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ABSTRACT

Training deep neural networks is a challenging non-convex optimization problem.
Recent work has proven that the strong duality holds (which means zero duality gap)
for regularized finite-width two-layer ReLU networks and consequently provided
an equivalent convex training problem. However, extending this result to deeper
networks remains to be an open problem. In this paper, we prove that the duality
gap for deeper linear networks with vector outputs is non-zero. In contrast, we
show that the zero duality gap can be obtained by stacking standard deep networks
in parallel, which we call a parallel architecture, and modifying the regularization.
Therefore, we prove the strong duality and existence of equivalent convex problems
that enable globally optimal training of deep networks. As a by-product of our
analysis, we demonstrate that the weight decay regularization on the network
parameters explicitly encourages low-rank solutions via closed-form expressions.
In addition, we show that strong duality holds for three-layer standard ReLU
networks given rank-1 data matrices.

1 INTRODUCTION

Deep neural networks demonstrate outstanding representation and generalization abilities in popular
learning problems ranging from computer vision, natural language processing to recommendation
system. Although the training problem of deep neural networks is a highly non-convex optimization
problem, simple first order gradient based algorithms, such as stochastic gradient descent, can find a
solution with good generalization properties. However, due to the non-convex and non-linear nature
of the training problem, underlying theoretical reasons for this remains an open problem.

The Lagrangian dual problem (Boyd et al., 2004) plays an important role in the theory of convex and
non-convex optimization. For convex optimization problems, the convex duality is an important tool
to determine their optimal values and to characterize the optimal solutions. Even for a non-convex
primal problem, the dual problem is a convex optimization problem the can be solved efficiently. As
a result of weak duality, the optimal value of the dual problem serves as a non-trivial lower bound for
the optimal primal objective value. Although the duality gap is non-zero for non-convex problems,
the dual problem provides a convex relaxation of the non-convex primal problem. For example, the
semi-definite programming relaxation of the two-way partitioning problem can be derived from its
dual problem (Boyd et al., 2004).

The convex duality also has important applications in machine learning. In Paternain et al. (2019),
the design problem of an all-encompassing reward can be formulated as a constrained reinforcement
learning problem, which is shown to have zero duality. This property gives a theoretical convergence
guarantee of the primal-dual algorithm for solving this problem. Meanwhile, the minimax generative
adversarial net (GAN) training problem can be tackled using duality (Farnia & Tse, 2018).

In lines of recent works, the convex duality can also be applied for analyzing the optimal layer
weights of two-layer neural networks with linear or ReLU activations (Ergen & Pilanci, 2019; Pilanci
& Ergen, 2020; Ergen & Pilanci, 2020a;b; Lacotte & Pilanci, 2020; Sahiner et al., 2020). Based
on the convex duality framework, the training problem of two-layer neural networks with ReLU
activation can be represented in terms of a single convex program in Pilanci & Ergen (2020). Such
convex optimization formulations are extended to two-layer and three-layer convolutional neural
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network training problems in Ergen & Pilanci (2021b). Strong duality also holds for deep linear
neural networks with scalar output (Ergen & Pilanci, 2021a). The convex optimization formulation
essentially gives a detailed characterization of the global optimum of the training problem. This
enables us to examine in numerical experiments whether popular optimizers for neural networks,
such as gradient descent or stochastic gradient descent, converge to the global optimum of the training
loss.

Admittedly, a zero duality gap is hard to achieve for deep neural networks, especially for those with
vector outputs. This imposes more difficulty to understand deep neural networks from the convex
optimization lens. Fortunately, neural networks with parallel structures (also known as multi-branch
architecture) appear to be easier to train. Practically, the usage of parallel neural networks dates
back to AlexNet (Krizhevsky et al., 2012). Modern neural network architecture including Inception
(Szegedy et al., 2017), Xception (Chollet, 2017) and SqueezeNet (Iandola et al., 2016) utilize the
parallel structure. As the “parallel” version of ResNet (He et al., 2016a;b), ResNeXt (Xie et al.,
2017) and Wide ResNet (Zagoruyko & Komodakis, 2016) exhibit improved performance on many
applications. Recently, it was shown that neural networks with parallel architectures have smaller
duality gaps (Zhang et al., 2019) compared to standard neural networks. Furthermore, Ergen &
Pilanci (2021c;e) proved that there is no duality gap for parallel architectures with three-layers.

On the other hand, it is known that overparameterized parallel neural networks have benign train-
ing landscapes (Haeffele & Vidal, 2017; Ergen & Pilanci, 2019). The parallel models with the
over-parameterization are essentially neural networks in the mean-field regime (Nitanda & Suzuki,
2017; Mei et al., 2018; Chizat & Bach, 2018; Mei et al., 2019; Rotskoff et al., 2019; Sirignano &
Spiliopoulos, 2020; Akiyama & Suzuki, 2021; Chizat, 2021; Nitanda et al., 2020). The deep linear
model is also of great interests in the machine learning community. For training `2 loss with deep
linear networks using Schatten norm regularization, Zhang et al. (2019) show that there is no duality
gap. The implicit regularization in training deep linear networks has been studied in Ji & Telgarsky
(2018); Arora et al. (2019); Moroshko et al. (2020). From another perspective, the standard two-layer
network is equivalent to the parallel two-layer network. This may also explain why there is no duality
gap for two-layer neural networks.

1.1 CONTRIBUTIONS

Following the convex duality framework introduced in Ergen & Pilanci (2021a; 2020a), which showed
the duality gap is zero for two-layer networks, we go beyond two-layer and study the convex duality
for vector-output deep neural networks with linear activation and ReLU activation. Surprisingly, we
prove that three-layer networks may have duality gaps depending on their architecture, unlike
two-layer neural networks which always have zero duality gap. We summarize our contributions
as follows.

• For training standard vector-output deep linear networks using `2 regularization, we precisely
calculate the optimal value of the primal and dual problems and show that the duality
gap is non-zero, i.e., Lagrangian relaxation is inexact. We also demonstrate that the `2-
regularization on the parameter explicitly forces a tendency toward a low-rank solution,
which is boosted with the depth. However, we show that the optimal solution is available in
closed-form.

• For parallel deep linear networks, with certain convex regularization, we show that the
duality gap is zero, i.e, Lagrangian relaxation is exact.

• For parallel deep ReLU networks of arbitrary depth, with certain convex regularization
and sufficient number of branches, we prove strong duality, i.e., show that the duality gap
is zero. Remarkably, this guarantees that there is a convex program equivalent to the
original deep ReLU neural network problem.

We summarize the duality gaps for parallel/standard neural network in Table 1.

1.2 NOTATIONS

We use bold capital letters to represent matrices and bold lowercase letters to represent vectors. Denote
[n] = {1, . . . , n}. For a matrix Wl ∈ Rml−1×ml , for i ∈ [ml−1] and j ∈ [ml], we denote wcol

l,i as its
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linear activation ReLU activation
L = 2 L = 3 L > 3 L = 2 L = 3 L > 3

standard networks
previous work 3(0) 7 7 3(0) 7 7

this paper 3(0) 3( 6= 0) 3( 6= 0) 3(0) 7 7

parallel networks
previous work 3(0) 3(0) 3(0) 3(0) 3(0) 7

this paper 3(0) 3(0) 3(0) 3(0) 3(0) 3(0)

Table 1: Existing and current results for duality gaps in L-layer standard and parallel architectures.
we compare our duality gap characterization with previous literature. Each check mark indicates
whether a characterization of the duality gap exists for the corresponding architecture and the number
next to it indicates whether the gap is zero or not.

i-th column and wrow
l,j as its j-th row. Throughout the paper, X ∈ RN×d is the data matrix consisting

of d dimensional N samples and Y ∈ RN×K is the label matrix for a regression/classification task
with K outputs. We use the letter P (D) for the optimal value of the primal (dual) problem.

1.3 MOTIVATIONS AND BACKGROUND

Recently a series of papers (Pilanci & Ergen, 2020; Ergen & Pilanci, 2021a; 2020a) studied two-layer
neural networks via convex duality and proved that strong duality holds for these architectures.
Particularly, these prior works consider the following weight decay regularized training framework
for classification/regression tasks. Given a data matrix X ∈ RN×d consisting of d dimensional N
samples and the corresponding label matrix y ∈ RN , the weight-decay regularized training problem
for a scalar-output neural network with m hidden neurons can be written as follows

P := min
W1,w2

1

2
‖φ(XW1)w2 − y‖22 +

β

2
(‖W1‖2F + ‖w2‖22), (1)

where W1 ∈ Rd×m and w2 ∈ Rm are the layer weights, β > 0 is a regularization parameter, and φ
is the activation function, which can be linear φ(z) = z or ReLU φ(z) = max{z, 0}. Then, one can
take the dual of (1) with respect to W1 and w2 obtain the following dual optimization problem

D := max
λ
− 1

2
‖λ− y‖22 +

1

2
‖y‖22,

s.t. max
w1:‖w1‖2≤1

|λTφ(Xw1)| ≤ β.
(2)

We first note that since the training problem (1) is non-convex, strong duality may not hold, i.e.,
P ≥ D. Surprisingly, as shown in Pilanci & Ergen (2020); Ergen & Pilanci (2021a; 2020a), strong
duality in fact holds, i.e., P = D, for two-layer networks and therefore one can derive exact convex
representations for the non-convex training problem in (1). However, extensions of this approach to
deeper and state-of-the-art architectures are not available in the literature. Based on this observation,
the central question we address in this paper is:

Does strong duality hold for deep neural networks?

