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Abstract

For tackling the task of 2D human pose estimation, the great majority of the re-
cent methods regard this task as a heatmap estimation problem, and optimize the
heatmap prediction using the Gaussian-smoothed heatmap as the optimization
objective and using the pixel-wise loss (e.g. MSE) as the loss function. In this
paper, we show that optimizing the heatmap prediction in such a way, the model
performance of body joint localization, which is the intrinsic objective of this
task, may not be consistently improved during the optimization process of the
heatmap prediction. To address this problem, from a novel perspective, we propose
to formulate the optimization of the heatmap prediction as a distribution match-
ing problem between the predicted heatmap and the dot annotation of the body
joint directly. By doing so, our proposed method does not need to construct the
Gaussian-smoothed heatmap and can achieve a more consistent model performance
improvement during the optimization of the heatmap prediction. We show the
effectiveness of our proposed method through extensive experiments on the COCO
dataset and the MPII dataset.

1 Introduction

2D human pose estimation aims to locate body joints of a person in a given RGB image. It is relevant
to a variety of applications, such as action recognition [34], human-machine interaction [40], and sign
language understanding [19]. For tackling the task of 2D human pose estimation, most of the recent
methods [29, 20, 33, 26, 14, 4, 39, 35, 15, 17, 37] are heatmap-based, i.e., they regard 2D human
pose estimation as a heatmap estimation problem. Specifically, for each body joint, these methods
generally estimate a grid-like heatmap, on which each pixel value represents the probability that
this pixel contains the body joint. Compared to the methods [30, 2, 32, 13] that directly regress the
coordinates of body joints (i.e. coordinate regression-based methods), the heatmap-based methods
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Figure 1: Illustration of heatmaps. Although the pixel-wise MSE loss calculated between the predicted
heatmap #2 and the Gaussian-smoothed heatmap is smaller than the loss calculated between the
predicted heatmap #1 and the Gaussian-smoothed heatmap, the predicted heatmap #2 localizes the
body joint wrongly, whereas the predicted heatmap #1 localizes the body joint correctly.

demonstrate a more robust performance since they maintain the spatial structure of the input image
throughout the encoding and decoding process [7].

During the training process of the heatmap-based methods, an important step is the optimization
of the heatmap prediction. This optimization can be done naively via constructing a dot-annotated
heatmap for each body joint as shown in Fig. 1(a), and then measuring the difference (i.e., conducting
pixel-wise comparison) between the predicted heatmap and the constructed ground-truth (GT) dot-
annotated heatmap. However, such a dot-annotated heatmap is sparse, as it has the same zero
value for all pixels except the pixel representing the dot annotation of the body joint. Because of
this, optimizing the heatmap prediction in such a naive way can lead to a hard training process
and a suboptimal model performance [28]. To address this problem, most heatmap-based methods
[29, 20, 33, 26, 14, 4, 39, 35, 15, 17, 37] adopt a strategy to construct Gaussian-smoothed heatmaps,
where pixels near the dot annotation have larger pixel values than pixels far from the dot annotation.
Specifically, they construct the Gaussian-smoothed heatmap via smoothing the dot annotation of the
body joint through a Gaussian distribution as shown in Fig. 1(b), instead of only setting the pixel
representing the dot annotation to be one.

While easing the training process, constructing the GT Gaussian-smoothed heatmap still brings
problems into the model training process. Firstly, for constructing the Gaussian-smoothed heatmap,
we need to choose a proper standard deviation of the Gaussian distributions. However, the proper
standard deviations of the Gaussian distributions (i.e., the standard deviations that can lead to an
optimal performance) often vary across different types of body joints, different body postures,
and different body sizes [17]. Hence, the standard deviations of the Gaussian distributions often
need to be carefully chosen, which is non-trivial. Secondly, during the process of optimizing the
heatmap prediction by minimizing the pixel-wise loss (e.g. MSE) between the predicted heatmap
and the Gaussian-smoothed heatmap, the model performance of body joint localization may not
be consistently improved. As shown in Fig. 1, although compared to the loss calculated between
the predicted heatmap #1 and the Gaussian-smoothed heatmap, the pixel-wise MSE loss calculated
between the predicted heatmap #2 and the Gaussian-smoothed heatmap is smaller, the predicted
heatmap #2 localizes the body joint wrongly, whereas the predicted heatmap #1 localizes the body
joint correctly.

