
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

VPNSniffer: Identifying VPN Servers
Through Graph-Represented Behaviors

Anonymous Author(s)
Submission Id: 1393

ABSTRACT
Identifying VPN servers is a crucial task in various situations, such
as geo-fraud detection, bot traffic analysis and network attack iden-
tification. Although numerous studies that focus on network traffic
detection have achieved excellent performance in closed-world sce-
narios, particularly those methods based on deep learning, they
may exhibit significant performance degradation due to changes
in the network environment. To mitigate this issue, a few studies
have attempted to use methods based on active probing to detect
VPN servers. However, these methods still have some limitations.
They cannot handle situations where probing responses are absent,
and lack generalization due to their focus on specific VPNs. In this
work, we propose VPNSniffer, which utilizes the graph-represented
behaviors to detect VPN servers in real-world scenarios. VPNSniffer
outperforms existing methods in four offline datasets. The results
based on our datasets, which contain multiple different VPNs, also
indicate that VPNSniffer has better generalization. Furthermore, we
deploy VPNSniffer in an Internet Service Provider’s (ISP) environ-
ment to evaluate its effectiveness. The results show that VPNSniffer
can improve the coverage of sophisticated detection engines and
serve as a complement to existing methods.

CCS CONCEPTS
• Security; • Information systems → Data Mining; • Comput-
ing methodologies → Artificial intelligence;

KEYWORDS
VPN Detection, Active Probing, Node Classification
ACM Reference Format:
Anonymous Author(s). 2018. VPNSniffer: Identifying VPN Servers Through
Graph-Represented Behaviors. In Proceedings of Make sure to enter the correct
conference title from your rights confirmation emai (WWW’2024). ACM, New
York, NY, USA, 10 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Due to the growing demand for privacy protection, VPNs have
become increasingly popular tools [7]. Specifically, VPNs can en-
crypt users’ network traffic and even hide users’ identities to ensure
communication security. However, VPNs may also be exploited to
conduct geo-fraud, network attacks, malicious crawling, among

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WWW’2024, May 11-17, 2024, Singapore
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

other abusive situations [14, 15, 33, 36]. For example, a website may
identify an incoming IP address as located in Los Angeles, while
the client behind this IP may actually be located in New York. Many
websites (e.g., Netflix, ChatGPT) restrict incoming IPs to protect
their commercial interests. Nevertheless, VPNs can help clients by-
pass these copyright protection strategies. Consequently, detecting
VPN servers to prevent abusive activities is necessary.

In the field of VPN server detection, much research focuses on
network traffic detection. Benefiting from advances in artificial
intelligence technology, many researchers utilize machine learning
and deep learning algorithms to identify VPN servers from network
traffic. In particular, those deep learning-basedmethods exhibit high
performance in lab environments [16, 21, 43, 48, 49]. Xie et al. [42]
demonstrate that these methods might exhibit significant perfor-
mance degradation when the network environment differs from the
training scenarios. Their experiments indicate that some methods
achieve an F1-score higher than 0.99 in the training environment,
but the F1 score can fall below 0.40 in other testing situations. The
sophisticated real-world network environment [2, 28, 32, 46, 47]
may contain packet loss, network delay, partial network failures,
and network updates. All of these network phenomena could al-
ter traffic features, resulting in performance degradation for these
traffic-based methods. The significant performance loss caused by
the network environment inspires us to explore a method that does
not rely on any network traffic payload information.

Figure 1: Active Probing Illustration

Recently, several works [4, 5, 10] have begun to detect VPN
servers based on active probing, which are unaffected by the testing
network environment. Specifically, researchers send probes to a
target server and determine whether it is a VPN server based on the
response information. Owing to different configuration strategies,
responses from VPN servers and normal servers are different [5].
For instance, a normal server might return error information and
close the connection after receiving an unexpected request packet,
while VPN servers may remain silent until timeout, as shown in
Figure 1. While previous methods based on active probing have
promoted the development of VPN servers detection, they still
exhibit two critical limitations. First, we discover that 16.44% of
servers in our dataset do not respond with any information, and

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW’2024, May 11-17, 2024, Singapore Anon. Submission Id: 1393

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

previous work cannot handle this situation. Secondly, they only
focus on certain specific VPNs, which may lead to performance
degradation when applied to other VPNs.

To overcome these limitations, we utilize graph-represented be-
haviors to detect VPN servers. Our design is based on the following
considerations: i) Compared to VPN servers, normal servers are
accessed by numerous clients and typically exhibit a more sophis-
ticated connection relationship. We construct a communication
graph to capture servers’ connection behaviors. This graph relies
on communication information and can detect VPN servers that
lack probing response information. ii) A client might access multi-
ple VPN servers in a short time, and these servers may share the
same configuration strategy and show similar probing responses.
We construct a probing graph based on this phenomenon and uti-
lize some new features related to probing response behaviors to
capture the general characteristics of VPN servers and enhance the
method’s generalization.

Experimental results on four offline datasets demonstrate that
our method achieves state-of-the-art (SOTA) performance. Our
VPN datasets include at least 43 VPNs, and experimental results
show that our method has better generalization. This paper aims to
detect VPN servers in a real-world context. Therefore, we deploy
our model in an ISP’s environment and compare it with industrial
detection engines. The results show that our model can assist these
engines in identifying a greater number of VPN servers.

In summary, the contributions of this work are:
New Observation:We display some new observations regard-

ing VPN servers, such as ’Stealth Port’. Based on these observations,
we introduce several new features, including response types and
port distribution, which can assist the security community in iden-
tifying abused VPN servers.

New Technique: We present VPNSniffer, which detects VPN
servers using graph-represented behaviors. VPNSniffer not only ex-
hibits better generalization but also outperforms previous methods
and can enhance the coverage of sophisticated detection engines.

New Paradigm: To the best of our knowledge, we are the first
to combine the features of active probing and node communication
relationship to detect VPN servers, offering a unique perspective
on VPN server detection.
Ethics and piracy: The offline dataset in this paper is derived from
the real world. To mitigate potential piracy and ethical risks, our
ISP partner anonymizes all client IPs and provides us only with
limited information, such as ports and server IPs. We cannot obtain
the payload of any raw traffic. Considering that a smaller dataset
corresponds to a lower privacy risk, we establish a simulation envi-
ronment in our laboratory to determine the optimal data collection
scope. Our dataset was collected through our ISP partner during
one hour on June 7, 2023. For online experiments, our system only
receives information from a copy of the raw traffic, ensuring that if
our model malfunctions, the network service remains unaffected.

