H., et al.: Qwen2. 5 technical report. arXiv:2412.15115 (2024)

38. Yu, F., Zhang, H., Tiwari, P., Wang, B.: Natural language reasoning, a survey.
ACM CSUR 56(12), 1–39 (2024)

39. Zhong, L., Wang, Z., Shang, J.: Ldb: A large language model debugger via verifying
runtime execution step-by-step. arXiv:2402.16906 (2024)



Zero-shot Constraint Modeling with LLMs 17

A CPEVAL Original Problems

Table 3 provides an overview of the CPEVAL problems selected from CSPLib.

Table 3: Overview of problems included in the CPEVAL dataset.
ID Title Category
1 Car Sequencing Scheduling and related problems

2 Template Design Bin packing
Partitioning and related problems

3 Quasigroup Existence Combinatorial mathematics
6 Golomb rulers Combinatorial mathematics
7 All-Interval Series Combinatorial mathematics
8 Vessel Loading Design and configuration
10 Social Golfers Problem Scheduling and related problems
12 Nonogram Games and puzzles
14 Solitaire Battleships Games and puzzles
15 Schur’s Lemma Combinatorial mathematics
16 Traffic Lights Unclassified

18 Water Bucket Problem Bin packing
Partitioning and related problems

19 Magic Squares Combinatorial mathematics
22 Bus Driver Scheduling Scheduling and related problems

23 Magic Hexagon
Games and puzzles
Design and configuration
Combinatorial mathematics

24 Langford’s number problem Combinatorial mathematics

28 Balanced Incomplete
Block Designs

Design and configuration
Combinatorial mathematics

32 Maximum density still life Games and puzzles

34 Warehouse Location Problem Design and configuration
Logistics

39 The Rehearsal Problem Scheduling and related problems

41 The n-Fractions Puzzle Games and puzzles
Combinatorial mathematics

44 Steiner triple systems Combinatorial mathematics
49 Number Partitioning Combinatorial mathematics
50 Diamond-free Degree Sequences Combinatorial mathematics
53 Graceful Graphs Combinatorial mathematics
54 N-Queens Games and puzzles

56 Synchronous Optical Networking
(SONET) Problem Network design

57 Killer Sudoku Games and puzzles
67 Quasigroup Completion Combinatorial mathematics
74 Maximum Clique Combinatorial mathematics



18 Y. Song and E. Cohen

B Paraphrase Problems

B.1 Paraphrase Modes

We define two paraphrase modes to generate paraphrases in diverse styles, both
designed to maintain the original problem logic while introducing varied linguis-
tic expressions and framings.

Precise Mode : The precise mode instructs the paraphrase LLM to rephrase the
problem descriptions with minimal semantic variation, preserving the original
meaning and technical accuracy without introducing any new information that
or altering the problem’s intent. This approach generates professional and for-
mal rephrasing that retrain the technical rigor of the original descriptions while
introducing subtle variations in linguistic expressions and framings.

Colloquial Mode : The colloquial mode instructs the paraphrase LLM to rephrase
the problem descriptions in a casual and conversational tone, simulating how
laypersons who lack domain-specific terminology might describe complex prob-
lems when seeking assistance. Unlike original CSPLib problems, which are typ-
ically expressed in formal and precise language, these paraphrases introduce
relatively greater linguistic variation, incorporating colloquial expressions and
simplified linguistic structures.

B.2 Paraphrase Generation

The original problem descriptions were paraphrased using claude-3.5-sonnet-
20240620. For each original problem, twenty paraphrases were generated in each
mode (Precision and Colloquial). Figure 2 illustrates the prompt employed for
paraphrase generation.

