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Abstract

Small datasets are ubiquitous in drug discovery as data generation is expensive
and can be restricted for ethical reasons (e.g. in vivo experiments). A widely
applied technique in early drug discovery to identify novel active molecules against
a protein target is modeling quantitative structure-activity relationships (QSAR).
It is known to be extremely challenging, as available measurements of compound
activities range in the low dozens or hundreds. However, many such related datasets
exist, each with a small number of datapoints, opening up the opportunity for few-
shot learning after pretraining on a substantially larger corpus of data. At the same
time, many few-shot learning methods are currently evaluated in the computer-
vision domain. We propose that expansion into a new application, as well as the
possibility to use explicitly graph-structured data, will drive exciting progress in
few-shot learning. Here, we provide a few-shot learning dataset (FS-Mol) and
complementary benchmarking procedure. We define a set of tasks on which few-
shot learning methods can be evaluated, with a separate set of tasks for use in
pretraining. In addition, we implement and evaluate a number of existing single-
task, multi-task, and meta-learning approaches as baselines for the community. We
hope that our dataset, support code release, and baselines will encourage future
work on this extremely challenging new domain for few-shot learning.

1 Introduction

Deep Learning has led to tremendous progress in a variety of domains, such as computer vision [6],
natural language processing [11], molecular design [49]], chemical synthesis planning [45]], and most
recently protein folding [26]. In all of these cases, progress has been driven by large single-task
datasets (e.g., 14M images in ImageNet; ~500B tokens for GPT-3), often enabled by a combination
of substantial manual labeling together with elegant methods able to learn from unlabeled data.

Computer-aided drug discovery has long made use of machine learning to predict the biological
activity of molecules [33} 152} 56]]. Such models are often most useful in the hit-to-lead and early
lead optimization phase of a drug discovery project. After the biological target (often a protein)
has been identified, initial hit molecules, which modulate the target but do not have yet have all
required properties, need to be optimized towards a drug candidate suitable for clinical testing. This
optimization phase proceeds by the time-consuming and expensive iterative procedure of designing
new molecules, synthesizing them, and measuring their properties. Prediction using ML models
reduces the number of molecules requiring synthesis and wet-lab measurement, considerably reducing
the cost of drug discovery [44]. In the typical life cycle of a drug discovery project, only a few hundred
molecules can be made and tested. With such small datasets, current deep learning approaches are in
practice often not more effective than support vector machines, random forests or gradient-boosted
tree models based on molecular feature representations, which have been tuned over decades [59].
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However, data is gathered across many different targets (i.e. tasks) and different drug discovery
projects, suggesting the possibility of knowledge transfer between low-data tasks. A common
framework for such settings is few-shot learning [10, [18} 41} 153 58| 164]]. For example, meta-
learning [[18},21} 53} 58] refers to algorithms which learn to learn; given an unseen task, such methods
utilize their prior knowledge from previous training episodes to generalize and make predictions
in a few-shot manner. The efficacy of this paradigm for enhancing molecular property prediction
in low-data regimes has shown some promise [7, |9, |35} 36], but we note that there is no dataset
specifically designed to benchmark few-shot learning methods for molecules and thus allow easy
model comparison. In particular, this would require a dataset that provides both a large range of
diverse tasks on which to perform an initial pretraining step as well as a set of low-data tasks on
which to evaluate, with both of these chosen to be similar in nature.

From a machine learning point of view, few-shot learning has been primarily focused on the computer
vision domain [29,|5558]]. However, state-of-the-art performance has become relatively saturated [[12}
24137, 154]], and many approaches profit from pretraining on rich, highly related large datasets such
as ImageNet [43]], which are not available in other few-shot domains. To drive further algorithmic
innovation and solutions to real-world scientific problems, we propose that few-shot learning should
expand into alternate domains of applicability.

With our new dataset, we aim to inspire the development of machine learning methods that generalize
well across a diverse distribution of tasks and adapt efficiently to minimal new data. We also consider
it essential that models developed using such a dataset and its benchmarks should have value in
real-world applications, and hence we propose to use Quantitative Structure-Activity Relationships
(QSAR) as the data domain, in which the task is to predict the activity in inhibition or activation of a
specific target protein given the structure of a molecule.