2 BACKGROUND
We refer to the communication behaviors exposed in an ISP’s envi-
ronment as communication behaviors, while the probing response
behaviors are termed probing response behaviors. Given that our
dataset is collected from an ISP’s environment and certain features

are derived from active probing, a description of the passive and
active behaviors of VPNs can aid readers in understanding our
motivation. Finally, we introduce the detection challenges in the
real world.

Communication Behaviors: During VPN communication, a
VPN client typically exhibits the following behaviors: i) Authentica-
tion: The client might need to send login information to the server
for authentication, especially when utilizing commercial VPNs,
such as TorGuard VPN. ii) Fast-connection: To optimize network
performance, the VPN (e.g., Cryptostorm VPN) client may attempt
to connect to several servers across various locations and select
the one with the shortest response time. Subsequently, the VPN
client establishes a secure communication tunnel with the selected
server. iii) Keep-Alive: To prevent traffic leakage [29], the VPN
(e.g., NordVPN) client may continuously send packets to ensure
the server remains active. Consequently, when users communicate
via the VPN tunnel, they might connect to multiple VPN servers.
In an ISP’s environment, if a user is observed accessing one VPN
server, additional VPN servers often emerge within a short time
window in the user’s server access sequence. The VPN servers in
this sequence might belong to the same vendor and share identical
configuration strategies.

Probing Response Behaviors: Active probing [25] is com-
monly utilized to identify VPN servers. When researchers send
their meticulously designed probes to the servers, VPN servers
usually exhibit one of three response behaviors: i) Keep Silent: If
the request lacks authentication information, the VPN server re-
mains silent and does not respond. For servers that use the UDP
protocol, they might not send any message. Those using the TCP
protocol may close the connection and send a FIN/RST packet [10].
ii) Expected Response: Servers reply with content that matches the
standard VPN protocol. For instance, when researchers send an
OpenVPN request to a VPN server and receive a byte sequence that
matches the response format [24], they can infer that this server is
an OpenVPN server. iii) Unexpected Response: This could include
various error messages, non-standard protocol responses.

Detection Challenges Owing to IP-sharing access technolo-
gies, such as Network Address Translation (NAT) [31], multiple
endpoints might be behind a client IP. Due to the Proxy Auto-
Configuration (PAC) mechanism [50], VPN software allows only
a portion of application traffic to be routed through the VPN tun-
nel, while the traffic from other applications communicates outside
the VPN tunnel. As a result, when a client IP communicates via a
VPN, it does not only communicate with VPN servers but may also
interact with normal servers. This complex environment presents
challenges for identification. To mitigate this issue, we roughly
remove certain abnormal client IPs during the dataset collection
process, instead of assuming that the environment is pure.

3 DESIGN OF VPNSNIFFER
3.1 High Level Description of VPNSniffer
VPNSniffer is designed to identify VPN servers in real-world scenar-
ios, which are more sophisticated than a lab environment. Given a
detection time window 𝑡 , we use 𝑠𝑡(𝑖,∗) to represent the set of servers
accessed by user 𝑖 . There are 𝑛 users who access servers within a
time window of 𝑡 . VPNSniffer aims to identify VPN servers from

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

VPNSniffer: Identifying VPN Servers
Through Graph-Represented Behaviors WWW’2024, May 11-17, 2024, Singapore

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: VPNSniffer Model Architecture

Figure 3: Motivation of Probing Graph (S means server)

this set 𝑆 .

𝑆 =
∑𝑛
𝑖 𝑠

𝑡
(𝑖, 𝑣𝑝𝑛 𝑠𝑒𝑟𝑣𝑒𝑟𝑠) ∪

∑𝑛
𝑖 𝑠

𝑡
(𝑖, 𝑛𝑜𝑟𝑚𝑎𝑙 𝑠𝑒𝑟𝑣𝑒𝑟𝑠) (|𝑠

𝑡
(𝑖,∗) | >= 0) (1)

We observe that the VPN servers’ probing information and com-
munication relationship may differ from that of normal servers.
For instance, normal servers might respond with error messages
after receiving a TCP probe with a random payload. However, VPN
servers might directly close the connection. In terms of communica-
tion relationship, normal servers are typically accessed by a myriad
of clients, leading to more sophisticated connection relationships
compared to VPN servers. Therefore, we utilize both the probing
graph and the communication graph to capture these features and
detect VPN servers.

The architecture of VPNSniffer is depicted in Figure 2. We first
construct the probing and communication graphs, embedding rele-
vant information within their nodes. Subsequently, we encode each
graph, concatenate their features, and use a classifier to identify
the VPN servers. Finally, we deploy our system in the real world.

3.2 Probing Graph Construction
Ports are widely used to reveal the services supported by servers.
Given a detection time window 𝑡 , we refer to the port used by each
server in a client’s access server sequence as a 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑃𝑜𝑟𝑡 (as
illustrated in Figure 3). Servers might provide various services using
different ports. However, the clients’ server access sequences only
show partial ports of a server, so collecting only the ports from the
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑃𝑜𝑟𝑡 might lose some information. To this end, we con-
duct port scanning for each server to supplement more information.
Specifically, we send TCP SYN and UDP packets to each server,
which is a common method [24]. If we receive any TCP or UDP
response, we determine that the port is open. We term the server’s
ports obtained from active probing as 𝑃𝑟𝑜𝑏𝑖𝑛𝑔 𝑃𝑜𝑟𝑡 𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛.

Contrary to our intuition, the 𝑃𝑟𝑜𝑏𝑖𝑛𝑔 𝑃𝑜𝑟𝑡 𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 of
many VPN servers are not random.We roughly assume that if a port
combination appears fewer than 10 times, it may be random. Such
combinations account for only 18.47% of the total. Furthermore, we
discover that servers belonging to the same vendor may have simi-
lar Probing Port Combinations. This might be because servers from
the same provider often share a deployment strategy. For example,
Psiphon3 VPN servers typically use the 𝑃𝑟𝑜𝑏𝑖𝑛𝑔 𝑃𝑜𝑟𝑡 𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛

{443, 53, 22}, {443, 554, 22}, and so on. For more details, please refer
to Appendix A. This phenomenon inspires us to construct a graph
using this similarity.

Give the time window 𝑡 , we assume that the server 𝑠 𝑗 and 𝑠𝑘 in
the set 𝑠𝑡(𝑖,∗) use similar 𝑃𝑜𝑟𝑖𝑛𝑔 𝑃𝑜𝑟𝑡 𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 P(𝑠 𝑗) and P(𝑠𝑘),
indicating they offer similar services. This similarity 𝜁 is computed
by using formula J . We use PG𝑡 to describe this relationship,
where E𝑡 andD𝑡 represent the edge and node sets, respectively, and
N(𝑚) signifies the set of nodes that connect to node𝑚. Please note
that not every server has a connected node. To facilitate subsequent
computations, we add self-loops for such isolated nodes. The node
features of this graph are mainly derived from the active probing,
therefore we refer to PG𝑡 as the probing graph.