As a result, optimizing the heatmap prediction using the dot-annotated heatmap and the Gaussian-
smoothed heatmap as the ground-truth both have their respective problems. Hence, in this work,
we aim to tackle their respective problems, and propose to optimize the heatmap prediction directly
via minimizing the difference between the predicted heatmap and the dot annotation. By doing so,
we can optimize the model directly towards accurately localizing the dot annotation of the body
joint, which is the intrinsic objective of 2D human pose estimation, instead of optimizing the model
indirectly towards either the dot-annotated heatmap or the Gaussian-smoothed heatmap. However,
as the number of pixels in the predicted heatmap and the number of entries representing the dot
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annotation are different, we cannot measure the difference between the predicted heatmap and the
dot annotation trivially by measuring their entry-wise difference. To handle this problem, inspired
by the fact that we can measure the difference between two distributions via measuring their Earth
Mover’s Distance even if they have different numbers of entries, in this paper, we propose to first
formulate the optimization of the heatmap prediction as a distribution matching problem. Specifically,
we construct two distributions respectively from the predicted heatmap and the dot annotation. After
that, we optimize the heatmap prediction via minimizing the distribution difference based on the
Earth Mover’s Distance. Using such a novel method to optimize the heatmap prediction directly from
the dot annotation, we do not need to construct the Gaussian-smoothed heatmap, as well as avoiding
the issues of the binary dot-annotated heatmap. Thus, our method achieves superior performance.

Our proposed method is simple yet effective, which can be easily applied to various off-the-shelf
2D human pose estimation models by replacing their original loss function with our proposed loss
function measuring the distribution difference between the predicted heatmap and the dot annotation.
We experiment our proposed method on multiple models and our method achieves a consistent model
performance improvement.

The contributions of our work are summarized as follows. 1) We analyze (in Sec. 4) that the
performance of the human pose estimation model may not be consistently improved during the process
of minimizing the pixel-wise loss between the predicted heatmap and the GT Gaussian-smoothed
heatmap. 2) From a novel perspective, we formulate the optimization of the heatmap prediction as a
distribution matching problem between the predicted heatmap and the GT dot annotation directly,
which bypasses the step of constructing the Gaussian-smoothed heatmap and achieves consistent
model performance improvement. 3) Our proposed method achieves state-of-the-art performance on
the evaluated benchmarks.

2 Related Work

2D Human Pose Estimation. Due to the wide range of applications, the task of 2D human pose
estimation has received lots of attention [30, 2, 32, 13, 21, 29, 20, 33, 26, 14, 4, 39, 35, 15, 17,
37, 27, 7, 8]. DeepPose [30] made the first attempt of applying deep neural networks into the task
of 2D human pose estimation via directly regressing the coordinates of body joints. This type of
coordinate regression-based methods [30, 2, 32, 13] often show inferior performances compared
to the heatmap-based methods [29, 20, 33, 26, 14, 4, 39, 35, 15, 17, 37], as the heatmap-based
methods can preserve the spatial structure of the input image throughout the encoding and decoding
process [7]. Hence, recently, the great majority of the state-of-the-art methods [29, 20, 33, 26,
14, 4, 39, 35, 15, 17, 37] regard 2D human pose estimation as a heatmap estimation problem
instead of the coordinate regression problem. Among the heatmap-based methods, Tompson et al.
[29] proposed to apply Markov Random Field (MRF) into the task of 2D human pose estimation.
After that, an "hourglass" network, with a conv-deconv architecture, was proposed by Newell et
al. [20]. Xiao et al. [33] proposed a baseline method to predict the heatmap via adding several
deconvolutional layers to a backbone network. Later on, to maintain high-resolution representations
throughout the heatmap estimation process, HRNet was proposed by Sun et al. [26]. Yuan et al.
[37] further proposed HRFormer to learn the high-resolution representations utilizing a transformer-
based architecture. Besides the above heatmap-based methods that use the Gaussian-smoothed
heatmap as the optimization objective, there are also some methods [27, 7, 8] that combine the idea
of heatmap and coordinate regression by taking the expectation of the predicted heatmap as the
predicted coordinates.

Here in this work, different from previous works, our method bypasses both the step of regression
and the step of constructing the Gaussian-smoothed heatmap as the optimization objective. Instead,
from a novel perspective, we propose to formulate the optimization of the heatmap prediction as
a distribution matching problem by minimizing the distribution difference between the predicted
heatmap and the dot annotation.

Distribution Matching. The idea of distribution matching has been studied in various tasks [24,
25, 31, 38, 41, 23], such as image retrieval [24], tracking [25], few-shot learning [38], and long-tail
recognition [23]. In this work, from a novel perspective, we design a new distribution matching
scheme to optimize the heatmap prediction with the help of sub-pixel resolutions for 2D human pose
estimation.

