
Can Neural Networks Understand Programs like Humans?

Anonymous ACL submission

Abstract

Program understanding is a fundamental task in001
program language processing. Despite the suc-002
cess, existing works fail to take human minds003
as reference in understanding programs. In004
this paper, we incorporate human minds and005
propose the PGNN-EK model that consists of006
two main components. On the one hand, in-007
spired by the “divide-and-conquer” reading be-008
haviours of humans, we present a partitioning-009
based graph neural network model PGNN on010
the upgraded AST of codes. On the other hand,011
to characterize human minds of resorting to012
other resources to help code comprehension,013
we transform raw codes with external knowl-014
edge and apply pre-training techniques for in-015
formation extraction. Finally, we combine the016
two embeddings generated from the two com-017
ponents to output code embeddings. We con-018
duct extensive experiments to show the supe-019
rior performance of PGNN-EK on the code020
summarization and code clone detection tasks.021
In particular, to show the generalization abil-022
ity of our model, we release a new dataset023
that is more challenging for code clone de-024
tection and could advance the development of025
the community. Our codes and data are pub-026
licly available at https://github.com/027
anonymousforpaper1997/PGNN-EK.028

1 Introduction029

The past decades have witnessed the prosperity030

of programming platforms, such as Github and031

Stack Overflow. These platforms generate mas-032

sive open-source code1 data that is named as “Big033

Code” in (Allamanis et al., 2018a). To automate034

the software development and maintenance, based035

on the “Software Naturalness” hypothesis (Hindle036

et al., 2016), natural language processing (NLP)037

techniques have been applied in program under-038

standing. After that, a series of downstream pro-039

gramming language processing (PLP) tasks can be040

1We interchangeably use code and program in this paper.

performed, including code summarization (Zhang 041

et al., 2020; Ahmad et al., 2020; Liu et al., 2021) 042

and code clone detection (Zhang et al., 2019; Wang 043

et al., 2020). 044

Existing works for understanding programs 045

mainly utilize three types of information: code con- 046

text, code structure and external knowledge. Specif- 047

ically, code context refers to the token sequence 048

in the code. For code structure, each code can be 049

parsed into various types of intermediate represen- 050

tations, such as AST (Abstract Syntax Tree), CFG 051

(Control Flow Graph) and PDG (Program Depen- 052

dence Graph). These representations capture the 053

structural information of codes. Further, there also 054

exists external knowledge associated with codes, 055

such as API documentation and other exemplary 056

codes. Despite the success, all these models ignore 057

human minds in reading programs. Recently, (Ben- 058

gio et al., 2021) suggest the potential futures of 059

deep learning by comparing current AI methods 060

with human learning abilities. This further prompts 061

us to revisit program understanding: Can we de- 062

velop a model that understands programs like hu- 063

mans? 064

In the domain of programming education, how 065

people understand codes is a topic that has been 066

studied. For example, based on knowledge base in- 067

cluding syntactical knowledge (e.g., programming 068

basics) and semantic knowledge (e.g., API docu- 069

mentation), (Schulte et al., 2010) offer a bottom-up 070

reading technique, which assumes that people be- 071

gin with individual code lines and chunks, and then 072

combine them into higher-level abstractions. Fur- 073

ther, (Park et al., 2016) state that when people read 074

codes, reasoning about the hierarchical relationship 075

of blocks, statements, expressions and variables is 076

necessary. Based on these studies, we conclude 077

three key points for human understanding codes. 078

First, the transition of defined variables has to be 079

traced. Second, humans usually adopt a “divide- 080

and-conquer” strategy, which divides codes based 081

1

https://github.com/anonymousforpaper1997/PGNN-EK
https://github.com/anonymousforpaper1997/PGNN-EK
https://github.com/anonymousforpaper1997/PGNN-EK