In this work, we make three key contributions:

* A Few-Shot Learning Dataset of Molecules (henceforth abbreviated to FS-Mol) that can
demonstrate the utility of few-shot learning methods in an important domain, namely QSAR,
which does not provide an obvious generic pretraining corpus (such as in NLP or computer
vision). The proposed dataset is specifically designed to replicate the challenges of machine
learning in the very low data regime of drug-discovery projects.

* A fixed benchmarking procedure on this dataset that allows to easily compare new few-
shot learning methods in an apples-to-apples scenario. We hope this will encourage the
development of novel methods for few-shot learning on structured data.

* The establishment of baselines against the new benchmark with representative few-shot
learning methods.

2 Motivation

Our main goal is to provide a dataset, benchmarks and baselines to encourage development of
machine learning methods for realistic drug discovery tasks. We here focus on the challenge of a
novel QSAR task at the very early stages of a lead optimization project, where there there is only
very little available data. This will enable the community to explore the effectiveness of different
machine learning techniques in this domain, and develop new methods to meet the unique challenges
of the data. Concretely, we are interested in helping to answer two core research questions:

(RQ1) Does knowledge learned from a large dataset transfer gainfully to previously unseen tasks?

(RQ2) How does the performance vary with the size of the training data available in a new task?

2.1 Background: Few-Shot Learning

Standard supervised single-task methods rely on one dataset D to train a model, and evaluation
proceeds by examining the predictions made on a held-out test set. Such approaches are known
to work well with large sets of training examples drawn from the same distribution as the test
set. In the few-shot learning scenario, no large training set exists. Instead, we aim to leverage an
advantageous initialization (for example obtained from pretraining on related tasks), followed by
training (adaptation) on very few datapoints from a previously unseen task.



The methods used during pretraining can fall into one of three categories. Self-supervised methods
make use of a very large unlabelled dataset on which proxy tasks such as prediction of masked parts
of the input are defined [16]. Multitask [13]] and meta-learning methods assume the availability of a
set of related supervised training tasks Dyy.qn = {’7;}{(:1. In general, each task 7; is composed of a
support set Ty support> and a query set Ty query. The support set consists of examples with features x§
and labels yf which can be used to train a model, and the model is given the features x§, to predict

the label y§ of the query set|'| At what we will term few-shot testing time, a model is given access to
an unseen new task 7. It isthen expected to predict labels on 7y, query, While having access to the
features and labels of 7, support- Consequently, evaluating these methods requires two disjoint sets
of tasks: Dy,.qirn (used for pretraining) and Dy, (used to evaluate pre-trained models).

2.2 Desired Attributes of a QSAR Few-Shot Dataset and Benchmark

Given our research questions and the structure of most few-shot learning techniques, we can hence
derive design requirements for our new dataset.

Concretely, to be amenable to few-shot learning, it should provide a large set Ds;q;,, Of training tasks
useful for pretraining, and a disjoint set D;.; of test tasks that are related to the training tasks. To
enable an analysis of the extent of generalization to new tasks, D;.,; should contain both tasks that
are very similar to the training data, as well as others that require more specialization at few-shot
testing time. Finally, our test tasks should be chosen such that we can evaluate the amenability of
evaluated methods to different support set sizes.

At the same time, we aim to construct a benchmark that is relevant for real-world drug-discovery
projects. To this end, the number of samples for some tasks should be small, reflecting early-stage
projects with access to measurements for fewer than 100 compounds. The considered molecules
should be drug-like, and the tasks themselves should include a broad range of drug targets. Finally, the
labels should be drawn from real measurements, to reflect the noise observed in wet-lab measurements
for a novel target.

Overall, a benchmark on this dataset should capture the efficacy of the few-shot learning method in
generalization to new tasks, i.e., does the adaptation method perform better than a single-task method
exposed to the set Ty, support alone (answering (RQ1)), and can this adaptation use a minimal amount
of data, answering (RQ2).

3 The Few-Shot Learning Dataset of Molecules

We construct our dataset as a careful selection of data from ChEMBL27 [3]]. We provide an overview
in this section, but refer to our source code release (and in particular ExtractDataset.ipynb) at
https://github.com/microsoft/FS-Mol/|for an exact, executable and reproducible definition.