3



3 Method

In 2D human pose estimation, optimizing the heatmap prediction using the dot-annotated heatmap
and the Gaussian-smoothed heatmap as the ground-truth both have their respective problems. Hence,
in this work, we aim to handle their respective problems, and optimize the heatmap prediction
directly with the dot annotation of the body joint. To achieve this goal, we propose to formulate
the optimization of the heatmap prediction as a distribution matching problem, and minimize the
difference between the distribution constructed from the predicted heatmap and that constructed from
the dot annotation based on the Earth Mover’s Distance.

Below, we first give a brief review of the Earth Mover’s Distance, and then discuss how we formulate
the heatmap optimization process as a distribution matching problem. After that, we introduce how
we construct the loss function measuring the distribution difference.

3.1 Revisiting Earth Mover’s Distance

The Earth Mover’s Distance is a a technique used for measuring the difference between two probability
distributions, which can be understood as the optimal cost needed to transport the mass from one
distribution to another. Specifically, for calculating the Earth Mover’s Distance, we regard the source
distribution as a set of (N ) suppliers S = (s1, ..., sN )⊤, where sn represents the total units of
mass that the n-th supplier has, and we regard the target distribution as a set of (M ) demanders
D = (d1, ..., dM )⊤, where dm represents the total units of mass that the m-th demander requires.
Besides, we also denote C ∈ RN×M

≥0 as the cost function between the source and target distributions,
where Cn,m represents the cost for transporting a unit of mass from the n-th supplier to the m-
th demander. Then we aim to find a least-cost transportation plan from the set of possible plans
P = {p ∈ RN×M

≥0 : p1 = S & p⊤1 = D} to transport all mass from the N suppliers to the M

demanders, where 1 represents a vector of ones. The Earth Mover’s Distance EC(S,D) denotes the
cost of the least-cost transportation plan, which can be formulated as:

EC(S,D) = min
p∈P

⟨C, p⟩ (1)

where ⟨·, ·⟩ represents the Frobenius dot product.

However, optimizing Eq. 1 directly is computationally expensive. Hence, to reduce the computational
cost especially when handling large-scale problems, Cuturi [5] proposed a regularized formulation of
the Earth Mover’s Distance Ereg

C (S,D) as:

Ereg
C (S,D) = ⟨C, preg⟩ where preg = argmin

p∈P

[
⟨C, p⟩ − 1

λ
h(p)

]
(2)

where λ > 0, and h(p) = −
∑N

n=1

∑M
m=1 Cn,m logCn,m. Optimizing Eq. 2 is computationally

cheaper than optimizing Eq. 1, since Eq. 2 can be optimized with matrix scaling through the Sinkhorn
algorithm.

3.2 Problem Formulation

Below, we formulate the optimization of the heatmap prediction as a distribution matching problem
by constructing the suppliers S, the demanders D, and the cost function C.

The suppliers S. For a body joint, let Hpred ∈ RH×W denote its corresponding predicted heatmap
with height H and width W . To formulate the suppliers S to represent Hpred, we first localize a set
of H ×W suppliers corresponding to the H ×W pixels of Hpred. Then, for determining the units of
mass each supplier stores, as the suppliers cannot hold negative units of mass, we construct S based
on a non-nagetive formulation of Hpred. Besides, we also constrain the total units of mass stored
by the suppliers S to be the same as the total units of mass required by the demanders D. To meet
these requirements, we derive S by first passing Hpred through a relu activation function and then
normalizing it as:

S =
relu(Hpred)

∥relu(Hpred)∥1
(3)

The demanders D. As for the demanders, we aim to construct D w.r.t. each body joint to represent
its corresponding GT dot annotation. To achieve this goal, for each body joint, a naive formulation of
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D is to identify the pixel containing the GT dot annotation (i.e., the upper left pixel in Fig. 2(a)) and
construct a single demander (i.e., the yellow dot in Fig. 2(a)) at the center of this pixel. However,
this naive formulation can result in a suboptimal model performance, as the demander formulated
in this way can be noticeably different from what the GT dot annotation might suggest. Generally,
the predicted heatmaps outputted by most of the existing heatmap-based methods [29, 20, 33, 26,
14, 4, 39, 35, 15, 17, 37] have a lower resolution compared to the input image. For example, for the
method HRNet [26], when the size of the input image is 384× 288, the size of the predicted heatmap
is 96× 72 only. Due to such a resolution gap, as shown in Fig. 2(a), there can exist a non-negligible
distance between the location of the demander and the location of the dot annotation, which can
affect the performance of the pose estimation model.