on statements and then understands codes from a082

local-to-global view. Third, humans resort to ex-083

ternal knowledge to comprehend codes, such as084

API documentation and code examples written by085

experts.086

In this paper, inspired by human minds for code087

comprehension, we propose a novel Partitioning-088

based Graph Neural Network with External089

Knowledge (PGNN-EK). To capture code con-090

text and structure, PGNN-EK upgrades the tradi-091

tional AST and defines a novel subtoken-based092

AST called S-AST. In S-AST, we add edges be-093

tween variables to trace the variable transitions,094

edges between adjacent tree leaves from left to095

right to enrich the context and structure informa-096

tion, and edges between sub-nodes corresponding097

to subtokens tokenized from user-defined identi-098

fiers to handle the Out of Vocabulary (OOV) prob-099

lem (Karampatsis et al., 2020). Details will be100

illustrated later. After that, we first apply graph101

neural network (GNN) models on the S-AST to102

derive a code embedding. To further implement103

the “divide-and-conquer” reading strategy, we par-104

tition the S-AST into multiple subgraphs, which105

follow the sequence of statements in the original106

code. For each subgraph, we use GNN models107

to generate the subgraph embedding. Then, these108

subgraph embeddings are fused to generate another109

code embedding. For these two code embeddings,110

since they are both derived from S-AST, we further111

aggregate them. On the other hand, to character-112

ize the dependence on external knowledge for code113

comprehension, we traverse the AST of the original114

code to derive a sequence of tokens for syntactic115

knowledge and then add the API descriptions to the116

end for semantic knowledge. We then apply Code-117

BERT (Feng et al., 2020) on the token sequence118

to capture external knowledge. Finally, PGNN-EK119

generates the output code embedding by combining120

the embedding derived from S-AST and the one121

from external knowledge.122

To evaluate the model performance, we conduct123

experiments on the code summarization task and124

code clone detection task, respectively. Before125

we apply PGNN-EK on the code clone detection126

benchmarks in CodeXGLUE (Shi et al., 2021) ex-127

tracted from the BigCloneBench 2014 dataset (Sva-128

jlenko et al., 2014), we notice from the leader-129

board2 that the results are incredibly high, where130

2https://microsoft.github.io/
CodeXGLUE/

the minimum F1 score is 0.949. Then we dive into 131

the characteristics of the dataset and find that the 132

functionalities of codes in the test set have all ap- 133

peared in the training set. Therefore, the dataset 134

is very simple. To further test the model’s general- 135

ization ability, we construct a new dataset, where 136

the test set contains codes whose functionality has 137

never appeared in the training set. This new dataset 138

provides an insightful reference for further research 139

in the community. 140

Our main contributions are summarized as fol- 141

lows: 142

• We construct a new code structure represen- 143

tation S-AST that can be used to handle the 144

OOV problem in PLP. 145

• We follow human minds in understanding 146

codes and propose a novel model PGNN-EK 147

that leverages code context, structure and ex- 148

ternal knowledge. Specifically, we put for- 149

ward a novel partitioning-based graph neu- 150

ral network model that can effectively use 151

code context and structure. We also present a 152

code transformation method to utilize external 153

knowledge in boosting comprehension. 154

• We conduct extensive experiments on code 155

summarization and code clone detection tasks 156

to demonstrate the effectiveness of our model. 157

In particular, we identify the limitation of a 158

benchmark dataset for code clone detection 159

and release a new dataset that is more chal- 160

lenging. 161

2 Related Work 162

2.1 Program Understanding 163

Program understanding is a topic that has received 164

wide attention. Early works use either code con- 165

text or structure information. For example, taking 166

codes as raw texts, some works use language mod- 167

els (Raychev et al., 2014; Allamanis et al., 2015), 168

RNN-series (Zaremba and Sutskever, 2014; Dam 169

et al., 2016) and attention (Iyer et al., 2016) to 170

represent codes. However, different from natural 171

language, programs are more structural, which can 172

be parsed into intermediate graphs, such as AST. 173

Many works for code analysis are then proposed 174

based on AST, such as AST-based LSTM (Wei 175

and Li, 2017), AST-based CNN (Yu et al., 2019), 176

ASTNN (Zhang et al., 2019), code2vec (Alon et al., 177

2

https://microsoft.github.io/CodeXGLUE/
https://microsoft.github.io/CodeXGLUE/

MethodDeclaration

Modifier
Basic-

Type
get

public int

Formal-

Parameter

Formal-

Parameter

Basic-

Type

a

Basic-

Type

Statement-

Expression

assignment

Member-

Reference
Method-

Invocation

Math

Member-

Referenceabs

int
int b

a

a

L arger

AST edges

Leaf edges

Subtoken edges

Data flow edges

Non-leaves

Leaves

Subtoken nodes

API nodes

Statement-

Expression

assignment

Member-

Reference

Method-

Invocation

Math
Member-

Referenceabsb

b

public int getLarger(int a,
int b) {
 a = Math.abs(a);
 b = Math.abs(b);

 … }

Figure 1: An example of S-AST. To simplify the graph, we create a code snippet (top left), whose variables are
defined with only one character, such as “a” and “b”. In real tasks, the codes are longer and user-defined identifiers
are more semantically complex. This could add more subtoken nodes and edges. The figure is better viewed in
color.

2019b), and code2seq (Alon et al., 2019a). Re-178

cently, GNN models have also been applied in code179

understanding. Since the original AST is actually180

a tree that is sparse, these works (Allamanis et al.,181

2018b; Wang et al., 2020; Wang and Li, 2021) first182

add edges to AST to make it more connected and183

then apply GNN models. Further, there are also184

works (Yu et al., 2020; Cummins et al., 2021; Liu185

et al., 2021) that utilize other intermediate graphs186

such as CFG, PDG and CPG (Yamaguchi et al.,187

2014). Recently, approaches that use both code188

context and structure are proposed. For example,189

Hellendoorn et al. (2020) and Zügner et al. (2021)190

incorporate the structure information derived from191

AST, such as edge weights and node distances,192

into the context attention computation in Trans-193

former (Vaswani et al., 2017).194

Despite the success, all these methods only con-195

sider the code context and structure information.196

There are also approaches that utilize the exter-197

nal knowledge associated with codes. For exam-198

ple, some methods apply pre-training techniques199

in NLP to boost comprehension, such as Code-200

BERT (Feng et al., 2020), GPT-C (Svyatkovskiy201

et al., 2020) and PLBART (Ahmad et al., 2021).202

There are also works that incorporate code charac-203

teristics into pre-training models, such as Graph-204

CodeBERT (Peng et al., 2021), OSCAR (Peng205

et al., 2021) and InferCode (Bui et al., 2021). Fur-206

ther, API is another external source for program207

understanding, which has been introduced in many208

works (Hu et al., 2018; Xu et al., 2020). However,209

all these methods ignore human minds in program 210

understanding. 211

2.2 Code Summarization and Code Clone 212

Detection 213

In this paper, we focus on two program understand- 214

ing downstream tasks: code summarization and 215

code clone detection. For code summarization, 216

some works (Iyer et al., 2016; Ahmad et al., 2020) 217

use code context only, some methods (LeClair et al., 218

2019; Alon et al., 2019a) use code structure only, 219

while there are also models (Hellendoorn et al., 220

2020; Zügner et al., 2021) that use both informa- 221

tion. Further, Liu et al. (2021) introduce exter- 222

nal knowledge for performance improvement. For 223

code clone detection, existing works mainly em- 224

ploy code structure (Wei and Li, 2017; Zhang et al., 225

2019; Wang et al., 2020) and pre-training mod- 226

els (Feng et al., 2020; Ahmad et al., 2021). 227

3 S-AST Construction 228

In this section, we construct S-AST. The original 229

AST has two main limitations: 230

• Low connectivity. The original AST is ac- 231

tually tree-structured, where every two nodes 232

are minimally connected with only one path. 233

This could lead to a long distance between 234

leaf nodes. As pointed out in (Alon and Ya- 235

hav, 2021), directly applying GNN models in 236

tree-shaped graphs could cause the long-range 237

problem. 238

3

• OOV problem. User-defined identifiers in239

codes can be arbitrarily complex and most240

of them are compound words, which could241

induce a large vocabulary size. For exam-242

ple, the training set size in the benchmark243

dataset CodeXGLUE (Lu et al., 2021) for244

code summarization is 164, 814, while the245

vocabulary size for AST nodes is 620, 256.246

After we split the nodes by camel case and247

underscores (Cvitkovic et al., 2019), the vo-248

cabulary size is still as high as 201, 286. A249

very large vocabulary could cause the OOV250

problem (Jean et al., 2015) and thus adversely251

affect the model performance.252

To improve the connectivity of the AST, there253

exist some works (Allamanis et al., 2018b; Wang254

et al., 2020; Wang and Li, 2021) that add edges255

to the AST. However, these methods cannot ad-256

dress the OOV problem. Therefore, we propose a257

new code intermediate graph S-AST, as shown in258

Figure 1. Similar as in (Allamanis et al., 2018b;259

Wang et al., 2020), we add data flow edges to trace260

variable transitions and connect adjacent leaf nodes261

to encourage learning from contexts. To solve the262

OOV problem, we further reduce the vocabulary263

size by using the tokenizer of RoBERTa (Liu et al.,264

2019) to tokenize every leaf node in the AST. When265

a leaf node can be tokenized into multiple subto-266

kens, we keep the first subtoken as the parent node267

and take other subtokens as its children. For ex-268

ample, the token “getLarger” is divided into the269

parent node “get” and the children nodes “L” and270

“arger”. These new parent-children connections are271

defined as subtoken edges. With these three types272

of edges added, we increase the number of edges273

in the AST and improve the graph connectivity.274

Further, the vocabulary size could be significantly275

reduced. In our experiments, we use javalang3276

to generate Java AST and reduce the vocabulary277

size to 50, 336, where 50, 265 is the size of origi-278

nal RoBERTa vocabulary and 71 is the number of279

keywords in non-leaf nodes defined by javalang.280

4 Algorithm281

In this section, we introduce the PGNN-EK model,282

which is composed of two main components. On283

the one hand, the partitioning-based graph neu-284

ral network model (PGNN) is proposed to follow285

the “divide-and-conquer” behaviours of humans to286

3https://github.com/c2nes/javalang

understand programs. On the other hand, PGNN- 287

EK leverages external knowledge to enhance the 288

model’s capability. The overall architecture of 289

PGNN-EK is summarized in Figure 2. 290

public int

getLarger(int a,

int b)...

MethodDeclaration Modifier public BasicT

ype int getLarger FormalParameter BasicT

ype int a FormalParameter BasicType int b

…

Returns the absolute value of an int value.