Depending on the answer to the question above, an immediate next questions we address is

Can we characterize the duality gap (P-D)? Is there an architecture for which strong duality holds
regardless of the depth?

Consequently, throughout the paper, we provide a full characterization of convex duality for deeper
neural networks. We observe that the dual of the convex dual problem of the nonconvex minimum
norm problem of deep networks correspond to a minimum norm problem of deep networks with
parallel branches. Based on this characterization, we propose a modified architecture for which strong
duality holds regardless of depth.
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1.4 ORGANIZATION

This paper is organized as follows. In Section 2, we review standard neural networks and introduce
parallel architectures. For deep linear networks, we derive primal and dual problems for both standard
and parallel architectures and provide calculations of optimal values of these problems in Section 3.
We derive primal and dual problems for three-layer ReLU networks with standard architecture and
precisely calculate the optimal values for whitened data in Section 4. We also show that deep ReLU
networks with parallel structures have no duality gap.

2 STANDARD NEURAL NETWORKS VS PARALLEL ARCHITECTURES

We briefly review the convex duality theory for two-layer neural networks in Appendix A. To extend
the theory to deep neural networks, we fist consider the L-layer neural network with the standard
architecture:

fθ(X) = AL−1WL,Al = φ(Al−1Wl), ∀l ∈ [L− 1],A0 = X, (3)
where φ is the activation function, Wl ∈ Rml−1×ml is the weight matrix in the l-th layer and
θ = (W1, . . . ,WL) represents the parameter of the neural network.

We then introduce the neural network with parallel architectures:

fprl
θ (X) = AL−1WL,Al,j = φ(Al−1,jWl,j),∀l ∈ [L− 1],A0,j = X,∀j ∈ [m]. (4)

Here for l ∈ [L − 1], the l-th layer has m weight matrices Wl,j ∈ Rml−1×ml where j ∈ [m].
Specifically, we let mL−1 = 1 to make each parallel branch as a scalar-output neural network.
In short, we can view the output AL−1 from a parallel neural network as a concatenation of m
scalar-output standard neural work. In Figures 1 and 2, we provide examples of neural networks with
standard and parallel architectures. We shall emphasize that for L = 2, the standard neural network
is identical to the parallel neural network. We next present a summary of our main result.
Theorem 1 (main result) For L ≥ 3, there exists an activation function φ and a L-layer standard
neural network defined in (3) such that the strong duality does not hold, i.e., P > D. In contrast, for
any L-layer parallel neural network defined in (4) with linear or ReLU activations and sufficiently
large number of branches, strong duality holds, i.e., P = D.

We elaborate on the primal problem with optimal value P and the dual problem with optimal value
D in Section 3 and 4.

3 DEEP LINEAR NETWORKS

3.1 STANDARD DEEP LINEAR NETWORKS

Layer 1Input Layer 2 Layer 3 Layer 4

Figure 1: Standard Architecture
Layer 1Input Layer 2 Layer 3 Layer 4

Figure 2: Parallel Architecture

We first consider the neural network with standard ar-
chitecture, i.e., fθ(X) = XW1 . . .WL. Consider the
following minimum norm optimization problem:

Plin = min
{Wl}Ll=1

1

2

L∑
l=1

‖Wl‖2F ,

s.t. XW1, . . . ,WL = Y,

(5)

where the variables are W1, . . . ,WL. As shown in the
Proposition 3.1 in (Ergen & Pilanci, 2021a), by introduc-
ing a scale parameter t, the problem (5) can be reformulated as

Plin = min
t>0

L− 2

2
t2 + Plin(t),

where the subproblem Plin(t) is defined as

Plin(t) = min
{Wl}Ll=1

K∑
j=1

‖wrow
L,j ‖2,

s.t. XW1 . . .WL = Y, ‖Wi‖F ≤ t, i ∈ [L− 2], ‖wcol
L−1,j‖2 ≤ 1, j ∈ [mL−1].
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To be specific, these two formulations have the same optimal value and the optimal solutions of one
problem can be rescaled into the optimal solution of another solution. Based on the rescaling of
parameters in Plin(t) , we characterize the dual problem of Plin(t) and its bi-dual, i.e., dual of the
dual problem.
Proposition 1 The dual problem of Plin(t) is a convex optimization problem given by

Dlin(t) = max
Λ

tr(ΛTY)

s.t. max
‖Wi‖F≤t,i∈[L−2],‖wL−1‖2≤1

‖ΛTXW1 . . .WL−2wL−1‖2 ≤ 1.

There exists a threshold of the number of branches m∗ ≤ KN + 1 such that Dlin(t) = BDlin(t),
where BDlin(t) is the optimal value of the bi-dual problem

BDlin(t) = min
{Wl,j}l∈[L],j∈[m∗]

m∗∑
j=1

‖wrow
L,j ‖2,

s.t.
m∗∑
j=1

XW1,j . . .WL−2,jw
col
L−1,jw

row
L,j = Y,

‖Wi,j‖F ≤ t, i ∈ [L− 2], j ∈ [m∗], ‖wcol
L−1,j‖2 ≤ 1, j ∈ [m∗].

(6)

Detailed derivation of the dual and the bi-dual problems are provided in Appendix C.1. As Λ = 0 is
a strict feasible point for the dual problem, the optimal dual solutions exist due to classical results
in strong duality for convex problems. The reason why we do not directly take the dual of Plin is
that the objective function in Plin involves the weights of first L− 1 layer, which prevents obtaining
a non-trivial dual problem. An interesting observation is that the bi-dual problem is related to the
minimum norm problem of a parallel neural network with balanced weights. Namely, the Frobenius
norm of the weight matrices {Wl,j}L−2

l=1 in each branch j ∈ [m] has the same upper bound t.

To calculate the value Plin(t) for fixed t ∈ R, we introduce the definition of Schatten-p norm.
Definition 1 For a matrix A ∈ Rm×n and p > 0, the Schatten-p quasi-norm of A is defined as

‖A‖Sp
=

min{m,n}∑
i=1

σpi (A)

1/p

,

where σi(A) is the i-th largest singular value of A.

The following proposition provides a closed-form solution for the sub-problem Plin(t) and determines
its optimal value.
Proposition 2 Suppose that W ∈ Rd×K with rank r is given. Assume that ml ≥ r for l =
1, . . . , L− 1. Consider the following optimization problem:

min
{Wl}Ll=1

1

2

(
‖W1‖2F + · · ·+ ‖WL‖2F

)
, s.t. W1W2 . . .WL = W. (7)

Then, the optimal value of the problem (7) is given by L
2 ‖W‖

2/L
S2/L

. Suppose that W = UΣVT . The
optimal value is achieved when

Wl = Ul−1Σ
1/LUT

l , i = l, . . . , L. (8)

Here U0 = U,UL = V and for l = 1, . . . , L− 1, Ul ∈ Rml×r satisfies that UT
l Ul = Ir.

To the best of our knowledge, this result was not known previously. Proposition 2 implies that Plin

can be equivalently written as

min
L

2
‖W‖2/LS2/L

s.t. XW = Y .

Denote X† as the pseudo inverse of X. Although the objective is non-convex for L ≥ 3, this problem
has a closed-form solution as we show next.
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Theorem 2 Suppose that X†Y = UΣVT is the singular value decomposition and let r :=
rank(X†Y). Assume that ml ≥ r for l = 1, . . . , L − 1. The optimal solution to Plin is given
in closed-form as follows:

Wl = Ul−1Σ
1/LUT

l , l ∈ [L] (9)

where U0 = U,UL = V. For l = 1, . . . , L− 1, Ul ∈ Rml×r satisfies UT
l Ul = Ir.

Based on Theorem 2, the optimal value of Plin(t) and Dlin(t) can be precisely calculated as follows.
Theorem 3 Assume that ml ≥ rank(X†Y) for l = 1, . . . , L− 1. For fixed t > 0, the optimal value
of Plin(t) and Dlin(t) are given by

Plin(t) = t−(L−2)‖X†Y‖S2/L
, (10)

and
Dlin(t) = t−(L−2)‖X†Y‖∗. (11)

Here ‖ · ‖∗ represents the nuclear norm. Plin(t) = Dlin(t) if and only if the singular values of X†Y
are equal.

As a result, if the singular values of X†Y are not equal to the same value, the duality gap exists, i.e.,
P > D, for standard deep linear networks with L ≥ 3. We note that the optimal scale parameter t for
the primal problem Plin is given by t∗ = ‖W∗‖1/LS2/L

. This proves the first part of Theorem 1.

We conclude that, the deep linear network training problem has a duality gap whenever the depth
is three or more. In contrast, there exists no duality gap for depth two. Nevertheless, the optimal
solution can be obtained in closed form as we have shown. In the following section, we introduce a
parallel multi-branch architecture that always has zero duality gap regardless of the depth.

