
Provably Near-Optimal Federated Ensemble Distillation
with Negligible Overhead

Won-Jun Jang 1 Hyeon-Seo Park 1 Si-Hyeon Lee 1

Abstract
Federated ensemble distillation addresses client
heterogeneity by generating pseudo-labels for an
unlabeled server dataset based on client predic-
tions and training the server model using the
pseudo-labeled dataset. The unlabeled server
dataset can either be pre-existing or generated
through a data-free approach. The effectiveness of
this approach critically depends on the method of
assigning weights to client predictions when cre-
ating pseudo-labels, especially in highly hetero-
geneous settings. Inspired by theoretical results
from GANs, we propose a provably near-optimal
weighting method that leverages client discrimi-
nators trained with a server-distributed generator
and local datasets. Our experiments on various im-
age classification tasks demonstrate that the pro-
posed method significantly outperforms baselines.
Furthermore, we show that the additional com-
munication cost, client-side privacy leakage, and
client-side computational overhead introduced by
our method are negligible, both in scenarios with
and without a pre-existing server dataset.

1. Introduction
Federated learning (FL) (McMahan et al., 2017) has re-
ceived substantial attention in both industry and academia as
a promising distributed learning approach. It enables numer-
ous clients to collaboratively train a global model without
sharing their private data. A major concern in deploying FL
in practice is the severe data heterogeneity across clients.
In the real world, it’s probable that clients possess non-IID
(identical and independently distributed) data distributions.
It is known that the data heterogeneity results in unstable
convergence and performance degradation (Li et al., 2020b;

1School of Electrical Engineering, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon, South Korea. Corre-
spondence to: Si-Hyeon Lee <sihyeon@kaist.ac.kr>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Wang et al., 2020b; Li & Zhan, 2021; Kairouz et al., 2021;
Huang et al., 2023; Karimireddy et al., 2020).

To address the data heterogeneity issue, various approaches
have been taken, including regularizing the objectives of the
client models (Karimireddy et al., 2020; Li et al., 2020a;
Liang et al., 2019; Yao et al., 2021; Mendieta et al., 2022;
Son et al., 2024), normalizing features or weights (Dong
et al., 2022; Kim et al.), utilizing past round models (Yao
et al., 2021; Wang et al., 2023b), sharing feature informa-
tion (Dai et al., 2023; Yang et al., 2024; Tang et al., 2024;
Zhang et al., 2024), introducing personalized layers (Huang
et al., 2023), and learning the average input-output rela-
tion of client models through ensemble distillation (Chang
et al., 2019; Gong et al., 2021; Deng et al., 2023; Sattler
et al., 2020; Lin et al., 2020; Cho et al., 2022; Xing et al.,
2022; Park et al., 2024; Wang et al., 2023a; Tang et al.,
2022; Zhang et al., 2022; 2023a). In particular, the last ap-
proach, federated ensemble distillation, has recently gained
significant attention for its effectiveness in mitigating data
heterogeneity and for its advantage of being effectively ap-
plicable to heterogeneous client models. It requires an un-
labeled dataset at the server, for which pseudo labels are
created based on client predictions. By training on this
pseudo-labeled dataset at the server, the server distills the
knowledge from the clients. This additional dataset can be
either public (Chang et al., 2019; Gong et al., 2021; Deng
et al., 2023; Sattler et al., 2020), held only by the server due
to its exceptional data collection capability (Lin et al., 2020;
Cho et al., 2022; Xing et al., 2022; Park et al., 2024), or
obtained through a data-free approach (Wang et al., 2023a;
Tang et al., 2022; Zhang et al., 2022; 2023a). Note that
the performance of ensemble distillation depends on the
quality of the pseudo-labels, which ultimately translates
into a problem of appropriately assigning weights to client
predictions for each data point, particularly in situations
of data heterogeneity. In this research stream of federated
ensemble distillation, early studies like FedDF (Lin et al.,
2020) applied uniform weighting. Subsequently, algorithms
such as Fed-ET (Cho et al., 2022), FedHKT (Deng et al.,
2023), FedDS (Park et al., 2024), and DaFKD (Wang et al.,
2023a) emerged, which utilize metrics like variance, en-
tropy, and judgement of client discriminator as indicators
of confidence in client predictions for weighting. However,

1

Provably Near-Optimal Federated Ensemble Distillation with Negligible Overhead

Averaged model Uniform weighting Variance weighting Entropy weighting Domain weighting Our weighting

Figure 1. A toy example of decision boundaries of aggregated models. Each point represents data, and its color represents the label. The
background color represents the decision boundary of each model in the RGB channels. The oracle decision boundary, shown by the black
lines, corresponds to the x-axis and y-axis. For aggregated models, we consider the parameter-averaged model (McMahan et al., 2017)
and ensemble-distilled models using uniform weighting (Lin et al., 2020), variance weighting (Cho et al., 2022), entropy weighting (Deng
et al., 2023; Park et al., 2024), domain-aware weighting (Wang et al., 2023a), and ours. Detailed settings are provided in Appendix E.1.

analysis regarding the rationale behind optimal weighting
remains scarce.

In this paper, we suggest a novel weighting method for
federated ensemble distillation that outperforms previous
methods (Fig. 1), with theoretically justified optimality
based on some results in generative adversarial networks
(GANs) (Goodfellow et al., 2014). Our main contributions
are summarized in the following:

• We propose FedGO: Federated Ensemble Distillation
with GAN-based Optimality. Our algorithm incorpo-
rates a novel weighting method using the client dis-
criminators that are trained at the clients based on the
generator distributed from the server.

• The optimality of our proposed weighting method is
theoretically justified. We define an optimal model
ensemble and show that a knowledge-distilled model
from an optimal model ensemble achieves the opti-
mal performance, within an inherent gap due to the
difference between the spanned hypothesis class of
ensemble model and the hypothesis class of a single
model. Then, based on the theoretical result for vanilla
GAN (Goodfellow et al., 2014), we show that our
weighting method using client discriminators consti-
tutes an optimal model ensemble.

• We experimentally demonstrate significant improve-
ments of FedGO over existing research both in final
performance and convergence speed on multiple image
datasets (CIFAR-10/100, ImageNet100). In particular,
we demonstrate performance across various scenarios,
including cases where the server holds an unlabeled
dataset different from the client datasets and where the
server does not hold an unlabeled dataset, requiring
data-free approaches. Furthermore, we provide a com-
prehensive analysis of communication cost, privacy
leakage, and computational burden for the proposed
method, showing that client-side overheads are negligi-
ble both in scenarios with and without a pre-existing
server dataset.

For ease of reproduction, our code is open-sourced

(https://github.com/pupiu45/FedGO).

2. System Model and Related Work
Federated Learning In federated learning, the goal is to
cooperatively train a global model based on data distributed
among K clients, by exchanging the models between a
server and the clients.

We focus on classification tasks in this paper. Let X denote
the data domain and y denote the labeling function that out-
puts the label of the data x ∈ X . A model f(·; θ) is parame-
terized by θ ∈ Θ where Θ is the set of model parameters and
H = {h|h(·) = f(·; θ), θ ∈ Θ} denotes the class of param-
eterized models. For a distribution q on X , h∗

q denotes the
expected loss minimizer on q, i.e., h∗

q ≜ argminh∈H Lq(h),
where Lq(h) = Eq[l(h(x), y(x))] and l is the loss function.
Client k possesses a (labeled) dataset Sk of nk data points,
sampled over X i.i.d. according to distribution pk. Then
p =

∑K
k=1 πk ·pk, where πk = nk∑K

k′=1
nk′

, is the average of
client data distribution. The objective of federated learning
is given as follows:

min
h∈H
Lp(h) = min

h∈H
Ep[l(h(x), y(x))] (1)

= min
h∈H

K∑
k=1

πk ·Epk
[l(h(x), y(x))] = min

h∈H

K∑
k=1

πk · Lpk
(h).

(2)

In each communication round t, a subset At of clients down-
loads the current server model and trains it based on Sk

with the objective of minimizing Lpk
(h). Then it sends the

trained model to the server. The server aggregates these
client models to update the server model. The aforemen-
tioned procedure is repeated at the next communication
round. For the aggregation of client models at the server, the
FedAVG algorithm (McMahan et al., 2017) constructs the
server model with parameter θts for round t as the average
of model parameters θtk for k ∈ At received in round t (line
7 of Algorithm 1). When the client data distributions are
homogeneous, each pk is same as p and hence Lpk

becomes
same as Lp. However, when the client data distributions
are heterogeneous, Lpk

and Lp are not same, leading to a

2

https://github.com/pupiu45/FedGO

Provably Near-Optimal Federated Ensemble Distillation with Negligible Overhead

Algorithm 1 Federated learning with K clients for T communication rounds, with ensemble distillation exploiting unlabeled
dataset on the server. Client k possesses nk data points, and the fraction C of clients participate in each communication
round. f(·; θ) stands for the model with parameter θ, and µ stands for the step size.

Require: Client labeled dataset {Sk}Kk=1, server unlabeled dataset U
Initialize server model f(·; θ0s) with parameter θ0s
for communication round t = 1 to T do

At ← sample ⌊C ·K⌋ clients
for parallel client k ∈ At do
θtk ← ClientUpdate(θt−1

s , Sk) ▷Gradient update θt−1
s with Sk

end for
θts ←

∑
k∈At

nk∑
i∈At ni

· θtk
for server train epoch e = 1 to Es do

for unlabeled minibatch u ∈ U do
ỹ(u)← σ(

∑
k∈At wk(u) · f(u; θtk)) ▷Label as a weighted sum of client predictions

θts ← θts − µ · ∇θt
s
KL(ỹ(u), σ(f(u; θts))) ▷Ensemble distillation

end for
end for

end for
return f(·; θTs)

significant degradation in the convergence rate of FedAVG
to the global optimum (Li et al., 2020b).

In the following, we introduce federated ensemble distil-
lation using an unlabeled dataset on the server to address
client data heterogeneity.

Federated Ensemble Distillation To address client data
heterogeneity, there has been a line of research on feder-
ated ensemble distillation using an unlabeled dataset on the
server. This unlabeled dataset may either be available from
the outset (Lin et al., 2020; Cho et al., 2022; Deng et al.,
2023; Park et al., 2024) or produced through a generator
trained as a part of FL by taking a data-free approach (Ra-
souli et al., 2020; Guerraoui et al., 2020; Li et al., 2022;
Wang et al., 2023c; Fan & Liu, 2020; Behera et al., 2022;
Hardy et al., 2019; Xiong et al., 2023; Zhang et al., 2021;
2023b; Wang et al., 2023a; Zhang et al., 2022; 2023a). With
the unlabeled dataset, the server model undergoes additional
training to learn the average input-output relationship of
client models.

Algorithm 1 describes this federated ensemble distillation,
when the client and server model structures are the same.
Here σ represents the softmax function, and KL denotes
the Kullback-Leibler divergence. If the model output al-
ready includes the softmax activation, then the softmax
function is omitted in lines 10 and 11. After averaging
client model parameters in line 7, the performance of the
server model depends on the quality of the pseudo-labels, as
the server model undergoes additional training with those
pseudo-labels. Moreover, the quality of pseudo-labels ỹ(·)
relies on designing the weighting function wk(·), which

determines the weighting of client k’s output. Therefore,
designing a better-performing ensemble distillation during
the server update ultimately boils down to designing a better-
performing weighting function.

For the weighting function, FedDF (Lin et al., 2020) uses
uniform weights for each client, i.e., wk(x) = 1

|At| for
all k in At. Subsequently, algorithms assigning higher
weights to the outputs of more confident clients have
been proposed. In Fed-ET (Cho et al., 2022), higher
weights are assigned to models with larger output logit vari-
ance, i.e., wk(x) =

Var(f(x;θt
k))∑

i∈At Var(f(x;θt
i))

. FedHKT (Deng
et al., 2023) and FedDS (Park et al., 2024) allocate higher
weights to models with smaller output softmax entropy, i.e.,
wk(x) =

exp(−Entropy(σ(f(x;θt
k)))/τ)∑

i∈At exp(−Entropy(σ(f(x;θt
i)))/τ)

, where τ is the
temperature parameter. In DaFKD (Wang et al., 2023a),
while training a global generator and client discriminators
at each round, ensemble distillation is performed on unla-
beled dataset generated by the global generator by assigning
higher weights to models with larger discriminator outputs,
i.e., wk(x) =

Dt
k(x)∑

i∈At Dt
i(x)

where Dt
k is the client k’s dis-

criminator against the global generator at round t.

For theoretical aspects, generalization bounds of an ensem-
ble model are presented in Table 1 for a binary classification
task under ℓ1 loss. For nk = n

K for all k, a generalization
bound for an ensemble model with fixed weights α1, ..., αK

with
∑

k αk = 1 is given as (1.1) (Lin et al., 2020; Cho

et al., 2022), with weight function wk(x) =
Dt

k(x)∑
i∈At Dt

i(x))

is given as (1.2) (Wang et al., 2023a), and with our weight
function w∗

k(x) described in Section 3.1 is given as (1.3).

3

Provably Near-Optimal Federated Ensemble Distillation with Negligible Overhead

Table 1. Generalization bound of the ensemble model of ensemble distillation algorithms. For any δ ∈ (0, 1) and σ > 0, the generalization
bounds hold with probability 1 − δ. Here, p̂k is the empirical distribution by sampling nk data points i.i.d. according to pk, dH△H
denotes the discrepancy between two distributions, λk = infh Lpk (h) +Lp(h), and τH is growth function bounded by polynomial of the
VC-dimension of H.