Raw Code

GNN

CodeBERT

LSTM

S-AST

Partition
Fuse

External

Knowledge Pooling

Subgraph 1 Subgraph 2

Figure 2: The overall architecture of PGNN-EK

4.1 Partitioning-based Graph Neural 291

Networks 292

As illustrated in (Schulte et al., 2010) and (Park 293

et al., 2016), the bottom-up reasoning on the hierar- 294

chical relationship of statements plays an essential 295

role in human understanding. Therefore, we pro- 296

pose a statement-based partitioning algorithm to 297

divide S-AST into multiple subgraphs. Since S- 298

AST is no longer a tree, for convenience, we first 299

keep subtokens and their edges in-between in S- 300

AST, and remove edges linking variables and those 301

connecting adjacent leaf nodes, to derive a tree 302

structure. After that, we calculate the number of 303

nodes in each subtree of the root node and each 304

subtree corresponds to a statement of the raw code. 305

Then, we accumulate the number of nodes in sub- 306

trees from left to right. When the sum exceeds the 307

pre-defined threshold λ, we group these subtrees 308

into one subgraph and reset the sum to zero. If 309

the current subgraph is not the first one, for each 310

variable node in it, we also add to the subgraph 311

the closest node indicating the same variable in 312

previous subgraphs to trace the variable transition. 313

After the subgraph is derived, we add edges be- 314

tween nodes that represent the same variable and 315

also connect adjacent leaf nodes as in the original 316

S-AST. We repeat this process until all subtrees are 317

visited. Note that if the node number of the last 318

subgraph is smaller than λ/2, we merge the last 319

subgraph into the penultimate subgraph. Finally, 320

we summarize the pseudocodes of the partitioning 321

algorithm in Alg. 1. 322

After subgraphs are derived, as in (Hellendoorn 323

et al., 2020), we adopt GGNN (Li et al., 2016) as 324

the graph embedding model, which uses a multi- 325

4

https://github.com/c2nes/javalang

layer perceptron (MLP) and a gated recurrent unit326

(GRU) to perform message passing and embedding327

updating. Specifically, at the (l + 1)-th layer, to328

update the embedding hl+1
i of node xi, we have:329

ml+1
i =

∑
j∈Ni

MLP(hl
j , eij),330

hl+1
i =GRU(ml+1

i ,hl
i),331

where Ni is the neighbor set of xi and eij is the
feature vector of the edge between xi and xj . After
node embeddings are generated, we use a READ-
OUT function to obtain the graph embedding G:

G = READOUT({hi}).

We repeat the above process on each subgraph
to derive a list of subgraph embeddings L =
[G1,G2, · · · ,Gn], where n is the number of sub-
graphs. Next, we keep the order of the subgraph
list and feed L into an unidirectional LSTM:

O = LSTM(L).

Inspired by the skip connection (He et al., 2016),
we also perform GGNN on the whole S-AST graph
to derive a code embedding C. Finally, we concate-
nate C and the last output O[−1] of LSTM. We
further feed the result into a fully connected layer
to get the output code embedding Ep:

Ep = FC(Concat(C,O[−1])).

4.2 External Knowledge332

To help understand programs, people often resort to333

external knowledge. For example, humans usually334

learn from massive exemplary codes written by ex-335

perts for better syntactic comprehension, which are336

in the format of programming language. Further,337

API documentation is written in natural language338

and provides semantic details on functions. There-339

fore, a research question arises: how to fuse these340

external syntactic and semantic knowledge into our341

model?342

To address the problem, we use pre-training tech-343

niques in programming language processing (PLP),344

which are trained on massive code corpus to learn345

programming basics. In particular, we adopt Code-346

BERT (Feng et al., 2020), which is a bimodal pre-347

trained model for both programming language and348

natural language.349

Before CodeBERT is applied, we first combine
the raw code and API descriptions. To enrich the

MethodDeclaration Modifier public BasicType int
getLarger FormalParameter BasicType int a Formal
Parameter BasicType int b StatementExpression As
signment MemberReference a MethodInvocation Math
 MemberReference a abs = StatementExpression Ass
ignment MemberReference b MethodInvocation Math
MemberReference b abs = IfStatement BinaryOperat
ion > MemberReference a MemberReference b BlockS
tatement ReturnStatement MemberReference a Block
Statement ReturnStatement MemberReference b;
Returns the absolute value of an int value. (API
Description)

public int getLarger(int
a, int b) {
 a = Math.abs(a);
 b = Math.abs(b);
 if(a > b){
 return a;
 }else {
 return b;
 }
}

Raw Code Tranform with External Knowledge

Figure 3: A toy example on code transformation with
external knowledge. The last sentence in the right box
is the API description of Math.abs.

syntactic information contained in the raw code, we
perform pre-order traversal on the AST of the code
to obtain a sequence of tokens and replace the raw
code. This is because the AST includes extra code-
related information, such as statements, variables
and operations. Then we append the correspond-
ing API description to the end. A toy example of
transformation is shown in Figure 3. Finally, we
feed the transformed context T into the pre-trained
CodeBERT4 and obtain the embedding Ee:

Ee = CodeBERT(T).

Finally, we concatenate the output embeddings
of PGNN and CodeBERT, and feed the result into a
fully connected layer to obtain the final embedding
Ef :

Ef = FC(Concat(Ep,Ee)).

5 Experiments 350

In this section, we evaluate the performance of 351

PGNN-EK. We conduct experiments on two pro- 352

gram understanding tasks: code summarization and 353

code clone detection. For each task, we use two 354

benchmark datasets, whose statistics are listed in 355

Table 1. 356

5.1 Implementation details 357

In our experiments, we use the AdamW optimizer 358

and linear schedule from (Wolf et al., 2020) to 359

update model parameters. For fair comparison, 360

we run all experiments on 2 Tesla V100 with 32G 361

memory. For PGNN, we set the number of GNN 362

layers, the number of LSTM layers, the embed- 363

ding size of GNN node, and the embedding size of 364

LSTM hidden layer to 3, 2, 768 and 768, respec- 365

tively. We choose the mean operator as the READ- 366

OUT function. To avoid overfitting, we set the 367

dropout rate to 0.2 in PGNN. We implement GNNs 368

4https://huggingface.co/microsoft/
codebert-base

5

https://huggingface.co/microsoft/codebert-base
https://huggingface.co/microsoft/codebert-base

Table 1: The statistics of datasets

Task Dataset Training Validation Test Description

Code summarization
CodeSearchNet-Java (CSN) 164,814 5,179 10,952 Provided by CodeXGLUE

TL-CodeSum (TLC) 69,708 8,714 8,714 Original

Code clone detection
BigCloneBench (BCB) 901,028 415,416 415,416 Provided by CodeXGLUE