E𝑡
𝑖 =

{
(𝑠 𝑗 , 𝑠𝑘) | 𝑠 𝑗 , 𝑠𝑘 ∈ 𝑠𝑡(𝑖,∗) 𝑎𝑛𝑑 J (P(𝑠 𝑗) , P(𝑠𝑘)) >= 𝜁

}
(2)

J (P(𝑠 𝑗) , P(𝑠𝑘)) =
|P(𝑠 𝑗) | ∩ |P(𝑠𝑘) |
|P(𝑠 𝑗) | ∪ |P(𝑠𝑘) |

(3)

E𝑡 =
⋃𝑛

𝑖=1 E𝑡
𝑖

D𝑡 =
⋃𝑛

𝑖=1 𝑠
𝑡
(𝑖,∗) (4)

E𝑠𝑒𝑙 𝑓 −𝑙𝑜𝑜𝑝 =
{
(𝑚, 𝑚) |𝑚 ∈ D𝑡 𝑎𝑛𝑑 𝑚 ∉ N(𝑚)

}
(5)

PG𝑡 = < D𝑡 , E𝑡 ∪ E𝑠𝑒𝑙 𝑓 −𝑙𝑜𝑜𝑝 > (6)
Our probes include application layer probes and transport layer

probes. From the application layer probes, we extract features re-
lated to response types. Based on the transport layer probes, we
derive features concerning response time, response length, termi-
nation state, and port distribution.
Application Layer Probes: Application layer probes include both
traditional VPN protocol probes and popular protocol probes. Our
design is based on the following observation: i) Many VPN servers
still utilize traditional protocols [25], such as PPTP, IPSec, SSTP,
and OpenVPN. In our dataset, at least 27.15% of VPN servers deploy
these traditional VPN protocols. Consequently, we believe that
traditional VPN protocols probes can help us discover VPN servers.
ii) To bypass detection, many VPNs disguise their traffic to popular

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW’2024, May 11-17, 2024, Singapore Anon. Submission Id: 1393

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

protocols and use the corresponding standard ports [30, 34, 38]. For
instance, they may mimic TLS traffic and use port 443. Since these
servers do not actually offer TLS services, their response behaviors
might differ from those of normal servers when we send a TLS
request packet to them.

Specifically, our traditional VPN protocol probes and popular
protocol probes encompass PPTP, IPSec, SSTP, OpenVPN, HTTP,
TLS, SSH, DNS, and FTP.We employ these probes to obtain response
types for each server. To accelerate probing speed, all of the above
probes are sent to standard ports only. An overview of probe content
is shown in Table 1. The response types reveal not only whether
the server supports the corresponding protocol but also the server’s
deployment strategy. Below are two examples of probes and we
refer interested readers to our code 1 for more details.

OpenVPN Response Type: We send a TCP packet contain-
ing \x38{8}\x00\x00\x00\x00 to a target server. If the server re-
sponds with \x00{1}\x40{*}\x00\x00\x00\x00, it strongly sug-
gests that the server is running an OpenVPN service [25] since this
response content matches the standard OpenVPN format. We set
this response type as RT𝑜 = 1 (𝑜 means OpenVPN). Previous work
[5, 10] has shown that VPN servers may employ configurations to
bypass probing attempts. We observe that VPN servers might also
have the following response types after they receiving an OpenVPN
probe: i) The server directly rejects the TCP connection, indicated
by RT𝑜 = 2. ii) The server remains silent until a timeout occurs,
which is represented as RT𝑜 = 3. iii) The server responds with
an empty packet after establishing a TCP connection, denoted by
RT𝑜 = 4. We observe that while many servers utilize port 1194
for communication in the real world, only 3.76% of those return
a standard OpenVPN protocol response. This suggests that many
VPN servers adopt probe-resistant strategies and a detailed anal-
ysis of response type is necessary. Furthermore, we discover that
some normal servers use port 1194 to provide different services,
like HTTP, we set these response type as RT𝑜 = 5. All of these
response types enable us to understand the server in greater detail
than simply focusing on whether a response is received.

Although popular probing tools like Nmap are also capable of
probing VPN protocols, existing research [19, 22] suggest that
servers might filter their probes due to exposed probing finger-
prints. Therefore, we design our probes by a public python library
[9] instead of using existing probing tools. Our probing result indi-
cates that our VPN protocol probes have a response success rate
about twice that of Nmap.

DNS Response Type: The DNS protocol allows clients to assign
a DNS resolver to query the IP addresses of domains. We consider
that the response behaviors of VPNs that mimic DNS traffic and
communicate using port 53 may differ from normal VPNs. To dis-
tinguish between VPN and normal servers, we assign the target
server as a DNS resolver and send a DNS query about google.com
(a common test domain). The response types of servers include:
i) The server answers with the IPs of google.com, indicating it
provides DNS service, denoted as RT𝑑 = 1 (𝑑 means DNS). ii)
The server responds with All nameservers failed to answer,
represented as RT𝑑 = 2. Our intuition is that google.com, being
one of the most globally popular domains, should be cached in a

1https://anonymous.4open.science/status/VPNSniffer-1

DNS resolver. We discover that 34.24% of responsive VPN servers
fail to answer, while only 18.89% of responsive normal servers pro-
vide that response. This difference can help us detect VPN servers.
iii) The server does not reply with any response until a timeout
occurs, referred as RT𝑑 = 3. iv) We also consider the response
The DNS query name does not exist (RT𝑑 = 4) which also
indicate this may be a fake DNS resolver. All of these response
types can reveal a server’s configuration for port 53.

In general, we utilize these application layer probes to gather
response type features for each target server. These features can
disclose server configurations and aid us in detecting VPN servers.

Table 1: Summary of Application Layer Probes

Name UDP/TCP Probe Content Port
SSTP TCP \x53\x53\x54\x50\x5F... 443
IPSec UDP {8}\x01\x10... 500
OpenVPN TCP&UCP \x38{8}\x00\x00\x00\x00 1194
PPTP TCP \x00\x9c\{6}\x00\x01... 1723
FTP TCP Python TCP Connection 21
SSH TCP Python TCP Connection 22
DNS UCP Query google.com 53
HTTP TCP GET / HTTP/1.1\r\n... 80
TLS TCP Python SSL Connection 443

Transport Layer Probes: The transport layer probes encompass
both TCP and UDP probes. We extract the features of response
time, response length, terminate state and port distribution based
on these probes.