Algorithm Generalization Bound

FedDF (Lin et al., 2020),
Fed-ET (Cho et al., 2022) Lp(

∑K
k=1 αkh

∗
p̂k
) ≤

∑K
k=1 αk ·

[
Lp̂k

(h∗
p̂k
) + 1

2dH△H(pk, p) + λk +O
(

log(δ−1)√
nk

)]
(1.1)

DaFKD (Wang et al., 2023a) Lp(
∑K

k=1 wk · h∗
p̂k
) ≤ (K + 1) ·

∑K
k=1

1
K ·
[
Lp̂k

(h∗
p̂k
) +

√
σ2 log 2K

δ

2nk

]
(1.2)

Ours, Theorem C.1 Lp(
∑K

k=1 w
∗
k · h∗

p̂k
) ≤

∑K
k=1 πk ·

[
Lp̂k

(h∗
p̂k
) +

4+
√

log(τH(2nk))

(δ/K)
√
2nk

]
(1.3)

These bounds relate the loss of an ensemble model (the
LHS of (1.1), (1.2) and (1.3)) to the average empirical loss
of client models (the first term in the RHS of (1.1), (1.2) and
(1.3)). Note that the bound (1.1) assumes a fixed weight per
client irrelevant to data points, hence there is a lack of anal-
ysis for assigning varying weights per data point. Further-
more, (1.1) provides a generalization bound that becomes
loose as it scales with the average distribution discrepancy
between p and pk across clients. The bound (1.2) assumes
a specific weighting function of each data point, but it is
too loose because it becomes vacuous as K increases. In
contrast, (1.3), which is derived in this paper, provides a
refined generalization bound for weighting functions. To
the best of our knowledge, this is the tightest bound cur-
rently provided, as detailed in Theorem C.1. Furthermore,
we also emphasize that the bound (1.3) is independent of
client data heterogeneity, as it does not include any client
data discrepancy term.

Moreover, in federated ensemble distillation, our ultimate in-
terest is in the loss of the server model, knowledge-distilled
from the ensemble model. Note that the hypothesis class
of ensemble models is in general larger than that of single
models, and hence there exists an inherent gap between the
losses of an ensemble model and the knowledge-distilled
model. However, the above bounds do not provide an analy-
sis on this gap.

In Section 3.1, we define an optimal model ensemble and
show that the server model knowledge-distilled from an op-
timal model ensemble achieves the optimal loss within the
gap arising from the distillation step, which depends on the
inherent difference between the hypothesis classes of the
server model and the ensemble model, along with the distri-
bution discrepancy between the average client distribution p
and the distribution ps of unlabeled data on the server.

Generative Adversarial Network The generative adver-
sarial networks (GANs) are a class of powerful generative
models composed of a generator and a discriminator (Good-
fellow et al., 2014; Gulrajani et al., 2017; Radford et al.,
2016; Chen et al., 2016; Zhu et al., 2017; Choi et al., 2018;
Karras et al., 2019). They are trained in an unsupervised

learning manner, requiring no class labels. The discrimina-
tor aims to distinguish between real images from the dataset
and fake images generated by the generator. Meanwhile,
the generator strives to produce images that can fool the
discriminator.

In Goodfellow et al. (2014), the authors showed that the
output of an optimal discriminator against a fixed generator
can be expressed in terms of distributions of real and fake
images.

Theorem 2.1. (Goodfellow et al., 2014, Proposition 1.)
For a fixed generator G, let pg and pdata denote the density
functions of the generated distribution by G and the real
data distribution, respectively. Then the output of an optimal
discriminator D for input data x is given as follows:

D(x) =
pdata(x)

pdata(x) + pg(x)
. (3)

Using the above result, we develop a method of assigning
weights to client predictions in Section 3.

3. Proposed Method
In this section, we propose a weighting method for federated
ensemble distillation. First, theoretical results are presented
in Section 3.1. In Section 3.1.1, we define an optimal model
ensemble and give a bound on the loss of the server model
knowledge-distilled from an optimal model ensemble. Next,
in Section 3.1.2, we propose a client weighting method to
construct an optimal model ensemble, based on Theorem 2.1.
In Section 3.2, we introduce our FedGO algorithm, lever-
aging the theoretical results. We note that a generalization
bound of an ensemble model with our proposed weighting
method comparable with (1.1) is provided in Appendix C.

3.1. Theoretical Results

3.1.1. ENSEMBLE DISTILLATION WITH OPTIMAL
MODEL ENSEMBLE

We first define an optimal model ensemble.

Definition 3.1. For K clients, the ensemble of their models

4

Provably Near-Optimal Federated Ensemble Distillation with Negligible Overhead

and weight functions {(hk, wk)}Kk=1 is said to be an optimal
model ensemble if the following holds:

Lp

(
K∑

k=1

wk · hk

)
= Ep

[
l

(
K∑

k=1

wk(x) · hk(x), y(x)

)]
≤ min

h∈H
Lp(h) = Lp(h

∗
p). (4)

We remind that the objective of federated learning is to train
a model that minimizes the expected loss over the average
client distribution p as shown in (1). If {(hk, wk)}Kk=1 is an
optimal model ensemble, its expected loss over p is less than
or equal to the minimum expected loss over p achievable by
a single model, i.e., minh∈H Lp(h).

However, we cannot guarantee that a knowledge-distilled
model from an optimal model ensemble would be optimal,
i.e., achieve minh∈H Lp(h), due to the following two rea-
sons: 1) the ensemble model

∑K
k=1 wk · hk may lie outside

the hypothesis class H of a single model and 2) the distri-
bution used for knowledge distillation (the distribution ps
of unlabeled data on the server) can be different from p. In
the following theorem, we present a bound on the expected
loss over p of a single model by taking into account these
factors. For two hypotheses h, h′ ∈ H and a distribution q
over X , the expected difference between h and h′ over q,
denoted Lq(h, h

′), is defined as follows:

Lq(h, h
′) ≜ Eq [(l(h(x), h

′(x))] . (5)

Theorem 3.2. (Informal) Let H̄ ≜ {
∑K

k=1 wk · hk|hj ∈
H, wj : X → [0, 1],

∑K
k=1 wk(x) = 1, j = 1, · · · ,K, x ∈

X} be the spanned hypothesis class, ps be a distribution on
X , and {(hk, wk)}Kk=1 be an ensemble of client models and
weight functions. Then for any h ∈ H, the following holds:

Lp(h) ≤ Lp(

K∑
k=1

wk · hk) + Lps(h,

K∑
k=1

wk · hk)

+
1

2
dH̄△H̄(p, ps). (6)

The formal statement and the proof of the above theorem are
in Appendix A. Let us provide a brief sketch of the proof.
Utilizing the results from Ben-David et al. (2006) and Cram-
mer et al. (2008), we have Lp(h) ≤ Lp(

∑K
k=1 wk · hk) +

Lp(h,
∑K

k=1 wk · hk). Then from the triangular inequal-
ity, we obtain Lp(h,

∑K
k=1 wk · hk) ≤ Lps(h,

∑K
k=1 wk ·

hk)+ |Lp(h,
∑K

k=1 wk ·hk)−Lps
(h,
∑K

k=1 wk ·hk)|. Now
the desired inequality is obtained by applying the results
from Ben-David et al., Lemma 3.

From Theorem 3.2, we can ascertain the following. The
loss of the server model h is bounded by the sum of three
losses: 1) expected loss of the ensemble model over p, 2)

difference between h and
∑K

k=1 wk · hk over ps, and 3) the
distribution discrepancy between p and ps.

The following corollary is a direct consequence of Theorem
3.2 and Definition 3.1.
Corollary 3.3. (Informal) For an optimal model ensemble
{(hk, wk)}Kk=1, the following holds for any h ∈ H:

Lp(h
∗
p) ≤ Lp(h) ≤ Lp(h

∗
p) + Lps

(h,

K∑
k=1

wk · hk)

+
1

2
dH̄△H̄(p, ps). (7)

Corollary 3.3 demonstrates the powerfulness of an opti-
mal model ensemble. If an optimal model ensemble is
constituted, the difference between the expected loss of
the server model over p and the minimum expected loss
Lp(h

∗
p) = minh∈H Lp(h) is bounded by the distillation

loss, which depends on the inherent difference between the
hypothesis class H and the spanned hypothesis class H̄,
along with the distribution discrepancy between p and ps.

In the next subsection, we propose a weighting method to
constitute an optimal model ensemble.

3.1.2. CLIENT WEIGHTING FOR OPTIMAL MODEL
ENSEMBLE

Let us assume that the server has models {h∗
pk
}Kk=1 trained

by clients based on their respective data distributions
{pk}Kk=1. In the following theorem, we present weight
functions {wk}Kk=1 such that the ensemble of {h∗

pk
, wk}Kk=1

constitutes an optimal model ensemble.
Theorem 3.4. Let the loss function l be convex. Define the
client weight functions {w∗

k}Kk=1 as follows:

w∗
k(x) ≜

nk · pk(x)∑K
i=1 ni · pi(x)

=
πk · pk(x)∑K
i=1 πi · pi(x)

. (8)

Then, the ensemble {h∗
pk
, w∗

k}Kk=1 is an optimal model en-
semble, i.e., Lp

(∑
k w

∗
k · h∗

pk

)
≤ Lp(h

∗
p).

Theorem 3.4 follows from some manipulations based on the
convexity of the loss and the definitions of w∗

k’s and h∗
pk

’s,
and its full proof is provided in Appendix B.

Theorem 3.4 demonstrates that for data point x, weighting
according to each client’s proportion of having x constitutes
an optimal model ensemble. However, even if weighting
each client according to Theorem 3.4 constitues an optimal
model ensemble, it is not feasible without knowing the data
distribution pk of each client. Theorem 3.6 addresses this
issue based on Theorem 2.1 and provides hints on how to
implement an optimal model ensemble.
Definition 3.5. (Odds): For ϕ ∈ (0, 1), its odds value Φ is
defined as Φ(ϕ) = ϕ

1−ϕ .

5

Provably Near-Optimal Federated Ensemble Distillation with Negligible Overhead

Table 2. A comprehensive analysis of additional communication burden, privacy leakage, and computational burden caused by the
proposed weighting method, compared to FedAVG.

Extra
Server Dataset

Generator
Preparation

Distillation
Dataset

Communication
Cost

Privacy Leakage Client-side
Computational BurdenServer-side Client-side

S1 G1 D1 Negligible Non-negligible Negligible Negligible
S1 G2 D1 Negligible Non-negligible Negligible Negligible
S2 G2 D2 Negligible - Negligible Negligible
S2 G3 D2 Negligible - Negligible Negligible

Theorem 3.6. For a fixed generator G with generating
distribution pg , let Dk be an optimal discriminator for gen-
erator G and client k’s distribution pk. Assume that Dk

outputs a value over (0, 1) using a sigmoid activation func-
tion, and let Φk(x) ≜ Φ(Dk(x)). Then, for x ∈ supp(pg),
the following holds:

nk · Φk(x)∑K
i=1 ni · Φi(x)

=
πk · pk(x)∑K
i=1 πi · pi(x)

= w∗
k(x). (9)

Theorem 3.6 is a direct consequence of Theorem 2.1, be-
cause Φk(x) = pk(x)

pg(x)
from Theorem 2.1. Theorem 3.6

indicates that if the server once receives the optimal dis-
criminators {Dk}Kk=1 trained by the clients, it can use those
discriminators to calculate the weights for optimal model
ensemble. Note that the generator G only needs to generate
a wide distribution capable of producing sufficiently diverse
samples. Therefore, one can use an off-the-shelf generator
pretrained on a large dataset.

3.2. Proposed Algorithm: FedGO

By leveraging the theoretical results in Section 3.1, we pro-
pose FedGO that constitutes an optimal model ensemble and
performs knowledge distillation. The main technical nov-
elty of FedGO lies in implementing the optimal weighting
function w∗

k using client discriminators, which is a versa-
tile technique that can be integrated to both the following
scenarios with/without extra server dataset: (S1) the server
holds an extra unlabeled dataset; (S2) the server holds no
unlabeled dataset, thus a data-free approach is needed.

For completeness, let us describe how the FedGO algo-
rithm can be adapted depending on the cases (S1) and (S2).
FedGO largely consists of two stages: pre-FL and main-FL.
In the pre-FL stage, the server and the clients exchange the
generator and the discriminators. First, the server obtains a
generator through one of the following three methods, and
distributes the generator to the clients: (G1) train a generator
with an unlabeled dataset on the server, which is possible un-
der (S1); (G2) load an off-the-shelf generator pretrained on
a sufficiently rich dataset; or (G3) train a generator through
an FL approach, e.g., using FedGAN (Rasouli et al., 2020).

After receiving the generator, each client trains its own dis-
criminator based on its dataset and sends the discriminator
to the server.

The main-FL stage operates according to Algorithm 1, ex-
cept that the server assigns weights for pseudo-labeling
according to (9) using the client discriminators. For the
server unlabeled dataset U used for distillation, which we
call distillation dataset, we consider the following cases:
(D1) use the same dataset held by the server, which is pos-
sible under (S1); (D2) produce a distillation dataset using
the generator.

A comprehensive analysis of additional communication cost,
privacy leakage, and computational burden according to the
methods for obtaining the generator and distillation set is
provided in Table 2, which shows the trade-off among the
methods. In particular, an extra dataset at the server makes
the communication cost and the client-side privacy and com-
putational burden negligible, at the expense of server-side
privacy leakage. In the absence of server dataset, the use of
an off-the-shelf generator makes all the burdens negligible,
but it can be challenging to secure an off-the-shelf generator
whose generation distribution is similar to the client data
distribution. Lastly, the data-free approach (G3)+(D2) does
not require an extra server dataset or an external generator.
While it requires extra communication to prepare the gener-
ator, the additional communication burden, privacy leakage
and computational burden on the client side remains negli-
gible due to the relatively small number of communication
rounds involved, unlike existing data-free methods such as
DaFKD (Wang et al., 2023a), which involve both genera-
tor and model exchanges in every communication round.
By decoupling generator preparation from model training,
FedGO with (G3)+(D2) provides a lightweight solution.

A detailed description of FedGO and explanation for Table
2 can be found in Appendices D and G, respectively.

4. Experimental Results
In this section, we present the experimental results. All ex-
perimental results were obtained using five different random
seeds, and the reported results are presented as the mean ±
standard deviation.