BigCloneBench-Function (BCB-F) 398,110 78,602 81,202 Split by functionality

based on PyTorch Geometric (Fey and Lenssen,369

2019). In the EK-enhanced component, we obtain370

51, 191 method-description pairs after preprocess-371

ing the API documentation5. For pair examples,372

see Appendix B. In the code summarization task,373

we add a 6-layer Transformer-based decoder to374

generate summarization as in CodeBERT. We set375

learning rate to 0.00005, batch size to 16, training376

steps to 50, 000, maximum code length to 256 and377

maximum summarization length to 32, respectively.378

In the code clone detection task, as suggested by379

(Neculoiu et al., 2016), we double the PGNN-EK380

to a siamese neural network to calculate code simi-381

larity. We set learning rate to 0.00005, batch size382

to 4, training steps to 200, 000 and maximum code383

length to 400, respectively.384

5.2 Code Summarization385

Code summarization aims at generating natural lan-386

guage comments for codes. We evaluate the perfor-387

mance of PGNN-EK on two benchmark datasets,388

which are TL-CodeSum (shorted as TLC) (Hu389

et al., 2018) and the Java subset of CodeSearchNet390

(shorted as CSN) (Husain et al., 2019). For TLC,391

we use the original dataset. For CSN, we use the392

version provided by CodeXGLUE (Lu et al., 2021).393

For fair comparison, we use the smoothed BLEU-394

4 score (Lin and Och, 2004) as in CodeXGLUE.395

The larger the score, the better the model perfor-396

mance. We compare our model with five repre-397

sentative baselines, including CodeNN (Iyer et al.,398

2016), NCS (Ahmad et al., 2020), Rencos (Zhang399

et al., 2020), CodeBERT (Feng et al., 2020) and400

PLBART (Ahmad et al., 2021). Due to the space401

limitation, we move the details of these baselines402

to Appendix C.403

Table 2 shows the code summarization results.404

Note that the results of CodeNN, NCS and Rencos405

are directly taken from (Shi et al., 2021). Also, the406

results of CodeBERT and PLBART on CSN are407

5https://www.oracle.com/java/
technologies/javase-jdk8-doc-downloads.
html

derived from the leaderboard of CodeXGLUE. For 408

their results on TLC, we run the codes released by 409

the authors of the paper and set hyper-parameters 410

according to the original paper. From the table, 411

we see that, due to the fusion of external knowl- 412

edge, pre-training models CodeBERT, PLBART 413

and PGNN-EK outperform other models on both 414

datasets. Further, PGNN-EK performs the best. 415

The gaps between PGNN-EK and the runner-up 416

model PLBART on CSN and TLC are 0.5 and 1.05, 417

respectively. This shows the importance of consid- 418

ering human minds for code comprehension. We 419

also observe that scores on TLC are substantially 420

larger than that on CSN. This is because codes in 421

the training set and the test set of TLC are consid- 422

erably more similar in functionalities, which will 423

be elaborated in the next section. 424

Table 2: Code summarization results. We highlight the
best results in bold.

Model CSN TLC

CodeNN 8.58 33.03
NCS 11.19 44.25

Rencos 11.80 46.81

CodeBERT 17.65 48.53
PLBART 18.45 50.01

PGNN-EK 18.95 51.06

5.3 Code Clone Detection 425

The goal of code clone detection is to detect 426

whether two code fragments implement the same 427

functionality. Following (Zhang et al., 2019; Wang 428

et al., 2020), we use the BigCloneBench 2014 429

dataset (Svajlenko et al., 2014) and adopt the ver- 430

sion provided by CodeXGLUE. We short it as 431

BCB. 432

Before we apply PGNN-EK on BCB, we no- 433

tice from the leaderboard of CodeXGLUE that the 434

results on BCB are incredibly high, where the mini- 435

mum F1 score is 0.949. Then we dive into the char- 436

acteristics of the dataset and compare BCB with 437

6

https://www.oracle.com/java/technologies/javase-jdk8-doc-downloads.html
https://www.oracle.com/java/technologies/javase-jdk8-doc-downloads.html
https://www.oracle.com/java/technologies/javase-jdk8-doc-downloads.html

the original benchmark (Svajlenko et al., 2014).438

We find that the functionalities of codes in the test439

set have all appeared in the training set of BCB.440

Therefore, BCB is a very simple dataset. To test441

the model’s generalization ability, we construct a442

new dataset, named BCB-F, where the test set con-443

tains codes whose functionality has never appeared444

in the training set. We first extract codes from the445

new version benckmark (Svajlenko and Roy, 2015)446

that has more code fragments and code function-447

alities. We next split training/validation/test set448

based on code functionalities. Specifically, we con-449

struct training/validation/test set with 22/11/10450

code functionalities. For details on the function-451

ality splits of BCB and BCB-F, see Appendix D.452

We keep the same number of positive and nega-453

tive samples in all the three sets. The comparison454

between BCB and BCB-F is given in Table 3.455

Table 3: Comparisons between BCB and BCB-F

BCB BCB-F

Code fragments 9134 73182
Functionalities 10 43

Training/Test splitting random sample by functionality
Ratio of positive-negative nearly 2:1 1:1

In addition to the pre-training models Code-456

BERT and PLBART, we further compare our model457

with two representative methods in code clone de-458

tection, which are ASTNN (Zhang et al., 2019)459

and FA-AST (Wang et al., 2020) (For the details of460

these baselines, see Appendix C).461

Table 4 shows the evaluation results on the two462

datasets. For BCB, we take the results of other463

baseline methods from CodeXGLUE6. For BCB-F,464

we run the source codes released by their authors to465

obtain the results. From the table, we observe: 1)466

All models perform very well on BCB, indicating467

that the dataset is very simple. However, the best468

F1 score on BCB-F is only 0.724, which shows that469

this dataset is very challenging. 2) The non-pre-470

training models ASTNN and FA-AST predict all471

samples to be positive and perform poorly on BCB-472

F, while pre-training models perform better. This473

further demonstrates the importance of introducing474

external knowledge. 3) PGNN-EK achieves the475

6Specifically, we take the results of ASTNN
and FA-AST from https://github.com/
microsoft/CodeXGLUE/tree/main/Code-Code/
Clone-detection-BigCloneBench and that of
CodeBERT and PLBART from the CodeXGLUE leaderboard.
Note that PLBART only reports the F1 score on BCB.

best results on both datasets. This shows that incor- 476

porating human minds in program understanding 477

enhances the generalization ability of PGNN-EK. 478

Table 4: Code clone detection results w.r.t. precision
(P), recall (R) and F1 measures. We highlight the best
results in bold.

Model
BCB BCB-F

P R F1 P R F1

ASTNN 0.92 0.94 0.93 0.50 1.00 0.67
FA-AST 0.96 0.94 0.95 0.50 1.00 0.67

CodeBERT 0.960 0.969 0.965 0.611 0.842 0.708
PLBART - - 0.972 0.517 0.996 0.681

PGNN-EK 0.975 0.973 0.974 0.621 0.869 0.724

5.4 Ablation Study 479

We further conduct ablation study to verify the 480

importance of its main components in PGNN- 481

EK, including subtokens, the S-AST graph, the 482

partitioning-based GNN and the external knowl- 483

edge. Specifically, one variant employs only the 484

S-AST graph without using external knowledge. 485

This helps us realize the importance of external 486

knowledge in program understanding. We call this 487

variant PGNN only. Meanwhile, we define another 488

variant that ignores the hierarchical relationships 489

in code structure and uses only external knowledge. 490

We call this variant EK only. To further show the 491

significance of S-AST in code understanding, we 492

replace S-AST with the original AST in the vari- 493

ant PGNN-EK with AST. We also implement a 494

variant that does not use the subtoken tokenizer 495

to generate extra subtoken nodes and edges. We 496

call it PGNN-EK without subtoken. This variant 497

can be used to show the importance of subtokens 498

in addressing the OOV problem. To show the ad- 499

vantage of the partitioning strategy, we propose 500

a variant GNN-EK that discards the partitioning 501

step. Finally, we consider a variant that feeds the 502

raw code into the pre-trained CodeBERT without 503

transforming it with external knowledge. We call 504

this variant PGNN-CodeBERT. 505

Table 5 summarizes the ablation study results. 506

From the table, we see that: 1) S-AST contains 507

richer information than AST and can serve as an 508

effective code intermediate representation in pro- 509

gram understanding. The introduction of subto- 510

kens nodes and edges alleviates the OOV problem 511

and enhances the model performance. 2) Exter- 512

nal knowledge helps boost understanding codes. 513

In particular, code transformation with external 514

7

https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Clone-detection-BigCloneBench
https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Clone-detection-BigCloneBench
https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Clone-detection-BigCloneBench

Table 5: Ablation study on PGNN-EK. We highlight the best results in bold.