Figure 2: Illustration of (a) the naive formulation
of the demanders D, and (b) formulation of the
demanders D that involves the idea of sub-pixel
resolution.

To address this problem, we aim to make the
formulated demanders D a more accurate repre-
sentation of the dot annotation by overcoming
the resolution gap. To achieve this, inspired by
the fact that the more accurate location informa-
tion of an object can be deduced using sub-pixel
resolutions [12], we propose to formulate the
demanders D with the following four steps. (1)
As illustrated in the upper left of Fig. 2(b), we
first split the pixel containing the dot annotation
into four "sub-pixels" (four squares separated
from each other by dashed lines). (2) After that,
we identify the "sub-pixel" that the dot annota-
tion lies in (i.e., the green "sub-pixel" shown
in Fig. 2(b)). (3) Then, as shown by the four
yellow dots in Fig. 2(b), we localize a set of four
demanders at the centers of both the pixel con-
taining the identified "sub-pixel" (i.e., the upper
left pixel in Fig. 2(b)), and the three pixels adja-
cent to the identified "sub-pixel" (i.e., the three
blue pixels in Fig. 2(b)). (4) Finally, we determine the units of mass each demander requires in
the following way so that the dot annotation can be precisely represented using the set of the four
demanders. Specifically, denote the 2D Euclidean distance between the centers of two adjacent pixels
as g (which is also the pixel size), the coordinates of the GT dot annotation as (xdot, ydot), and the
coordinates of the i-th demander as (xi, yi), where i ∈ {1, 2, 3, 4}. Then we construct the demanders
D as:

D = (d1, d2, d3, d4), where di =
(g − |xdot − xi|)× (g − |ydot − yi|)

g2
(4)

where di denotes the units of mass the i-th demander requires. By designing di in this way, we
can achieve the following two properties. (1) Among the four demanders, via assigning more
mass to the demanders nearer the dot annotation and less mass to the demanders farther from the
dot annotation, we can accurately derive the coordinates of the dot annotation as (xdot, ydot) =
(d1 × x1 + d2 × x2 + d3 × x3 + d4 × x4, d1 × y1 + d2 × y2 + d3 × y3 + d4 × y4). Hence, the set
of demanders D constructed in this way can represent the GT dot annotation accurately, regardless of
how many times the resolution of the heatmap is lower than the resolution of the input image. (2)
Besides, as d1 + d2 + d3 + d4 = 1, the total units of mass required by the demanders D are also
constrained to be the same as the total units of mass stored by the suppliers S.

The cost function C. To measure the distribution difference between the H ×W suppliers (S) con-
structed from the predicted heatmap and the 4 demanders (D) constructed from the GT dot annotation
via calculating their Earth Mover’s Distance, we also need to formulate a cost function C ∈ RHW×4

≥0 .
Denote the coordinates of the n-th supplier as (xsn , ysn), where n ∈ {1, ...,H × W}, and the
coordinates of the m-th demander as (xdm

, ydm
), where m ∈ {1, 2, 3, 4}. We here simply formulate

Cn,m, the cost per unit transported from the n-th supplier to the m-th demander, as the L2 distance
between the n-th supplier and the m-th demander, i.e., Cn,m =

√
(xdm − xsn)

2 + (ydm − ysn)
2.

Using such a cost function, our method can optimize the model directly towards accurately localizing
the dot annotation of the body joint via minimizing the distribution difference between the suppliers
S and the demanders D.
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3.3 Loss Function

Above we formulate the optimization of the heatmap prediction as a distribution matching problem
for a single body joint. In this section, we introduce how we construct the loss function following
such a formulation. Note that in 2D human pose estimation, we need to locate multiple body joints.
Therefore, to construct the loss function, we first construct the suppliers, the demanders, and the cost
function for each body joint respectively. After that, we calculate the loss value corresponding to
each body joint via measuring the distribution difference (calculating the Earth Mover’s Distance)
between its corresponding demanders and suppliers. Specifically, denote K the total number of body
joints and Lk the loss term calculated w.r.t. the k-th body joint. We then formulate the loss function
as:

LMatching =

K∑
k=1

Lk, where Lk = Ereg
Ck (S

k, Dk) (5)

where Sk, Dk, and Ck respectively denote the constructed suppliers, demanders, and cost function
for the k-th body joint. The corresponding Earth Mover’s Distance Ereg

Ck (S
k, Dk) is calculated using

Eq. 2.