4.1. Experimental Setting

Datasets and FL Setup We employed datasets CIFAR-
10/100 (Krizhevsky, 2009) (MIT license) and downsam-

6

Provably Near-Optimal Federated Ensemble Distillation with Negligible Overhead

Table 3. Server test accuracy (%) of our FedGO and baselines on three image datasets at the 100-th communication round. A smaller α
indicates higher heterogeneity.

CIFAR-10 CIFAR-100 ImageNet100

α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05

Central Training 85.33±0.25 51.72±0.65 43.20±1.00
FedAVG 58.65±5.75 46.61±8.54 38.93±0.74 36.66±0.97 29.44±0.41 27.58±0.88
FedProx 64.69±2.15 55.56±9.86 38.21±0.95 34.44±1.26 29.96±0.66 26.99±0.97

SCAFFOLD 61.20±3.98 50.10±10.00 38.15±0.80 36.14±1.06 29.13±0.79 27.08±0.69
FedDisco 56.78±7.22 48.08±8.35 38.81±1.02 36.86±0.88 29.69±0.66 27.54±0.51
FedUV 62.58 ± 4.83 53.80 ± 5.68 38.84 ± 0.79 36.17 ± 1.24 30.09 ± 1.09 27.32 ± 0.65
FedTGP 61.16 ± 6.98 61.51 ± 7.78 39.58 ± 0.10 36.56 ± 0.11 29.21 ± 1.13 26.34 ± 1.02
FedDF 71.56±5.09 59.53±9.88 42.74±1.22 37.18±1.03 33.48±1.00 30.94±1.60

FedGKD+ 72.59±4.10 59.96±8.60 43.35±1.14 40.47±1.00 34.10±0.67 31.42±0.93
DaFKD 71.52±5.56 67.51±10.77 44.12±2.25 39.50±0.85 33.34±0.69 31.59±1.46

FedGO (ours) 79.62±4.36 72.35±9.01 44.66±1.27 41.04±0.99 34.20±0.71 31.70±1.55

Table 4. The number of communication rounds to achieve a test accuracy of at least Acctarget.

CIFAR-10 CIFAR-100 ImageNet100

α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05
Acctarget 60% 45% 35% 35% 25% 25%

FedAVG 65.6±22.8 47.4±14.9 42.4±12.8 76.0±8.5 22.2±3.1 43.8±7.3
FedProx 38.0±9.1 33.0±12.7 45.6±5.9 86.0±11.8 20.8±3.8 47.6±5.8

SCAFFOLD 53.2±14.6 45.8±19.7 47.4±4.2 76.2±9.0 22.2±2.2 47.8±8.4
FedDisco 63.4±27.8 44.0±11.6 44.6±4.5 76.2±9.3 21.8±3.2 51.2±5.6
FedUV 45.8 ± 11.6 43.0 ± 22.8 43.0 ± 5.7 45.4 ± 5.28 20.4 ± 2.2 47.0 ± 6.3
FedTGP 58.6 ± 16.1 40.4 ± 4.5 63.6 ± 17.5 69.6 ± 3.9 22.8 ± 2.5 44.2 ± 1.2
FedDF 5.4±1.4 6.0±1.5 15.2±5.7 78.0±23.8 9.4±1.9 22.0±5.7

FedGKD+ 5.6±1.6 4.2±1.2 12.6±3.3 39.8±19.6 9.0±1.4 14.8±2.5
DaFKD 5.6±1.4 3.0±0.6 13.4±5.4 50.2±27.9 9.0±2.8 15.6±4.1

FedGO (ours) 3.0±0.9 2.0±0.6 11.0±2.1 25.4±9.1 8.4±1.0 12.6±1.6

pled ImageNet100 (ImageNet100 dataset; Chrabaszcz et al.,
2017). Unless specified otherwise, the entire client dataset
corresponds to half of the specified client dataset (half for
each class), and each client dataset is sampled from the en-
tire client dataset according to Dirichlet(α), akin to setups
in Lin et al. (2020); Cho et al. (2022). α is set to 0.1 and
0.05 to represent data-heterogeneous scenarios. The server
dataset corresponds to half of the specified server dataset
(half for each class) without labels. If not otherwise speci-
fied, the server dataset and the client datasets partition the
same dataset disjointly. We considered 20 and 100 clients
(20 clients if not specified otherwise), assuming that 40% of
the clients participate in each communication round.

Models and Baselines For architecture, we employed
ResNet-18 (He et al., 2016) with batch normalization lay-
ers (Ioffe & Szegedy, 2015). For baselines, we considered
the vanilla FedAVG (McMahan et al., 2017), FedProx (Li
et al., 2020a), SCAFFOLD (Karimireddy et al., 2020), Fed-
Disco (Ye et al., 2023), FedUV (Son et al., 2024) and
FedTGP (Zhang et al., 2024) that do not perform ensemble
distillation, FedDF (Lin et al., 2020), FedGKD+ (Yao et al.,

2021) and DaFKD (Wang et al., 2023a) that incorporate
ensemble distillation. For comparison with other weight-
ing methods, we considered the variance-based weighting
method of Cho et al. (2022), the entropy-based methods of
Deng et al. (2023) and Park et al. (2024), and the domain-
aware method of Wang et al. (2023a), described in Section 2.
As an upper bound of the performance, we also compared
with central training that trains the server model directly
using the entire client dataset. FedGO and DaFKD require
image generators and discriminators. For the generator, we
considered the three approaches (G1), (G2), and (G3) in Sec-
tion 3.2. For (G1) and (G3), we adopted the model architec-
ture and training method proposed in WGAN-GP (Gulrajani
et al., 2017). For (G2), we employed StyleGAN-XL (Sauer
et al., 2022), pretrained on ImageNet (Krizhevsky et al.,
2012). Unless specified otherwise, we assume (G1). For dis-
criminators, we utilized a 4-layer CNN. More experimental
details are provided in Appendix E.2.

4.2. Results

Test Accuracy and Convergence Speed Table 3 shows
the test accuracy of the server model and Table 4 presents

7

Provably Near-Optimal Federated Ensemble Distillation with Negligible Overhead

Table 5. Server test accuracy (%) of our FedGO with a generator trained with the unlabeled dataset on the server (Scratch) and with an
off-the-shelf generator pretrained on ImageNet (Pretrained) on three image datasets with α = 0.05.

CIFAR-10 CIFAR-100 ImageNet100

Generator Scratch Pretrained Scratch Pretrained Scratch Pretrained

Accuracy 72.35±9.01 74.40±6.97 41.04±0.99 41.04±0.79 31.70±1.55 32.72±0.18

the communication rounds required for the server model to
achieve target accuracy (Acctarget) for the first time, for the
baselines and FedGO, on CIFAR-10/100 and ImageNet100
datasets. Our FedGO algorithm exhibits the smallest perfor-
mance gap from the central training and the fastest conver-
gence speed across all the datasets and data heterogeneity
settings.

For CIFAR-10 with α = 0.1, our FedGO algorithm shows
a performance improvement of over 7%p compared to the
baselines. However, we observe a diminishing gain for
CIFAR-100 and ImageNet100. We argue in Appendix F.2
that this is not due to the marginal improvement in FedGO’s
ensemble performance, but rather due to larger distillation
loss as the server model more struggles to keep up with the
performance of the ensemble model.

Comparison of Weighting Methods Figure 2 shows the
ensemble test accuracy along with communication rounds
on the CIFAR-10 dataset, according to weighting methods.
We evaluated ensemble test accuracy to compare the efficacy
of each method in generating pseudo-labels. For the baseline
weighting methods, we considered the uniform (Lin et al.,
2020), the variance-based (Cho et al., 2022), the entropy-
based (Deng et al., 2023; Park et al., 2024), and the domain-
aware (Wang et al., 2023a) methods. For fair comparison,
all the baselines follow the same steps except the weighting
methods. The effectiveness of our weighting method is
demonstrated by its ensemble test accuracy outperforming
all the other weighting methods over all communication
rounds.

FedGO with a Pretrained Generator If there exists a
pretrained generator capable of generating sufficiently di-
verse data, the server can distribute the pretrained generator
to clients instead of training a generator from scratch using
the server’s unlabeled dataset, which corresponds to the case
(G2) in Section 3.2. This approach has the advantage of sav-
ing the server’s computing resources required for training a
generator.

Table 5 reports the performance of FedGO for various
datasets with α = 0.05, when using a generator trained with
the server’s unlabeled dataset versus using a generator pre-
trained on ImageNet (Krizhevsky et al., 2012). We observe
that utilizing the pretrained generator results in superior
performance on CIFAR-10 and ImageNet100, whereas it
remains the same for CIFAR-100. A key factor contributing

0 20 40 60 80 100
Communication round

30

40

50

60

70

80

90

En
se

m
bl

e
te

st
 a

cc
ur

ac
y

(%
)

Uniform weighting
Variance weighting
Entropy weighting
Domain weighting
Our weighting

(a) α = 0.1

0 20 40 60 80 100
Communication round

30

40

50

60

70

80

En
se

m
bl

e
te

st
 a

cc
ur

ac
y

(%
)

Uniform weighting
Variance weighting
Entropy weighting
Domain weighting
Our weighting

(b) α = 0.05

Figure 2. Ensemble test accuracy (%) of FedGO and other baseline
weighting methods over communication rounds on CIFAR-10 with
α = 0.1 and α = 0.05.

to performance enhancement seems to be the larger model
structure of the pretrained generator and its training with
a richer dataset. This enhances the generalization perfor-
mance of client discriminators, enabling optimal weighting
even for test data. However, since the assumption of The-
orem 3.6 does not hold for x ∈ supp(p) \ supp(pg), the
portion of data for which an optimal weighting is guaran-
teed decreases as the portion of p’s support not covered by
pg increases, potentially leading to performance degrada-
tion. We note that ImageNet100 is a subset of ImageNet,
and ImageNet includes the classes of CIFAR-10 except
deer. However, there are several classes of CIFAR-100 not
included in ImageNet, which could possibly result in no
performance gain.

More Results In Appendix F, we provide more experi-
mental results. We report ensemble test accuracy of the
baselines and FedGO, demonstrating a larger improvement
compared to test accuracy. We also provide results for sce-
narios involving larger clients or different model structures,
cases where the server dataset is different from the client

8

Provably Near-Optimal Federated Ensemble Distillation with Negligible Overhead

datasets, and data-free approaches when no server dataset
is available, showing significant performance gains over
the baselines. Additionally, we report the performance of
FedGO with a reduced server dataset and various discrim-
inator training epochs, showing that even with only 20%
of the server dataset, FedGO achieves a performance gain
of 15%p over FedAVG. Furthermore, FedGO outperforms
the baselines even with significantly fewer discriminator
training epochs. Finally, we demonstrate the robustness
of FedGO under adversarial conditions where a subset of
clients behave in a Byzantine manner, showing that our
method maintains superior performance even when up to
50% of the client discriminators are compromised.

In Appendix G, a comprehensive analysis of communica-
tion costs, privacy, and computational costs for FedGO and
baselines is provided.

5. Conclusion
We proposed the FedGO algorithm, which effectively ad-
dresses the challenge of client data heterogeneity. Our
algorithm was proposed based on theoretical analysis of
optimal ensemble distillation, and various experimental re-
sults demonstrated its high performance and fast conver-
gence rate under various scenarios with and without extra
server dataset. The limitation of our work is provided in
Appendix H.

Acknowledgements
This work was supported in part by the Institute of Informa-
tion & Communications Technology Planning & Evaluation
(IITP) through the Next Generation Semantic Communica-
tion Network Research Center Grant (RS-2024-00398948)
funded by the Korean Government (MSIT), and in part by
the IITP through 6G · Cloud Research and Education Open
Hub Grant (RS-2024-00428780) funded by the Korea gov-
ernment (MSIT).

Impact Statement
In this work, we proposed a federated learning algorithm
that demonstrates strong performance in scenarios where
client data is heterogeneous. This capability makes our
approach highly effective for distributed learning in many
practical situations, where data across different clients can
vary significantly. By efficiently handling such data di-
versity, our algorithm holds the potential to enhance the
applicability and robustness of federated learning systems
in real-world applications.

References
Adlam, B., Weill, C., and Kapoor, A. Investigating un-

der and overfitting in wasserstein generative adversarial
networks. arXiv preprint arXiv:1910.14137, 2019.

Behera, M. R., Upadhyay, S., Shetty, S., Priyadarshini,
S., Patel, P., and Lee, K. F. Fedsyn: Synthetic data
generation using federated learning. arXiv preprint
arXiv:2203.05931, 2022.

Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A.,
Pereira, F., and Vaughan, J. W. A theory of learning from
different domains. https://www.alexkulesza.
com/pubs/adapt_mlj10.pdf.

Ben-David, S., Blitzer, J., Crammer, K., Pereira, and Fer-
nando. Analysis of representations for domain adaptation.
Advances in neural information processing systems, 19,
2006.

Chang, H., Shejwalkar, V., Shokri, R., and Houmansadr, A.
Cronus: Robust and heterogeneous collaborative learn-
ing with black-box knowledge transfer. arXiv preprint
arXiv:1912.11279, 2019.

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever,
I., and Abbeel, P. Infogan: Interpretable representation
learning by information maximizing generative adver-
sarial nets. Advances in neural information processing
systems, 29, 2016.

Cho, Y. J., Manoel, A., Joshi, G., Sim, R., and Dimitri-
adis, D. Heterogeneous ensemble knowledge transfer for
training large models in federated learning. In Proceed-
ings of the Thirty-First International Joint Conference on
Artificial Intelligence (IJCAI) Main Track, 2022.

Choi, Y., Choi, M., Kim, M., Ha, J.-W., Kim, S., and Choo,
J. Stargan: Unified generative adversarial networks for
multi-domain image-to-image translation. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pp. 8789–8797, 2018.

Chrabaszcz, P., Loshchilov, I., and Hutter, F. A downsam-
pled variant of ImageNet as an alternative to the CIFAR
datasets. CoRR, 2017.

