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Abstract— Different robotic setups provide tactile feedback
about the objects they interact with in different manners. This
makes it difficult to transfer the information gained from haptic
exploration to different setups and to humans as well. We
introduce “touch primitives”, a set of object features for haptic
shape representation which aim to reconstruct the shape of
objects independent from the robot morphology. We investigate
how precisely the primitives can be extracted from household
objects by a commonly used gripper, on a set of objects that
vary in size, shape and stiffness.

I. INTRODUCTION

There are numerous different grippers and end-effectors
available for robotic arms both commercially and for research
purposes. Further, each gripper may be fitted with sensors
for tactile and proprioceptive feedback. There are also a
variety of different tactile sensors available which can be
integrated with grippers. We can classify the most commonly
used tactile sensors into two classes based on their working
principle—first, optical sensors like Gelsight [1], DIGIT [2]
and TacTip [3] which use vision processing from a camera
embedded behind the sensor’s surface membrane to extract
information from object interations. Second, transductive
sensors that convert mechanical changes to electric signals
for feedback, like the SynTouch BioTAC [4], SINGLEX [5],
Contactile [6] and uSkin [7]. The transductive sensors can
further be split into sub-types based on how the mechanical
interaction is converted to electrical signals. Some grippers
like the BarrettHand [8] and Shadow Hand [9] may also
come readily integrated with their own in-house tactile
sensors.

For example, the GelSight sensor will give feedback in the
form of an image of its membrane, which is not interpretable
by other sensors. The BioTac sensor will provide feedback
as a time series of measured reactive force at each fingertip,
while the RG6 gripper will report back the force at its
actuator. The feedback from the iCub hand will comprise of
a series of values for each of its 104 tactile sensing units—12
on each finger and 44 in the palm. With the large variety of
gripper and tactile sensing options available, data collection
to build larger datasets of tactile robot-object interaction and
manipulation faces some challenges. It is highly dependent
on the robotic setup, since each morphological combination
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of {robotic arm, gripper, tactile sensor} will have different
data structures for how interaction feedback is reported and
stored. Compiling data from different setups for morphology-
independent learning and exploration requires the develop-
ment of processing methods for each setup individually.
These factors also hinder the development of multimodal
sensing datasets [10]–[13], even though such datasets exist
from independent works, since it is difficult to compile
and compare them because of the varying nature of tactile
feedback data.

This work proposes “touch primitives”, a set of
morphology-independent features for haptic shape represen-
tation. The representation is based on how three-dimensional
shapes are constructed in computer aided design methods
[14]—simple features that may be extracted using any
gripper and tactile sensor combination. We examine how
precisely these primitives can be distinguished from each
other using a commonly used gripper, the BarrettHand, and
a set of five objects of varying size and stiffness. Since it
is possible to extract the same features for many different
robotic setups, they could also act as a common interpretation
of object shape information between the different setups.

II. LITERATURE REVIEW

The first attempt to formalize a set of tactile primitives
for object recognition was provided by Stansfield [15],
who listed ten primitives that could describe not only the
geometry but the physical properties of objects as well. Al-
though research on physical property estimation for objects
is scarce, a lot of work has been presented towards haptic
geometric estimation and representation. Object recognition
using feature detection was done by Liu et al. [16], where
the features were represented via convolution with a sparse
kernel space for categorization. More attempts for object
recognition on specific robotic setups are presented in [17],
[18].

Towards object reconstruction, Luo et al. [19] introduced
iCLAP, an iterative touch exploration method to recreate
objects accurately that decided exploration based on possible
feature completion. Pezzementi et al. [20] used feature
recognition from tactile arrays mounted on a gripper to
formulate an exploration plan to reconstruct the shapes of
objects. Rustler et al. [21] accomplish shape reconstruction
by using a tactile “poking” action to detect contact with
objects and subsequently filling the Cartesian space. The
tactile exploration is paired with vision to generate object
models with an Implicit Geometric Regularization Network
(IGR) [22]. Very good accuracy was achieved for shape



reconstruction within five to ten touches when visual data
was also provided. Other works include edge following with
the iCub robot [23] and a simulator for shape reconstruction
[24].