3.4 Training and Testing

Our proposed method can be flexibly applied on various off-the-shelf 2D human pose estimation
models. During training, we optimize the heatmap prediction via minimizing the loss function in
Eq. 5. During testing, for each body joint, we first select a square of four adjacent pixels with
the largest sum of pixel values from the predicted heatmap, and then normalize the sum of these
four pixel values to 1. The normalized pixel values of these four pixels can be seen as the units
of mass each of them requires. Hence, in the same way as how we get the coordinates of the GT
dot annotation from the demanders in Sec. 3.2, we can get the predicted coordinates of this joint.
Specifically, denote the coordinates of the i-th selected pixel as (xi, yi), and the normalized pixel
value of this pixel as di, where i ∈ {1, 2, 3, 4}. We can derive the predicted coordinates of this joint
as (xpred, ypred) = (d1×x1+d2×x2+d3×x3+d4×x4, d1×y1+d2×y2+d3×y3+d4×y4).

4 Analysis

Most of the heatmap-based methods [29, 20, 33, 26, 14, 4, 39, 35, 15, 17, 37] optimize the heatmap
prediction via minimizing the pixel-wise MSE loss between the predicted heatmap and the Gaussian-
smoothed heatmap. Below we do some analysis about this type of methods.

We denote K the number of joints per input image I . Then we denote Hdot = {H1
dot, ...,H

K
dot},

HGau = {H1
Gau, ...,H

K
Gau}, and Hpred = {H1

pred, ...,H
K
pred} respectively the corresponding

K GT dot-annotated heatmaps, GT Gaussian-smoothed heatmaps, and predicted heatmaps of
the input image I . We denote Ddot = {(I,Hdot)} the joint distribution of the input image
and the corresponding K dot-annotated heatmaps, and DGau = {(I,HGau)} the joint distribu-
tion of the input image and the corresponding K Gaussian-smoothed heatmaps. Besides, we
denote lMSE(a, b) = ∥a− b∥22 the pixel-wise MSE loss, and ϕ the model parameters where
ϕ(I) = Hpred. After that, we denote R(Ddot, ϕ, lMSE) = E(I,Hdot)∼Ddot

[lMSE(ϕ(I),Hdot)]
as the expected risk calculated between the predicted heatmaps and the GT dot-annotated heatmaps,
and R(DGau, ϕ, lMSE) = E(I,HGau)∼DGau

[lMSE(ϕ(I),HGau)] as the expected risk calculated
between the predicted heatmaps and the Gaussian-smoothed heatmaps.
Theorem 1. The relationship between R(Ddot, ϕ, lMSE) and R(DGau, ϕ, lMSE) can be written as

R(Ddot, ϕ, lMSE) =R(DGau, ϕ, lMSE) + 2× E(I,HGau)∼DGau
[⟨Hpred,HGau⟩]

− 2× E(I,Hdot)∼Ddot
[⟨Hpred,Hdot⟩]− C

(6)

where C = E(I,Hdot)∼Ddot
[∥HGau −Hdot∥22] is a constant.

The proof of Theorem 1 is provided in the supplementary. As shown in Theorem 1, when
we minimize the pixel-wise loss between Hpred and HGau, while R(DGau, ϕ, lMSE) de-
creases, the second term 2 × E(I,HGau)∼DGau

[⟨Hpred,HGau⟩] can increase and the third term
2× E(I,Hdot)∼Ddot

[⟨Hpred,Hdot⟩] cannot be guaranteed to increase or decrease. Because of this,
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Table 1: The improvement of AP on COCO validation set when our proposed method is applied to
various baselines.

Method Venue Backbone Input size AP AP50 AP75 APM APL AR
Hourglass[20] ECCV 2016 8-Stage Hourglass 256× 192 66.9 - - - - -
CPN[3] CVPR 2018 ResNet-50 256× 192 69.4 - - - - -
CPN[3] CVPR 2018 ResNet-50 384× 288 71.6 - - - - -
DarkPose[39] CVPR 2020 HRNet-W32 384× 288 76.6 90.7 82.8 72.7 83.9 81.5
UDP[10] CVPR 2020 HRNet-W32 384× 288 77.8 91.7 84.5 74.2 84.3 82.4
UDP[10] CVPR 2020 HRNet-W48 384× 288 77.8 92.0 84.3 74.2 84.5 82.5
TokenPose[15] ICCV 2021 TokenPose-L/D24 256× 192 75.8 90.3 82.5 72.3 82.7 80.9
Removing Bias[7] ICCV 2021 ResNet-152 384× 288 74.4 - - - - -
Removing Bias[7] ICCV 2021 HRNet-W32 256× 192 75.8 - - - - -
Simple Baseline[33] ECCV 2018 ResNet-152 384× 288 75.0 90.8 82.1 67.8 78.3 80.0
+ Ours ResNet-152 384× 288 76.7(↑1.7) 92.1 83.6 69.7 80.0 81.3
HRNet[26] CVPR 2019 HRNet-W32 384× 288 76.7 91.9 83.6 73.2 83.2 81.6
+ Ours HRNet-W32 384× 288 78.2(↑1.5) 92.2 84.5 74.3 84.7 82.5
HRNet[26] CVPR 2019 HRNet-W48 384× 288 77.1 91.8 83.8 73.5 83.5 81.8
+ Ours HRNet-W48 384× 288 78.8(↑1.7) 92.5 85.1 75.0 85.3 83.1
HRFormer[37] NIPS 2021 HRFormer-Base 384× 288 78.0 92.2 84.8 74.3 84.6 82.6
+ Ours HRFormer-Base 384× 288 78.9(↑0.9) 92.6 85.4 75.3 85.3 83.3