Selection of molecular property prediction tasks ChEMBL contains the results of many experi-
ments, termed “assays”, each having a unique experiment ID. We retained only those measurements
referring to small molecule activity (IC50 or EC50) [48]], and removed all compounds with a molecu-
lar weight > 900 Dalton in order to ensure only drug-like molecules are included. We then applied a
standard cleaning and canonicalization procedure to all compounds (see details in our code release)
and stored them as SMILES strings [[61]]. Assays were then selected to have at least 32 datapoints
and not more than 5000 datapoints. The reason why we remove large assays is that they often come
from high-throughput screens (HTS), and thus contain a high percentage of inactive compounds, and
are very noisy, rendering the challenge more complex. We further exclude all assays that are not
associated with a specific target protein ID. We view each selected, filtered assay as a single task
in our few-shot learning dataset, as described in section We only consider assays with a single
protein target (where the same target may be the subject of several separate assays), and treat assays
as separate tasks to avoid inter-assay noise often seen when combining measurements [27]].

Split into pretraining and test tasks As part of our dataset release, we provide a split into
pretraining tasks Dy,.qi, and (few-shot) test tasks Dy.s;. In order to derive disjoint task sets, we
require that all selected assays are associated with a specific protein target. We avoid an overlap

'In the single-task scenario, the “support” set is called the training data, and the “query” set is the test data.
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of very related tasks between pretraining and the test set by splitting tasks such that protein targets
are used either only in the training or at most once in the test data}| We identified few-shot testing
tasks from the subset of tasks that address enzyme targets. This choice enabled us to partition the
set Dyest by EC (Enzyme Commission) number [2] to permit sub-benchmarks within the overall
benchmark set. The best few-shot learners are those able to perform well across all sub-benchmarks.
Few-shot testing tasks were required to contain > 128 compounds to allow comparison of model
adaptation performance across a range of available support set sizes, necessary to answer (RQ2).
Our final Dy.s; comprises 157 tasks, while Dy,.qiy, has 4938 tasks. We additionally also provide a
Dyaiid set, consisting of 40 tasks selected in the same manner as D¢, to aid the development of
few-shot learning methods. In this way, our proposed meta-testing tasks closely mimic the new-lead
optimization problem, where a completely unseen task is presented for adaptation.

We encourage the use of the set Dy,.q;,, not only for pretraining as described in section but also
as a task-specific phase following other large-data pretraining methods [23]. To enable this, the code
implementing the dataset extraction and cleaning protocol outlined above can easily be adapted to
select a larger set of assays than our chosen D;,.4;,, (for example by also considering assays that are
not annotated with a protein target).

Binary Classification Task While the raw ChEMBL data provides activity as a floating point
number, treating this as a regression target is known to be extremely hard (for reasons including
measurement noise, narrow measurement range and that low/high values are often only encoded
as a boundary constant). Instead, many practitioners only consider a binary classification task into
active/inactive compounds, which is substantially more robust and often good enough to make
decisions in the drug discovery process. While in practice thresholds for this would be defined on a
by-project basis, we opt for an automated thresholding procedure based on the IC5( or EC5( value
available for each compound. The median value over compounds in an assay defines the threshold,
but the range of allowed thresholds are fixed to 5 < pXC < 7 for enzyme targets and 4 < pXC < 6 for
all other protein targets, where pXC= —log;¢(XCsp). Should a median be found outside this range, a
threshold pXC= 5 is applied, in keeping with fixed-threshold approaches taken elsewhere [31]. In this
way, we ensure that label classes are more balanced to avoid further issues with highly imbalanced
data diluting the comparison across different methods; assays where the median falls outside the
prescribed range will be filtered if their classes are strongly imbalanced. These represent either very
late stage optimization or very early or high-throughput screens. We include only those for which the
active ratio falls between 0.30 and 0.70 (see Figure [Tb).

Dataset statistics FS-Mol consists of a total of 5120 separate assays, with 233,786 unique com-
pounds. While assays address unique targets to prevent few-shot testing/pretraining overlap, many
compounds are measured in multiple assays; D;.s; contains 27520 compounds, of which 15732 are
unseen in Dy and Dyq1:4- The resulting task sizes are displayed in Figure @ where the mean
number of compounds per task is 94, far below alternative datasets, reflecting the highly specific
nature of the protein targets and the assays used to explore them.