Crammer, K., Kearns, M., and Wortman, J. Learning from
multiple sources. Journal of Machine Learning Research,
9(8), 2008.

Dai, Y., Chen, Z., Li, J., Heinecke, S., Sun, L., and Xu, R.
Tackling data heterogeneity in federated learning with
class prototypes. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 37, pp. 7314–7322,
2023.

9

https://www.alexkulesza.com/pubs/adapt_mlj10.pdf
https://www.alexkulesza.com/pubs/adapt_mlj10.pdf

Provably Near-Optimal Federated Ensemble Distillation with Negligible Overhead

Deng, Y., Ren, J., Tang, C., Lyu, F., Liu, Y., and Zhang,
Y. A hierarchical knowledge transfer framework for
heterogeneous federated learning. In IEEE INFOCOM
2023-IEEE Conference on Computer Communications,
pp. 1–10. IEEE, 2023.

Dong, X., Zhang, S. Q., Li, A., and Kung, H. Spherefed: Hy-
perspherical federated learning. In European Conference
on Computer Vision, pp. 165–184. Springer, 2022.

Dwork, C., McSherry, F., Nissim, K., and Smith, A. Cal-
ibrating noise to sensitivity in private data analysis. In
Theory of Cryptography: Third Theory of Cryptography
Conference, TCC 2006, New York, NY, USA, March 4-7,
2006. Proceedings 3, pp. 265–284. Springer, 2006.

Dwork, C., Roth, A., et al. The algorithmic foundations of
differential privacy. Foundations and Trends® in Theo-
retical Computer Science, 9(3–4):211–407, 2014.

Fan, C. and Liu, P. Federated generative adversarial learning.
In Pattern Recognition and Computer Vision: Third Chi-
nese Conference, PRCV 2020, Nanjing, China, October
16–18, 2020, Proceedings, Part III 3, pp. 3–15. Springer,
2020.

Gong, X., Sharma, A., Karanam, S., Wu, Z., Chen, T., Doer-
mann, D., and Innanje, A. Ensemble attention distillation
for privacy-preserving federated learning. In Proceedings
of the IEEE/CVF International Conference on Computer
Vision, pp. 15076–15086, 2021.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial nets. Advances in neural informa-
tion processing systems, 27, 2014.

Guerraoui, R., Guirguis, A., Kermarrec, A.-M., and Merrer,
E. L. Fegan: Scaling distributed gans. In Proceedings of
the 21st International Middleware Conference, pp. 193–
206, 2020.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and
Courville, A. C. Improved training of wasserstein gans.
Advances in neural information processing systems, 30,
2017.

Hardy, C., Le Merrer, E., and Sericola, B. Md-gan: Multi-
discriminator generative adversarial networks for dis-
tributed datasets. In 2019 IEEE international parallel and
distributed processing symposium (IPDPS), pp. 866–877.
IEEE, 2019.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hinton, G. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

Hinton, G., sh Srivastava, N., and Swersky,
K. Neural networks for machine learning.
https://www.cs.toronto.edu/˜tijmen/
csc321/slides/lecture_slides_lec6.pdf.

Huang, W., Shi, Y., Cai, Z., and Suzuki, T. Understand-
ing convergence and generalization in federated learning
through feature learning theory. In The Twelfth Interna-
tional Conference on Learning Representations, 2023.

ImageNet100 dataset. https://www.kaggle.com/
datasets/ambityga/imagenet100.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In International conference on machine learning, pp. 448–
456. pmlr, 2015.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode,
G., Cummings, R., et al. Advances and open problems in
federated learning. Foundations and trends® in machine
learning, 14(1–2):1–210, 2021.

Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S., Stich, S.,
and Suresh, A. T. Scaffold: Stochastic controlled averag-
ing for federated learning. In International conference on
machine learning, pp. 5132–5143. PMLR, 2020.

Karras, T., Laine, S., and Aila, T. A style-based generator
architecture for generative adversarial networks. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 4401–4410, 2019.

Kifer, D., Ben-David, S., and Gehrke, J. Detecting change in
data streams. In VLDB, volume 4, pp. 180–191. Toronto,
Canada, 2004.

Kim, S., Lee, G., Oh, J., and Yun, S.-Y. FedFN: Feature
normalization for alleviating data heterogeneity problem
in federated learning. In International Workshop on Fed-
erated Learning in the Age of Foundation Models in Con-
junction with NeurIPS 2023.

Kingma, D. P. and Ba, J. Adam: A method for stochas-
tic optimization. In Bengio, Y. and LeCun, Y. (eds.),
3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Krizhevsky, A. Learning multiple layers of features
from tiny images. 2009. URL https://api.
semanticscholar.org/CorpusID:18268744.

10

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.kaggle.com/datasets/ambityga/imagenet100
https://www.kaggle.com/datasets/ambityga/imagenet100
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:18268744

Provably Near-Optimal Federated Ensemble Distillation with Negligible Overhead

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
Advances in neural information processing systems, 25,
2012.

Li, H., Cai, Z., Wang, J., Tang, J., Ding, W., Lin, C.-T.,
and Shi, Y. Fedtp: Federated learning by transformer
personalization. IEEE transactions on neural networks
and learning systems, 2023.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A.,
and Smith, V. Federated optimization in heterogeneous
networks. Proceedings of Machine learning and systems,
2:429–450, 2020a.

Li, W., Chen, J., Wang, Z., Shen, Z., Ma, C., and Cui, X.
Ifl-gan: Improved federated learning generative adver-
sarial network with maximum mean discrepancy model
aggregation. IEEE Transactions on Neural Networks and
Learning Systems, 2022.

Li, X., Huang, K., Yang, W., Wang, S., and Zhang, Z. On the
convergence of fedAvg on Non-IID data. In International
Conference on Learning Representations, 2020b.

Li, X.-C. and Zhan, D.-C. Fedrs: Federated learning with
restricted softmax for label distribution non-iid data. In
Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, pp. 995–1005,
2021.

Liang, X., Shen, S., Liu, J., Pan, Z., Chen, E., and Cheng,
Y. Variance reduced local sgd with lower communication
complexity. arXiv preprint arXiv:1912.12844, 2019.

Lin, T., Kong, L., Stich, S. U., and Jaggi, M. Ensemble
distillation for robust model fusion in federated learning.
Advances in Neural Information Processing Systems, 33:
2351–2363, 2020.

Loshchilov, I. and Hutter, F. Sgdr: Stochastic gradient
descent with warm restarts. In International Conference
on Learning Representations, 2022.

Marfoq, O., Neglia, G., Vidal, R., and Kameni, L. Per-
sonalized federated learning through local memorization.
In International Conference on Machine Learning, pp.
15070–15092. PMLR, 2022.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Mendieta, M., Yang, T., Wang, P., Lee, M., Ding, Z., and
Chen, C. Local learning matters: Rethinking data het-
erogeneity in federated learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 8397–8406, 2022.

Park, J.-M., Jang, W.-J., Oh, T.-H., and Lee, S.-H. Over-
coming client data deficiency in federated learning by
exploiting unlabeled data on the server. IEEE Access,
2024.

Radford, A., Metz, L., and Chintala, S. Unsupervised
representation learning with deep convolutional gener-
ative adversarial networks. In Bengio, Y. and LeCun, Y.
(eds.), 4th International Conference on Learning Rep-
resentations, ICLR 2016, San Juan, Puerto Rico, May
2-4, 2016, Conference Track Proceedings, 2016. URL
http://arxiv.org/abs/1511.06434.

Rasouli, M., Sun, T., and Rajagopal, R. Fedgan: Federated
generative adversarial networks for distributed data. arXiv
preprint arXiv:2006.07228, 2020.

Sattler, F., Marban, A., Rischke, R., and Samek, W.
Communication-efficient federated distillation. arXiv
preprint arXiv:2012.00632, 2020.

Sauer, A., Schwarz, K., and Geiger, A. Stylegan-xl: Scaling
stylegan to large diverse datasets. In ACM SIGGRAPH
2022 conference proceedings, pp. 1–10, 2022.

Shalev-Shwartz, S. and Ben-David, S. Under-
standing machine learning: From theory to al-
gorithms. https://www.cs.huji.ac.il/

˜shais/UnderstandingMachineLearning/
understanding-machine-learning-theory
-algorithms.pdf.

Simonyan, K. and Zisserman, A. Very deep convolutional
networks for large-scale image recognition. In Bengio,
Y. and LeCun, Y. (eds.), 3rd International Conference
on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceed-
ings, 2015. URL http://arxiv.org/abs/1409.
1556.

Son, H. M., Kim, M.-H., Chung, T.-M., Huang, C., and Liu,
X. Feduv: uniformity and variance for heterogeneous
federated learning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pp. 5863–5872, 2024.

Tang, Z., Zhang, Y., Shi, S., He, X., Han, B., and Chu, X.
Virtual homogeneity learning: Defending against data
heterogeneity in federated learning. In International Con-
ference on Machine Learning, pp. 21111–21132. PMLR,
2022.

Tang, Z., Zhang, Y., Shi, S., Tian, X., Liu, T., Han, B.,
and Chu, X. FedImpro: Measuring and improving client
update in federated learning. In The Twelfth International
Conference on Learning Representations, 2024.

11

http://arxiv.org/abs/1511.06434
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556

Provably Near-Optimal Federated Ensemble Distillation with Negligible Overhead

Wang, H., Yurochkin, M., Sun, Y., Papailiopoulos, D., and
Khazaeni, Y. Federated learning with matched averaging.
In International Conference on Learning Representations,
2020a.

Wang, H., Li, Y., Xu, W., Li, R., Zhan, Y., and Zeng, Z.
Dafkd: Domain-aware federated knowledge distillation.
In Proceedings of the IEEE/CVF conference on Computer
Vision and Pattern Recognition, pp. 20412–20421, 2023a.

Wang, H., Xu, H., Li, Y., Xu, Y., Li, R., and Zhang, T. Fed-
CDA: Federated learning with cross-rounds divergence-
aware aggregation. In The Twelfth International Confer-
ence on Learning Representations, 2023b.

Wang, J., Liu, Q., Liang, H., Joshi, G., and Poor, H. V. Tack-
ling the objective inconsistency problem in heterogeneous
federated optimization. Advances in neural information
processing systems, 33:7611–7623, 2020b.

Wang, J., Xie, G., Huang, Y., Lyu, J., Zheng, F., Zheng, Y.,
and Jin, Y. FedMed-GAN: Federated domain translation
on unsupervised cross-modality brain image synthesis.
Neurocomputing, 546:126282, 2023c.

Wang, Y., Zhang, J., and Wang, Y. Do generated data always
help contrastive learning? In The Twelfth International
Conference on Learning Representations, 2024.

Xing, H., Xiao, Z., Qu, R., Zhu, Z., and Zhao, B. An
efficient federated distillation learning system for mul-
titask time series classification. IEEE Transactions on
Instrumentation and Measurement, 71:1–12, 2022.

Xiong, Z., Li, W., and Cai, Z. Federated generative model
on multi-source heterogeneous data in iot. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 10537–10545, 2023.

Yang, C., Shen, Y., Xu, Y., Zhao, D., Dai, B., and Zhou, B.
Improving gans with a dynamic discriminator. Advances
in Neural Information Processing Systems, 35:15093–
15104, 2022.

Yang, Z., Zhang, Y., Zheng, Y., Tian, X., Peng, H., Liu, T.,
and Han, B. FedFed: Feature distillation against data
heterogeneity in federated learning. Advances in Neural
Information Processing Systems, 36, 2024.

Yao, D., Pan, W., Dai, Y., Wan, Y., Ding, X., Jin, H., Xu,
Z., and Sun, L. Local-global knowledge distillation in
heterogeneous federated learning with non-iid data. arXiv
preprint arXiv:2107.00051, 2021.

Ye, R., Xu, M., Wang, J., Xu, C., Chen, S., and Wang, Y.
FedDisco: Federated learning with discrepancy-aware
collaboration. In International Conference on Machine
Learning, pp. 39879–39902. PMLR, 2023.

Yoon, Y., Hu, D., Weissburg, I., Qin, Y., and Jeong, H.
Redifine: Reusable diffusion finetuning for mitigating
degradation in the chain of diffusion. arXiv preprint
arXiv:2407.17493, 2024.

Zhang, J., Guo, S., Guo, J., Zeng, D., Zhou, J., and Zomaya,
A. Y. Towards data-independent knowledge transfer in
model-heterogeneous federated learning. IEEE Transac-
tions on Computers, 72(10):2888–2901, 2023a.

Zhang, J., Zhao, L., Yu, K., Min, G., Al-Dubai, A. Y., and
Zomaya, A. Y. A novel federated learning scheme for
generative adversarial networks. IEEE Transactions on
Mobile Computing, 2023b.

Zhang, J., Liu, Y., Hua, Y., and Cao, J. Fedtgp: Trainable
global prototypes with adaptive-margin-enhanced con-
trastive learning for data and model heterogeneity in fed-
erated learning. In Proceedings of the AAAI conference
on artificial intelligence, volume 38, pp. 16768–16776,
2024.

Zhang, L., Wu, D., and Yuan, X. Fedzkt: Zero-shot
knowledge transfer towards resource-constrained feder-
ated learning with heterogeneous on-device models. In
2022 IEEE 42nd International Conference on Distributed
Computing Systems (ICDCS), pp. 928–938. IEEE, 2022.

Zhang, X., Zhu, X., Wang, J., Bao, W., and Yang, L. T.
Dance: Distributed generative adversarial networks with
communication compression. ACM Transactions on In-
ternet Technology (TOIT), 22(2):1–32, 2021.

Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. Unpaired
image-to-image translation using cycle-consistent adver-
sarial networks. In Proceedings of the IEEE international
conference on computer vision, pp. 2223–2232, 2017.

12

Provably Near-Optimal Federated Ensemble Distillation with Negligible Overhead

A. Formal Statement and Proof of Theorem 3.2
In addition to the setups and definitions introduced in Section 2, we assume binary classification task, i.e., y(x) ∈ [0, 1] and
h(x) ∈ {0, 1}, coupled with ℓ1 loss.