Response Time and Length: As defined earlier, refer to the
port observed in the ISP’s environment as𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑃𝑜𝑟𝑡 . We probe
each 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑃𝑜𝑟𝑡 using TCP and UDP probes with 1500 bytes
(standard Maximum Transmission Unit (MTU)) to collect the total
packet length (PL), packet count (PC) and time duration (DT , cal-
culated as the difference between the last and first response times).
To accelerate the probing process, we set the maximum timeout
period to 300 seconds. For servers with multiple 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑃𝑜𝑟𝑡𝑠 ,
we select results that exhibit the maximum values for PL, PC and
DT . We observe that these features may differ between VPN and
normal servers. For instance, VPN servers prefer to reply with a
longer response time and a shorter response packet after receiving
a TCP probe, as shown in Figure 4 and Figure 5. We believe this
may be a strategy for VPNs to reduce the exposure risk.

Figure 4: Response Length Figure 5: Response Time

Terminate State: TCP servers might terminate a connection if
they receive bytes that cannot be parsed. Previous research [10] has

4

https://anonymous.4open.science/status/VPNSniffer-1

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

VPNSniffer: Identifying VPN Servers
Through Graph-Represented Behaviors WWW’2024, May 11-17, 2024, Singapore

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

indicated that receiving bytes beyond a certain threshold can lead a
server to send a FIN packet, while a Linux server that closes a TCP
connection with unread bytes in its buffer might trigger an RST
packet. The RST/FIN threshold represents the minimum byte count
that triggers an RST/FIN packet. Existing work [5] has shown that
the RST threshold distribution differs between VPNs and normal
servers. Therefore, while some servers might close the connection
and not respond with content to avoid discovery, their termination
behavior can also be utilized to detect VPN servers.

We consider that the RST/FIN threshold is influenced by a server’s
configuration strategy. Drawing from prior work [4, 5, 10], we uti-
lize the RST and FIN thresholds as features to detect VPN servers.
We randomly send TCP probes to estimate these thresholds for
each server. We assume the value of RST/FIN threshold is smaller
than the standard MTU. Notably, while the MTU is 1500 bytes, it’s
unnecessary to send 1500 probes. We can use the binary search
method to optimize our probing. The scope of our probe contains
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑃𝑜𝑟𝑡𝑠 and the ports of TCP services enumerated in Table
1. To ensure consistent feature dimensions and facilitate subsequent
calculations, we implement the following operations: i) For servers
with multiple 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑃𝑜𝑟𝑡 entries, we randomly select one with
the smallest RST/FIN threshold. ii) If the 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑃𝑜𝑟𝑡 matches
the ports of TCP services in Table 1, we also record its value.

Port Distribution: We perform port scanning for every server
and refer to the ports obtained by probing as 𝑃𝑟𝑜𝑏𝑖𝑛𝑔 𝑝𝑜𝑟𝑡 . We
discover that servers may use multiple ports to communicate with
clients in the ISP’s environment. However, some of these ports do
not respond to any message after receiving our probe, not even
with a message to close the connection. We compute the difference
in ports (DP, DP = 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑃𝑜𝑟𝑡 − 𝑃𝑟𝑜𝑏𝑖𝑛𝑔 𝑃𝑜𝑟𝑡) to describe
this phenomenon, which we refer to as ’Stealth Port’. In other
words, DP means the port provides service for users but prohibits
probing. In our dataset, the average DP of VPN servers is about
2.5 times that of normal servers. This difference may be due to
some VPN servers adopting a more strict probe-resistant strategy.
Additionally, we also compute the length of 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑃𝑜𝑟𝑡 and
|𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑃𝑜𝑟𝑡 | ∪ |𝑃𝑟𝑜𝑏𝑖𝑛𝑔 𝑃𝑜𝑟𝑡 | as features to detect VPN servers.

The port distribution sequence of servers may reveal the ser-
vices supported by the server. However, our dataset indicates that
approximately 90% of servers utilize fewer than 35 ports, and such
sparse distribution (35/65535) poses a challenge to feature repre-
sentation. We design the following formula to compress the port
distribution into a 10-dimensional feature vector V . The intention
of this formula is to retain some information about the server’s port
patterns while compressing the features. Where 𝐼 is an indicator
function, 𝑝 𝑗 is port 𝑗 from 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑃𝑜𝑟𝑡 ∪ 𝑃𝑟𝑜𝑏𝑖𝑛𝑔 𝑃𝑜𝑟𝑡 . The in-
dicator function takes the value 1 when two elements are the same
and 0 when they are different.

V = V0 ⊕ V1 ⊕ ... ⊕ V9 (7)

V𝑖 =

𝑚∑︁
𝑗=1

I(𝑝 𝑗 𝑚𝑜𝑑 10, 𝑖) (8)

Generally, we obtain features derived from response types, re-
sponse time, response length, terminate state, and port distribution
for every server using the aforementioned method. As defined ear-
lier, the probing graph is referred to as PG𝑡 . Given the PG𝑡 , we

utilize the aforementioned features as initial node features F𝑟 . Sub-
sequently, we use GraphSAGE M to refine these node features
through neighbor feature aggregation and use the 𝑙𝑠𝑡𝑚 as the ag-
gregation function. The final featuresA𝑟 (𝑢) for each node 𝑢 in this
graph are as follows:

A𝑟 (𝑢) = M𝑙𝑠𝑡𝑚 (F𝑟 (𝑢),H𝑟 (𝑢)) (9)

Where F𝑟 (𝑢) represents the initial features of 𝑢 andH𝑟 (𝑢) repre-
sents the neighbors’ features of node𝑢. As the neighboring nodes in
this graph provide similar services, we consider that the aggregation
operation can enhance the feature representation.

3.3 Communication Graph Construction
We gather client IPs, server IPs, and ports from the ISP’s envi-
ronment. Additionally, we also collect the domains of each server
from its pointer record (PTR) and the certificate’s commonName
(CN). These domains have been frequently utilized in server anal-
ysis. For each server, we query their certificate from port 443
and 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑃𝑜𝑟𝑡𝑠 . We note that despite the certificate being
defaultly deployed on port 443, about 18.40% of certificates are
deployed on other ports. Therefore, it is necessary to consider the
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑃𝑜𝑟𝑡𝑠 . Given an observation time window 𝑡 , we construct
a graph CG𝑡 to describe the communication relationships among
servers. Where L𝑖 represents a node of client IP, server IP, and
domain, ℎ denotes the number of nodes, and R(L𝑖) signifies the
edges between node L𝑖 and others. we refer to this graph as the
communication graph.