III. TOUCH PRIMITIVES

A fundamental way to describe the shapes of objects is
to break them down into vertices, edges and surfaces [14].
Although rudimentary, these four primitives shown in Figure
1 are the foundation to defining three-dimensional shapes.

Fig. 1: Possible touch primitives on a target object.

This simplistic method does not take into account detailed
features like surface texture or the roughness of materi-
als, but by recognizing these features humans are able to
achieve successful object recognition rapidly. We propose the
identification of these same features by grippers as “touch
primitives”. Each exploration of the object can give multiple
touch primitives depending on the number of fingers in the
gripper and number of regions fitted with tactile arrays,
and with sufficient sampling we are able to collect enough
primitives to create a volumetric boundary for the object. The
possible types of primitives are: vertex, edge, flat surface, and
curved surface. As long as a gripper/sensor combination is
able to detect these features, they should be able to record
data in the suggested morphology-independent format below.
An object exploration O is described as a set of primitives
P, where each primitive is described by:

P = {⃗x, i, d⃗i} (1)

where x⃗ is the position and orientation of the finger or
tactile array that detected the primitive, i is the type of primi-
tive, holding values 1 to 4 for “vertex”, “edge”, “flat surface”
and “curved surface” respectively. The primitive descriptor
d⃗i helps us orient the primitive in 3D space with respect to
x⃗. For the “vertex” primitive, it is the same as x⃗. For “edge”
primitives, it is the slope of the detected edge on the surface
of the tactile array. For the surface primitives, it is the normal
to the tactile array at the point of maximum force.

IV. EVALUATION OF TOUCH PRIMITIVE
EXTRACTION

To evaluate how precisely the suggested primitives can be
extracted from objects, we test a simple feature extraction
algorithm on the BarrettHand, a three fingered anthropomor-
phic hand with 24 tactile sensing units each on each finger
and the palm. The arrangement of the sensing units allows
us to recognize which primitives have been detected on each
appendage using simple processing on the tactile image.

The classification of raw tactile data into primitive cate-
gories (independent for each finger and palm) is done via a
simple pattern recognition algorithm described in Algorithm
1.

Algorithm 1 Algorithm to Categorize Touch Primitives

Obtain: RawDataFromTaxels, x⃗
Reshape: RawDataFromTaxels to 3x8 grids for fingers
and 7x4 grid for palm
for Component ∈ Appendage do

if Num Excited Taxels <= 3 then
Primitive←Vertex
d⃗← x⃗

else
(Slope, Int,Coe f f )← Regress(Excited Taxels)
if Coe f f > T hreshold then

Primitive← Edge
d⃗← y⃗(Slope, Int) ▷ y⃗ is the orientation of the

edge.
else if DetCurvedSur f ace(Excited Taxels) then

Primitive←Curved Sur f ace
d⃗← n⃗(Excited Taxels) ▷ n⃗ is the normal to

the surface.
else

Primitive← Flat Sur f ace
d⃗← n⃗(Excited Taxels)

end if
end if

end for

We experiment on a small collection of objects shown in
Figure 2a. These objects are collected to provide sufficient
number of examples for each of the four primitives among
rigid (spam can and marble brick) and deformable (white
cube, red ball, mustard bottle) objects, and for two size
scales—10 cm scale (mustard bottle) and 1 cm scale (all
other objects). Objects smaller or larger than these scales
are considered to be outside the group of target objects.
For each object we task the BarrettHand with detecting a
primitive a fixed number of times. Four different scenarios
are examined, shown in Figure 2b. Experiments (1) and (2)
differentiate between the finger and palm arrays in precision,
while experiments (3) and (4) vary the grasp configuration.

Based on these experiments and the results shown in
Figure 3, we are able to draw a few conclusions. First, ver-
tices or edges can be precisely distinguished from the other
primitives. The confusion is highest between flat surfaces



(a) (b)

Fig. 2: (a) Test object set. (b) Different test scenarios.

Fig. 3: Primitive Recognition results.

and curved surfaces, which can be attributed to the noise in
tactile measurements. The finger components of the gripper
have a physically smaller surface area and smaller tactile
sensors. This leads to more confusion between edge and
surface primitives as well when compared to the performance
of the tactile array on the palm of the BarrettHand. Rigid
objects have sharper features, which helps in improving the

recognition performance.