3.2 PARALLEL DEEP LINEAR NEURAL NETWORKS

Now we consider the parallel multi-branch network structure as defined in Section 2, and consider
the corresponding minimum norm optimization problem:

min
{Wl,j}l∈[L],j∈[m]

1

2

L−1∑
l=1

m∑
j=1

‖Wl,j‖2F + ‖WL‖2F

 ,

s.t.
m∑
j=1

XW1,j . . .WL−2,jw
col
L−1,jw

row
L,j = Y.

(12)

Due to a rescaling to achieve the lower bound of the inequality of arithmetic and geometric means,
we can formulate the problem (12) in the following way. In other words, two formulations (12) and
(13) have the same optimal value and the optimal solutions of one problem can be mapped to the
optimal solutions of another problem.
Proposition 3 The problem (12) can be formulated as

min
{Wl,j}l∈[L],j∈[m]

L

2

m∑
j=1

‖wrow
L,j ‖

2/L
2 ,

s.t.
m∑
j=1

XW1,j . . .WL−2,jw
col
L−1,jw

row
L,j = Y,

‖Wl,j‖F ≤ 1, l ∈ [L− 2], j ∈ [m], ‖wcol
L−1,j‖2 ≤ 1, j ∈ [m].

(13)

We note that z2/L is a non-convex function of z and we cannot hope to obtain a non-trivial dual. To
solve this issue, we consider the ‖ · ‖LF regularized objective given by

P prl
lin = min

{Wl,j}l∈[L],j∈[m]

1

2

L−1∑
l=1

m∑
j=1

‖Wl,j‖LF +

m∑
j=1

‖wrow
L,j ‖L2

 ,

s.t.
m∑
j=1

XW1,j . . .WL−2,jw
col
L−1,jw

row
L,j = Y.

(14)
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Utilizing the arithmetic and geometric mean (AM-GM) inequality, we can rescale the parameters and
formulate (14). To be specific, the two formulations (14) and (15) have the same optimal value and
the optimal solutions of one problem can be rescaled to the optimal solutions of another problem and
vice versa.
Proposition 4 The problem (14) can be formulated as

P prl
lin = min

{Wl,j}l∈[L],j∈[m]

L

2

m∑
j=1

‖wrow
L,j ‖2,

s.t.
m∑
j=1

XW1,j . . .WL−2,jw
col
L−1,jw

row
L,j = Y,

‖Wl,j‖F ≤ 1, l ∈ [L− 2], j ∈ [m], ‖wcol
L−1,j‖2 ≤ 1, j ∈ [m].

(15)

The dual problem of P prl
lin is a convex problem

Dprl
lin = max

Λ
tr(ΛTY),

s.t. max
‖Wi‖F≤1,i∈[L−2],‖wL−1‖2≤1

‖ΛTXW1 . . .WL−2wL−1‖2 ≤ L/2
(16)

In contrary to the standard linear network model, the strong duality holds for the parallel linear
network training problem (14).
Theorem 4 There exists a critical width m∗ ≤ KN + 1 such that as long as the number of branches
m ≥ m∗, the strong duality holds for the problem (14). Namely, P prl

lin = Dprl
lin . The optimal values

are both L
2 ‖X

†Y‖∗.

This implies that there exist equivalent convex problems which achieve the global optimum of the
deep parallel linear network. Comparatively, optimizing deep parallel linear neural networks can be
much easier than optimizing deep standard linear networks.

4 NEURAL NETWORKS WITH RELU ACTIVATION

4.1 STANDARD THREE-LAYER RELU NETWORKS

We first focus on the three-layer ReLU network with standard architecture. Specifically, we set
φ(z) = max{z, 0}. Consider the minimum norm problem

PReLU = min
{Wi}3i=1

1

2

3∑
i=1

‖Wi‖2F , s.t. ((XW1)+W2)+W3 = Y. (17)

Here we denote (z)+ = max{z, 0}. Similarly, by introducing a scale parameter t, this problem can
be formulated as PReLU = mint>0

1
2 t

2 + PReLU(t), where PReLU(t) is defined as

PReLU(t) = min
{Wi}3i=1

K∑
j=1

‖wrow
3,j ‖2,

s.t. ‖W1‖F ≤ t, ‖wcol
2,j‖2 ≤ 1, j ∈ [m2], ((XW1)+W2)+W3 = Y.

(18)

The proof is analagous to the proof of Proposition 3.1 in (Ergen & Pilanci, 2021a). To be specific,
these two formulations have the same optimal value and their optimal solutions can be mutually
transformed into each other. For W1 ∈ Rd×m, we define the set

A(W1) = {((XW1)+w2)+|‖w2‖2 ≤ 1}. (19)

We derive the convex dual problem of PReLU(t) in the following proposition.
Proposition 5 The dual problem of PReLU(t) defined in (18) is a convex problem defined as

DReLU(t) = max
Λ

tr(ΛTY), s.t. max
W1:‖W1‖F≤t

max
v:v∈A(W1)

‖ΛTv‖2 ≤ 1. (20)
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There exists a threshold of the number of branchesm∗ ≤ KN+1 such thatDReLU(t) = BDReLU(t)
where BDReLU(t) is the optimal value of the bi-dual problem

BDReLU(t) = min
{W1,j}m

∗
j=1,W2∈Rm1×m∗ ,W3∈Rm∗×K

K∑
j=1

‖wrow
3,j ‖2,

s.t.
m∗∑
j=1

((XW1,j)+wcol
2,j)+wrow

3,j = Y, ‖W1,j‖F ≤ t, ‖wcol
2,j‖2 ≤ 1, j ∈ [m∗].

(21)

We note that the bi-dual problem defined in (21) indeed optimizes with a parallel neural network
satisfying ‖W1,j‖F ≤ t, ‖wcol

2,j‖2 ≤ 1, j ∈ [m∗]. For the case where the data matrix is with rank 1
and the neural network is with scalar output, we show that there is no duality gap. We extend the
result in (Ergen & Pilanci, 2021d) from two-layer ReLU networks to three-layer ReLU networks.
Theorem 5 For a three-layer scalar-output ReLU network, let X = caT0 be a rank-one data matrix.
Then, strong duality holds, i.e., PReLU(t) = DReLU(t). Suppose that λ∗ is the optimal solution to
the dual problem DReLU(t), then the optimal weights for each layer can be formulated as

W1 =tsign(|(λ∗)T (c)+| − |(λ∗)T (−c)+|)ρ0ρ
T
1 ,w2 = ρ1.

Here ρ0 = a0/‖a0‖2 and ρ1 ∈ Rm1
+ satisfies ‖ρ1‖ = 1.

For general standard three-layer neural networks, although we have BDReLU(t) = DReLU(t), it may
not hold that PReLU(t) = DReLU(t) as the bi-dual problem corresponds to optimizing a parallel neural
network instead of a standard neural network to fit the labels.

To theoretically justify that the duality gap can be zero, we consider a parallel multi-branch architec-
ture for ReLU networks in the next section.

4.2 PARALLEL DEEP RELU NETWORKS

For the corresponding parallel architecture, we show that there is no duality gap for arbitrary depth
ReLU networks, as long as the number of branches is large enough. Consider the following minimum
norm problem:

P prl
ReLU = min

1

2

L−1∑
l=1

m∑
j=1

‖Wl,j‖LF + ‖WL‖LF , s.t.
m∑
j=1

((XW1,j)+ . . .w
col
L−1,j)+wrow

L,j = Y.

(22)
As the ReLU activation is homogeneous, we can rescale the parameter to reformulate (22) and derive
the dual problem. We note that two formulations (22) and (23) have the same optimal value and the
optimal solutions of one problem can be rescaled to the optimal solutions of another problem and
vice versa.
Proposition 6 The problem (22) can be reformulated as

min
L

2

m∑
j=1

‖wrow
L,j ‖2,

s.t.
m∑
j=1

((XW1,j)+wcol
L−1,j)+wrow

L,j = Y, ‖Wl,j‖F ≤ 1, l ∈ [L− 2], ‖wcol
L−1,j‖2 ≤ 1, j ∈ [m].

(23)
The dual problem of (23) is a convex problem defined as

Dprl
ReLU = max tr(ΛTY),

s.t. max
v=((XW1)+...WL−2)+wL−1)+,‖Wl‖F≤1,l∈[L−2],‖wL−1‖2≤1

‖ΛTv‖2 ≤ L/2.
(24)

For deep parallel ReLU networks, we show that with sufficient number of parallel branches, the
strong duality holds, i.e., P = D.

8
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Theorem 6 Let m∗ be the threshold of the number of branches, which is upper bounded by KN + 1.
Then, as long as the number of branches m ≥ m∗, the strong duality holds for (23) in the sense that
P prl

ReLU = Dprl
ReLU.

Similar to case of parallel deep linear networks, the parallel deep ReLU network also achieves
zero-duality gap. Therefore, to find the global optimum for parallel deep ReLU network is equivalent
to solve a convex program. This proves the second part of Theorem 1.

Based on the strong duality results, assuming that we can obtain an optimal solution to the convex
dual problem (24), then we can construct an optimal solution to the primal problem (23) as follows.