CG𝑡 = <
⋃ℎ

𝑖=1L𝑖 ,
⋃ℎ

𝑖=1R(L𝑖) > (10)

We consider that the communication behaviors of VPN servers
may be different from that of normal servers. Additionally, previous
work [1] has show that topological features are beneficial in graph
classification. Therefore we use topological features as the initial
node embedding vector in CG𝑡 . The topological features are derived
from degree, eigenvector centrality, pagerank, closeness centrality,
local clustering coefficient and K-core. These metrics can reveal
the intrinsic structural properties and significance of nodes within
a network, providing a representation of the server relationships.
Considering that these metrics are widely used in graph analysis
[27] and the code for constructing these features can be found in
public Python libraries [12], we will not introduce their calculation
methods. More details can be found in Appendix B.

We use the GraphSAGE M to capture the features of each node
and choose the aggregation function to be𝑚𝑒𝑎𝑛. In this graph, we
useA𝑐 (𝑣) to describe the feature of node 𝑣 . Where F𝑐 (𝑣) represents
the initial features of node 𝑣 andH𝑐 (𝑣) represents the neighbors’
features of node 𝑣 .

A𝑐 (𝑣) = M𝑚𝑒𝑎𝑛 (F𝑐 (𝑣),H𝑐 (𝑣)) (11)

3.4 Detection Model
We use the probing graph to represent probing response behaviors
and use the communication graph to represent the communica-
tion behaviors. For target server 𝑥 , we obtain the features from the
probing graph and the communication graph by above methods.
Subsequently, we use the formula Y(𝑥) to enhance their features

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW’2024, May 11-17, 2024, Singapore Anon. Submission Id: 1393

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

and then concatenate all the features together. Where R(𝑥) rep-
resents a linear layer, containing learnable parameters W and 𝑏,
R(𝑥)∗ denotes a linear layer which contains different W and 𝑏.
Finally, we use Z(𝑥) to predict servers.

R(𝑥) = W𝑥 + 𝑏 (12)

Y(𝑥) = R1𝑡𝑎𝑛ℎR2 (A𝑐 (𝑥)) 𝐶𝑂𝑁𝐶𝐴𝑇 R3𝑡𝑎𝑛ℎR4 (A𝑟 (𝑥)) (13)
Z(𝑥) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (R5𝑅𝑒𝐿𝑢 (R6 (Y(𝑥)) (14)

4 EXPERIMENTS
4.1 Dataset
Offline DatasetWe aim to detect VPN servers in the real world.
However, Maghsoudlou et al. [25] disclose that VPN traffic accounts
for merely 2.6% in their ISP’s environment. There are more than
6.3 million servers in our ISP’s environment within one day. Conse-
quently, collecting and labeling VPN servers becomes a significant
challenge. Fortunately, previous work [29] has indicated that many
VPN vendors deploy their servers in Autonomous Systems (AS)
9009 and 60068. We further obtain these IPs labels from our indus-
try partner **, who claims that their labels are derived from threat
intelligence and their detection model. Our partner can identify
various server types including VPN servers, Proxy servers, and nor-
mal servers. To expedite the data collection process, we regard VPN
servers in the aforementioned ASs as seed IPs for dataset collection.

We present a new context-based dataset collection method that
assists researchers in collecting VPN servers in the real world. The
data collection procedure is as follows: i) Sequence collection: Given
a time window 𝑡 , we record the timestamp T𝑖 when the user 𝑖
accesses the seed IPs. As mentioned in the background section,
clients may access multiple VPN servers within a short time. For
user 𝑖 , we gather the server access sequence during the 2𝜑 seconds
[T𝑖 − 𝜑 , T𝑖 + 𝜑]. ii) Server collection: Since the VPN servers in
the same server access sequence may be deployed on different
ASs, we can collect many VPN servers from this window. iii) Data
Processing: The real-world network environment is highly complex
and involves NAT IPs, which may access numerous server IPs
within a short time. For instance, we observe that some IPs even
access over 1,000 server IPs in just 10 seconds. To eliminate these
abnormal sequences, we choose only the server access sequences
with a length smaller than 𝜚 .

Table 2: Offline Dataset Distribution

Category Count Percent

VPN 6840
Psiphon3 VPN 6.64%, NordVPN 1.09%,
Pia VPN 0.92%, Express VPN 0.05%,
Surfshark VPN 0.04%, Others 5.20%

Proxy 6295 13.54%
Normal 33346 71.74%
Total 46481 100%

The distribution of the offline dataset is shown in Table 2. We or-
ganize these data into four datasets: VPN and normal servers (D1),
popular VPN and normal servers (D2), unpopular VPN and normal
servers (D3), and Proxy and normal servers (D4). The dataset con-
struction method is based on the following considerations: i) There
are more than 43 (refer to Appendix, Table 7) different VPN servers

in our dataset. Among them, the servers of the top three VPN ven-
dors (Psiphon3 VPN, Nord VPN, Pia VPN) account for 55.95% of
all VPN servers. All of these VPNs adopt private protocols and
may pose a challenge to active probing. Particularly, previous work
[10] has mentioned that Psiphon3 VPN employ probe-resistant
techniques. To this end, we use the D2 to enable the model to fo-
cus on learning features of popular VPNs and to demonstrate the
model’s identification capability. We use the D3 to learn features
across a multitude of VPNs and to show its generalization capability.
Considering the partial functionality similarity between Proxies
with VPNs, we also use the D4 to explore the model’s potential
detection applicability to Proxies . To our knowledge, there is no
publicly available dataset for VPN server identification at the ISP
level. Therefore, we make our dataset2 publicly available to assist
the security community in detecting VPN servers.

Online Dataset To test the performance of our model in the
online environment, we deploy it within the environment of our
ISP partner. Different from the offline dataset, we do not specify
the seed IPs during the data collection process. We collect 65,636
client access sequences which contain 512,170 server IPs.