R(Ddot, ϕ, lMSE) cannot be guaranteed to decrease, and the model performance of body joint local-
ization may not be consistently improved during such optimization of heatmap prediction. A more
intuitive analysis is as follows. In the optimization process of most of the heatmap-based methods,
since all the H × W pixels from the predicted heatmap contribute to the overall pixel-wise loss,
learning to fit the other pixels better instead of the pixel representing the dot annotation can also
lead to a smaller overall loss, as shown in Fig. 1. Hence, when minimizing the overall pixel-wise
loss, the model performance of body joint localization cannot be guaranteed to improve consistently.
Besides, during training, the GT Gaussian-smoothed heatmap is constructed via using the Gaussian
blob. Therefore, during testing, the predicted heatmap often has a relatively large area of pixels with
large values around the dot annotation, as shown in Fig. 3, which can make it difficult to accurately
locate the body joint.

Differently, our method optimizes the heatmap prediction from a novel perspective via minimizing
the difference between the distribution constructed from the predicted heatmap (i.e., the suppliers S),
and the distribution constructed from the dot annotation (i.e., the demanders D). During training,
since we formulate the cost function between each pair of supplier and demander as their L2 distance,
minimizing the distribution difference based on such a cost function can aggregate the pixel values in
the predicted heatmap towards the dot annotation. Hence, our method can help to achieve a more
consistent model performance improvement when minimizing the distribution difference. Besides,
during testing, equipped with such a mechanism of aggregating the predicted pixel values towards the
dot annotation, our method can achieve a more compact body joint localization as shown in Fig. 3.

5 Experiments

To evaluate the effectiveness of our proposed method, we conduct experiments on the COCO dataset
[16] and the MPII Human Pose dataset [1]. Besides, to test the generality of our method, we apply it
to various backbones, e.g., ResNet [33], HRNet [26], and HRFormer [37].

5.1 COCO Keypoint Detection

Dataset & evaluation metric. The COCO dataset [16] contains more than 200k images and 250k
person instances, which are annotated with 17 body joints. This dataset has three subsets including
COCO training set, COCO validation set, and COCO test-dev set, which have 57k, 5k and 20k
images, respectively. We conduct experiments on this dataset via first training the model on the
train2017 set, and then evaluating the model on the val2017 set and test-dev2017 set. Following
[33, 26, 37], we use standard average precision (AP) calculated based on Object Keypoint Similarity
(OKS) to evaluate model performance.

Implementation details. We apply our method to various baselines including Simple Baseline [33],
HRNet [26], and HRFormer [37], with their respective backbones including ResNet-152, HRNet-
W32, HRNet-W48, and HRFormer-Base. For these baselines, we follow their original learning and
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Table 2: The improvement of AP on COCO test-dev set when our proposed method is applied to
various baselines.