We first present some definitions and a lemma.
Definition A.1. (Kifer et al., 2004, Definition 1) For two distributions q and q′ over a domain X , letH denote a hypothesis
class on X and I(h) for h ∈ H denote the set {x ∈ X : h(x) = 1}. TheH-divergence between q and q′ is

dH(q, q′) = 2 sup
h∈H
|Prx∼q[I(h)]− Prx∼q′ [I(h)]|. (10)

Definition A.2. For a hypothesis spaceH, the symmetric difference hypothesis spaceH△H is the set of hypotheses

g ∈ H△H ⇔ g(x) = h(x)⊕ h′(x) for some h, h′ ∈ H (11)

where ⊕ is the XOR function.
Lemma A.3. For hypotheses h, h′ ∈ H and distributions q, q′ on X , we have

|Lq(h, h
′)− Lq′(h, h

′)| ≤ 1

2
dH△H(q, q′). (12)

Proof. By the definition ofH△H-distance, we have

dH△H(q, q′) = 2 sup
h∈H
|Prx∼q[h(x) ̸= h′(x)]− Prx∼q′ [h(x) ̸= h′(x)]| (13)

= 2 sup
h∈H
|Lq(h, h

′)− Lq′(h, h
′)| (14)

≥ 2|Lq(h, h
′)− Lq′(h, h

′)|, (15)

which completes the proof.

Now we are ready to present the formal statement and proof of Theorem 3.2.
Theorem A.1. For binary classification task with ℓ1 loss, consider hypothesis classH such that h ∈ H outputs 0 or 1 and
its spanned hypothesis class H̄ ≜ {

∑K
k=1 wk · hk|hk ∈ H, wk : X → [0, 1] for all k = 1, ...,K,

∑K
k=1 wk = 1}. For any

h ∈ H and (
∑K

k=1 wk · hk) ∈ H̄, the following holds:

Lp(h) ≤ Lp(

K∑
k=1

wk · hk) + Lps
(h,

K∑
k=1

wk · hk) +
1

2
dH̄△H̄(p, ps). (16)

Proof. We have

Lp(h) = Ep[l(h(x), y(x)] (17)

≤ Ep[l(h(x), (

K∑
k=1

wk · hk)(x)] +Ep[l((

K∑
k=1

wk · hk)(x), y(x)] (18)

= Lp(

K∑
k=1

wk · hk) + Lp(h,

K∑
k=1

wk · hk) (19)

by triangle inequality (Ben-David et al., 2006; Crammer et al., 2008).

Since A ≤ B+ |A−B|, letting A = Lp(h,
∑K

k=1 wk ·hk), B = Lps(h,
∑K

k=1 wk ·hk), the RHS of (19) is upper-bounded
by

Lp(

K∑
k=1

wk · hk) + Lps
(h,

K∑
k=1

wk · hk) + |Lp(h,

K∑
k=1

wk · hk)− Lps
(h,

K∑
k=1

wk · hk)| (20)

= Lp(

K∑
k=1

wk · hk) + Lps(h,

K∑
k=1

wk · hk) +
1

2
dH̄△H̄(p, ps) (21)

13

Provably Near-Optimal Federated Ensemble Distillation with Negligible Overhead

by the definition of dH̄△H̄ and Lemma A.3. Thus, we prove Theorem A.1.

B. Proof of Theorem 3.4
Before we start the proof of Theorem 3.4, we present the following lemma with the setups and definitions introduced in
Section 2.

Lemma B.1. Let the loss function l be convex and {hk}Kk=1 ⊂ H. For the weight functions {w∗
k}Kk=1 defined in Theorem

3.4, the following holds:

Lp(
∑

kw
∗
k · hk) ≤

∑
k πk · Lpk

(hk). (22)

Proof. Note that

Lp(
∑

k w
∗
k · hk) = Ex∼p [l (

∑
k w

∗
k(x) · hk(x), y(x))] (23)

=

∫
l (
∑

k w
∗
k(x) · hk(x), y(x)) · p(x)dx (24)

=

∫
l (
∑

k w
∗
k(x) · hk(x), y(x)) ·

∑
j πj · pj(x)dx (25)

=

∫
l (
∑

k w
∗
k(x) · hk(x),

∑
k w

∗
k(x) · y(x)) ·

∑
j πj · pj(x)dx (26)

≤
∫

(
∑

k w
∗
k(x) · l (hk(x), y(x))) ·

∑
j πj · pj(x)dx (27)

=

∫ ∑
k

πk(x)·pk(x)∑K
i=1 πi·pi(x)

· l (hk(x), y(x)) ·
∑

j πj · pj(x)dx (28)

=
∑
k

∫
πk · pk(x) · l (hk(x), y(x)) dx (29)

=
∑
k

πk ·
∫

l (hk(x), y(x)) · pk(x)dx (30)

=
∑
k

πk · Lpk
(hk), (31)

where (27) holds due to the convexity of loss function l(·, ·). This completes the proof.

Now we present the proof of Theorem 3.4.

Proof. For h ∈ H, we have

Lp(h) = Ex∼p [l (h(x), y(x))] (32)

=

∫
l (h(x), y(x)) · p(x)dx (33)

=

∫
l (h(x), y(x)) ·

∑
k πk · pk(x)dx (34)

=
∑

k πk ·
∫
[l (h(x), y(x))] · pk(x)dx (35)

=
∑

k πk · Lpk
(h) (36)

≥
∑

k πk · Lpk
(h∗

pk
). (37)

Hence, it suffices to show that

Lp(
∑

kw
∗
k · h∗

pk
) ≤

∑
k πk · Lpk

(h∗
pk
), (38)

and this is the direct result of Lemma B.1 with {hk}Kk=1 = {h∗
pk
}Kk=1.

14

Provably Near-Optimal Federated Ensemble Distillation with Negligible Overhead

C. Generalization Bound with Empirical Loss Minimizer
In this section, we present the generalization loss bound of the ensemble of empirical loss minimizers of clients with our
weighting method.

Theorem C.1. For binary classification task with ℓ1 loss, the following holds for our weighting function {w∗
k}Kk=1 defined

in Theorem 3.4:

Lp(

K∑
k=1

w∗
k · h∗

p̂k
) ≤

K∑
k=1

πk ·

[
Lp̂k

(h∗
p̂k
) +

4 +
√

log(τH(2nk))

(δ/K)
√
2nk

]
(39)

≤ Lp̂(h
∗
p̂) +

K∑
k=1

πk ·
4 +

√
log(τH(2nk))

(δ/K) ·
√
2nk

, (40)

where p̂k is the empirical distribution by sampling nk data points i.i.d. according to pk, p̂ =
∑K

k=1 πk · p̂k, and τH is
growth function bounded by polynomial of the VC-dimension ofH.

Compared to (1.2), we can see that the ensemble of empirical loss minimizers with our weighting method has a tighter
generalization bound without the factor of (K + 1).

Before we prove Theorem C.1, we present the following theorem.

Theorem C.2. (Shalev-Shwartz & Ben-David, Theorem 6.11) LetH be a hypothesiss class and let τH be its growth function.
Then, for every distribution q on X and every δ ∈ (0, 1), with probability of at least 1− δ over the m i.i.d. choice of S ∼ qm

with its empirical distribution q̂, we have

|Lq(h)− Lq̂(h)| ≤
4 +

√
log(τH(2m))

δ
√
2m

. (41)

We also present the bound of growth function τH.

Lemma C.1. (Shalev-Shwartz & Ben-David, Lemma 6.10) Let H be a hypothesis class with VC-dimension of H is
smaller than d, i.e. V CDim(H) ≤ d < ∞. Then, for all m, τH(m) ≤

∑d
i=0

(
m
i

)
. In particular, if m > d + 1, then

τH(m) ≤ (em/d)d, where e is Euler’s number.

Now we present the proof of Theorem C.1.

Proof. By the result of Lemma B.1 with {hk}Kk=1 = {h∗
p̂k
}Kk=1, we can derive

Lp(
∑

k w
∗
k · h∗

p̂k
) ≤

∑
k πk · Lpk

(h∗
p̂k
). (42)

Also we note that Sk ∼ pnk

k . We can derive the following inequality for k = 1, ...,K using Theorem C.2. With probability
at least of 1− (δ/K),

Lpk
(h∗

p̂k
) ≤ Lp̂k

(h∗
p̂k
) +

4 +
√

log(τH(2nk))

(δ/K)
√
2nk

. (43)

where τH is growth function bounded by polynomial of the VC-dimension ofH.

15

Provably Near-Optimal Federated Ensemble Distillation with Negligible Overhead

By the union bound, we have

P

[
K⋂

k=1

(
Lpk

(h∗
p̂k
) ≤ Lp̂k

(h∗
p̂k
) +

4 +
√

log(τH(2nk))

(δ/K)
√
2nk

)]
(44)

= 1− P

[
K⋃

k=1

(
Lpk

(h∗
p̂k
) ≥ Lp̂k

(h∗
p̂k
) +

4 +
√

log(τH(2nk))

(δ/K)
√
2nk

)]
(45)

≥ 1−
K∑

k=1

P

[(
Lpk

(h∗
p̂k
) ≥ Lp̂k

(h∗
p̂k
) +

4 +
√

log(τH(2nk))

(δ/K)
√
2nk

)]
(46)

≥ 1−
K∑

k=1

(δ/K) (47)

≥ 1− δ. (48)

Hence, with probability at least 1− δ, following inequality holds for all k = 1, ..,K:

Lpk
(h∗

p̂k
) ≤ Lp̂k

(h∗
p̂k
) +

4 +
√

log(τH(2nk))

(δ/K)
√
2nk

. (49)

Furthermore, by definition of p̂,

Lp̂(h
∗
p̂) =

∑
k πk · Lp̂k

(h∗
p̂) (50)

≥
∑

k πk · Lp̂k
(h∗

p̂k
). (51)

By combining the above results, with probability of at least 1− δ, we have

Lp(
∑K

k=1 w
∗
k · h∗

p̂k
) ≤

∑
k πk · Lpk

(h∗
p̂k
) (52)

≤
K∑

k=1

πk ·

[
Lp̂k

(h∗
p̂k
) +

4 +
√
log(τH(2nk))

(δ/K)
√
2nk

]
(53)

≤
K∑

k=1

[
πk · Lp̂k

(h∗
p̂k
) + πk ·

4 +
√

log(τH(2nk))

(δ/K)
√
2nk

]
(54)

≤ Lp̂(h
∗
p̂) +

K∑
k=1

πk ·
4 +

√
log(τH(2nk))

(δ/K)
√
2nk

. (55)

This completes the proof.

D. Description of FedGO
Figure 3 illustrates the operation of FedGO. Algorithm 2 presents a pseudo-code of FedGO. For training discriminators,
each client optimizes the GAN loss with respect to its labeled dataset. A pseudo-code of client discriminator update is
provided in Algorithm 3.

E. Experimental Details
All experiments were conducted in Python 3.8.12 environment using a 64-core Intel 2.90GHz Xeon Gold 6226R CPU with
512GB memory, and an RTX 3090 GPU. We also implemented the algorithms using PyTorch with version 1.11.0.

E.1. Detailed Experimental Setting and Analysis of Toy Example (Figure 1)

For the toy example in Figure 1, the dataset is generated from a mixture of four Gaussian distributions, each with a variance
of 3. The top row of Figure 4 shows the global data distribution and the datasets held by four clients. Each point represents

16

Provably Near-Optimal Federated Ensemble Distillation with Negligible Overhead

2. Main FL : Ensemble distillation along with client discriminators

1. Generator preparation (G1 or G2 or G3) 2. Client discriminator training 3. Client discriminators aggregation

Generator

G

Server

𝐷𝐶
𝐷2

𝐷1

Client discriminators

1. Pre-FL : Client discriminators preparation

1. Client model training

𝑓1

Client 1

Client 2

Client 𝐶

𝑓2

𝑓𝐶

Server

𝑓𝐶

Server

𝑓2
𝑓1

Client models

2. Client models aggregation

𝐷𝐶
𝐷2

𝐷1

Client discriminators Server dataset

3. Server dataset
pseudo-labeling

4. Server model
training & distribution

𝑓

Server model

(, Label) Pseudo-
label

(, Label)

()

(, Label)

,

G G

G

G 𝐷1

Client 1

Client 2

Client 𝐶

𝐷2

𝐷𝐶

Pretrained

(G2) load

Data-free

Unlabeled
dataset

Figure 3. Illustration of our FedGO algorithm.

data, with its color indicating the class label: data from Gaussians with means at (4, 4) and (-4, -4) are labeled as Red, data
from the Gaussian with mean at (-4, 4) as Blue, and data from the Gaussian with mean at (4, -4) as Green. Each Gaussian
provides 300 data samples. Each client holds 90% of data from the Gaussian whose mean is in a certain quadrant (the 3rd,
4th, 2nd, 1st quadrants for Clients 1, 2, 3, and 4, respectively), and the remaining 10% from Gaussians with means in the
other quadrants. The clients’ global dataset comprises 1200 samples, with 300 from each Gaussian. The server unlabeled
dataset comprises 300 data, uniformly distributed on the square [−12, 12]× [−12, 12].

Each client trains a 3-layer MLP classifier for 2 epochs using its dataset, and a 3-layer discriminator for 1 epoch using its
dataset as real dataset and server dataset as fake dataset. We used Adam (Kingma & Ba, 2015) with learning rate 0.001 and
(β1, β2) = (0.9, 0.999) for classifier optimizer, and RMSprop (Hinton et al.) with learning rate 0.00005 for discriminator
optimizer. Also we used a batch size of 64 for both.