Method
CSN TLC BCB BCB-F

(Smoothed BLEU-4) (Smoothed BLEU-4) (F1) (F1)

PGNN only 14.05 47.71 0.951 0.667
EK only 17.95 49.66 0.965 0.711

PGNN-EK with AST 17.70 48.96 0.957 0.713
PGNN-EK without subtoken 17.82 49.01 0.958 0.712

GNN-EK 18.05 49.95 0.967 0.715
PGNN-CodeBERT 18.60 50.65 0.969 0.720

PGNN-EK (Full Model) 18.95 51.06 0.974 0.724

knowledge improves the expressiveness of the raw515

code. 3) The full model PGNN-EK outperforms516

other variants on all the datasets and tasks. This517

indicates the importance of every main component518

in PGNN-EK. It further shows that leveraging code519

context, code structure and external knowledge as520

humans is helpful for program understanding.521

5.5 The Influence of Subgraph Size522

We end this section with a hyper-parameter523

sensitivity analysis. In PGNN-EK there is a524

key hyper-parameter λ that is used to control525

the size of subgraphs. Here, we investigate526

the sensitivity of λ. We vary the value of λ527

from {10, 30, 50, 70, 90, 110, 130, 150, 170, 190},528

and the final prediction results of PGNN-EK on 4529

datasets are shown in the Figure 4.530

Table 6: The average number of nodes in S-AST

Datasets CSN TLC BCB BCB-F

S-AST size 137 140 372 348

The results indicate that 1) the model perfor-531

mance first increases and then drops, with the in-532

crease of the subgraph size. When the subgraph533

size is too small, each subgraph is a code frag-534

ment that no longer represents a code statement535

and thus contains less information. Further, when536

the subgraph is too large, each subgraph could be537

composed of statements that are of different se-538

mantic meanings, which thus degrades the model539

performance. 2) PGNN-EK performs the best at540

λ = 30 on CSN and TLC while it achieves the541

best results at λ = 70 on BCB and BCB-F. We542

further investigate the reason and show the average543

number of nodes in S-AST on the four datasets in544

Table 6. From the table, BCB and BCB-F contain545

∼ 2.5 times more nodes than that in CSN and TLC.546

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0
1 5 . 0
1 5 . 5
1 6 . 0
1 6 . 5
1 7 . 0
1 7 . 5
1 8 . 0
1 8 . 5
1 9 . 0
1 9 . 5
2 0 . 0

C S N

Sm
oo

th
ed

 B
LE

U-
4

�
0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0

4 7 . 0
4 7 . 5
4 8 . 0
4 8 . 5
4 9 . 0
4 9 . 5
5 0 . 0
5 0 . 5
5 1 . 0
5 1 . 5
5 2 . 0

T L C

Sm
oo

th
ed

 B
LE

U-
4

�

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0
0 . 9 0
0 . 9 1
0 . 9 2
0 . 9 3
0 . 9 4
0 . 9 5
0 . 9 6
0 . 9 7
0 . 9 8
0 . 9 9
1 . 0 0

B C B

F1

�
0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0

0 . 6 0
0 . 6 2
0 . 6 4
0 . 6 6
0 . 6 8
0 . 7 0
0 . 7 2
0 . 7 4
0 . 7 6
0 . 7 8
0 . 8 0

 B C B - F

F1

�

Figure 4: The influence of subgraph size on 4 datasets.

This empirically suggests that setting λ to be about 547
1
5 to 1

4 of the average node number in S-AST could 548

be a reasonable choice. 549

6 Conclusion 550

In this paper, we followed human understandings 551

for programs and proposed the PGNN-EK model. 552

To enrich the code structure information and alle- 553

viate the OOV problem, we presented the S-AST 554

graph based on AST, which uses a subtoken tok- 555

enizer to generate subtoken nodes and edges be- 556

tween them. Inspired by the “divide-and-conquer” 557

strategy, we proposed the partitioning-based graph 558

neural network model on S-AST that employs 559

code context and structure. To leverage the exter- 560

nal knowledge to boost comprehension, we trans- 561

formed the raw code to fuse syntactic and semantic 562

knowledge and utilized pre-training techniques for 563

information extraction. We performed extensive 564

experiments to show the effectiveness of our model 565

PGNN-EK on the code summarization and code 566

clone detection tasks. In particular, to show the 567

generalization ability of the model, we released a 568

new benchmark that is more challenging. 569

8

References570

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray,571
and Kai-Wei Chang. 2020. A transformer-based ap-572
proach for source code summarization. In ACL 2020.573

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray,574
and Kai-Wei Chang. 2021. Unified pre-training for575
program understanding and generation. In NAACL-576
HLT 2021.577

Miltiadis Allamanis, Earl T. Barr, Christian Bird, and578
Charles Sutton. 2015. Suggesting accurate method579
and class names. In ESEC/FSE 2015.580

Miltiadis Allamanis, Earl T. Barr, Premkumar T. De-581
vanbu, and Charles Sutton. 2018a. A survey of ma-582
chine learning for big code and naturalness. ACM583
Comput. Surv., 51(4):81:1–81:37.584

Miltiadis Allamanis, Marc Brockschmidt, and Mah-585
moud Khademi. 2018b. Learning to represent pro-586
grams with graphs. In ICLR 2018.587

Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav.588
2019a. code2seq: Generating sequences from struc-589
tured representations of code. In ICLR 2019.590

Uri Alon and Eran Yahav. 2021. On the bottleneck of591
graph neural networks and its practical implications.592
In ICLR 2021.593

Uri Alon, Meital Zilberstein, Omer Levy, and Eran594
Yahav. 2019b. code2vec: learning distributed rep-595
resentations of code. Proc. ACM Program. Lang.,596
3(POPL):40:1–40:29.597

Yoshua Bengio, Yann LeCun, and Geoffrey E. Hin-598
ton. 2021. Deep learning for AI. Commun. ACM,599
64(7):58–65.600

Nghi D. Q. Bui, Yijun Yu, and Lingxiao Jiang. 2021.601
Infercode: Self-supervised learning of code represen-602
tations by predicting subtrees. In ICSE 2021.603