Method Venue Backbone Input size AP AP50 AP75 APM APL AR
G-RMI[22] CVPR 2017 ResNet-101 353× 257 64.9 85.5 71.3 62.3 70.0 69.7
Mask-RCNN[9] ICCV 2017 ResNet-50-FPN - 63.1 87.3 68.7 57.8 71.4 -
RMPE[6] ICCV 2017 PyraNet[36] 320× 256 72.3 89.2 79.1 68.0 78.6 -
CFN[11] ICCV 2017 - - 72.6 86.1 69.7 78.3 64.1 -
CPN[3] CVPR 2018 ResNet-Inception 384× 288 72.1 91.4 80.0 68.7 77.2 78.5
CPN(ensemble)[3] CVPR 2018 ResNet-Inception 384× 288 73.0 91.7 80.9 69.5 78.1 79.0
Integral Pose Regression[27] ECCV 2018 ResNet-101 256× 256 67.8 88.2 74.8 63.9 74.0 -
Posefix[18] CVPR 2019 ResNet-152 384× 288 73.6 90.8 81.0 70.3 79.8 79.0
DarkPose[39] CVPR 2020 HRNet-W48 384× 288 76.2 92.5 83.6 72.5 82.4 81.1
UDP[10] CVPR 2020 HRNet-W48 384× 288 76.5 92.7 84.0 73.0 82.4 81.6
TokenPose[15] ICCV 2021 TokenPose-L/D24 384× 288 75.9 92.3 83.4 72.2 82.1 80.8
Removing Bias[7] ICCV 2021 HRNet-W48 384× 288 76.1 - - - - 81.0
Simple Baseline[33] ECCV 2018 ResNet-152 384× 288 73.8 91.7 81.2 70.3 80.0 79.1
+ Ours ResNet-152 384× 288 75.3(↑1.5) 92.6 83.1 71.7 81.1 80.3
HRNet[26] CVPR 2019 HRNet-W32 384× 288 74.9 92.5 82.8 71.3 80.9 80.1
+ Ours HRNet-W32 384× 288 76.7(↑1.8) 92.6 84.0 73.0 82.8 81.5
HRNet[26] CVPR 2019 HRNet-W48 384× 288 75.5 92.5 83.3 71.9 81.5 80.5
+ Ours HRNet-W48 384× 288 77.2(↑1.7) 93.0 84.4 73.4 83.3 82.0
HRFormer[37] NIPS 2021 HRFormer-Base 384× 288 76.2 92.7 83.8 72.5 82.3 81.2
+ Ours HRFormer-Base 384× 288 77.2(↑1.0) 93.1 84.7 73.8 83.0 82.1

optimization configurations for model training. To calculate the Earth Mover’s Distance using the
Sinkhorn algorithm, we set the Sinkhorn entropic regularization parameter to 1 and the number of
Sinkhorn iterations to 1000 in our experiments.

Results. In Tab. 1 and Tab. 2, we report results on the COCO validation and test-dev sets. We
observe that after applying our method on various baselines, a significant performance enhancement
is achieved, which shows effectiveness of our proposed method. Moreover, we compare our method
with other state-of-the-art 2D human pose estimation methods. Our method achieves superior
performance compared to these methods, further demonstrating the effectiveness of our method.

5.2 MPII Human Pose Estimation

Dataset & evaluation metric. The MPII dataset [1] contains around 25K images and more than 40k
person instances, which are annotated with 16 body joints. We adopt the standard train/val split in [1]
to build the MPII training set and validation set, and conduct all the experiments on this dataset via
first training the model on the MPII training set, and then evaluating it on the MPII validation set.
Following [26], we use the head-normalized probability of correct keypoint (PCKh) [1] score as the
evaluation metric on this dataset and report the PCKh@0.5 score.

Implementation details. On the MPII dataset, we also apply our method to various methods as our
baselines, including Simple Baseline [33] and HRNet [26], with their respective backbones including
ResNet-152, HRNet-W32, and HRNet-W48. We follow the original learning and optimization
configurations for model training for both Simple Baseline [33] and HRNet [26]. Besides, same as
the experiments on the COCO dataset, we also set the Sinkhorn entropic regularization parameter to
1 and the number of Sinkhorn iterations to 1000 in our experiments on the MPII dataset.

Results on the MPII validation set. In Tab. 3, we report the results on the MPII validation set.
As shown, applying our proposed method on various baselines results in a consistent performance
improvement, which demonstrates the effectiveness of our proposed method.

5.3 Ablation Studies

We conduct ablation studies on the COCO validation set via applying our proposed method on
HRNet-W48 [26].

Impact of involving the idea of sub-pixels in formulating D. In our proposed method, we
formulate the demanders D by involving the idea of sub-pixel resolution. To investigate the impact of
formulating the demanders D in such a way, we compare our proposed method (sub-pixel demanders
formulation) with a variant (naive demanders formulation). This variant still formulates the
suppliers S and the cost function C in the same way, but formulates the demanders D naively as
a single demander at the center of the pixel containing the dot annotation, as shown in Fig. 2(a).
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Table 3: The improvement of AP on MPII validation set when our proposed method is applied to
various baselines.