B.3 Semantical Analysis of Paraphrase Problems

We evaluate the paraphrased problems from two perspectives: each paraphrase
should exhibit linguistic variation from the original problem descriptions while
preserving semantical similarity. Table 4 shows BLEU5 scores and BERTScore6

values for paraphrased problem descriptions compared to their original counter-
parts, along with self-BLEU scores to assess similarity among paraphrases within
the same mode. The low BLEU scores indicate minimal n-gram overlap between
the paraphrased and original descriptions, confirming that the paraphrases ex-
hibit substantial lexical variation. Meanwhile, the relatively high BERTScores
suggest that the paraphrases retain strong semantic similarity to the original
descriptions.
5 Papineni et al. (2002), “Bleu: a method for automatic evaluation of machine trans-

lation”
6 Zhang et al. (2019), “Bertscore: Evaluating text generation with bert”



Zero-shot Constraint Modeling with LLMs 19

Fig. 2: Prompt used for paraphrase generation for the Colloquial mode and Pre-
cise mode

Table 4: Average content similarity metrics for problem descriptions. Para-
phrased descriptions are compared to the original problem description, both
collectively (Combined) and separately by mode.

Mode BLEU Self-BLEU BERTScore
Combined 0.0476 0.1901 0.5869
Colloquial 0.0465 0.3254 0.5869
Precise 0.0488 0.3181 0.6150

C Self-Improvement

Figure 3 illustrates the iterative self-improvement process on example errors.
In part (a), the LLM receives a syntax error message from the IDE, while in
part (b), it receives an output format mismatch error message. In both cases,
the LLM produces a revised version of the code and re-executes it in the IDE.
This process continues iteratively until the corresponding checker is passed or
the self-improvement attempt limit is reached.

D Large-Scale Evaluation

D.1 Augmented Output Format Alignment

Table 5 corresponds to Table 2 but includes results for both the Direct In-
struction and Two-Step methods. According to the OFAR scores in Table 5, the
Two-Step method demonstrates significantly better performance across all LLMs



20 Y. Song and E. Cohen

Fig. 3: Examples of Self-Improvement. Block (a) addresses syntax errors, while
Block (b) handles output format mismatches based on feedback from the output
format checker.

and CP languages than the Direct Instruction method in OFAR scores. This
improvement is particularly pronounced with MiniZinc for medium-sized LLMs.
For instance, Llama-3.3-70B and QWen2.5-70B nearly double their OFAR scores
compared to the Direct Instruction method, increasing from 30% → 67% and
37% → 63%, respectively. For PyCSP3, the Two-Step method also significantly
improves the OFAR scores of open-source models, though the improvement is
less substantial than with MiniZinc.



Zero-shot Constraint Modeling with LLMs 21

Table 5: Evaluation of all LLMs across CP modeling languages on both original
and paraphrased problems.

Original Paraphrased

Model Params Lang. Methods OFAR
(%)

PMER
(%)

OFAR
(%)

PMER
(%)

DeepSeek-R1 685B
MZN DI 70 70 71 66

2S 80 80 80 74

PYCSP3 DI 63 57 63 54
2S 67 63 61 54

DeepSeek-V3 685B
MZN DI 70 57 63 48

2S 80 70 76 58

PYCSP3 DI 63 50 62 50
2S 60 50 62 51

ChatGPT-4o Unknown
MZN DI 63 55 63 56

2S 79 66 76 65

PYCSP3 DI 60 52 58 47
2S 63 54 59 47

llama3.3-70B 70B
MZN DI 30 20 30 22

2S 67 57 57 45

PYCSP3 DI 30 23 26 17
2S 43 30 33 23

QWen2.5-70B 70B
MZN DI 37 33 36 33

2S 63 60 59 49

PYCSP3 DI 33 20 29 17
2S 47 33 46 33

QWen2.5-
Coder 32B

MZN DI 43 30 41 34
2S 63 47 54 41

PYCSP3 DI 20 20 21 17
2s 53 43 45 30

Phi-4 14.7B
MZN DI 7 3 4 4

2S 20 17 16 13

PYCSP3 DI 17 13 11 6
2S 37 20 33 26

Phi-3.5 mini 3.8B
MZN DI 0 0 2 0

2S 0 0 3 0

PYCSP3 DI 0 0 0 1
2S 7 0 9 2