Chris Cummins, Zacharias V. Fisches, Tal Ben-Nun,604
Torsten Hoefler, Michael F. P. O’Boyle, and Hugh605
Leather. 2021. Programl: A graph-based program606
representation for data flow analysis and compiler607
optimizations. In ICML 2021.608

Milan Cvitkovic, Badal Singh, and Animashree Anand-609
kumar. 2019. Open vocabulary learning on source610
code with a graph-structured cache. In ICML 2019.611

Hoa Khanh Dam, Truyen Tran, and Trang Pham. 2016.612
A deep language model for software code. CoRR,613
abs/1608.02715.614

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-615
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,616
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-617
bert: A pre-trained model for programming and natu-618
ral languages. In EMNLP 2020.619

Matthias Fey and Jan E. Lenssen. 2019. Fast graph 620
representation learning with PyTorch Geometric. 621
In ICLR Workshop on Representation Learning on 622
Graphs and Manifolds. 623

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian 624
Sun. 2016. Deep residual learning for image recogni- 625
tion. In CVPR 2016. 626

Vincent J. Hellendoorn, Charles Sutton, Rishabh Singh, 627
Petros Maniatis, and David Bieber. 2020. Global 628
relational models of source code. In ICLR 2020. 629

Abram Hindle, Earl T. Barr, Mark Gabel, Zhendong Su, 630
and Premkumar T. Devanbu. 2016. On the natural- 631
ness of software. Commun. ACM, 59(5):122–131. 632

Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and Zhi 633
Jin. 2018. Summarizing source code with transferred 634
API knowledge. In IJCAI 2018. 635

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis 636
Allamanis, and Marc Brockschmidt. 2019. Code- 637
searchnet challenge: Evaluating the state of semantic 638
code search. CoRR, abs/1909.09436. 639

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and 640
Luke Zettlemoyer. 2016. Summarizing source code 641
using a neural attention model. In ACL 2016. 642

Sébastien Jean, KyungHyun Cho, Roland Memisevic, 643
and Yoshua Bengio. 2015. On using very large target 644
vocabulary for neural machine translation. In ACL 645
2015. 646

Rafael-Michael Karampatsis, Hlib Babii, Romain 647
Robbes, Charles Sutton, and Andrea Janes. 2020. 648
Big code != big vocabulary: open-vocabulary models 649
for source code. In ICSE ’20. 650

Alexander LeClair, Siyuan Jiang, and Collin McMillan. 651
2019. A neural model for generating natural lan- 652
guage summaries of program subroutines. In ICSE 653
2019. 654

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan 655
Ghazvininejad, Abdelrahman Mohamed, Omer Levy, 656
Veselin Stoyanov, and Luke Zettlemoyer. 2020. 657
BART: denoising sequence-to-sequence pre-training 658
for natural language generation, translation, and com- 659
prehension. In ACL 2020, pages 7871–7880. Associ- 660
ation for Computational Linguistics. 661

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and 662
Richard S. Zemel. 2016. Gated graph sequence neu- 663
ral networks. In ICLR 2016. 664

Chin-Yew Lin and Franz Josef Och. 2004. ORANGE: a 665
method for evaluating automatic evaluation metrics 666
for machine translation. In COLING 2004. 667

Shangqing Liu, Yu Chen, Xiaofei Xie, Jing Kai Siow, 668
and Yang Liu. 2021. Retrieval-augmented generation 669
for code summarization via hybrid GNN. In ICLR 670
2021. 671

9

https://doi.org/10.18653/v1/2020.acl-main.449
https://doi.org/10.18653/v1/2020.acl-main.449
https://doi.org/10.18653/v1/2020.acl-main.449
https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.1145/2786805.2786849
https://doi.org/10.1145/2786805.2786849
https://doi.org/10.1145/2786805.2786849
https://doi.org/10.1145/3212695
https://doi.org/10.1145/3212695
https://doi.org/10.1145/3212695
https://openreview.net/forum?id=BJOFETxR-
https://openreview.net/forum?id=BJOFETxR-
https://openreview.net/forum?id=BJOFETxR-
https://openreview.net/forum?id=H1gKYo09tX
https://openreview.net/forum?id=H1gKYo09tX
https://openreview.net/forum?id=H1gKYo09tX
https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=i80OPhOCVH2
https://doi.org/10.1145/3290353
https://doi.org/10.1145/3290353
https://doi.org/10.1145/3290353
https://doi.org/10.1145/3448250
https://doi.org/10.1109/ICSE43902.2021.00109
https://doi.org/10.1109/ICSE43902.2021.00109
https://doi.org/10.1109/ICSE43902.2021.00109
http://proceedings.mlr.press/v139/cummins21a.html
http://proceedings.mlr.press/v139/cummins21a.html
http://proceedings.mlr.press/v139/cummins21a.html
http://proceedings.mlr.press/v139/cummins21a.html
http://proceedings.mlr.press/v139/cummins21a.html
http://proceedings.mlr.press/v97/cvitkovic19b.html
http://proceedings.mlr.press/v97/cvitkovic19b.html
http://proceedings.mlr.press/v97/cvitkovic19b.html
http://arxiv.org/abs/1608.02715
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://openreview.net/forum?id=B1lnbRNtwr
https://openreview.net/forum?id=B1lnbRNtwr
https://openreview.net/forum?id=B1lnbRNtwr
https://doi.org/10.1145/2902362
https://doi.org/10.1145/2902362
https://doi.org/10.1145/2902362
https://doi.org/10.24963/ijcai.2018/314
https://doi.org/10.24963/ijcai.2018/314
https://doi.org/10.24963/ijcai.2018/314
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
https://doi.org/10.18653/v1/p16-1195
https://doi.org/10.18653/v1/p16-1195
https://doi.org/10.18653/v1/p16-1195
https://doi.org/10.3115/v1/p15-1001
https://doi.org/10.3115/v1/p15-1001
https://doi.org/10.3115/v1/p15-1001
https://doi.org/10.1145/3377811.3380342
https://doi.org/10.1145/3377811.3380342
https://doi.org/10.1145/3377811.3380342
https://doi.org/10.1109/ICSE.2019.00087
https://doi.org/10.1109/ICSE.2019.00087
https://doi.org/10.1109/ICSE.2019.00087
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
http://arxiv.org/abs/1511.05493
http://arxiv.org/abs/1511.05493
http://arxiv.org/abs/1511.05493
https://aclanthology.org/C04-1072/
https://aclanthology.org/C04-1072/
https://aclanthology.org/C04-1072/
https://aclanthology.org/C04-1072/
https://aclanthology.org/C04-1072/
https://openreview.net/forum?id=zv-typ1gPxA
https://openreview.net/forum?id=zv-typ1gPxA
https://openreview.net/forum?id=zv-typ1gPxA

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-672
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,673
Luke Zettlemoyer, and Veselin Stoyanov. 2019.674
Roberta: A robustly optimized BERT pretraining675
approach. CoRR, abs/1907.11692.676

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey677
Svyatkovskiy, Ambrosio Blanco, Colin B. Clement,678
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-679
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-680
fano, Ming Gong, Ming Zhou, Nan Duan, Neel Sun-681
daresan, Shao Kun Deng, Shengyu Fu, and Shujie682
Liu. 2021. Codexglue: A machine learning bench-683
mark dataset for code understanding and generation.684
CoRR, abs/2102.04664.685