Features To encourage development of diverse approaches, our released dataset and supporting
code provide three alternative featurization methods: (1) SMILES strings [61] for each compound,
which may be used for NLP-inspired approaches [17} 25} 162] or to derive an arbitrary featurization;
(2) Extended Connectivity Fingerprints (ECFP) and key molecular physical descriptors [42], which
are standard choices in many machine learning approaches to QSAR; and (3) molecular graphs of
atoms and bonds, to be used with methods such as graph neural networks.

4 Related Work

Given the long history of computer-assisted drug discovery, a substantial array of datasets is available
for use in machine learning approaches to molecular property prediction. We summarize FS-Mol and
related datasets in Table 1] Details on the various related datasets can be found in Appendix

We assess the available datasets according to their immediate “out of the box™ suitability for the
few-shot benchmarking scenario we are interested in.

2We note that it is possible, however, for the same target to be addressed by multiple assays, or tasks, within
the pretraining set.
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Figure 1: FS-Mol statistics. Assays have sizes ranging from 32-5000, and most contain 30-50%
active compounds.

Table 1: Key small molecule activity datasets for multiple tasks. All datasets are set as binary classifi-
cation problems, although some additionally include underlying activity values (before thresholding).

Datasets
ExCAPE-ML PCBA LSC FS-Mol
# measurements 49,316,517 34,017,170 5,100,411 489,133
# compounds 955,386 437,929 449,391 233,786
# tasks 526 128 1310 5120
Mean # compounds / task 93,758 265,759 3872 94
Median # compounds / task 1820 309,562 320 46
Mean inactive:active / task 268:1 46:1 7:1 1:1
Raw values available? Yes No No Yes
Source PubChem/ChEMBL  PubChem ChEMBL18 ChEMBL27

We require: (i) a large set of related QSAR prediction tasks to enable transfer to a diverse set of
unseen prediction targets; (ii) a relatively small number of compounds per task to simulate the
early lead optimization phase of a drug discovery project; (iii) well-balanced (i.e. active/inactive)
classes, as this reflects a standard approach in QSAR modelling; (iv) a well-defined, context-aware
{Dtrain, Diest } task split. Examination of Tablereveals that FS-Mol is the only dataset that meets
all these requirements. While FS-Mol contains fewer compounds and measurements that all the other
compared datasets, it is the only one with a sufficiently large number of tasks where each contain
relatively few compounds. We also note that our extraction pipeline enables easy addition of data as
more becomes available in future editions of ChEMBL [3]]. In addition, all FS-Mol tasks are well

balanced by design and the {Dy,qin, Diest } split is explicit and fixed.



S A Molecular Few-Shot Learning Benchmark

We now define a benchmarking methodology able to evaluate the utility of few-shot learning methods.

5.1 Evaluation Methodology

Per-Task Dataset Splitting In the setting of an early-stage drug discovery project, in which some
leads (molecular structures demonstrating activity against the target) are known, models are used to
evaluate variations of these leads and therefore choose promising development directions. Therefore
temporal information regarding inclusion of a molecule in the dataset is the gold-standard to define
dataset splits [46]. The data present in ChEMBL does not provide proper temporal information, and
hence there is no inherent division of each task into support and query sets.

In the absence of temporal information, two options are regularly considered: (a) random splitting,
using several different seeds to reduce the noise introduced by “lucky” splits, and (b) scaffold splitting,
in which molecules with similar scaffolds (common, significant substructures) are grouped together,
and groups are either entirely in the support or in the query set. The scaffold splitting scenario is
clearly much harder and requires better generalization behavior of the considered models, but is also
unrealistic in a real-world scenario of modeling project-specific data, where new molecules to be
evaluated are variations of existing leads and usually share their scaffolds. Hence, we have decided to
instead use repeated random splits for our evaluations.

Concretely, we perform ten-fold stratified random sampling for every task in D;.4,; to create support
and query sets. We perform this process for five support set sizes 16, 32, 64, 128, 256, in view of
answering (RQ2). Should there be insufficient overall samples to perform a split for a requested
support set size, this evaluation point is passed over. The support sets can be used to train a single-task
model, or to adapt a pre-trained model at few-shot adaptation time.