Theorem 7 Let Λ∗ be the optimal solution to (24). Denote the set of maximizers

arg max
v=((XW1)+...WL−2)+wL−1)+,‖Wl‖F≤1,l∈[L−2],‖wL−1‖2≤1

‖(Λ∗)Tv‖2 (25)

as {v1, . . . ,vm∗}, where vi = ((XW1,i)+ . . .WL−2,i)+wL−1,i)+ with ‖Wl,i‖F ≤ 1, l ∈ [L− 2]
and ‖wL−1,i‖2 ≤ 1 and m∗ ≤ KN + 1 is the critical threshold of the number of branches. Let
wrow
L,1 , . . . ,w

row
L,m∗ be an optimal solution to the convex problem

P prl,sub
ReLU = min

WL

L

2

m∗∑
j=1

‖wrow
L,j ‖2, s.t.

m∑
j=1

((XW1,j)+wcol
L−1,j)+wrow

L,j = Y. (26)

Then, (W1, . . . ,WL) is an optimal solution to (23).

We note that finding the set of maximizers in (25) can be challenging in practice due to the high-
dimensionality of the constraint set.

5 CONCLUSION

We present the convex duality framework for standard neural networks, considering both multi-layer
linear networks and three-layer ReLU networks with rank-1. In stark contrast to the two-layer case,
the duality gap can be non-zero for neural networks with depth three or more. Meanwhile, for neural
networks with parallel architecture, with the regularization of L-th power of Frobenius norm in the
parameters, we show that strong duality holds and the duality gap reduces to zero. A limitation of our
work is that we primarily focus on minimum norm interpolation problems. We believe that our results
can be easily generalized to a regularized training problems with general loss function, including
squared loss, logistic loss, hinge loss, etc..

Another interesting research direction is investigating the complexity of solving our convex dual prob-
lems. Although the number of variables can be high for deep networks, the convex duality framework
offers a rigorous theoretical perspective to the structure of optimal solutions. These problems can also
shed light into the optimization landscape of their equivalent non-convex formulations. We note that
it is not yet clear whether convex formulations of deep networks present practical gains in training.
However, in Mishkin et al. (2022); Pilanci & Ergen (2020) it was shown that convex formulations
provide significant computational speed-ups in training two-layer neural networks. Furthermore,
similar convex analysis was also applied various architectures including batch normalization (Ergen
et al., 2022b), vector output networks (Sahiner et al., 2021), threshold and polynomial activation
networks (Ergen et al., 2023; Bartan & Pilanci, 2021), GANs (Sahiner et al., 2022a), autoregressive
models (Gupta et al., 2021), and Transformers (Ergen et al., 2022a; Sahiner et al., 2022b).
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A CONVEX DUALITY FOR TWO-LAYER NEURAL NETWORKS

We briefly review the convex duality theory for two-layer neural networks introduced in Ergen &
Pilanci (2021a; 2020a). Consider the following weight-decay regularized training problem for a
vector-output neural network architecture with m hidden neurons

min
W1,W2

1

2
‖φ(XW1)W2 −Y‖2F +

β

2
(‖W1‖2F + ‖W2‖2F ), (27)

where W1 ∈ Rd×m and W2 ∈ Rm×K are the variables, and β > 0 is a regularization parameter.
Here φ is the activation function, which can be linear φ(z) = z or ReLU φ(z) = max{z, 0}. As
long as the network is sufficiently overparameterized, there exists a feasible point for such that
φ(XW1)W2 = Y. Then, a minimum norm variant1 of the training problem in (27) is given by

min
W1,W2

1

2
(‖W1‖2F + ‖W2‖2F ) s.t. φ(XW1)W2 = Y. (28)

As shown in Pilanci & Ergen (2020), after a suitable rescaling, this problem can be reformulated as

min
W1,W2

m∑
j=1

‖wrow
2,j ‖2, s.t. φ(XW1)W2 = Y, ‖wcol

1,j‖2 ≤ 1, j ∈ [m]. (29)

where [m] = {1, . . . ,m}. Here wrow
2,j represents the j-th row of W2 and wcol

1,j denotes the j-th
column of W1. The rescaling does not change the solution to (28). By taking the dual with respect
to W1 and W2, the dual problem of (29) with respect to variables is a convex optimization problem
given by

max
Λ

tr(ΛTY), s.t. max
u:‖u‖2≤1

‖ΛTφ(Xu)‖2 ≤ 1, (30)

where Λ ∈ RN×K is the dual variable. Provided that m ≥ m∗, where m∗ is a critical threshold of
width upper bounded by m∗ ≤ N + 1, the strong duality holds, i.e., the optimal value of the primal
problem (29) equals to the optimal value of the dual problem (30).

B DEEP LINEAR NETWORKS WITH GENERAL LOSS FUNCTIONS

We consider deep linear networks with general loss functions, i.e.,

min
{Wl}Ll=1

`(XW1 . . .WL,Y) +
β

2

L∑
i=1

‖Wi‖2F ,

where `(Z,Y) is a general loss function and β > 0 is a regularization parameter. According to
Proposition 2, the above problem is equivalent to

min
W

`(XW,Y) +
βL

2
‖W‖2/LS2/L

. (31)

The `2 regularization term becomes the Schatten-2/L quasi-norm on W to the power 2/L. Suppose
that there exists W such that l(XW,Y) = 0. With β → 0, asymptotically, the optimal solution to
the problem (31) converges to the optimal solution of

min
W
‖W‖2/LS2/L

, s.t. `(XW,Y) = 0. (32)

In other words, the `2 regularization explicitly regularizes the training problem to find a low-rank
solution W.

1This corresponds to weak regularization, i.e., β → 0 in (27) as considered in Wei et al. (2018).
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C PROOFS OF MAIN RESULTS FOR LINEAR NETWORKS

C.1 PROOF OF PROPOSITION 1

Consider the Lagrangian function

L(W1, . . . ,WL,Λ) =

K∑
j=1

‖wL,j‖2 + tr(ΛT (Y −XW1 . . .WL)). (33)

Here Λ ∈ RN×K is the dual variable. We note that

P (t) = min
W1,...,WL

max
Λ

L(W1, . . . ,WL,Λ),

s.t. ‖Wi‖F ≤ t, i ∈ [L− 2], ‖wcol
L−1,j‖2 ≤ 1, j ∈ [mL−1],

= min
W1,...,WL−1

max
Λ

tr(ΛTY)−
mL−1∑
j=1

I
(
‖ΛTXW1 . . .WL−2wL−1,j‖2 ≤ 1

)
,

s.t. ‖Wi‖F ≤ t, i ∈ [L− 2], ‖wcol
L−1,j‖2 ≤ 1, j ∈ [mL−1],

= min
W1,...,WL−2,WL−1

max
Λ

tr(ΛTY)− I
(
‖ΛTXW1 . . .WL−2wL−1‖2 ≤ 1

)
,

s.t. ‖Wi‖F ≤ t, i ∈ [L− 2], ‖wL−1‖2 ≤ 1.

(34)

Here I(A) is 0 if the statement A is true. Otherwise it is +∞. For fixed W1, . . . ,WL−1, the
constraint on WL is linear so we can exchange the order of maxΛ and minWL

in the second line of
(34).

By exchanging the order of min and max, we obtain the dual problem

D(t) = max
Λ

min
W1,...,WL−2

tr(ΛTY)− I
(
‖ΛTXW1 . . .WL−2wL−1‖2 ≤ 1

)
,

s.t. ‖Wi‖F ≤ t, i ∈ [L− 2], ‖wL−1‖2 ≤ 1,

= max
Λ

tr(ΛTY)

s.t. ‖ΛTXW1 . . .WL−2wL−1‖2 ≤ 1

∀‖Wi‖F ≤ t, i ∈ [L− 2], ‖wL−1‖2 ≤ 1.

(35)

Now we derive the bi-dual problem. The dual problem can be reformulated as

max
Λ

tr(ΛTY),

s.t. ‖ΛTXW1 . . .WL−2wL−1‖2 ≤ 1,

∀(W1, . . . ,WL−2,wL−1) ∈ Θ.

(36)

Here the set Θ is defined as

Θ = {(W1, . . . ,WL−2,wL−1)|‖Wi‖F ≤ t, i ∈ [L− 2], ‖wL−1‖2 ≤ 1}. (37)

By writing θ = (W1, . . . ,WL−2,wL−1), the dual of the problem (36) is given by

min ‖µ‖TV,
s.t.

∫
θ∈Θ

XW1 . . .WL−2wL−1dµ (θ) = Y. (38)

Here µ : Σ→ RK is a signed vector measure and Σ is a σ-field of subsets of Θ. The norm ‖µ‖TV is
the total variation of µ, which can be calculated by

‖µ‖TV = sup
u:‖u(θ)‖2≤1

{∫
Θ

uT (θ)dµ(θ) =:

K∑
i=1

∫
Θ

ui(θ)dµi(θ)

}
, (39)
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where we write µ =

µ1

...
µK

. The formulation in (38) has infinite width in each layer. According to

Theorem 10 in Appendix G, the measure µ in the integral can be represented by finitely many Dirac
delta functions. Therefore, we can rewrite the problem (38) as

min

m∗∑
j=1

‖wrow
L,j ‖2,

s.t.
m∗∑
j=1

XW1,j . . .WL−2,jw
col
L−1,jw

row
L,j = Y,

‖Wi,j‖F ≤ t, i ∈ [L− 2], ‖wcol
L−1,j‖2 ≤ 1, j ∈ [m∗].