Method Venue Backbone Input size Mean Hea Sho Elb Wri Hip Kne Ank
Integral Pose Regression[27] ECCV 2018 ResNet-101 256× 256 87.9 - - - - - - -
UDP[10] CVPR 2020 HRNet-W32 256× 256 90.4 97.4 96.0 91.0 86.5 89.1 86.6 83.3
DarkPose[39] CVPR 2020 HRNet-W32 256× 256 90.6 97.2 95.9 91.2 86.7 89.7 86.7 84.0
TokenPose[15] ICCV 2021 TokenPose-L/D6 256× 256 90.1 97.1 95.9 91.0 85.8 89.5 86.1 82.7
TokenPose[15] ICCV 2021 TokenPose-L/D12 256× 256 90.1 97.2 95.8 90.7 85.9 89.2 86.2 82.3
TokenPose[15] ICCV 2021 TokenPose-L/D24 256× 256 90.2 97.1 95.9 90.4 86.0 89.3 87.1 82.5
Removing Bias[7] ICCV 2021 ResNet-152 256× 256 89.9 - - - - - - -
Removing Bias[7] ICCV 2021 HRNet-W32 256× 256 90.6 - - - - - - -
Simple Baseline[33] ECCV 2018 ResNet-152 256× 256 89.6 97.0 95.9 90.0 85.0 89.2 85.3 81.3
+ Ours ResNet-152 256× 256 90.3(↑0.7) 97.0 96.1 90.6 86.1 89.2 86.7 83.1
HRNet[26] CVPR 2019 HRNet-W32 256× 256 90.4 97.1 95.9 90.7 86.1 89.4 86.9 83.2
+ Ours HRNet-W32 256× 256 90.9(↑0.5) 97.3 96.2 91.2 86.8 90.1 87.4 84.1
HRNet[26] CVPR 2019 HRNet-W48 256× 256 90.5 96.9 96.0 90.9 86.2 89.6 87.1 83.5
+ Ours HRNet-W48 256× 256 90.9(↑0.4) 97.1 96.3 91.2 87.0 90.2 87.5 84.2

Table 4: Evaluation on the effectiveness of for-
mulating the demanders D involving the idea of
sub-pixel resolution.

Method AP AP50 AP75 APM APL AR
Baseline(HRNet-W48) 77.1 91.8 83.8 73.5 83.5 81.8
Naive demanders formulation 77.9 92.5 84.8 74.5 83.9 82.4
Sub-pixel demanders formulation 78.8 92.5 85.1 75.0 85.3 83.1

Table 5: Evaluation on the number of Sinkhorn
iterations.

Method AP AP50 AP75 APM APL AR
Baseline(HRNet-W48) 77.1 91.8 83.8 73.5 83.5 81.8
500 Sinkhorn iterations 78.3 92.4 84.9 74.8 84.4 82.7
1000 Sinkhorn iterations 78.8 92.5 85.1 75.0 85.3 83.1
1500 Sinkhorn iterations 78.7 92.4 85.2 74.8 85.4 83.0

As shown in Tab. 4, our proposed method consistently outperforms this variant, which shows
effectiveness of our sub-pixel demanders formulation.

Figure 3: Qualitative results of our method formulating
the optimization of the heatmap prediction as a distri-
bution matching problem and the baseline method [26]
using the Gaussian-smoothed heatmap as the optimiza-
tion objective. As shown, our method localizes body
joints much more compactly.

Impact of the number of Sinkhorn iter-
ations. For measuring the Earth Mover’s
Distance utilizing the Sinkhorn algorithm,
we need to set the number of Sinkhorn
iterations, which we set to 1000 in our
experiments. We evaluate other choices
of the number of Sinkhorn iterations in
Tab. 5. As shown, all variants outperform
the baseline method, and after the number
of Sinkhorn iterations becomes larger than
1000, the model performance becomes stabi-
lized. Hence, we set the number of Sinkhorn
iterations to be 1000 in all our experiments.

Qualitative results. Some qualitative re-
sults are shown in Fig. 3. As shown, via
formulating the cost function as the L2 dis-
tance, our proposed method can aggregate
the pixel values in the predicted heatmap to-
wards the dot annotation, and thus localize
body joints much more compactly than the baseline method [26] relying on the Gaussian-smoothed
heatmap. This demonstrates that our method can effectively optimize the model in the direction of
accurately localizing the body joint.

6 Conclusion

In this paper, from a novel perspective, we formulate the optimization of the heatmap prediction as a
distribution matching problem between the predicted heatmap and the dot annotation via calculating
their Earth Mover’s Distance. Our proposed method is simple yet effective, and can be easily applied
to various 2D human pose estimation models. Our method achieves superior performance on the
COCO dataset and the MPII dataset.
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