Task-Level Metric As core metric to evaluate considered models, we propose area under the
precision-recall curve (AUPRC), which is sensitive to the class balance of our query sets. It also
allows for a simple comparison to a trivial baseline: the AUPRC of a random classifier is equal to
the percentage of positive points in the query set. To help answer (RQ1), we use this observation to
focus on the improvement of a given learned model f over that trivial baseline, namely AAUPRC
= AUPRC(f(T¢,query)) — aCti query/| Tt query|, Where act; query refers to the number of active
compounds in T guery-

Dataset-Level Evaluation The task-level evaluation above can be extended to the entire set of test
tasks, helping to reduce the noise stemming from particular tasks or “lucky” parameter choices. To
this end, we consider the mean AAUPRC at different support set sizes (allowing identification of
models that are particularly well-suited to very small datasets) and the mean rank in comparison with
other methods. Additionally, to reflect the differences in our considered tasks, we also break out
evaluation results into smaller categories defined by the different EC numbers.

6 Experimental Baseline Evaluation

In this section, for reference for the community, we present results of standard methods on our new
dataset to illustrate the potential and shortcomings of these techniques.

6.1 Baseline Methods

We provide a set of results for all three categories of few-shot learning, with representative methods
of the use of this dataset in each. Model implementations used for the experiments are available in
our source code release at https://github.com/microsoft/FS-Moll

Single-Task Methods The reigning industry standard in in-silico modeling of very small tasks for
drug discovery is the use of random forests (called RF below) and k-nearest neighbour models (KNN)
on top of manually curated features (namely, extended connectivity fingerprints [42] and phys-chem
descriptors [11]). To answer (RQ1), we include these models in our few-shot learning evaluation. We
used typical hyperparameter search configurations for these classes of models based on the extensive
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industrial experience of some of the authors. Building on top of the standard scikit-learn [38] library
we trained on the support set of each of the test tasks, with hyperparameter choice following a
grid-search and validation procedure as detailed in the supporting code and documentation. Our best
performing single-task method is RF, which outperforms KNN in all of our experiments.

Additionally, we also consider a graph neural network (GNN) baseline trained from scratch on each
individual task, primarily to illustrate that this is not a promising method. Concretely, we use a GNN
with 8 layers, a hidden dimension of 128 and a gated readout function similar to Gilmer et al. [20]],
referring to it as GNN-ST below. For this, as well as for the other GNN-based models introduced
below, we determined hyperparameters after a small search in an author-defined space, considering
around ~30 configurations per model.

Multi-Task Pretraining A commonly successful approach to few-shot learning is to pretrain a
model on a selection of related tasks such that a common model “trunk™ learns to extract relevant
features, and different “heads” on top of this trunk specialize to the set of known tasks. Such an
architecture can then be fine-tuned to a new task by “re-heading”, i.e., keeping the trained trunk of
the model and adding a freshly initialized head for a new task. Fine-tuning then only needs to adapt
the parameters of this new head. This idea has been applied to a number of molecular activity tasks,
e.g., by Hu et al. [23]].

Here, we represent this approach using a GNN-based multi-task model (called GNN-MT below).
Concretely, we use a shared GNN model of 10 layers, hidden dimension 128 and using principal
neighborhood message aggregation [[14] for all tasks, and then have task-specific gated graph readout
functions (as Gilmer et al. [20]) and a task-specific MLP with one hidden layer of dimension 512 to
produce an activity label. We train the model on the support sets of all tasks in Dy,.;,, over multiple
epochs. We employ an early stopping criterion based on the suitability for specialization to a new
task. More precisely, to evaluate the model during training, we iterate over the tasks in our validation
set, and initiate a fine-tuning training process on each task’s support set, starting from the pre-trained
shared GNN and a freshly initialized graph readout layer and final MLP. For each validation task, we
record the AAUPRC after fine-tuning, and stop training of the model once the mean of these values
has stopped improving. To evaluate the trained model, we follow the same fine-tuning strategy for
the tasks in our test set.