(40)

Here the variables are Wi,j for i ∈ [L − 2] and j ∈ [m∗], WL−1 and WL. As the strong duality
holds for the problem (40) and (36), we can reformulate the problem ofDlin(t) as the bi-dual problem
(40).

C.2 PROOF OF PROPOSITION 2

We restate Proposition 2 with details.
Proposition 7 Suppose that W ∈ Rd×K with rank r is given. Consider the following optimization
problem:

min
1

2

(
‖W1‖2F + · · ·+ ‖WL‖2F

)
, s.t. W1W2 . . .WL = W, (41)

in variables Wi ∈ Rmi−1×mi . Here m0 = d, mL = K and mi ≥ r for i = 1, . . . , L− 1. Then, the
optimal value of the problem (41) is given by

L

2
‖W‖2/LS2/L

. (42)

Suppose that W = UΣVT . The optimal value can be achieved when

Wi = Ui−1Σ
1/LUT

i , i = 1, . . . , N,U0 = U,UL = V. (43)

Here Ui ∈ Rr×mi satisfies that UT
i Ui = I .

We start with two lemmas.
Lemma 1 Suppose that A ∈ Sn×n is a positive semi-definite matrix. Then, for any 0 < p < 1, we
have

n∑
i=1

Apii ≥
n∑
i=1

λi(A)p. (44)

Here λi is the i-th largest eigenvalue of A.

Lemma 2 Suppose that P ∈ Rd×d is a projection matrix, i.e., P 2 = P . Then, for arbitrary
W ∈ Rd×K , we have

σi(PW ) ≤ σi(W ),

where σi(W ) represents the i-th largest singular value of W .

Now, we present the proof for Proposition 2. For L = 1, the statement apparently holds. Suppose
that for L = l this statement holds. For L = l + 1, by writing A = W2 . . .Wl+1, we have

min ‖W1‖2F + · · ·+ ‖WL‖2F , s.t. W1W2 . . .Wl+1 = W

= min ‖W1‖2F + l‖A‖2/l2/l, s.t. W1A = W,

= min t2 + l‖A‖2/l2/l, s.t. W1A = W, ‖W1‖F ≤ t.

(45)

Suppose that t is fixed. It is sufficient to consider the following problem:

min ‖A‖2/l2/l, s.t. W1A = W, ‖W1‖F ≤ t. (46)
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Suppose that there exists W1 and A such that W = W1A. Then, we have WA†A = W1AA†A =
W. As WA† = W1AA†, according to Lemma 2, ‖WA†‖F ≤ ‖W1‖F ≤ t. Therefore, (WA†,A)
is also feasible for the problem (46). Hence, the problem (46) is equivalent to

min ‖A‖2/l2/l, s.t. WA†A = W, ‖WA†‖F ≤ t. (47)

Assume that W is with rank r. Suppose that A = UΣVT , where Σ ∈ Rr0×r0 . Here r0 ≥ r. Then,
we have A† = VΣ−1UT . We note that

‖WA†‖2F
= tr(WVΣ−2VTWT )

= tr(VTWTWVΣ−2)

(48)

Denote G(V) = VTWTWV. This implies that
r∑
i=1

σi(A)−2 (G(V))ii ≤ t
2.

Therefore, we have(
r0∑
i=1

σi(A)−2 (G(V))ii

)(
r0∑
i=1

σi(A)2/l

)l
≥

(
r0∑
i=1

(G(V))
1/(l+1)
ii

)l+1

.

As WVTV = W, the non-zero eigenvalues of G(V) are exactly the non-zero eigenvalues of
WVVTWT = WWT , i.e., the square of non-zero singular values of W. From Lemma 1, we have

r0∑
i=1

(G(V))
1/(l+1)
ii ≥

r0∑
i=1

λi(G(V))1/(l+1) ≥
r∑
i=1

σi(W)2/(l+1). (49)

Therefore, we have

‖A‖2/lS2/l
=

r0∑
i=1

σi(A)2/l ≥ t−2/l

(
r∑
i=1

σi(W)2/(l+1)

)(l+1)/l

(50)

This also implies that

min ‖A‖2/l2/l, s.t. W1A = W, ‖W1‖F ≤ t

≥t−2/l

(
r∑
i=1

σi(W)2/(l+1)

)(l+1)/l

.
(51)

Suppose that W =
∑r
i=1 uiσiv

T
i is the SVD of W. We can let

A =

(∑r
i=1 σ

2/(l+1)
i

)1/2

t

r∑
i=1

uiσ
l/(l+1)
i ρTi ,

W1 =
t(∑r

i=1 σ
2/(l+1)
i

)1/2

r∑
i=1

ρiσ
1/(l+1)
i vTi .

(52)

Here ‖ρi‖2 = 1 and ρTi ρj = 0 for i 6= j. Then, W1A = W and ‖W1‖F ≤ t. We also have

‖A‖2/LS2/L
=t−2/l

(
r∑
i=1

σ
2/(l+1)
i

)1/l r∑
i=1

σ
2/(l+1)
i

=t−2/l

(
r∑
i=1

σi(W)2/(l+1)

)(l+1)/l

.

16



Published as a conference paper at ICLR 2023

In summary, we have

min t2 + l‖A‖S2/l

2/l , s.t. W1A = W, ‖W1‖F ≤ t.

= min
t>0

t2 + lt−2/l

(
r∑
i=1

σi(W)2/(l+1)

)(l+1)/l

=(l + 1)

(
r∑
i=1

σi(W)2/(l+1)

)(l+1)/2

=‖W‖2/(l+1)
S2/(l+1)

.

(53)

This completes the proof.

C.3 PROOF OF THEOREM 2

From Proposition 2, the minimum norm problem (5) is equivalent to

minL‖W‖2/LS2/L
, s.t. XW = Y, (54)

in variable W ∈ Rd×K . According to Lemma 2, for any feasible W satisfying XW = Y, because
X†XW = X†Y and X†X is a projection matrix, we have

L‖W‖2/LS2/L
≥ L‖X†Y‖2/LS2/L

. (55)

We also note that XX†Y = XX†XW = XW = Y. Therefore, X†Y is also feasible for the
problem (54). This indicates that Plin = L

2 ‖X
†Y‖2/LS2/L

.

C.4 PROOF OF THEOREM 3

For a feasible point (W1, . . . ,WL) for Plin(t), we note that
(W1/t, . . . ,WL−2/t,WL−1, t

L−2WL) is feasible for Plin(1). This implies that
tL−2Plin(t) = Plin(1), or equivalently, Plin(t) = t−(L−2)Plin(1). Recall that

Plin = min
t>0

L− 2

2
t2 + t−(L−2)Plin(1)

=
L

2
(Plin(1))

2/L
.

(56)

From Theorem 2, we have Plin = L
2 ‖X

†Y‖2/LS2/L
. This implies that Plin(1) = ‖X†Y‖S2/L

and

Plin(t) = t−(L−2)‖X†Y‖S2/L
. (57)

For the dual problem Dlin(t) defined in (35), we note that

‖ΛTXW1 . . .WL−2wL−1‖2
≤‖ΛTXW1 . . .WL−2‖2‖wL−1‖2

≤‖ΛTX‖2
L−2∏
l=1

‖Wl‖2‖wL−1‖2

≤‖ΛTX‖2
L−2∏
l=1

‖Wl‖F ‖wL−1‖2 = tL−2‖ΛTX‖2.

(58)

The equality can be achieved when Wl = tulu
T
l+1 for l ∈ [L − 2], where ‖ul‖2 = 1 for l =

1, . . . , L− 1. Specifically, we set uL−1 = wL−1 and let u0 as right singular vector corresponds to
the largest singular value of ΛTX. Therefore, the constraints on Λ is equivalent to

‖ΛTX‖2 ≤ t−(L−2). (59)
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Thus, according to the Von Neumann’s trace inequality, it follows

tr(ΛTY) = tr(ΛTXX†Y) ≤ ‖ΛTX‖2‖X†Y‖∗ ≤ t−(L−2)‖X†Y‖∗. (60)

Suppose that X†Y = UΣVT is the singular value decomposition. Let Σ = diag(σ1, . . . , σr)
where σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and r = rank(X†Y). We note that

‖X†Y‖S2/L
=

(
r∑
i=1

σ
2/L
i

)L/2

=σ1

(
1 +

r∑
i=2

(σi/σ1)2/L

)L/2

≥σ1

(
1 +

r∑
i=2

(σi/σ1)

)

=

r∑
i=1

σr.

(61)

The equality holds if and only if σ1 = · · · = σr. This is because for given x ∈ (0, 1) and a ≥ 1,
(a+xp)1/p is strictly decreasing w.r.t. p ∈ (0, 1]. As a result, we haveDlin(t) = t−(L−2)‖X†Y‖∗ ≤
t−(L−2)‖X†Y‖S2/L

= Plin(t). The equality is achieved if and only if the singular values of X†Y

are the same. In other words, the inequality is strict when X†Y has different singular values. Then,
the duality gap exists for the standard neural network.