The bottom row of Figure 4 (same as Figure 1) illustrates the decision boundaries of server models. The leftmost plot is from
the model with averaged client model parameters, while the remaining plots are from the server models trained via ensemble
distillation for 2 epochs using pseudo-labeled dataset: the global dataset is pseudo-labeled using uniform weighting (Lin
et al., 2020), variance weighting (Cho et al., 2022), entropy weighting (Deng et al., 2023; Park et al., 2024), domain-aware
weighting (Wang et al., 2023a) , and our weighting method. The background color indicates the decision boundary in RGB
channels. Given the Gaussian distributions, the optimal decision rule is red in the 1st and 3rd quadrants, blue in the 2nd
quadrant, and green in the 4th quadrant. Thus, the oracle decision boundary aligns with the x-axis and y-axis, depicted by
black lines.

17

Provably Near-Optimal Federated Ensemble Distillation with Negligible Overhead

Algorithm 2 FedGO algorithm with K clients for T communication rounds. f(·; θ) stands for the model with parameter θ,
µ stands for the step size, and Φk(x) stands for the odds value of Dk(x).

Require: Client labeled dataset {Sk}Kk=1

Initialize server model f(·; θ0s) with parameter θ0s
Prepare generate G and unlabeled dataset U ▷By one of the methods in Table 2
for parallel client k ∈ {1, 2, ...,K} do
Dk ← DiscriminatorUpdate(G,Sk) ▷Detailed in Algorithm 3

end for
for communication round t = 1 to T do
At ← sample ⌊C ·K⌋ clients
for parallel client k ∈ At do
θtk ← ClientUpdate(θt−1

s , Sk) ▷Gradient update θt−1
s with Sk

end for
θts ←

∑
k∈At

nk∑
i∈At ni

· θtk
for server train epoch e = 1 to Es do

for unlabeled minibatch u ∈ U do
ỹ(u)← σ(

∑
k∈At w∗

k(u) · f(u; θtk)) ▷w∗
k(u) =

nk·Φk(u)∑
i∈At ni·Φi(u)

θts ← θts − µ · ∇θt
s
KL(ỹ(u), σ(f(u; θts)))

end for
end for

end for
return f(·; θTs)

Algorithm 3 Discriminator update for Ed epochs. µd stands for the step size and D(·; θ) is the parameterized discriminator
with parameter θ.

Require: Generator G, labeled dataset S
Initialize discriminator model D(·; θ0d) with parameter θ0d
for epoch e = 1 to Ed do

θed ← θe−1
d

for minibatch m ∈ S do
(xreal, y)← (images, labels) pair of minimatch m
xfake ← generated images by generator G
LossGAN (D(·; θed))← log(D(xreal; θ

e
d) + log(1−D(xfake; θ

e
d))

θed ← θed − µd∇θe
d
LossGAN (D(·; θed)) ▷Update with gradient for vanilla GAN loss

end for
end for
return D(·; θEd

d))

The averaged parameter model exhibits a blurred decision boundary compared to models trained via ensemble distillation.
Furthermore, among the models with ensemble distillation, the decision boundary of the model trained via our weighting
method is closest to the oracle decision boundary.

E.2. Detailed Experimental Settings for Image Classification Tasks

Hyperparameter Tuning We identified the best-performing hyperparameters on CIFAR-100 with Dirichlet α = 0.05 and
used the same values for other settings. During the ensemble distillation process, we trained both clients and server with the
Adam optimizer (Kingma & Ba, 2015) at a learning rate of 0.001 with batch size 64, without weight decay. The (β1, β2)
parameters for Adam were set to (0.9, 0.999). Additionally, we applied cosine annealing (Loshchilov & Hutter, 2022) to
decay the server learning rate until the final communication round T = 100 as in Lin et al. (2020), except for the results of
F.3 and F.5.

For the client and server classifier training epochs, we performed a grid search to find the optimal number of training

18

Provably Near-Optimal Federated Ensemble Distillation with Negligible Overhead

Server data Global data distribution Client 1's data Client 2's data Client 3's data Client 4's data

Averaged model Uniform weighting Variance weighting Entropy weighting Domain weighting Our weighting

Figure 4. Top row represents the server and clients’ datasets. Bottom row, showing the decision boundaries of the aggregated models, is
the same as Figure 1 and copied here for ease of analysis.

epochs. The initial grid was {5, 10, 30, 50}, and the experiments were conducted with 30 client epochs and 10 server epochs
(Es = 10) for CIFAR-10/100. To leverage the increased number of steps due to the additional number of data, experiments
on ImageNet100 were conducted with 10 client classifier epochs and 3 server classifier epochs (Es = 3).

To train the generator utilized by our FedGO from scratch, we trained the WGAN-GP model following the training method
proposed in Gulrajani et al. (2017). The generator and discriminator of WGAN-GP were trained using the Adam optimizer
with a learning rate of 0.0002 and (β1, β2) = (0, 0.9). The training was conducted with a batch size of 64 until the generator
completed 100,000 gradient steps. The generator was updated every 5 steps of the discriminator, and a gradient penalty
coefficient λ of 10 was used.

When training a generator in a data-free setting, i.e., the case (G3), we utilized the FedGAN (Rasouli et al., 2020) algorithm.
The generator was trained for only T ′ = 5 communication rounds, with each local generator and discriminator trained for 3
epochs per round.

For the client discriminator, we adopted the hyperparameters from https://github.com/Ksuryateja/DCGAN-MNIST-
pytorch/blob/master/gan mnist.py and trained it with a batch size of 64 for 30 epochs for CIFAR-10/100, and for 10
epochs for ImageNet100. The optimizer Adam was used with a learning rate of 0.0002, and (β1, β2) = (0.5, 0.999).

FedProx (Li et al., 2020a) introduces a proximal term to the client training loss, which helps to address heterogeneity by
penalizing large deviations from the server model. The proximal term is multiplied by a coefficient µ and added to the
primary objective loss. We performed a grid search to tune the value of µ from {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005,
0.0001}, and chose the best value µ = 0.001.

FedDisco (Ye et al., 2023) determines client parameter aggregation coefficient by leveraging both the dataset size and the
discrepancy between local and global category distributions. Here, a controls the influence of the discrepancy, while b
adjusts the baseline aggregation coefficient. Following the FedDisco paper, we adopted the best-performing parameters
a = 0.5 and b = 0.1, which were tuned for optimal performance for CIFAR-10.

FedUV (Son et al., 2024) introduces two regularization terms—classifier variance and encoder representation uniformity—to
emulate IID conditions in federated learning, mitigating local bias in non-IID settings. The loss function combines
the standard classification loss with the uniformity term (weighted by λ) and the variance term (weighted by α). By
following Son et al. (2024), we set the hyperparameters λ = 0.5 and α = 2.5 as they achieved the best trade-off between
generalization and personalization across clients.

FedTGP (Zhang et al., 2024) proposes Trainable Global Prototypes (TGP) with Adaptive-Margin-Enhanced Contrastive
Learning to address data heterogeneity by improving class separability and semantic alignment among clients. The model
trains prototypes using contrastive learning with a temperature-scaled margin. By following Zhang et al. (2024), for the
TGP model, we used a batch size of 10, trained for 1,000 epochs with a learning rate of 0.005 and a margin parameter τ =

19

https://github.com/Ksuryateja/DCGAN-MNIST-pytorch/blob/master/gan_mnist.py
https://github.com/Ksuryateja/DCGAN-MNIST-pytorch/blob/master/gan_mnist.py

Provably Near-Optimal Federated Ensemble Distillation with Negligible Overhead

100. The contrastive loss was weighted by λ = 0.001 to balance its influence with the main task objective.

FedHKT (Deng et al., 2023) and FedDS (Park et al., 2024) introduce a temperature parameter τ > 0, which allows client
weights to approach uniform weighting as τ increases. By following Deng et al. (2023), we set τ = 1.

FedGKD (Yao et al., 2021) introduces an additional buffer of length M on the server, where the server model is stored after
each round. The server then creates an additional model with averaged parameters from the models stored in the buffer and
sends this model to the clients each round. Each client uses a temperature parameter τ to compute the knowledge distillation
loss on the received additional model, multiplies this loss by γ/2, and adds it to the primary objective loss. Consequently, it
is necessary to tune three additional hyperparameters: M , τ , and γ. We conducted a grid search with M and τ in {1, 3, 5,
10} and γ in {0.1, 0.05, 0.01, 0.005, 0.001}. The best performing parameters were M = 5, τ = 3, and γ = 0.001.

Similar to our FedGO, DaFKD (Wang et al., 2023a) utilizes discriminators to implement client weighting function. However,
unlike FedGO, DaFKD trains the generator and discriminators collaboratively. To focus on the weighting method, the
domain-aware weighting method in Figure 2 is implemented by only modifying the weighting step in our FedGO algorithm.

Model Implementation We used ResNet-18 (He et al., 2016) as the classification model, following the implemen-
tation from https://github.com/kuangliu/pytorch-cifar/blob/master/models/resnet.py. Additionally, our FedGO requires
extra generator and discriminator models. When training the generator from scratch, we utilized the WGAN-GP
model as proposed in Gulrajani et al. (2017), following its official open-source implementation1. We re-implemented
this code in PyTorch for our experiments. For a pretrained off-the-shelf generator, we utilized StyleGAN-XL (Sauer
et al., 2022) model pretrained on ImageNet (Krizhevsky et al., 2012) with resolution of 32×32. We downloaded the
model parameters from https://github.com/autonomousvision/stylegan-xl and implemented the model using these param-
eters. For the client discriminator, we adopted a simple 4-layer CNN discriminator, following the implementation from
https://github.com/Ksuryateja/DCGAN-MNIST-pytorch/blob/master/gan mnist.py. To address the widely known overfitting
issue of the discriminator (Adlam et al., 2019; Yang et al., 2022) and the resulting dominance of client weights, we employed
a composition of two sigmoid activations for the discriminator output. This ensures that the odds value Φk for client k’s
discriminator Dk is constrained between 1 and e.

FedTGP (Zhang et al., 2024) utilizes an additional TGP model. We implemented TGP model following its official
open-source implementation from https://github.com/TsingZ0/FedTGP.

Heterogeneous Client Data Split To introduce non-iid distributions among client datasets, we ensured that each client’s
distribution follows a Dirichlet distribution Dir(α), similar as in Lin et al. (2020); Wang et al. (2020a); Marfoq et al. (2022);
Li et al. (2023). As the parameter α increases, each client tends to have a more homogeneous distribution, whereas smaller
α values result in increased data heterogeneity among clients. We conducted experiments for each dataset with α values of
0.1 and 0.05. The number of data samples that each client has per class for CIFAR-10/100 datasets with α values of 0.1
and 0.05 is illustrated in Figures 5 and 6. It’s worth noting that ImageNet100 also has 100 classes, so the trends observed
in CIFAR-100 would likely align with those in ImageNet100. We can observe that when α = 0.05, the difference in the
number of data samples per class for each client is more pronounced compared to when α = 0.1. This results in more
skewed distributions for individual clients.

Details for Dataset We normalized the pixel values of all image datasets to fall within the range [−1, 1], ensuring that the
generated data also has pixel values within this range. Additionally, for both the training datasets of clients and the server’s
unlabeled dataset, we conducted further data augmentation using PyTorch’s random horizontal flip.

Selection of Acctarget We used the highest multiple of 5 of the test accuracy (%) achieved by the FedAVG algorithm within
100 rounds for all five different random seeds as Acctarget for Table 4.

F. Additional Experimental Results
F.1. Results with 100 Clients

Figure 7 shows (a) the test accuracy of the server model, (b) the test accuracy of the ensemble model, and (c) the test loss
of the ensemble model during the training process for K = 100 clients on CIFAR-10 dataset with α = 0.05. The latter

1https://github.com/igul222/improved wgan training

20

https://github.com/kuangliu/pytorch-cifar/blob/master/models/resnet.py
https://github.com/autonomousvision/stylegan-xl
https://github.com/Ksuryateja/DCGAN-MNIST-pytorch/blob/master/gan_mnist.py
https://github.com/TsingZ0/FedTGP
https://github.com/igul222/improved_wgan_training

Provably Near-Optimal Federated Ensemble Distillation with Negligible Overhead

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Client

0
1
2
3
4
5
6
7
8
9

Cl
as

s

(a) α = 0.1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Client

0
1
2
3
4
5
6
7
8
9

Cl
as

s

(b) α = 0.05

Figure 5. Client data split for CIFAR-10 with α = 0.1, 0.05.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Client

0
10
20
30
40
50
60
70
80
90

Cl
as

s

(a) α = 0.1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Client

0
10
20
30
40
50
60
70
80
90

Cl
as

s

(b) α = 0.05

Figure 6. Client data split for CIFAR-100 with α = 0.1, 0.05.

two measures were evaluated only for algorithms incorporating ensemble distillation. FedGO achieves the test accuracy
of 69.52%, which is slightly lower than 72.35% with 20 clients (Table 3). In comparison, FedAVG, FedProx, FedDF,
FedGKD+, and DaFKD show significant performance drops to 33.40%, 35.07%, 44.36%, 45.44%, and 59.62%, respectively.
This demonstrates that even in settings with a large number of clients, FedGO exhibits robust performance compared to the
baselines.

In terms of the test accuracy and the test loss of the ensemble model, FedGO consistently demonstrates superior performance
across all rounds compared to the baseline algorithms. Furthermore, unlike the baseline algorithms, whose test loss initially
decreases but then becomes unstable and increases from early rounds, FedGO’s loss converges with small deviation.

F.2. Ensemble Test Accuracy Comparison and Analysis

Figure 8 shows the ensemble test accuracy on the server’s unlabeled dataset during the training process for our FedGO
algorithm and the baseline ensemble algorithms: FedDF, FedGKD+, and DaFKD. It demonstrates that using pseudo-labels
generated by theoretically guaranteed weighting methods allows the server to achieve higher final performance and faster
convergence.

However, in Table 3 of the paper, the performance gap between our method and the baselines on CIFAR-100 and Ima-
geNet100 was not as large as that on CIFAR-10. We infer the reason from Theorem 3.2. The second term on the RHS of
Theorem 3.2 can be interpreted as the distillation loss due to the difference between the hypothesis class and the spanned
hypothesis class. Even if our ensemble is close to optimal, the knowledge-distilled server model may not follow the
performance of the ensemble if it hard for a single model to learn the pseudo-labels, and we conjectures that it becomes
harder as the number of classes increases.