Self-Supervised Pretraining After the success of self-supervised methods such as BERT [16],
similar methods have been developed for use on molecular data. In particular, Hu et al. [23] introduced
the idea of pretraining GNNs by masking and reconstructing of node features and substructures.
Maziarka et al. [32] implements a similar idea in the Molecule Attention Transformer using a
Transformer architecture [57]] and reports substantially stronger results. We refer to this as MAT
below and treat it as a representative of self-supervised methods, but point out that this area is very
active and more recent methods may perform even better. To test it on our dataset, we use the released
pre-trained model and code, and fine-tune it on the support set of the test tasks (splitting out 20% of
the per-task support set as a validation set to allow training with early stopping). We performed a
small hyperparameter search on the validation tasks to identify the learning rate that showed best
results in fine-tuning.

Meta-Learning Methods Meta-learning methods are designed specifically for the few-shot learn-
ing setting, aiming to “learn how to learn”. In particular, they learn models that are suitable for rapid
adaptation to a new task with very small support sets. Commonly, they take an episodic approach to
pretraining: in each episode e, a batch of tasks is sampled uniformly {7} ,]:’;1 from Dy,.q;rn and used
to train the meta-learner [18]]. We choose two key methods as examples here: optimization-based
meta-learners adapt by taking gradient steps on the support set of a new task [18,39]] and are then
used to classify final query examples; metric-based approaches compute per-class embeddings of the
support set, and classify query examples according to their distance from each [47} 58]].

Concretely, we consider Model-Agnostic Meta-Learning [[L8] procedure on top of a GNN operating
on the molecular graph as a representative optimization-based approach and refer to it as GNN-
MAMIL. For this, we use the same GNN as in the GNN-ST case, aiming in particular to evaluate
if GNN-MAML succeeds in learning a GNN model that can be rapidly adapted. We use the same
procedure to evaluate and fine-tune GNN-MAML as we use for the GNN-MT model.



As a metric-based approach we apply a prototypical network [47] operating on ECFP fingerprints
and features extracted by a GNN consuming the molecular graph. We use Mahalanobis distance to
measure how similar a new query sample is to representations of the inactive/active classes in the
support set of each task, and refer to this model as PN below.

6.2 Empirical Results on FS-Mol

We present the results of the discussed baseline methods on FS-Mol in Figure 2] A complete set of
results for each task in Dy, is available as supplemental material with our source code release at
https://github.com/microsoft/FS-Mol.
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Figure 2: Experimental baseline results on all few-shot testing tasks from Di.;

In Figure [2a] we show how performance varies with the size of the used support set as an aggregation
across tasks. Regarding (RQ1), the results indicate that while GNN-MAML is able to provide gains
when only very little training data is present, the random forests often used in real-world applications
are doing very well for small-to-medium-sized training sets. However, PN provides a significant
performance increase over RF methods, in particular on tasks with few datapoints. Other pre-trained
methods (GNN-MT and MAT) either perform comparably to the single-task baseline or under-perform
it substantially. The plot also answers (RQ2), showing that availability of more training data specific
to the task can lead to dramatic improvements for most methods. However, for our meta-learning
model GNN-MAML, leveraging information from additional datapoints seems to be challenging,
pointing to an interesting question for future research. We note that as |7, support| increases, some
tasks from D;.s; can no longer be included as insufficient datapoints are available; the resulting
smaller pool of few-shot testing tasks happen to derive a smaller benefit from both the meta-trained
and multitask models in this case. This leads to the slight decrease in performance on the aggregation
over tasks at |7y, support| = 256.

The results also demonstrate that GNN-ST is clearly outperformed by its pre-trained variants GNN-
MT and GNN-MAML (RQ1). Similarly, MAT, which uses self-supervised pretraining unrelated to
specific tasks, shows some improvement over GNN-ST, but underperforms the GNN-MT, GNN-
MAML, and PN models that were pre-trained using task-specific information. The detailed results for
support set size 16 in Figure 2b] further support these observations, indicating that PN substantially
outperforms all other methods in this scenario. However, we stress that performance is highly
task-dependent, as evidenced by the broad range of improvements over the full set of few-shot testing
tasks in Figure While in certain tasks, few-shot learning methods clearly outperform single-task,
this is sometimes not the case. The degree to which information transfer can occur to a specific new
task in few-shot learning is an open question [5, [8]].
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Table 2: Baseline results on few-shot learning methods on FS-Mol with support set size 16. Results
are broken down by few-shot testing class. The reported metric is AAUPRC, accounting for the
variation in percentage of active compounds in each few-shot testing task. The mean rank is calculated
by autorank [22], following [[15]. Errors in the mean are reported across aggregate task categories,
errors across multiple support set splits are present for classes containing single tasks.