C.5 PROOF OF PROPOSITION 3

For simplicity, we write WL−1,j = wcol
L−1,j and WL,j = wrow

L,j for j ∈ [m]. For the j-th branch of
the parallel network, let Ŵl,j = αl,jWl,j for l ∈ [L]. Here αl,j > 0 for l ∈ [L] and they satisfies
that

∏L
l=1 αl,j = 1 for j ∈ [m]. Therefore, we have

XW1,j . . .WL−2,jw
col
L−1,jw

row
L,j = XŴ1,j . . .ŴL−2,jŵ

col
L−1,jŵ

row
L,j . (62)

This implies that {Ŵl,j}l∈[L],j∈[m] is also feasible for the problem (12). According to the the
inequality of arithmetic and geometric means, the objective function in (12) is lower bounded by

1

2

m∑
j=1

L∑
l=1

α2
l,j‖Wl,j‖2F

≥
m∑
j=1

L

2

L∏
l=1

(
α

2/L
l,j ‖Wl,j‖2/LF

)

=
L

2

m∑
j=1

L∏
l=1

‖Wl,j‖2/LF .

(63)

The equality is achieved when αl,j =
∏L

l=1 ‖Wl,j‖1/LF

‖Wl,j‖F for l ∈ [L] and j ∈ [m]. As the scaling

operation does not change
∏L
l=1 ‖Wl,j‖2/LF , we can simply let ‖Wl,j‖F = 1 and the lower bound

becomes L
2

∑m
i=1 ‖WL,j‖2/LF = L

2

∑m
i=1 ‖wrow

L,j ‖
2/L
2 . This completes the proof.

C.6 PROOF OF PROPOSITION 4

We first show that the problem (14) is equivalent to (15). The proof is analogous to the proof of
Proposition 3. For simplicity, we write WL−1,j = wcol

L−1,j and WL,j = wrow
L,j for j ∈ [m]. Let

αl,j > 0 for l ∈ [L] and they satisfies that
∏L
l=1 αl,j = 1 for j ∈ [m]. Consider another parallel
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network {Ŵl,j}l∈[L],j∈[m] whose j-th branch is defined by Ŵl,j = αl,jWl,j for l ∈ [L]. As∏L
l=1 αl,j = 1, we have

XW1,j . . .WL−2,jw
col
L−1,jw

row
L,j = XŴ1,j . . .ŴL−2,jŵ

col
L−1,jŵ

row
L,j . (64)

This implies that {Ŵl,j}l∈[L],j∈[m] is also feasible for the problem (14). According to the the
inequality of arithmetic and geometric means, the objective function in (12) is lower bounded by

1

2

m∑
j=1

L∑
l=1

αLl,j‖Wl,j‖LF

≥
m∑
j=1

L

2

L∏
l=1

(αl,j‖Wl,j‖F )

=
L

2

m∑
j=1

L∏
l=1

‖Wl,j‖F .

(65)

The equality is achieved when αl,j =
∏L

l=1 ‖Wl,j‖1/LF

‖Wl,j‖F for l ∈ [L] and j ∈ [m]. As the scaling

operation does not change
∏L
l=1 ‖Wl,j‖F , we can simply let ‖Wl,j‖F = 1 and the lower bound

becomes L
2

∑m
i=1 ‖WL,j‖F = L

2

∑m
i=1 ‖wrow

L,j ‖2. Hence, the problem (14) is equivalent to (15).

For the problem (15), we consider the Lagrangian function

L(W1, . . . ,WL) =
L

2

m∑
j=1

‖wrow
L,j ‖2 + tr

ΛT (Y −
m∑
j=1

XW1,j . . .W
col
L−1,jW

row
L,j )

 . (66)

The primal problem is equivalent to

P prl
lin = min

W1,...,WL

max
Λ

L(W1, . . . ,WL,Λ),

s.t. ‖Wl,j‖F ≤ t, j ∈ [ml], l ∈ [L− 2], ‖wcol
L−1,j‖2 ≤ 1, j ∈ [mL−1],

= min
W1,...,WL−1

max
Λ

min
WL

L(W1, . . . ,WL,Λ),

s.t. ‖Wl,j‖F ≤ 1, l ∈ [L− 2], ‖wcol
L−1,j‖2 ≤ 1, j ∈ [m],

= min
W1,...,WL−1

max
Λ

tr(ΛTY)−
mL∑
j=1

I
(
‖ΛTXW1,j . . .WL−2,jw

col
L−1,j‖2 ≤ L/2

)
,

s.t. ‖Wl,j‖F ≤ 1, l ∈ [L− 2], ‖wcol
L−1,j‖2 ≤ 1, j ∈ [m].

(67)

The dual problem follows

Dprl
lin = max

Λ
tr(ΛTY),

s.t. ‖ΛTXW1,j . . .WL−2,j‖2 ≤ L/2,
∀‖Wl,j‖F ≤ 1, l ∈ [L− 2], ‖Wcol

L−1,j‖2 ≤ 1, j ∈ [m],

= max
Λ

tr(ΛTY),

s.t. ‖ΛTXW1 . . .WL−2wL−1‖2 ≤ L/2,
∀‖Wi‖F ≤ 1, i ∈ [L− 2], ‖wL−1‖2 ≤ 1.

(68)

C.7 PROOF OF THEOREM 4

We can rewrite the dual problem as

Dprl
lin = max

Λ
tr(ΛTY),

s.t. ‖ΛTXW1 . . .WL−2wL−1‖2 ≤ L/2,
∀(W1, . . . ,WL−2,wL−1) ∈ Θ,

(69)
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where the set Θ is defined as

Θ = {(W1, . . . ,WL−2,wL−1)|‖Wl‖F ≤ 1, l ∈ [L− 2], ‖wL−1‖2 ≤ 1}. (70)

By writing θ = (W1, . . . ,WL−2,wL−1), the bi-dual problem, i.e., the dual problem of (69), is
given by

min ‖µ‖TV,
s.t.

∫
θ∈Θ

XW1 . . .WL−2wL−1dµ (θ) = Y. (71)

Here µ : Σ→ RK is a signed vector measure, where Σ is a σ-field of subsets of Θ and ‖µ‖TV is its
total variation. The formulation in (71) has infinite width in each layer. According to Theorem 10 in
Appendix G, the measure µ in the integral can be represented by finitely many Dirac delta functions.
Therefore, there exists a critical threshold of the number of branchs m∗ < KN + 1 such that we can
rewrite the problem (71) as

min

m∗∑
j=1

‖wrow
L,j ‖2,

s.t.
m∗∑
j=1

XW1,j . . .WL−2,jw
col
L−1,jw

row
L,j = Y,

‖Wi,j‖F ≤ 1, l ∈ [L− 2], ‖wcol
L−1,j‖2 ≤ 1, j ∈ [m∗].

(72)

Here the variables are Wl,j for l ∈ [L− 2] and j ∈ [m∗], WL−1 and WL. This is equivalent to (15).
As the strong duality holds for the problem (69) and (71), the primal problem (15) is equivalent to
the dual problem (69) as long as m ≥ m∗.

Now, we compute the optimal value of Dprl
lin . Similar to the proof of Theorem 3, we can show that the

constraints in the dual problem (69) is equivalent to

‖ΛTX‖2 ≤ L/2. (73)

Therefore, we have

tr(ΛTY) ≤ ‖λTX‖2‖X†Y‖∗ ≤
L

2
‖X†Y‖∗. (74)

This implies that P prl
lin = Dprl

lin = L
2 ‖X

†Y‖∗.

D STAIRS OF DUALITY GAP FOR STANDARD DEEP LINEAR NETWORKS

We consider partially dualizing the non-convex optimization problem by exchanging a subset of the
minimization problems with respect to the hidden layers. Consider the Lagrangian for the primal
problem of standard deep linear network

Plin(t) = min
{Wl}L−1

l=1

max
Λ

tr(ΛTY)− I
(
‖ΛTXW1 . . .WL−2wL−1‖2 ≤ 1

)
,

s.t. ‖Wi‖F ≤ t, i ∈ [L− 2], ‖wL−1‖2 ≤ 1.

(75)

By changing the order of L− 2 mins and the max in (75), for l = 0, 1, . . . , L− 2, we can define the
l-th partial “dual” problem

D
(l)
lin(t) = min

W1,...Wl

max
Λ

min
Wl+1,...,WL−2

tr(ΛTY)− I
(
‖ΛTXW1 . . .WL−2wL−1‖2 ≤ 1

)
,

s.t. ‖Wi‖F ≤ t, i ∈ [L− 2], ‖wL−1‖2 ≤ 1.
(76)

For l = 0, D(l)
lin(t) corresponds the primal problem Plin(t), while for l = L− 2, D(l)

lin(t) is the dual
problem Dlin(t). From the following proposition, we illustrate that the dual problem of D(l)

lin(t)
corresponds to a minimum norm problem of a neural network with parallel structure.
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Proposition 8 There exists a threshold of the number of branches m∗ ≤ KN + 1 such that the
problem D

(l)
lin(t) is equivalent to the “bi-dual” problem

min

m∗∑
j=1

‖wrow
L,j ‖2,

s.t.
m∗∑
j=1

XW1 . . .WlWl+1,j . . .WL−2,jw
col
L−1,jw

row
L,j = Y,

‖Wi‖F ≤ t, i ∈ [l], ‖Wi,j‖F ≤ t, i = l + 1, . . . , L− 2, j ∈ [m∗],

‖wcol
L−1,j‖2 ≤ 1, j ∈ [m∗],

(77)

where the variables are Wi ∈ Rmi−1×mi for i ∈ [l], Wi,j ∈ Rmi−1×mi for i = l + 1, . . . , L − 2,
j ∈ [m∗], WL−1 ∈ RmL−2×m∗ and WL ∈ Rm∗×mL .