Paul Neculoiu, Maarten Versteegh, and Mihai Rotaru.686
2016. Learning text similarity with siamese recurrent687
networks. In Proceedings of the 1st Workshop on688
Representation Learning for NLP, Rep4NLP@ACL689
2016.690

Thomas H. Park, Meen Chul Kim, Sukrit Chhabra,691
Brian Lee, and Andrea Forte. 2016. Reading hierar-692
chies in code: Assessment of a basic computational693
skill. In ITiCSE 2016, pages 302–307. ACM.694

Dinglan Peng, Shuxin Zheng, Yatao Li, Guolin Ke,695
Di He, and Tie-Yan Liu. 2021. How could neural696
networks understand programs? In ICML 2021.697

Veselin Raychev, Martin T. Vechev, and Eran Yahav.698
2014. Code completion with statistical language699
models. In PLDI ’14.700

Carsten Schulte, Tony Clear, Ahmad Taherkhani, Teresa701
Busjahn, and James H. Paterson. 2010. An introduc-702
tion to program comprehension for computer science703
educators. In Proceedings of the 2010 ITiCSE work-704
ing group reports, ITiCSE-WGR 2010, pages 65–86.705
ACM.706

Ensheng Shi, Yanlin Wang, Lun Du, Junjie Chen, Shi707
Han, Hongyu Zhang, Dongmei Zhang, and Hongbin708
Sun. 2021. Neural code summarization: How far are709
we? CoRR, abs/2107.07112.710

Jeffrey Svajlenko, Judith F. Islam, Iman Keivanloo,711
Chanchal Kumar Roy, and Mohammad Mamun Mia.712
2014. Towards a big data curated benchmark of inter-713
project code clones. In ICSME 2014.714

Jeffrey Svajlenko and Chanchal K. Roy. 2015. Evalu-715
ating clone detection tools with bigclonebench. In716
ICSME 2015.717

Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and718
Neel Sundaresan. 2020. Intellicode compose: code719
generation using transformer. In ESEC/FSE ’20.720

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob721
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz722
Kaiser, and Illia Polosukhin. 2017. Attention is all723
you need. In Advances in Neural Information Pro-724
cessing Systems 30: Annual Conference on Neural725
Information Processing Systems 2017.726

Wenhan Wang, Ge Li, Bo Ma, Xin Xia, and Zhi Jin. 727
2020. Detecting code clones with graph neural net- 728
work and flow-augmented abstract syntax tree. In 729
SANER 2020. 730

Yanlin Wang and Hui Li. 2021. Code completion by 731
modeling flattened abstract syntax trees as graphs. In 732
AAAI 2021. 733

Huihui Wei and Ming Li. 2017. Supervised deep fea- 734
tures for software functional clone detection by ex- 735
ploiting lexical and syntactical information in source 736
code. In IJCAI 2017. 737

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 738
Chaumond, Clement Delangue, Anthony Moi, Pier- 739
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, 740
Joe Davison, Sam Shleifer, Patrick von Platen, Clara 741
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le 742
Scao, Sylvain Gugger, Mariama Drame, Quentin 743
Lhoest, and Alexander M. Rush. 2020. Transform- 744
ers: State-of-the-art natural language processing. In 745
Proceedings of the 2020 Conference on Empirical 746
Methods in Natural Language Processing: System 747
Demonstrations, pages 38–45, Online. Association 748
for Computational Linguistics. 749

Frank F. Xu, Zhengbao Jiang, Pengcheng Yin, Bogdan 750
Vasilescu, and Graham Neubig. 2020. Incorporating 751
external knowledge through pre-training for natural 752
language to code generation. In ACL 2020. 753

Fabian Yamaguchi, Nico Golde, Daniel Arp, and Kon- 754
rad Rieck. 2014. Modeling and discovering vulner- 755
abilities with code property graphs. In 2014 IEEE 756
Symposium on Security and Privacy, SP 2014. 757

Hao Yu, Wing Lam, Long Chen, Ge Li, Tao Xie, and 758
Qianxiang Wang. 2019. Neural detection of semantic 759
code clones via tree-based convolution. In ICPC 760
2019. 761

Zeping Yu, Wenxin Zheng, Jiaqi Wang, Qiyi Tang, Sen 762
Nie, and Shi Wu. 2020. Codecmr: Cross-modal 763
retrieval for function-level binary source code match- 764
ing. In NeurIPS 2020. 765

Wojciech Zaremba and Ilya Sutskever. 2014. Learning 766
to execute. CoRR, abs/1410.4615. 767

Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and 768
Xudong Liu. 2020. Retrieval-based neural source 769
code summarization. In ICSE 20. 770

Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, 771
Kaixuan Wang, and Xudong Liu. 2019. A novel 772
neural source code representation based on abstract 773
syntax tree. In ICSE 2019. 774

Daniel Zügner, Tobias Kirschstein, Michele Catasta, 775
Jure Leskovec, and Stephan Günnemann. 2021. 776
Language-agnostic representation learning of source 777
code from structure and context. In ICLR 2021. 778

10

http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2102.04664
http://arxiv.org/abs/2102.04664
http://arxiv.org/abs/2102.04664
https://doi.org/10.18653/v1/W16-1617
https://doi.org/10.18653/v1/W16-1617
https://doi.org/10.18653/v1/W16-1617
https://doi.org/10.1145/2899415.2899435
https://doi.org/10.1145/2899415.2899435
https://doi.org/10.1145/2899415.2899435
https://doi.org/10.1145/2899415.2899435
https://doi.org/10.1145/2899415.2899435
http://proceedings.mlr.press/v139/peng21b.html
http://proceedings.mlr.press/v139/peng21b.html
http://proceedings.mlr.press/v139/peng21b.html
https://doi.org/10.1145/2594291.2594321
https://doi.org/10.1145/2594291.2594321
https://doi.org/10.1145/2594291.2594321
https://doi.org/10.1145/1971681.1971687
https://doi.org/10.1145/1971681.1971687
https://doi.org/10.1145/1971681.1971687
https://doi.org/10.1145/1971681.1971687
https://doi.org/10.1145/1971681.1971687
http://arxiv.org/abs/2107.07112
http://arxiv.org/abs/2107.07112
http://arxiv.org/abs/2107.07112
https://doi.org/10.1109/ICSME.2014.77
https://doi.org/10.1109/ICSME.2014.77
https://doi.org/10.1109/ICSME.2014.77
https://doi.org/10.1109/ICSM.2015.7332459
https://doi.org/10.1109/ICSM.2015.7332459
https://doi.org/10.1109/ICSM.2015.7332459
https://doi.org/10.1145/3368089.3417058
https://doi.org/10.1145/3368089.3417058
https://doi.org/10.1145/3368089.3417058
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1109/SANER48275.2020.9054857
https://doi.org/10.1109/SANER48275.2020.9054857
https://doi.org/10.1109/SANER48275.2020.9054857
https://ojs.aaai.org/index.php/AAAI/article/view/17650
https://ojs.aaai.org/index.php/AAAI/article/view/17650
https://ojs.aaai.org/index.php/AAAI/article/view/17650
https://doi.org/10.24963/ijcai.2017/423
https://doi.org/10.24963/ijcai.2017/423
https://doi.org/10.24963/ijcai.2017/423
https://doi.org/10.24963/ijcai.2017/423
https://doi.org/10.24963/ijcai.2017/423
https://doi.org/10.24963/ijcai.2017/423
https://doi.org/10.24963/ijcai.2017/423
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.acl-main.538
https://doi.org/10.18653/v1/2020.acl-main.538
https://doi.org/10.18653/v1/2020.acl-main.538
https://doi.org/10.18653/v1/2020.acl-main.538
https://doi.org/10.18653/v1/2020.acl-main.538
https://doi.org/10.1109/SP.2014.44
https://doi.org/10.1109/SP.2014.44
https://doi.org/10.1109/SP.2014.44
https://doi.org/10.1109/ICPC.2019.00021
https://doi.org/10.1109/ICPC.2019.00021
https://doi.org/10.1109/ICPC.2019.00021
https://proceedings.neurips.cc/paper/2020/hash/285f89b802bcb2651801455c86d78f2a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/285f89b802bcb2651801455c86d78f2a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/285f89b802bcb2651801455c86d78f2a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/285f89b802bcb2651801455c86d78f2a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/285f89b802bcb2651801455c86d78f2a-Abstract.html
http://arxiv.org/abs/1410.4615
http://arxiv.org/abs/1410.4615
http://arxiv.org/abs/1410.4615
https://doi.org/10.1145/3377811.3380383
https://doi.org/10.1145/3377811.3380383
https://doi.org/10.1145/3377811.3380383
https://doi.org/10.1109/ICSE.2019.00086
https://doi.org/10.1109/ICSE.2019.00086
https://doi.org/10.1109/ICSE.2019.00086
https://doi.org/10.1109/ICSE.2019.00086
https://doi.org/10.1109/ICSE.2019.00086
https://openreview.net/forum?id=Xh5eMZVONGF
https://openreview.net/forum?id=Xh5eMZVONGF
https://openreview.net/forum?id=Xh5eMZVONGF