4.2 Offline Experiments
Implementation Details During the data collection stage, we set
an observation time window 𝜑 to 10 seconds, the largest server
sequence access length 𝜚 to 50 and the 𝑃𝑟𝑜𝑏𝑖𝑛𝑔 𝑃𝑜𝑟𝑡 𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛

similarity 𝜁 to 0.5 by default. In the subsequent model training
stage, the maximum training epoch is set to 150. We choose Adam
as the optimizer and set the learning rate to 0.005. Each experiment
is conducted 10 times, with the results being averaged for display.
To eliminate the impact of data imbalance, we use the downsam-
pling strategy (randomly discarding samples) to ensure consistency
between the positive and negative sample data. The models are
evaluated by utilizing Accuracy (AC), Precision (PR), Recall (RC),
and F1-score (F1). As we have mentioned, servers may not respond
with any information after receiving probes. In this situation, we
set the corresponding feature value of each model to 0. In our of-
fline dataset, 16.44% of servers do not provide any probing response
information.
Comparison Experiments Although much work has been done
in the field of VPN server detection, the majority of it focuses on
traffic information. These methods extract features based on traffic
payload, which may be affected by the network environment. In
our scenario, we primarily extract features from active probing.
Our goal is not to completely replace traffic-based methods, but
to demonstrate that not using traffic features can also be feasible.
To this end, we only select those methods that are based on active
probing for comparison.

The results are shown in Table 3. OOVF [5] focuses on the servers
that use the OpenVPN protocol and primarily uses the features re-
lated to response time to detect VPN servers. DPP [10] aims to
identify servers deploying probe-resistant protocols, principally
extracting features from RST/FIN thresholds, response time, and
response content. The aforementioned studies have greatly inspired
our work. However, their identification approaches primarily focus

2https://anonymous.4open.science/status/VPNSniffer-1

6

https://anonymous.4open.science/status/VPNSniffer-1

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

VPNSniffer: Identifying VPN Servers
Through Graph-Represented Behaviors WWW’2024, May 11-17, 2024, Singapore

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 3: Offline Experiments

Model D1 : ALL VPN and Normal D2 : Popular VPN and Normal D3 : Unpopular VPN and Normal D4 : Proxy and Normal
AC PR RC F1 AC PR RC F1 AC PR RC F1 AC PR RC F1

OOVF [5] 0.7793 0.8350 0.7042 0.7641 0.8282 0.8555 0.8018 0.8278 0.7049 0.7856 0.5718 0.6619 0.5369 0.6040 0.2425 0.3460
DPP [10] 0.6559 0.6224 0.8018 0.7008 0.7045 0.6517 0.8927 0.7534 0.6284 0.6125 0.7963 0.6924 0.7047 0.6933 0.7903 0.7386
ACER [4] 0.6788 0.7042 0.6337 0.6337 0.7052 0.6692 0.6692 0.7530 0.7269 0.7468 0.7074 0.7266 0.8176 0.8118 0.8450 0.8281
GCN 0.8353 0.8878 0.7675 0.8233 0.8575 0.8549 0.8612 0.8581 0.8374 0.9119 0.7467 0.8211 0.8071 0.7553 0.9084 0.8248
GAT 0.8307 0.8788 0.7671 0.8192 0.8673 0.9616 0.7650 0.8521 0.8358 0.8938 0.7623 0.8229 0.8064 0.7611 0.8932 0.8218
GIN 0.8404 0.8337 0.8504 0.8420 0.8451 0.7928 0.9343 0.8577 0.8410 0.9474 0.7222 0.8196 0.8302 0.7735 0.9337 0.8461
SGC 0.8333 0.9009 0.7490 0.8180 0.8710 0.9536 0.7798 0.8580 0.8399 0.9156 0.7487 0.8238 0.8180 0.7728 0.9006 0.8318

VPNSniffer 0.8565 0.8382 0.8835 0.8603 0.8932 0.8864 0.9019 0.8941 0.8672 0.8949 0.8323 0.8625 0.8447 0.7915 0.9356 0.8575

Table 4: Ablation Experiments

Method D1 : ALL VPN and Normal D2 : Popular VPN and Normal D3 : Unpopular VPN and Normal
Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1

W/G 0.8399 0.8807 0.7903 0.8330 0.8890 0.9248 0.8508 0.8863 0.8399 0.8803 0.7870 0.8311
W/PG 0.5582 0.5334 0.9288 0.6777 0.5675 0.5411 0.8890 0.6727 0.6279 0.5866 0.8673 0.6999
W/CG 0.8511 0.8492 0.8538 0.8515 0.8529 0.9739 0.7253 0.8314 0.8363 0.8616 0.8616 0.8616
W/lstm 0.8397 0.9100 0.7539 0.8246 0.8719 0.9774 0.7613 0.8560 0.8235 0.8481 0.7878 0.8169
W/tanh 0.8531 0.8744 0.8246 0.8488 0.8691 0.9807 0.7530 0.8519 0.8286 0.9209 0.7191 0.8076
W/MLP 0.8579 0.8685 0.8436 0.8559 0.8626 0.9816 0.7391 0.8433 0.8291 0.8800 0.7623 0.8170
Linear 0.8584 0.8636 0.8514 0.8574 0.8641 0.8872 0.8342 0.8599 0.8384 0.8680 0.7984 0.8317
CNN 0.8621 0.8973 0.8177 0.8557 0.8774 0.9105 0.8372 0.8723 0.8590 0.8930 0.8158 0.8527
LSTM 0.8246 0.8850 0.7461 0.8096 0.8645 0.9828 0.7419 0.8455 0.8224 0.8903 0.7353 0.8054

VPNSniffer 0.8565 0.8382 0.8835 0.8603 0.8932 0.8864 0.9019 0.8941 0.8672 0.8949 0.8323 0.8625

on a limited number of VPNs. This focus may compromise gen-
eralization and result in decreased performance on D1, D2, and
D3, which include multiple VPNs. Additionally, since OOVF only
focuses on the OpenVPN protocol, it has the worst performance
on D4. ACER [4] is designed to detect shadowsocks proxy, so it
performs better than OOVF and aforementioned methods in D4.
ACER extracts features from response time, TCP flags, and packet
information created during active probing. This method is also
adaptable for detecting VPN servers. Additionally, our model can
also use GCN [18], GAT [35], GIN [44], SGC [40] to aggregate graph
features. We also show their performance in Table 2. The results
show that VPNSniffer performs best on all four datasets. Our work
proves that it is feasible to use graph-represented behaviors for
VPN servers detection.
Ablation Experiments As our detection target is VPN servers,
we conduct ablation experiments on D1, D2 and D3. The results
are displayed in Table 4. To facilitate presentation, we denote the
probing graph as 𝑃𝐺 , the communication graph as𝐶𝐺 , and𝑊 signi-
fies ’without’. The results clearly indicate that both 𝑃𝐺 and 𝐶𝐺 are
beneficial for detection, with 𝑃𝐺 contributing most significantly.
This demonstrates that probing features are more important than
topological features. The results of𝑊 /𝐺 reveal that our model sur-
passes previous methods by solely utilizing features from response
types, response time, response length, termination state, and port
distribution. This indicates that our extracted features are more
efficient. In the 𝑃𝐺 , we use 𝑙𝑠𝑡𝑚 as the aggregation function in
GraphSAGE. The𝑊 /𝑙𝑠𝑡𝑚 means we use the default method𝑚𝑒𝑎𝑛.
The better result of 𝑙𝑠𝑡𝑚 might be attributed to the 𝑙𝑠𝑡𝑚 aggrega-
tion function’s superior information mining capability compared to
𝑚𝑒𝑎𝑛. We also conduct ablation experiments about replacing 𝑡𝑎𝑛ℎ
with 𝑟𝑒𝑙𝑢 and removing 𝑀𝐿𝑃 in feature fusion. The results show
that all the structures are necessary. Additionally, the results from
using a Linear layer, CNN, LSTM as classifiers indicate that our
classifier is more suitable.