We can interpret the problem (77) as the minimum norm problem of a linear network with parallel
structures in (l + 1)-th to (L− 2)-th layers. This indicates that for l = 0, 1, . . . , L− 2, the bi-dual
formulation of D(l)

lin(t) can be viewed as an interpolation from a network with standard structure to a
network with parallel structure. Now, we calculate the exact value of D(l)

lin(t).

Proposition 9 The optimal value D(l)
lin(t) follows

D
(l)
lin(t) = t−(L−2)‖X†Y‖S2/(l+2)

. (78)

Suppose that the eigenvalues X†Y are not identical to each other. Then, we have

Plin(t) = D
(L−2)
lin (t) > D

(L−3)
lin (t) > · · · > D

(0)
lin (t) = D(t). (79)

In Figure 3, we plot D(l)
lin(t) for l = 0, . . . , 5 for an example.

Figure 3: Example of D(l)
lin(t).

D.1 PROOF OF PROPOSITION 9

We note that

max
Λ

tr(ΛTY),

s.t. ‖ΛTXW1 . . .WL−2‖2 ≤ 1, ‖Wi‖F ≤ t, i = l + 1, . . . , L− 2,

= max
Λ

min
Wj+1,...,WL−2

tr(ΛTY), s.t. ‖ΛTXW1 . . .Wl‖2 ≤ t−(L−2−l).

(80)

Therefore, we can rewrite D(l)
lin(t) as

D
(l)
lin(t) = min

W1,...Wl

max
Λ

tr(ΛTY),

s.t. ‖ΛTXW1 . . .Wl‖2 ≤ t−(L−2−l), ‖Wi‖F ≤ t, i ∈ [l],

= min
W1,...Wl

max
Λ

t−(L−2−l) tr(ΛTY),

s.t. ‖ΛTXW1 . . .Wl‖2 ≤ 1, ‖Wi‖F ≤ t, i ∈ [l].

(81)
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From the equation (10), we note that

min
W1,...Wj

max
Λ

tr(ΛTY)

s.t. ‖ΛTXW1 . . .Wj‖2 ≤ 1, ‖Wi‖F ≤ t, i ∈ [j],

= min

K∑
j=1

‖wl+2,j‖2,

s.t. ‖Wi‖F ≤ t, i ∈ [L− 2], ‖wL−1,j‖2 ≤ 1, j ∈ [mL−1],

XW1 . . .Wl+2 = Y

=t−l‖X†Y‖S2/(l+2)
.

(82)

This completes the proof.

E PROOFS OF MAIN RESULTS FOR RELU NETWORKS

E.1 PROOF OF PROPOSITION 5

For the problem of P (t), introduce the Lagrangian function

L(W1,W2,W3,Λ) =

K∑
j=1

‖wrow
3,j ‖2 − tr(ΛT (((XW1)+W2)+W3 −Y)). (83)

According to the convex duality of two-layer ReLU network, we have

PReLU(t) = min
‖W1‖F≤t,‖w2‖≤1

max
Λ

tr(ΛTY)− I(‖ΛT ((XW1)+w2)+‖2 ≤ 1)

= min
‖W1‖F≤t

max
Λ

min
‖w2‖≤1

tr(ΛTY)− I(‖ΛT ((XW1)+w2)+‖2 ≤ 1)

= min
‖W1‖F≤t

max
Λ

tr(ΛTY), s.t. ‖ΛTv‖2 ≤ 1,∀v ∈ A(W1).

(84)

By changing the min and max, we obtain the dual problem.

DReLU(t) = max
Λ

tr(ΛTY), s.t. ‖ΛTv‖2 ≤ 1,v ∈ A(W1),∀‖W1‖F ≤ t. (85)

The dual of the dual problem writes

min ‖µ‖TV,
s.t.

∫
‖W1‖F≤t,‖w2‖2≤1

((XW1)+w2)+ dµ (W1,w2) = Y. (86)

Here µ is a signed vector measure and ‖µ‖TV is its total variation. Similar to the proof of Proposition
1, we can find a finite representation for the optimal measure and transform this problem to

min
{W1,j}m

∗
j=1,W2∈Rm1×m∗ ,W3∈Rm∗×K

K∑
j=1

‖w3,j‖2,

s.t.
m∗∑
j=1

((XW1,j)+w2,j)+wT
3,j = Y, ‖W1,j‖F ≤ t, ‖w2,j‖2 ≤ 1.

(87)

Here m∗ ≤ KN + 1. This completes the proof.

E.2 PROOF OF THEOREM 5

For rank-1 data matrix that X = caT0 , suppose that A1 = (XW1)+. It is easy to observe that

A1 = (c)+aT1,+ + (−c)+aT1,−,
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Here we let a1,+ = (WT
1 a0)+ and a1,− = (−WT

1 a0)+.

For a three-layer network, suppose that λ∗ is the optimal solution to the dual problem DReLU(t). We
consider the extreme points defined by

arg max
‖W1‖F≤t,‖w2‖2≤1

|(λ∗)T ((XW1)+w2)+|. (88)

For fixed W1, because aT1,+a1,− = 0, suppose that

w2 = u1a1,+ + u2a1,− + u3r,

where rTa1,+ = rTa1,− = 0 and ‖r‖2 = 1. The maximization problem on w2 reduces to

arg max
u1,u2,u3

∣∣(λ∗)T (c)+‖a1,+‖22(u1)+ + (λ∗)T (−c)+‖a1,−‖22(u2)+

∣∣
s.t. u2

1‖a1,+‖22 + u2
2‖a1,+‖22 + u2

3 ≤ 1.

If (λ∗)T (c)+ and (λ∗)T (−c)+ have different signs, then the optimal value is

max{|(λ∗)T (c)+|‖a1,+‖2, |(λ∗)T (−c)+|‖a1,−‖2}.

And the corresponding optimal w2 is w2 = a1,+/‖a1,+‖2 or w2 = a1,−/‖a1,−‖2. Then, the
problem becomes

arg max
W1

max{|(λ∗)T (c)+|‖a1,+‖2, |(λ∗)T (−c)+|‖a1,−‖2}.

We note that

max{‖a1,+‖2, ‖a1,−‖2} ≤ ‖WT
1 a0‖2 ≤ ‖W1‖2‖a0‖2 ≤ t‖a0‖2.

Thus the optimal W1 is given by

W1 = tsign(|(λ∗)T (c)+| − |(λ∗)T (−c)+|)ρ0ρ
T
1 .

Here ρ0 = a0/‖a0‖2 and ρ1 ∈ Rml
+ satisfies ‖ρ1‖ = 1. This implies that the optimal w2 is given by

w2 = ρ1.

On the other hand, if (λ∗)T (c)+ and (λ∗)T (−c)+ have same signs, then, the optimal w2 follows

w2 =
|(λ∗)T (c)+|a1,+ + |(λ∗)T (−c)+|a1,−√

((λ∗)T (c)+)2‖a1,+‖22 + ((λ∗)T (−c)+)2‖a1,−‖22
.

The maximization problem of W1 is equivalent to

arg max
‖W1‖F≤t

((λ∗)T (c)+)2‖a1,+‖22 + ((λ∗)T (c)−)2‖a1,−‖22.

By noting that

‖a1,+‖22 + ‖a1,−‖22 = ‖WT
1 a0‖22 ≤ ‖W1‖22‖a0‖22 ≤ t2‖a0‖22,

the optimal W1 is given by

W1 = tsign(|(λ∗)T (c)+| − |(λ∗)T (−c)+|)ρ0ρ
T
1 .

Here ρ0 = a0/‖a0‖2 and ρ1 ∈ Rm1
+ satisfies ‖ρ1‖ = 1.

E.3 PROOF OF PROPOSITION 6

Analogous to the proof of Proposition 4, we can reformulate (22) into (23). The rest of the proof is
analogous to the proof of Proposition 4. For the problem (23), we consider the Lagrangian function

L(W1, . . . ,WL)

=
L

2

m∑
j=1

‖wrow
L,j ‖2 + tr

ΛT (Y −
m∑
j=1

(((XW1,j)+ . . . . . .WL−2,j)+wcol
L−1,j)+wrow

L,j )

 .
(89)
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The primal problem is equivalent to

P prl
ReLU

= min
W1,...,WL

max
Λ

L(W1, . . . ,WL,Λ),

s.t. ‖Wl,j‖F ≤ t, j ∈ [ml], l ∈ [L− 2], ‖wcol
L−1,j‖2 ≤ 1, j ∈ [mL−1],

= min
W1,...,WL−1

max
Λ

min
WL

L(W1, . . . ,WL,Λ),

s.t. ‖Wl,j‖F ≤ 1, l ∈ [L− 2], ‖wcol
L−1,j‖2 ≤ 1, j ∈ [m],

= min
W1,...,WL−1

max
Λ

tr(ΛTY)−
m∑
j=1

I
(
‖ΛT (((XW1,j)+ . . .WL−2,j)+wcol

L−1,j)+‖2 ≤ L/2
)
,

s.t. ‖Wl,j‖F ≤ 1, l ∈ [L− 2], ‖wcol
L−1,j‖2 ≤ 1, j ∈ [m].