A Partitioning S-AST Algorithm779

Algorithm 1 Partitioning S-AST
Input: A S-AST T with node features X , edge
indexes I and edge features E
Parameter: λ, which specifies the minimum num-
ber of nodes in the subgraph
Output: Nodes features list Lx, edge indexes list
Li, and edge features list Le of subgraphs

1: Derive a tree structure T ′
by removing data

flow edges and adjacent leaf edges in T ;
2: nodes_sum← 0, nodes_set← {};
3: nf_list, ei_list, ef_list,Lx,Li,Le ← {};
4: Obtain a subtree list {S} based on subtrees of

root nodes in T ′
from left to right;

5: for S in {S} do
6: n← the number of nodes in S;
7: nodes_sum← nodes_sum+ n;
8: Add nodes in S to nodes_set;
9: if nodes_sum ≥ λ or S is the last element

of {S} then
10: if Lx ̸= ∅ then
11: Add closest nodes that indicate the

same variables in Lx to nodes_set ;
12: end if
13: Assign nf_list, ei_list, ef_list based

on nodes_set, X , I and E ;
14: Append nf_list, ei_list, ef_list to

Lx,Li,Le respectively;
15: nodes_sum← 0, nodes_set← {};
16: end if
17: end for
18: // A[−i] denotes the i-th element from the bot-

tom in A.
19: if size of Lx[−1] < λ/2 and size of Lx > 1

then
20: Merge Lx[−1] and Lx[−2], Li[−1] and

Li[−2], Le[−1] and Le[−2], respectively;
21: end if
22: return Lx,Li,Le

B Examples of API-Description Pairs780

In the experiment. we obtain 51, 191 method de-781

scription pairs after preprocessing, and Table 7782

gives some examples.783

C Baselines Introduction784

We compare our model with five representative785

models in code summarization task:786

• CodeNN (Iyer et al., 2016) is the first method 787

that applies deep neural networks in code sum- 788

marization. It uses a classical attention-based 789

encoder-decoder framework from Neural Ma- 790

chine Translation (NMT). 791

• NCS (Ahmad et al., 2020) applies Trans- 792

former (Vaswani et al., 2017) to model the 793

pairwise relationship between code tokens and 794

capture their long-term dependencies. 795

• Rencos (Zhang et al., 2020) proposes an 796

attention-based encoder-decoder model and 797

enhance it with the most similar code snippets 798

retrieved from the training set. 799

• CodeBERT (Feng et al., 2020) is a bimodal 800

pre-training model for programming and nat- 801

ural languages based on RoBERTa (Liu et al., 802

2019). 803

• PLBART (Ahmad et al., 2021) is a sequence- 804

to-sequence pre-training model based on 805

BART (Lewis et al., 2020). 806

In addition to the pre-training models Code- 807

BERT and PLBART, we further compare our model 808

with two representative model in code clone detec- 809

tion task: 810

• ASTNN (Zhang et al., 2019) proposes an AST- 811

based neural network that splits AST into a 812

sequence of statement trees and applies a bidi- 813

rectional RNN model to produce source code 814

representation. However, it ignores external 815

knowledge associated with codes. 816

• FA-AST (Wang et al., 2020) augments orig- 817

inal AST with explicit control and data flow 818

edges, then introduces two different types of 819

GNNs to detect code clones. 820

D Functionalities Splits in BCB and 821

BCB-F 822

For BCB, the functionalities in Train/Val/Test set 823

are: 824

• Train: Web Download, Secure Hash(MD5), 825

Copy a File, Decompress Zip, FTP Authen- 826

ticated Login, Bubble Sort, Init. SGV with 827

Model, SGV Selection Event Handler, Cre- 828

ate Java Project(Eclipse), SQL Update and 829

RollBACK. 830

• Val: Same to Train. 831

11

Table 7: Examples of API-Description Pairs

APIs Descriptions

Math.abs Returns the absolute value of an int value.
Arrays.hashcode Returns a hash code based on the contents of the specified array.
Scanner.hasNext Returns true if this scanner has another token in its input.

Color.getRGB Returns the RGB value representing the color in the default sRGB ColorModel.

• Test: Same to Train.832

For BCB-F, the functionalities in Train/Val/Test833

set are, where the emphasis discloses the whole 10834

functionalities that exist in BCB:835

• Train: Decompress Zip, Copy a File, Get836

Prime Factors, File Dialog, Resize Array, Get837

MAC Address String, Parse CSV File, Secure838

Hash(MD5), Send Email, Load Custom Font,839

Create Java Project(Eclipse), Extract Matches840

Using Regex, Open File in Desktop Applica-841

tion, Connect to Database, Load File to Byte842

Array, Call Method Using Reflection, Take843

Screenshot to File, Write PDF File, Delete844

Folder and Contents, Copy Directory, Binary845

Search, Delete Folder and Contents.846

• Val: SQL Update and RollBACK, Bubble Sort,847

Execute External Process, XMPP Send Mes-848

sage, Zip Files, Convert Date String Format,849

Secure Hash, GCD, SGV Selection Event Han-850

dler, Init. SGV with Model, Play Sound.851

• Test: Shuffle Array in Place, Create Encryp-852

tion Key Files, Load Custom Font, Encrypt to853

File, Parse XML to DOM, CRC32 File Check-854

sum, Transpose a Matrix, Test Palindrome,855

Web Download, FTP Authenticated Login.856

12