21

Provably Near-Optimal Federated Ensemble Distillation with Negligible Overhead

0 20 40 60 80 100
Communication round

10
20
30
40
50
60
70
80

Se
rv

er
 te

st
 a

cc
ur

ac
y

(%
) FedAVG

FedProx
SCAFFOLD
FedDisco
FedDF
FedGKD
DaFKD
FedGO (Ours)

(a) Server test accuracy

0 20 40 60 80 100
Communication round

30

40

50

60

70

80

En
se

m
bl

e
ac

cu
ra

cy
 (%

) FedDF
FedGKD
DaFKD
FedGO (Ours)

(b) Ensemble test accuracy

0 20 40 60 80 100
Communication round

0

2

4

6

8

10

12

14

Lo
ss

 o
f e

ns
em

bl
ed

 m
od

el FedDF
FedGKD
DaFKD
FedGO (Ours)

(c) Ensemble test loss

Figure 7. Server test accuracy (%), test accuracy of the ensemble model (%), and test loss of the ensemble model of our FedGO and
baselines for 100 clients on CIFAR-10 dataset with α = 0.05.

To support our hypothesis, we show the minimum of mean distillation loss for five different random seeds during 100
round of communication rounds in Table 6. The distillation loss increases progressively from CIFAR-10 to CIFAR-100 to
ImageNet100. In addition, the distillation loss is higher for α = 0.05 than for α = 0.1, which explains why the gap from
the central training is larger for α = 0.05.

Table 6. Minimum mean distillation loss of FedGO on three image datasets with α = 0.1, 0.05.

Dataset CIFAR-10 CIFAR-100 ImageNet100

α = 0.1 0.175 0.237 0.363
α = 0.05 0.266 0.348 0.539

F.3. Ensemble Distillation with a Different Server Dataset

Our theoretical justification of constituting an optimal ensemble in Corollary 3.3 allows heterogeneity between the server
data distribution ps and the client average distribution p. To demonstrate the effectiveness of FedGO when ps ̸= p which
makes more sense in practice, we report the results when clients have the half of the CIFAR-10 dataset and the server has
the half of the CIFAR-100 (unlabeled) dataset, in Table 7. The experimental results demonstrate that ensemble distillation
even with heterogeneous server dataset is helpful in improving the performance. Furthermore, by employing optimal model
ensemble, our FedGO algorithm, with theoretical performance guarantee, shows improvement over FedDF and DaFKD.

Table 7. Server test accuracy (%) and ensemble test accuracy (%) of our FedGO and baselines with heterogeneous server dataset:
CIFAR-10 for client dataset and CIFAR-100 for server’s unlabeled dataset.

FedAVG FedDF DaFKD FedGO (ours)

α = 0.1
Server test accuracy 58.65±5.75 59.89±1.88 60.84±2.65 60.92±1.95

Ensemble test accuracy - 62.62±0.90 63.88 ± 2.02 64.23±1.29

α = 0.05
Server test accuracy 46.61±8.54 49.21±4.48 52.31±4.26 52.89±3.47

Ensemble test accuracy - 56.06±207 59.30 ±1.33 60.43 ±0.56

F.4. Results with Alternative Model Architectures

In the main paper, we conducted experiments with ResNet-18 model structure. In this subsection, we present the results
with VGG11 (Simonyan & Zisserman, 2015) (with BatchNorm Layers (Ioffe & Szegedy, 2015)) and ResNet-50 models.
For VGG11, both the client and server models are trained using SGD with a learning rate of 0.01 and momentum of 0.9,
and all the other settings including hyperparameters are kept identical to those in the main paper. We implemented VGG11
based on https://github.com/chengyangfu/pytorch-vgg-cifar10. For ResNet-50, all the settings including optimizer and

22

https://github.com/chengyangfu/pytorch-vgg-cifar10

Provably Near-Optimal Federated Ensemble Distillation with Negligible Overhead

0 20 40 60 80 100
Communication round

40

50

60

70

80

En
se

m
bl

e
te

st
 a

cc
ur

ac
y

(%
)

FedDF
FedGKD
DaFKD
FedGO (Ours)

(a) CIFAR-10 with α = 0.1

0 20 40 60 80 100
Communication round

40

50

60

70

80

En
se

m
bl

e
te

st
 a

cc
ur

ac
y

(%
)

FedDF
FedGKD
DaFKD
FedGO (Ours)

(b) CIFAR-10 with α = 0.05

0 20 40 60 80 100
Communication round

15

20

25

30

35

40

45

En
se

m
bl

e
te

st
 a

cc
ur

ac
y

(%
)

FedDF
FedGKD
DaFKD
FedGO (Ours)

(c) CIFAR-100 with α = 0.1

0 20 40 60 80 100
Communication round

15

20

25

30

35

40

En
se

m
bl

e
te

st
 a

cc
ur

ac
y

(%
)

FedDF
FedGKD
DaFKD
FedGO (Ours)

(d) CIFAR-100 with α = 0.05

0 20 40 60 80 100
Communication round

15

20

25

30

35

En
se

m
bl

e
te

st
 a

cc
ur

ac
y

(%
)

FedDF
FedGKD
DaFKD
FedGO (Ours)

(e) ImageNet100 with α = 0.1

0 20 40 60 80 100
Communication round

15

20

25

30

35

En
se

m
bl

e
te

st
 a

cc
ur

ac
y

(%
)

FedDF
FedGKD
DaFKD
FedGO (Ours)

(f) ImageNet100 with α = 0.05

Figure 8. Ensemble test accuracy (%) of FedGO and baselines over communication rounds on three image datasets with α = 0.1, 0.05.

hyperparameters are set to the same as the main paper. Table 8 presents the server test accuracy of FedGO and baseline
algorithms with the aforementioned model structures on CIFAR-10 with α = 0.1 after 100 communication rounds.

We can see that our FedGO algorithm consistently achieves performance gains over FedDF and FedGKD+ across different
model structures.

23

Provably Near-Optimal Federated Ensemble Distillation with Negligible Overhead

Table 8. Server test accuracy (%) of central training, FedDF, FedGKD+ and FedGO on CIFAR-10 with α = 0.1 after 100 communication
rounds, when utilizing VGG11 and ResNet-50.

VGG11 ResNet-50

Central training 83.27 ± 0.60 85.12 ± 0.44
FedDF 68.59 ± 4.65 65.21 ± 4.62

FedGKD+ 67.81± 3.60 66.21± 3.01
FedGO (ours) 72.53 ± 4.10 75.52 ± 4.30

F.5. Data-free FedGO

In practice, the server may have no extra dataset. In this case, we first prepare a generator and then generate a distillation
dataset using the generator. The generator can either be an off-the-shelf pretrained model or trained through an FL
approach (Rasouli et al., 2020; Guerraoui et al., 2020; Li et al., 2022; Wang et al., 2023c; Fan & Liu, 2020; Behera et al.,
2022; Hardy et al., 2019; Xiong et al., 2023; Zhang et al., 2021; 2023b), corresponding to the 3rd and 4th scenarios in
Table 2 in our main paper, respectively.

Figure 9 and Table 9 present the results for the two data-free approaches with 100 clients on CIFAR-10 dataset. We employed
styleGAN (Karras et al., 2019) pretrained with ImageNet dataset for the off-the-shelf generator, and applied the FedGAN
algorithm (Rasouli et al., 2020) for training a generator. For both approaches, our FedGO shows performance gains in server
test accuracy, ensemble test accuracy, and ensemble test loss compared to the baseline algorithms, including the uniform
weighting of FedDF (Lin et al., 2020) and the domain-aware weighting of DaFKD (Wang et al., 2023a). Moreover, we
observe that ensemble test accuracy is higher than server test accuracy, which can be attributed to the increased discrepancy
between the distillation dataset distribution ps and the average client distribution p. This discrepancy amplifies the gap
between the ensemble model’s loss and the server model’s loss, as analyzed in Theorem 3.2 of the main paper.

In both data-free approaches, we have ps = pg, under which our weighting method is optimal for ∀x ∈ ps = pg from
Theorem 3.6 in our main paper. Note that the distance between p and pg = ps for the generator trained from FedGAN is
smaller than that for the off-the-shelf generator. Consequently, despite using a simpler generator trained on a smaller dataset,
we observe that the performance of FedGO using the generator trained from FedGAN is slightly better than that using the
off-the-shelf generator.

Finally, we can observe performance degradation compared to the case where the distillation is performed on a real
dataset. This can be attributed to the naive reuse of generated images, which has been identified as a cause of performance
degradation (Yoon et al., 2024; Wang et al., 2024). An interesting future work would be on improving the performance of
knowledge distillation using generated images. Still, experimental results demonstrate that ensemble distillation is beneficial
in improving performance even with generated images. Furthermore, by employing an optimal model ensemble, our FedGO
shows improvement over FedDF and DaFKD.

0 10 20 30 40 50
Communication round

10

20

30

40

50

Se
rv

er
 te

st
 a

cc
ur

ac
y

(%
)

FedDF
DaFKD
FedGO (Ours)
FedAVG

(a) Server test accuracy

0 10 20 30 40 50
Communication round

25

30

35

40

45

50

55

En
se

m
bl

e
te

st
 a

cc
ur

ac
y

(%
)

FedDF
DaFKD
FedGO (Ours)

(b) Ensemble test accuracy

0 10 20 30 40 50
Communication round

0

2

4

6

8

10

12

En
se

m
bl

e
te

st
 lo

ss

FedDF
DaFKD
FedGO (Ours)

(c) Ensemble test loss

Figure 9. Test accuracy of server model (%), ensemble test accuracy (%), and test loss of ensemble model of the data-free FedGO with an
off-the-shelf generator (the case (G2)+(D2) of Table 2) and baselines with 100 clients on the CIFAR-10 dataset with α = 0.05.

24

Provably Near-Optimal Federated Ensemble Distillation with Negligible Overhead

Table 9. Test accuracy of server model (%), ensemble test accuracy (%), and test loss of ensemble model of the data-free FedGO at 100
communication round, with a generator trained from FedGAN (the case (G3)+(D2) of Table 2) and baselines with 100 clients on the
CIFAR-10 dataset with α = 0.05.

Method FedAVG FedProx SCAFFOLD FedDisco FedDF DaFKD FedGO (ours)

Server Test Accuracy 18.12±6.50 21.22±10.03 16.42±4.69 21.11±7.33 25.81±5.35 23.71±4.99 27.26±2.32
Ensemble Test Accuracy - - - - 37.01±5.22 35.07±5.40 38.84±2.45

Ensemble Test Loss - - - - 1.76±0.09 1.84±0.15 1.69±0.06

F.6. Impact of Server Model Hyperparameters on Performance

F.6.1. AMOUNT OF UNLABELED DATA

Figure 10 shows the test accuracy of the server model and the test accuracy of the ensemble model during the training
process for our FedGO algorithm. We conducted experiments by reducing the server dataset size to 50% and 20% of the
size assumed in our main CIFAR-10 experiments. For these experiments, the server epochs were adjusted to ensure the
same number of gradient steps: doubled for 50% and quintupled for 20%, while keeping other hyperparameters the same.

Figure 10 demonstrates that when the server dataset size decreases, the test accuracy of the ensemble model remains nearly
consistent, while that of the server model decreases. This suggests that even with pseudo-labels of similar quality, the
performance of the server model can decline as the server dataset size decreases. This can be interpreted as the server model
becoming more prone to overfitting as the distillation dataset becomes smaller (Hinton, 2015). Note that FedGO has the
performance improvement of about 15% over FedAVG even with only 20% of the dataset, which corresponds to 20% of the
total client dataset size.

0 20 40 60 80 100
Communication round

30

40

50

60

70

80

Se
rv

er
 te

st
 a

cc
ur

ac
y

(%
)

20%
50%
100%

(a) Server test accuracy

0 20 40 60 80 100
Communication round

30

40

50

60

70

80

En
se

m
bl

e
te

st
 a

cc
ur

ac
y

(%
)

20%
50%
100%

(b) Ensemble test accuracy

Figure 10. Server test accuracy (%) and ensemble test accuracy (%) of our FedGO on the CIFAR-10 dataset with α = 0.05, according to
the size of the unlabeled dataset at the server. In the legend, X% means that the size of the unlabeled dataset at the server is reduced to
X% of the size assumed in our main CIFAR-10 setting.

F.6.2. SERVER MODEL TRAINING EPOCHS

Table 10 shows the impact of server model training epochs on FedGO’s performance on CIFAR-10 with α = 0.1 after 100
communication rounds. Using 5 epochs outperforms 1 epoch, with minimal performance differences beyond 5 epochs.
Notably, even with only 1 epoch, FedGO significantly outperforms all the baselines trained with 10 server epochs in Table 3.

Table 10. Server test accuracy (%) and ensemble test accuracy (%) of FedGO on CIFAR-10 with α = 0.1 after 100 communication
rounds, according to the number of server model training epochs.

Epoch 1 5 10 20

Server Test Accuracy 74.03±6.41 79.56±5.30 79.62±4.36 78.32±5.13
Ensemble Test Accuracy 77.16±0.88 80.97±0.87 81.56±0.48 81.39±0.75

25

Provably Near-Optimal Federated Ensemble Distillation with Negligible Overhead

F.6.3. SERVER MODEL LEARNING RATE DECAY

In the main paper, we used cosine learning rate decay by following the experimental setting of FedDF. As shown in Table 11,
the absence of learning rate decay results in further performance improvement. Specifically, an ensemble test accuracy of
85.20% is achieved, which is comparable to the central training model’s accuracy of 85.33%, demonstrating the effectiveness
of our provably near-optimal weighting method.

Table 11. Server test accuracy (%) and ensemble test accuracy (%) of FedGO on CIFAR-10 with α = 0.1 after 100 communication
rounds, with and without learning rate decay during server model training.