This concept of using touch primitives for object rep-
resentation opens up many avenues for future research as
well. First, how these primitives can be used to recreate
and recognize object shapes with accuracy. Further, how
different grippers can extract the same primitives. Integrating
grippers with various tactile sensors provides them with such



capabilities, however, we can also investigate whether the
same primitives can be recognized by the grippers as a result
of sequential exploration without rich tactile feedback. Maye
et al. [25] describe how sensorimotor contingency theory can
be used to infer context and information from a robot based
on its state and action exploration sequence. This theory
may allow grippers without tactile sensing capabilities to
extract touch primitives from target objects as well. Next,
once the extraction of geometric touch primitives is accom-
plished, there will also be the possibility to integrate physical
properties into the same description vector with stiffness and
friction maps as seen in [26]. Finally, if the proposed method
of representing objects is accurate and useful in transferring
object information between robotic setups, generating grasp
proposals using touch primitives as inputs can be explored.

As a smaller goal, preliminary work is restricted to shape
recognition of target objects from a pool of already-known
object models stored in memory. Building on this, complete
shape reconstruction of objects will be attempted, which is
a more complex exploration activity and more susceptible
to environment and computational noise. Next, the indepen-
dence of these primitives from the robot morphology will be
examined with a knowledge transfer and grasping experiment
between different robotic setups.

REFERENCES

[1] W. Yuan, S. Dong, and E. H. Adelson, “Gelsight: High-resolution robot
tactile sensors for estimating geometry and force,” Sensors, vol. 17,
no. 12, p. 2762, 2017.

[2] M. Lambeta, P.-W. Chou, S. Tian, B. Yang, B. Maloon, V. R. Most,
D. Stroud, R. Santos, A. Byagowi, G. Kammerer, et al., “Digit: A
novel design for a low-cost compact high-resolution tactile sensor with
application to in-hand manipulation,” IEEE Robotics and Automation
Letters, vol. 5, no. 3, pp. 3838–3845, 2020.

[3] B. Ward-Cherrier, N. Pestell, L. Cramphorn, B. Winstone, M. E.
Giannaccini, J. Rossiter, and N. F. Lepora, “The tactip family: Soft
optical tactile sensors with 3d-printed biomimetic morphologies,” Soft
robotics, vol. 5, no. 2, pp. 216–227, 2018.

[4] N. Wettels, J. A. Fishel, Z. Su, C. H. Lin, G. E. Loeb, and L. Syn-
Touch, “Multi-modal synergistic tactile sensing,” in Tactile sensing
in humanoids—Tactile sensors and beyond workshop, 9th IEEE-RAS
international conference on humanoid robots, 2009.

[5] “Singlex sensorsfrom seed robotics,” https://www.seedrobotics.com/
fts-tactile-pressure-sensors.

[6] H. Khamis, B. Xia, and S. J. Redmond, “A novel optical 3d force
and displacement sensor–towards instrumenting the papillarray tactile
sensor,” Sensors and Actuators A: Physical, vol. 291, pp. 174–187,
2019.

[7] T. P. Tomo, A. Schmitz, W. K. Wong, H. Kristanto, S. Somlor,
J. Hwang, L. Jamone, and S. Sugano, “Covering a robot fingertip with
uskin: A soft electronic skin with distributed 3-axis force sensitive
elements for robot hands,” IEEE Robotics and Automation Letters,
vol. 3, no. 1, pp. 124–131, 2017.

[8] W. Townsend, “The barretthand grasper–programmably flexible part
handling and assembly,” Industrial Robot: an international journal,
vol. 27, no. 3, pp. 181–188, 2000.

[9] “Shadowhand sensor,” https://www.shadowrobot.com/.
[10] A. Burns, X. Fan, J. Pinkenburg, D. Lee, V. Isler, and D. Lee, “Multi-

modal dataset for human grasping,” in The 29th International Con-
ference on Robot and Human Interactive Communication Workshop,
vol. 3, 2020.

[11] V. Chu, I. McMahon, L. Riano, C. G. McDonald, Q. He, J. M. Perez-
Tejada, M. Arrigo, T. Darrell, and K. J. Kuchenbecker, “Robotic
learning of haptic adjectives through physical interaction,” Robotics
and Autonomous Systems, vol. 63, pp. 279–292, 2015.