few-shot task categories AAUPRC

Class  Description #tasks RF GNN-ST GNN-MT MAT  GNN-MAML PN
1 oxidoreductases 7 0.081+0.032  0.013+0.019 0.045+0.013  0.062+0.024  0.046+0.023  0.086-+0.029
2 kinases 125 0.0824+0.006  0.013+0.004 0.113+0.006 0.043+£0.005  0.178+0.009  0.217+0.009
3 hydrolases 20 0.158+0.026  0.062+0.019  0.129+0.025 0.095+0.019  0.106+0.024  0.196+0.031
4 lysases 2 0.218+0.172  0.161+0.112  0.189+0.100 0.139+0.105  0.218+0.147  0.229+0.201
5 isomerases 1 0.11940.029 -0.014+0.015 0.083+0.054 0.040+0.044  0.006+0.021  0.117+0.047
6 ligases 1 0.0274£0.069 -0.011+0.003 0.046+0.050 0.010+£0.075  0.001£0.017  0.058+0.074
7 translocases 1 0.102+0.053  0.002+0.043  0.042+0.031 0.067+0.035 -0.002+0.021  0.055+0.021

all enzymes 157 0.093+0.007  0.021+0.005 0.112+0.006 0.052+0.005  0.160+0.009  0.206+0.008

mean rank 3.55 5.22 3.17 4.74 275 1.56

Table [2] breaks these results up by EC category. In particular, it shows that the largest category of
tasks, kinases, which is also most common in the training data (1497 training tasks), clearly profits
from meta-learning. Classes 6 and 7, in contrast, are represented in the training set by fewer than
40 tasks each. These results match the intuition that transfer of learned knowledge between more
related tasks is more successful [8]]. By similar reasoning, we expect the addition of more training
tasks to improve few-shot learners. We confirm this empirically in Appendix [C| where we show that
randomly sub-sampling Dy, makes transfer to D, less effective.

7 Discussion & Conclusion

We presented FS-Mol, an up-to-date molecular dataset suitable for evaluation of few-shot learning
methods in an important domain outside of computer vision and NLP. In particular, our dataset is
chosen to match the modeling task in early-stage drug discovery projects, where the aim is to identify
and optimize leads for a specific protein target given very little data. FS-Mol has enabled us to
address key research questions. Specifically, it is now possible to evaluate if, and by how much,
(new) few-shot methods improve over standard baselines in a realistic QSAR evaluation setting. Our
baselines were chosen to be representative of industry practice, so that progress on FS-Mol is more
likely to translate into advances in tools for practitioners. Finally, our experiments also allow us
to determine the support set sizes for which a few-shot method is likely to be useful, for example
showing that MAML is most successful at very small support set sizes.

However, we note that transfer of results to realistic projects is not guaranteed to be successful. In
particular, it may be the case that current drug-discovery projects are sufficiently novel such that
transferring knowledge from the public ChEMBL corpus does not provide any benefits. This may be
alleviated by pre-training few-shot models on more recent, proprietary data that better matches current
industry projects. We note that it is an ongoing area of research to understand when transfer-learning
is likely to assist on an unseen task [§]]. In addition, the few-shot baselines we provide checkpoints
and results for are only a representative set, rather than a complete survey of the current state of the
field, and so variations of the methods chosen by us may already provide significant boosts.

We are releasing FS-Mol, along with the preprocessing pipeline used to produce it and an extensible
implementation of key baseline approaches, illustrating how to benchmark new methods. We hope
that the dataset and the implementation will drive further research in few-shot learning, with a focus
towards methods that are useful in this important application domain.

Societal Impact While the automation of components of the drug-discovery process could lead
to redundancies in the pharmaceutical industry, better QSAR models alone are unlikely to have a
large impact, as the tools developed by using this dataset are considerably more likely to be assistive
tools for, rather than replacements of, professionals. Finally, we note the potential positive impact
of reducing the time and cost required bring a drug to market and the potential of developing more
effective treatments using large-scale computational methods rather than the current labour-intensive
design-synthesize-measure cycle.
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