FedGO
with LR decay without LR decay

Server Test Accuracy 79.62±4.36 80.18±2.16
Ensemble Test Accuracy 81.56±0.48 85.20±1.33

F.7. Impact of Generator and Discriminator Quality on Performance

F.7.1. GENERATOR TRAINING STEPS

Table 12 shows the performance of our FedGO with varying generator training steps (100,000 in the main setup) alongside
baseline algorithms after 50 communication rounds, while keeping all other settings unchanged from the main setup. FedGO
with the generator trained for 25,000 steps performs better than that with the randomly initialized generator (0 steps), with
little performance improvement beyond 25,000 steps. Remarkably, even a randomly initialized generator outperforms
FedDF with uniform weighting and achieves performance comparable to DaFKD with a generator trained for 100,000 steps.

Table 12. Server test accuracy (%) and ensemble test accuracy (%) of FedGO on CIFAR-10 with α = 0.1 after 50 communication rounds,
according to the number of generator training steps.

FedDF DaFKD FedGO (ours)

Generator Training Steps - 100,000 0 25,000 50,000 75,000 100,000

Server Test Accuracy 70.18 ± 2.56 71.42 ± 3.11 71.12 ± 2.07 76.74 ± 3.16 78.43 ± 0.99 78.89 ± 1.55 78.24 ± 1.61
Ensemble Test Accuracy 73.55± 2.41 74.54± 2.80 74.88± 1.63 79.12± 1.97 80.72± 0.75 80.87± 0.98 80.82± 0.82

F.7.2. DISCRIMINATOR TRAINING EPOCHS

Table 13 shows the final performance of the FedGO algorithm for different numbers of discriminator training epochs on
CIFAR-10 with α = 0.05. It can be seen that training the discriminator more times results in better final performance.
Additionally, we note that among the baselines in Table 3 and Figure 2, except DaFKD which originally trains the generator
and discriminators at each round, the highest performance is achieved by the variance weighting method, with the test
accuracy of 67.51±10.77%, indicating that there is a performance gain from the FedGO algorithm with just 5 epochs of
discriminator training.

Table 13. Server test accuracy (%) of FedGO on CIFAR-10 with α = 0.05 at the 100-th communication round, according to the number
of discriminator training epochs at the clients.

Epoch 1 5 10 30 50

Accuracy 63.96±9.03 71.38±7.76 70.84±8.88 72.35±9.01 76.92±5.08

F.7.3. DISCRIMINATOR ARCHITECTURES

Table 14 presents the number of parameters, the number of FLOPs required for the forward computation, and the performance
of FedGO on CIFAR-10 with α = 0.1 at the 100-th communication round, when the following three different client
discriminator structures are used:

26

Provably Near-Optimal Federated Ensemble Distillation with Negligible Overhead

• CNN: The baseline architecture used in the main setting. It consists of four convolutional layers.

• CNN+MLP: A variation of the CNN architecture, where the last two convolutional layers in the CNN are replaced by a
single multi-layer perceptron (MLP) layer, resulting in a three-layer shallow network.

• ResNet: A deeper architecture based on ResNet-8, an 8-layer residual network.

Table 14. Server test accuracy (%) of FedGO on CIFAR-10 with α = 0.1 at the 100-th communication round along with the number of
parameters and the number of FLOPs for the forward computation, according to different client discriminator structures.

FedGO

Discriminator Structure CNN CNN+MLP ResNet

Number of Parameters 662,528 142,336 1,230,528
FLOPs 17.6 MFLOPs 9.18 MFLOPs 51.1 MFLOPs

Server Test Accuracy 79.62±4.36 79.71±4.71 78.73±5.03

Table 14 shows almost identical performances regardless of client discriminator architectures, demonstrating the robustness
of FedGO to the discriminator architecture. In particular, the CNN+MLP discriminator, which has less than a quarter of the
parameters and around the half of the FLOPs compared to the original CNN structure, achieves similar performance.

F.8. Impact of Byzantine Clients

We have conducted additional experiments in which 5 and 10 out of 20 clients were Byzantine, outputting only the maximum
value for the discriminator. As shown in Table 15, the classification accuracy on CIFAR-10 without any Byzantine clients
was 72.35% with a standard deviation of 9.01. When 5 clients were Byzantine, the accuracy dropped to 69.75%, and further
decreased to 66.38% when 10 clients were Byzantine. Despite this challenging scenario where up to half of the clients were
compromised, our method still significantly outperformed all baseline approaches that do not incorporate a discriminator,
demonstrating its strong robustness against adversarial behavior.

Table 15. Server test accuracy (%) of FedGO on CIFAR-10 with α = 0.05 at the 100-th communication round along with the number of
Byzantine clients.

Byzantine Clients Accuracy (%)

0 72.35±9.01
5 69.75±5.05
10 66.38±4.97

G. Comprehensive Analysis of Communication, Privacy, and Computational Complexity
Let us provide a detailed explanation for Table 2. If the server dataset is available from the outset (first two rows in Table
2), we only need one-shot communication of generator (from the server to the clients) and discriminators (from the clients
to the server). Hence, additional communication burden and client-side privacy leakage are negligible. In particular, for
our experiments, the parameters of the ResNet-18 classifier are approximately 90MB when stored as a PyTorch state dict.
In comparison, the generator and discriminator models are 4.61MB and 2.53MB, respectively. Over 100 communication
rounds, during which ResNet-18 is transmitted repeatedly, the additional communication burden introduced by FedGO is
nearly negligible. However, the server dataset is used for distillation for each communication round, incurring non-negligible
privacy leakage on the server side. If there is no server dataset (last two rows in Table 2), there is no additional privacy
leakage on the server side. If we use a pretrained generator instead (third row), additional communication burden, client-side
privacy leakage and computational burden are negligible, but it is challenging in general to secure an off-the-shelf generator
which generates data with a distribution similar to the client data distribution. To train a generator through FL (last row),
multiple rounds of GAN exchanges between the server and clients are required; however, since our FedGO requires a

27

Provably Near-Optimal Federated Ensemble Distillation with Negligible Overhead

small number of GAN exchanges in pre-FL, compared to the number of model exchanges in main FL, the additional
communication burden, client-side privacy leakage, and computational burden are still negligible.

In the following, we provide a quantitative analysis of additional privacy leakage of FedGO compared to FedAVG, and an
explicit comparison of computational cost for FedGO and baselines.

G.1. Privacy Analysis

For privacy measure, we consider local differential privacy (LDP) (Dwork et al., 2006) which is widely accepted both in
academia and industry. Note that when the data is provided n times by independently applying an LDP mechanism with
privacy budget ϵ for each provision, the total privacy budget becomes nϵ from the parallel composition result (Dwork et al.,
2014).

Let T denote the total number of communication rounds in the main-FL stage. For the case (G3) in Section 3.2, let T ′

denote the total number of communication rounds required to train a GAN in the pre-FL stage, which is 1/20 of T in our
experiment. For simplicity, we assume that every client participates in FL for each communication round. Let ϵM , ϵD, and
ϵG denote the privacy budgets of LDP mechanisms applied to the classifier, discriminator, generator sent from each client at
each communication round, respectively. Let ϵ̂M and ϵ̂G denote the privacy budgets of LDP mechanisms applied to the
classifier and the generator sent from the server when the server uses its own dataset in case of (S1) for training the generator
and for distillation, respectively.

Table 16 shows the client-side and the server-side total privacy leakage of FedAVG and FedGO under various scenarios. For
FedAVG, each client provides the classifier T times, and hence the client-side total privacy leakage becomes T · ϵM . Let
us first analyze the additional client-side privacy leakage of FedGO under various scenarios. For FedGO with the method
(G1)+(D1), (G2)+(D1), or (G2)+(D2), the client sends its discriminator only once, incurring extra privacy leakage of ϵD,
which is negligible with large T . For FedGO with (G3)+(D2), the clients need to send the discriminator and the generator
for T ′ times to train a GAN in the pre-FL stage, leading to additional privacy leakage of T ′ · (ϵD + ϵG); however, since
T ′ is only 1/20 of T in our experiment, the additional privacy leakage is negligible. Next, server-side privacy issues arise
only when the server has its own dataset. If the server trains the generator from its dataset and provides it to the clients for
the case of (G1), it yields the privacy leakage of ϵ̂G. In addition, if the server uses its dataset for distillation and applies an
LDP mechanism with privacy budget ϵ̂M to the classifier for each communication round for the case of (D1), it results in a
non-negligible amount of additional privacy leakage T · ϵ̂M .

We consider this as a future work direction: developing methods for training ensemble distillation while preserving LDP
constraints in classifiers or discriminators.

Table 16. Quantitative analysis of the client-side and the server-side total privacy leakage of FedAVG and FedGO under various scenarios.

Client-side Server-side

FedAVG T · ϵM −

FedGO

(G1)+(D1) T · ϵM + ϵD ϵ̂G + T · ϵ̂M
(G2)+(D1) T · ϵM + ϵD T · ϵ̂M
(G2)+(D2) T · ϵM + ϵD −
(G3)+(D2) T ′ · (ϵD + ϵG) + T · ϵM + ϵD −

G.2. Computational Cost Comparison

Table 17 shows the floating point operations (FLOPs) during CIFAR-10 training for the baselines and FedGO with the four
scenarios described in Table 2. 1 MFLOP represents 106 FLOPs.

First, on the client side, the computational cost for FedGO with (G1) or (G2) is comparable to that of FedAVG and FedDF,
which only optimize the client’s vanilla supervised loss. The cost is roughly half of the cost of FedGKD+, which includes a
regularization term in the client objective. This reduction is because the client only needs to train the discriminator only
once during the pre-FL stage. In each round, FedAVG and FedDF compute 4.17e+7 MFLOPs per client update, whereas the
computational cost for training a client’s discriminator is 3.29e+7 MFLOPs—less than the cost for one round of classifier
training. The additional computation cost for FedGO with (G1) or (G2) is therefore minimal, especially considering its

28

Provably Near-Optimal Federated Ensemble Distillation with Negligible Overhead

fast convergence speed.2 Note that the client-side computational cost of FedProx is same as that of FedAVG because the
proximal term computation is negligible. For FedGO with (G3), clients train the generator using an FL approach during
the pre-FL stage. Although this process adds computational overhead to the client side, the number of FL rounds required
for training the generator is relatively small—only 1/20 of the rounds needed for the main FL stage in our experiment.
Consequently, this results in only a slight increase in the overall computational cost compared to FedAVG. In contrast,
data-free FL algorithms like DaFKD (Wang et al., 2023a) exchange both the generator and model in every communication
round, resulting in significant overhead associated with utilizing the generator when many rounds for model training are
needed. By decoupling generator preparation from model training, FedGO with (G3)+(D2) avoids this issue, reducing the
additional overhead.

Next, on the server side, in FedGO with (G1)+(D1), training a generator using server dataset involves significant additional
computation compared to FedDF due to the 100,000 steps required for training a ResNet-based generator and discriminator.
However, given that federated learning typically involves a server with ample resources and clients with limited computational
resources, this increase in server-side computation is more affordable in practice, compared to increasing the computational
burden on clients. Furthermore, while the computation for training the generator is irrelevant to the number of clients, the
computation required for pseudo-labeling scales linearly with the number of clients. Note that the total computational cost
in Table 17 assumes 20 clients. In real-world scenarios, where 100+ clients may participate in FL, the relative proportion of
the computational cost for training the generator will decrease.

Note that using an off-the-shelf generator reduces the additional server-side computational cost of FedGO. FedGO with
(G2)+(D1) requires approximately 2% more computation than FedDF, but achieves a significant performance gain of
about 13%p on CIFAR-10 with α = 0.05 in Table 3. The reason why FedGO with (G2)+(D2) has a higher server-side
computational cost compared to FedGO with (G2)+(D1) is that FedGO with (G2)+(D2) generates distillation dataset using a
heavy generator, StyleGAN.

FedGO with (G3)+(D2) also generates distillation dataset using a generator but the generator used here is lighter than
StyleGAN generator used in (G2)+(D2). The computational cost for the generation of distillation dataset in FedGO with
(G3)+(D2) is 2.11e+7 MFLOPs which is negligible compared to the computational cost for pseudo-labelling and ensemble
distillation which is 5.07e+10 MFLOPs. On the other hand, note that the computational cost of FedGO with (G3)+(D2)
is slightly lower than DaFKD while both train a generator using an FL approach. The reduction mainly comes from the
difference that FedGO with (G3)+(D2) generates a distillation dataset only once after the training of the generator, while
DaFKD updates the distillation dataset in every communication round. Finally, note that the server-side computational
cost of FedGO with (G3)+(D2) is comparable to the case (G2)+(D1), even though (G3) trains a generator through an
FL approach. This is because the server’s role is limited to averaging the clients’ generator and discriminator, incurring
negligible additional computational cost on the server side.

Table 17. The number of MFLOPs for training our FedGO and baselines on CIFAR-10 for 100 communication rounds.

FedAVG FedProx FedDF FedGKD+ DaFKD
FedGO (ours)

(G1)+(D1) (G2)+(D1) (G2)+(D2) (G3)+(D2)

Client-side 3.33e+10 3.33e+10 3.33e+10 6.67e+10 8.81e+11 3.40e+10 3.40e+10 3.40e+10 3.52e+10
Server-side 7.82e+3 7.82e+3 5.00e+10 5.00e+10 5.28e+10 1.39e+11 5.07e+10 6.01e+10 5.07e+10

Total 3.33e+10 3.33e+10 8.33e+10 1.17e+11 9.34e+11 1.73e+11 8.47e+10 9.41e+10 8.59e+10

H. Limitation
Although our FedGO algorithm can be extended to model heterogeneous scenarios as in FedDF, we found it challenging to
define an optimal model ensemble for multiple hypothesis classes. Consequently, it appears difficult to apply the results of
Theorem 3.2 and Corollary 3.3 in such cases.

2We note that the computational cost exceeds 2%, rather than being below 1%, because in each round, only C = 0.4 proportion of
clients are sampled to participate in federated learning, rather than full client participation.

29