Sensitivity Experiments We perform sensitivity experiments
concerning length 𝜚 , time 𝜑 and similarity 𝜁 as mentioned in Im-
plementation Details. Figure 6-a illustrates that the shorter the
user access sequence length, the higher the F1 value. This may
be because shorter sequences contain a higher proportion of VPN
servers. In the construction process of the 𝑃𝐺 , we observe that VPN
servers might utilize the same port combinations as normal servers,
which can lead to misclassifications. When the proportion of VPN
servers increases, such misclassifications are reduced. Figure 6-b
shows that the model is not sensitive to time𝜑 . This may be because
the data distribution is consistent across different time windows.
Figure 6-c indicates that variations in the similarity threshold do
not significantly impact the results, possibly because some VPNs
have a stable port combination.

(a) (b) (c)

Figure 6: (a), (b), (c) show the result of Sequence Length, Se-
quence Time and Similarity, respectively.

4.3 Online Experiments
Our system is designed to assist the security community in detect-
ing VPN servers in the real world. We deploy our system in an
ISP’s environment and analyze 512,170 servers, identifying 6,143
VPN servers among these. To further evaluate the performance
of our model in an industrial environment, we compared it with

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW’2024, May 11-17, 2024, Singapore Anon. Submission Id: 1393

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 5: Online Experiments

Industry Engine Count Coverage Ratio
Ipqualityscore [15] 4903 0.9559

Vpnio [36] 4405 0.8588
IpInfo [14] 773 0.1507
Spur [33] 3089 0.6023
Total 5129 1.0000

four industry detection engines. Considering that these detection
engines are very expensive, we collect the labels from these de-
tection engines by manually accessing their website. We observe
that 83.49% (5,129/6,143) of servers are labeled as VPN by at least
one detection engine. Details are shown in Table 5. These results
indicate that our system has the potential to enhance the coverage
of these advanced detection engines. In real-world detection sce-
narios, security researchers typically combine multiple methods for
detection. VPNSniffer can serve as a supplement to other methods.

Notably, any data we obtain from the detection engine is only
used for evaluation purposes, and we guarantee that these data will
not be used otherwise. Given our limited dataset, the result may
not fully represent the actual capabilities of these detection engines,
and our purpose is not to distinguish which is the best.

5 DISCUSSION AND LIMITATIONS
Adaptive attacks VPNSniffer outperforms other models across
various datasets, partially due to the possibility that attackers have
altered their tactics in response to previous detection methods. De-
tection and anti-detection form a continual game of chase. Attackers
may refine their strategies to reveal fewer server features after our
method becomes public. For instance, they might randomize the
RST/FIN threshold, which may require modifying the operating sys-
tem source code. Attackers can also alter communication behaviors
to disrupt the node connection relationships within our graph, but
this could compromise user experience. In general, while attackers
can employ strategies to bypass our detection, these strategies are
likely to incur additional costs.
Limitation In this paper, we mainly focus on the features of active
probing and topology. We assume that security researchers have
the ability to receive probe responses and obtain node connection
relationships. However, our method may be limited in some sce-
narios. If researchers conduct server detection at the gateway, they
may not be able to obtain complex node interaction relationships.
In this situation, although our method can still be applied, ablation
experiments indicate that our model’s performance would decline.
If researchers conduct detection in situations where internet access
is not available, our method is not applicable.

6 RELATEDWORK
6.1 VPN Detection Based on Network Traffic
Numerous work focuses on detecting VPN servers through network
traffic. Several studies [3, 6, 26, 39, 41] extract features from vari-
ous statistical information, such as time intervals, packet lengths,
and byte entropy, and then employ machine learning or rule-based
methods for detection. For instance, Wu et al. [41] suggest that
while servers may randomize traffic to evade detection, researchers

can use byte entropy to identify traffic. Moreover, some research
[16, 21, 43, 48, 49] centers on feature extraction from packet length
sequences and arrival interval sequences, utilizing deep learning
methods for classification. For example, Jiang et al. [16] use se-
quence information to construct traffic graphs, subsequently em-
ploying Graph Neural Networks for identification. Additionally,
to avoid manual feature construction, some studies [20, 23] utilize
raw packets as features for detection, achieving excellent classifica-
tion results. Although above work achieve excellent classification
results in the training environment, these method may have perfor-
mance loss due to the changes in environment. For example, Xie
et al. [42] demonstrate that some methods might show significant
performance degradation in different training networks.

6.2 VPN Detection Based on Active Probing
Previous studies have conducted work on active probing for VPN
detection, which can be categorized based on the type of protocol.
Traditional Protocols: Traditional VPN protocols, such as IPsec
[13], OpenVPN [5] and PPTP [11] are still widely used[17, 25].
These protocols are open-source and primarily designed to keep
communications secure rather than to resist detection. Owing to
their open-source and non-resistant nature, researchers can easily
construct VPN requests and send probe packets to target servers.
By analyzing the response content, they can determine whether
the server provides VPN services. Maghsoudlou et al. [25] use this
method discover more than 9.8M VPN servers on the Internet.
Probe-Resistant Protocols: Some studies [10, 45] pointed out
that many VPN servers deploy probe-resident protocol, such as
Psiphon’s obfuscation SSH protocol. These servers reply only to
requests that include authentication information. Since it is dif-
ficult to acquire authentication information, researchers cannot
receive any response after sending probing packets. Frolov et al.
[10] observe that probing with popular protocols, such as HTTP,
can effectively filter most normal servers out. Additionally, they
find that TCP timeout and data thresholds can be used to distin-
guish VPN servers from others. Xue et al. [45] discover that some
commercial OpenVPN server also deploy authentication mecha-
nisms and they utilize the timeout and RST thresholds to detect
these OpenVPN servers. There are some studies [4, 8, 37] are not
directly aimed at detecting VPN servers but offer methods that
could be applied to detect VPN servers. Fifield et al. [8, 37] indicate
that HTTP and TLS response may aid in classification. Cheng et al.
[4] suggest that researchers could pay attention to metrics such as
timeout, TCP flag and response packet length.