[12] R. Calandra, A. Owens, M. Upadhyaya, W. Yuan, J. Lin, E. H.
Adelson, and S. Levine, “The feeling of success: Does touch sensing
help predict grasp outcomes?” arXiv preprint arXiv:1710.05512, 2017.

[13] O. Kroemer, C. H. Lampert, and J. Peters, “Learning dynamic tactile
sensing with robust vision-based training,” IEEE transactions on
robotics, vol. 27, no. 3, pp. 545–557, 2011.

[14] V. E. Arriola-Rios, P. Guler, F. Ficuciello, D. Kragic, B. Siciliano, and
J. L. Wyatt, “Modeling of deformable objects for robotic manipulation:
A tutorial and review,” Frontiers in Robotics and AI, vol. 7, p. 82,
2020.

[15] S. Stansfield, “Primitives, features, and exploratory procedures: Build-
ing a robot tactile perception system,” in Proceedings. 1986 IEEE
International Conference on Robotics and Automation, vol. 3. IEEE,
1986, pp. 1274–1279.

[16] H. Liu, D. Guo, and F. Sun, “Object recognition using tactile mea-
surements: Kernel sparse coding methods,” IEEE Transactions on
Instrumentation and Measurement, vol. 65, no. 3, pp. 656–665, 2016.

[17] D. Tanaka, T. Matsubara, K. Ichien, and K. Sugimoto, “Object mani-
fold learning with action features for active tactile object recognition,”
in 2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE, 2014, pp. 608–614.

[18] P. Falco, S. Lu, C. Natale, S. Pirozzi, and D. Lee, “A transfer learning
approach to cross-modal object recognition: from visual observation
to robotic haptic exploration,” IEEE Transactions on Robotics, vol. 35,
no. 4, pp. 987–998, 2019.

[19] S. Luo, W. Mou, K. Althoefer, and H. Liu, “Iterative closest labeled
point for tactile object shape recognition,” in 2016 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE,
2016, pp. 3137–3142.

[20] Z. Pezzementi, E. Plaku, C. Reyda, and G. D. Hager, “Tactile-
object recognition from appearance information,” IEEE Transactions
on robotics, vol. 27, no. 3, pp. 473–487, 2011.

[21] L. Rustler, J. Lundell, J. K. Behrens, V. Kyrki, and M. Hoffmann,
“Active visuo-haptic object shape completion,” IEEE Robotics and
Automation Letters, vol. 7, no. 2, pp. 5254–5261, 2022.

[22] A. Gropp, L. Yariv, N. Haim, M. Atzmon, and Y. Lipman, “Im-
plicit geometric regularization for learning shapes,” arXiv preprint
arXiv:2002.10099, 2020.

[23] U. Martinez-Hernandez, G. Metta, T. J. Dodd, T. J. Prescott, L. Natale,
and N. F. Lepora, “Active contour following to explore object shape
with robot touch,” in 2013 World Haptics Conference (WHC). IEEE,
2013, pp. 341–346.

[24] E. Smith, D. Meger, L. Pineda, R. Calandra, J. Malik, A. Romero Sori-
ano, and M. Drozdzal, “Active 3d shape reconstruction from vision and
touch,” Advances in Neural Information Processing Systems, vol. 34,
pp. 16 064–16 078, 2021.

[25] A. Maye and A. K. Engel, “A discrete computational model of senso-
rimotor contingencies for object perception and control of behavior,”
in 2011 IEEE International Conference on Robotics and Automation.
IEEE, 2011, pp. 3810–3815.

[26] T. N. Le, F. Verdoja, F. J. Abu-Dakka, and V. Kyrki, “Probabilistic
surface friction estimation based on visual and haptic measurements,”
IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 2838–2845,
2021.

https://www.seedrobotics.com/fts-tactile-pressure-sensors
https://www.seedrobotics.com/fts-tactile-pressure-sensors
https://www.shadowrobot.com/

	INTRODUCTION
	LITERATURE REVIEW
	TOUCH PRIMITIVES
	EVALUATION OF TOUCH PRIMITIVE EXTRACTION
	References