(90)
By exchanging the order of min and max, the dual problem follows

Dprl
ReLU = max

Λ
tr(ΛTY),

s.t. ‖ΛT (((XW1,j)+ . . .WL−2,j)+wcol
L−1,j)+‖2 ≤ L/2,

∀‖Wl,j‖F ≤ 1, l ∈ [L− 2], ‖wcol
L−1,j‖2 ≤ 1, j ∈ [m],

= max
Λ

tr(ΛTY),

s.t. ‖ΛT (((XW1)+ . . .WL−2)+wL−1)+‖2 ≤ L/2,
∀‖Wi‖F ≤ 1, i ∈ [L− 2], ‖wL−1‖2 ≤ 1.

(91)

E.4 PROOF OF THEOREM 6

The proof is analogous to the proof of Theorem 4. We can rewrite the dual problem as

Dprl
ReLU = max

Λ
tr(ΛTY),

s.t. ‖ΛT (((XW1)+ . . .WL−2)+wL−1)+‖2 ≤ L/2,
∀(W1, . . . ,WL−2,wL−1) ∈ Θ,

(92)

where the set Θ is defined as

Θ = {(W1, . . . ,WL−2,wL−1)|‖Wl‖F ≤ 1, l ∈ [L− 2], ‖wL−1‖2 ≤ 1}. (93)

By writing θ = (W1, . . . ,WL−2,wL−1), the bi-dual problem, i.e., the dual problem of (92), is
given by

min ‖µ‖TV,
s.t.

∫
θ∈Θ

(((XW1)+ . . .WL−2)+wL−1)+dµ (θ) = Y. (94)

Here µ : Σ→ RK is a signed vector measure, where Σ is a σ-field of subsets of Θ and ‖µ‖TV is its
total variation. The formulation in (94) has infinite width in each layer. According to Theorem 10 in
Appendix G, the measure µ in the integral can be represented by finitely many Dirac delta functions.
Therefore, there exists m∗ ≤ KN + 1 such that we can rewrite the problem (94) as

min

m∗∑
j=1

‖wrow
L,j ‖2,

s.t.
m∗∑
j=1

(((XW1,j)+ . . .WL−2,j)+wcol
L−1,j)+wrow

L,j = Y,

‖Wl,j‖F ≤ 1, l ∈ [L− 2], ‖wcol
L−1,j‖2 ≤ 1, j ∈ [m∗].

(95)

Here the variables are Wl,j for l ∈ [L− 2] and j ∈ [m∗], WL−1 and WL. This is equivalent to (23).
As the strong duality holds for the problem (92) and (94), the primal problem (23) is equivalent to
the dual problem (92) as long as m ≥ m∗.
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E.5 PROOF OF THEOREM 7

Consider the following dual problem

Dprl,sub
ReLU = max tr(ΛTY), s.t. max

i∈[m∗]
‖ΛTvi‖2 ≤ L/2. (96)

Apparently we have Dprl,sub
ReLU ≤ Dprl

ReLU. As Λ∗ is the optimal solution to Dprl
ReLU and Λ∗ is feasible

to Dprl,sub
ReLU , we have Dprl,sub

ReLU ≥ Dprl
ReLU. This implies that Dprl,sub

ReLU = Dprl
ReLU. We note that (26) is

the dual problem of (96). Therefore, as a corollary of Theorem 6, we have

P prl,sub
ReLU = Dprl,sub

ReLU = Dprl
ReLU = P prl

ReLU.

Therefore, (W1, . . . ,WL) is the optimal solution to (23).

F PROOFS OF AUXILIARY RESULTS

F.1 PROOF OF LEMMA 1

Denote a ∈ Rn such that ai = Aii and denote b ∈ Rn such that bi = λi(A). We can show that a is
majorized by b, i.e., for k ∈ [n− 1], we have

k∑
i=1

a(i) ≤
k∑
i=1

b(i), (97)

and
∑n
i=1 ai =

∑n
i=1 bi. Here a(i) is the i-th largest entry in a. We first note that

n∑
i=1

Aii = tr(A) =

n∑
i=1

λi(A).

On the other hand, for k ∈ [n− 1], we have

k∑
i=1

a(i) = max
v∈Rn,vi∈{0,1},1T v=k

vTa

= max
v∈Rn,vi∈{0,1},1T v=k

tr(diag(v)Adiag(v))

≤ max
V ∈Rk×n,V V T =I

tr(V AV T )

=

k∑
i=1

λi(A) =

k∑
i=1

b(i).

(98)

Therefore, a is majorized by b. As f(x) = −xp is a convex function, according to the Karamata’s
inequality, we have

n∑
i=1

f(ai) ≤
n∑
i=1

f(bi).

This completes the proof.

F.2 PROOF OF LEMMA 2

According to the min-max principle for singular value, we have

σi(W ) = min
dim(S)=d−i+1

max
x∈S,‖x‖2=1

‖Wx‖2.

As P is a projection matrix, for arbitrary x ∈ Rd, we have ‖PWx‖2 ≤ ‖Wx‖2. Therefore, we have

max
x∈S,‖x‖2=1

‖PWx‖2 ≤ max
x∈S,‖x‖2=1

‖Wx‖2.

This completes the proof.
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G CARATHEODORY’S THEOREM AND FINITE REPRESENTATION

We first review a generalized version of Caratheodory’s theorem introduced in (Rosset et al., 2007).
Theorem 8 Let µ be a positive measure supported on a bounded subset D ⊆ RN . Then, there exists
a measure ν whose support is a finite subset of D, {z1, . . . , zk}, with k ≤ N + 1 such that∫

D

zdµ(z) =

k∑
i=1

zidν(zi), (99)

and ‖µ‖TV = ‖ν‖TV.

We can generalize this theorem to signed vector measures.
Theorem 9 Let µ : Σ→ RK be a signed vector measure supported on a bounded subset D ⊆ RN .
Here Σ is a σ-field of subsets of D. Then, there exists a measure ν whose support is a finite subset of
D, {z1, . . . , zk}, with k ≤ KN + 1 such that∫

D

zdµ(z) =

k∑
i=1

zidν(zi), (100)

and ‖ν‖TV = ‖µ‖TV.

PROOF Let µ be a signed vector measure supported on a bounded subset D ⊆ RN . Consider the
extended set D̃ = {zuT |z ∈ D,u ∈ RK , ‖u‖2 = 1}. Then, µ corresponds to a scalar-valued
measure µ̃ on the set D̃ and ‖µ‖TV = ‖µ̃‖TV. We note that D̃ is also bounded. Therefore, by
applying Theorem 8 to the set D̃ and the measure µ̃, there exists a measure ν̃ whose support is a
finite subset of D̃, {z1u

T
1 , . . . , zku

T
k }, with k ≤ KN + 1 such that∫
D̃

Zdµ̃(Z) =

k∑
i=1

ziu
T
i dν̃(ziu

T
i ), (101)

and ‖µ̃‖TV = ‖ν̃‖TV. We can define ν as the signed vector measure whose support is a finite subset
{z1, . . . , zk} and dν(zi) = uid(̃ziui). Then, ‖ν‖TV = ‖ν̃‖TV = ‖µ̃‖TV = ‖µ‖TV. This completes
the proof.

Now we are ready to present the theorem about the finite representation of a signed-vector measure.
Theorem 10 Suppose that θ is the parameter with a bounded domain Θ ⊆ Rp and φ(X, θ) :
RN×d ×Θ→ RN is an embedding of the parameter into the feature space. Consider the following
optimization problem

min ‖µ‖TV, s.t.
∫

Θ

φ(X, θ)dµ(θ) = Y. (102)

Assume that an optimal solution to (102) exists. Then, there exists an optimal solution µ̂ supported
on at most KN + 1 features in Θ.

PROOF Let µ̂ be an optimal solution to (102). We can define a measure P̂ on RN as the push-forward
of µ̂ by P̂ (B) = µ̂({θ|φ(X, θ) ∈ B}). Denote D = {φ(X, θ)|θ ∈ Θ}. We note that P̂ is supported
on D and D is bounded. By applying Theorem 9 to the set D and the measure P̂ , we can find a
measure Q whose support is a finite subset of D, {z1, . . . , zk} with k ≤ KN + 1. For each zi ∈ D,
we can find θi such that φ(X, θi) = zi. Then, µ̃ =

∑k
i=1 δ(θ − θi)dQ(zi) is an optimal solution to

(102) with at most KN + 1 features and ‖µ̃‖TV = ‖µ‖TV. Here δ(·) is the Dirac delta measure.
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