7 CONCLUSION
In this paper, we introduce a new method for detecting VPN servers
using a probing graph and a communication graph. We present
some interesting features, such as response types and port distri-
bution, which can help the security community enhance server
detection capabilities. Our experimental results demonstrate that
using features of active probing and topological relationships is
feasible. The results also show that our method outperforms pre-
vious methods and can help industrial detection engines enhance
coverage ratios.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

VPNSniffer: Identifying VPN Servers
Through Graph-Represented Behaviors WWW’2024, May 11-17, 2024, Singapore

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Roy Abel, Idan Benami, and Yoram Louzoun. 2019. Topological based classifica-

tion using graph convolutional networks. CoRR abs/1911.06892 (2019).
[2] Mohammed Alfatafta, Basil Alkhatib, Ahmed Alquraan, and Samer Al-Kiswany.

2020. Toward a generic fault tolerance technique for partial network partitioning.
In 14th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20). 351–368.

[3] Julian Andres Caicedo-Munoz, Agapito Ledezma Espino, Juan Carlos Corrales,
and Alvaro Rendon. 2018. QoS-Classifier for VPN and Non-VPN traffic based on
time-related features. Computer Networks 144 (2018), 271–279.

[4] Jiaxing Cheng, Ying Li, Cheng Huang, Ailing Yu, and Tao Zhang. 2020. ACER:
detecting Shadowsocks server based on active probe technology. Journal of
Computer Virology and Hacking Techniques 16 (2020), 217–227.

[5] OpenVPN Community. 2023. OpenVPN Protocol. https://openvpn.net/
community-resources/openvpn-protocol/ (Accessed on 2023-09-03).

[6] Gerard Draper-Gil, Arash Habibi Lashkari, Mohammad Saiful Islam Mamun,
and Ali A Ghorbani. 2016. Characterization of encrypted and vpn traffic using
time-related. In Proceedings of the 2nd international conference on information
systems security and privacy (ICISSP). 407–414.

[7] Anja Feldmann, Oliver Gasser, Franziska Lichtblau, Enric Pujol, Ingmar Poese,
Christoph Dietzel, Daniel Wagner, Matthias Wichtlhuber, Juan Tapiador, Narseo
Vallina-Rodriguez, et al. 2020. The lockdown effect: Implications of the COVID-
19 pandemic on internet traffic. In Proceedings of the ACM internet measurement
conference. 1–18.

[8] David Fifield. 2017. Threat modeling and circumvention of Internet censorship.
University of California, Berkeley.

[9] Python Software Foundation. 2023. socket — Low-level networking interface.
https://docs.python.org/3/library/socket.html (Accessed on 2023-09-04).

[10] Sergey Frolov, Jack Wampler, and Eric Wustrow. 2020. Detecting Probe-resistant
Proxies.. In NDSS.

[11] Network Working Group. 1993. The Point-to-Point Protocol (PPP). https://www.
rfc-editor.org/rfc/rfc2637.html (Accessed on 2023-09-03).

[12] Aric A. Hagberg, Daniel A. Schult, Pieter J. Swart, et al. 2023. NetworkX. https:
//networkx.org/ (Accessed on 2023-09-04).

[13] Internet Engineering Task Force (IETF). 2011. IP Security (IPsec) and Internet
Key Exchange (IKE). https://www.rfc-editor.org/rfc/rfc2637.html (Accessed on
2023-09-03).

[14] Ipinfo. 2023. The trusted source for IP address data, leading IP data provider -
IPinfo.io. https://ipinfo.io (Accessed on 2023-09-04).

[15] Ipqualityscore. 2023. Fraud Detection and Bot Detection Solutions | Detect Fraud
with IPQS. https://www.ipqualityscore.com (Accessed on 2023-09-04).

[16] Minghao Jiang, Zhen Li, Peipei Fu, Wei Cai, Mingxin Cui, Gang Xiong, and
Gaopeng Gou. 2022. Accurate mobile-app fingerprinting using flow-level rela-
tionship with graph neural networks. Computer Networks 217 (2022), 109309.

[17] Mohammad Taha Khan, Joe DeBlasio, Geoffrey M Voelker, Alex C Snoeren,
Chris Kanich, and Narseo Vallina-Rodriguez. 2018. An empirical analysis of the
commercial vpn ecosystem. In Proceedings of the Internet Measurement Conference
2018. 443–456.

[18] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[19] Martin Laštovička, Martin Husák, Petr Velan, Tomáš Jirsík, and Pavel Čeleda.
2023. Passive operating system fingerprinting revisited: Evaluation and current
challenges. Computer Networks 229 (2023), 109782.

[20] Xinjie Lin, Gang Xiong, Gaopeng Gou, Zhen Li, Junzheng Shi, and Jing Yu. 2022.
Et-bert: A contextualized datagram representation with pre-training transform-
ers for encrypted traffic classification. In Proceedings of the ACM Web Conference
2022. 633–642.

[21] Chang Liu, Longtao He, Gang Xiong, Zigang Cao, and Zhen Li. 2019. Fs-net: A
flow sequence network for encrypted traffic classification. In IEEE INFOCOM
2019-IEEE Conference On Computer Communications. IEEE, 1171–1179.

[22] Efrén López-Morales, Carlos Rubio-Medrano, Adam Doupé, Yan Shoshitaishvili,
RuoyuWang, Tiffany Bao, and Gail-Joon Ahn. 2020. Honeyplc: A next-generation
honeypot for industrial control systems. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security. 279–291.

[23] Mohammad Lotfollahi, Mahdi Jafari Siavoshani, Ramin Shirali Hossein Zade, and
Mohammdsadegh Saberian. 2020. Deep packet: A novel approach for encrypted
traffic classification using deep learning. Soft Computing 24, 3 (2020), 1999–2012.

[24] Gordon Fyodor Lyon. 2009. Nmap network scanning: The official Nmap project
guide to network discovery and security scanning.

[25] Aniss Maghsoudlou, Lukas Vermeulen, Ingmar Poese, and Oliver Gasser. 2023.
Characterizing the VPN Ecosystem in the Wild. In International Conference on
Passive and Active Network Measurement. Springer, 18–45.

[26] Shane Miller, Kevin Curran, and Tom Lunney. 2018. Multilayer perceptron neural
network for detection of encrypted VPN network traffic. In 2018 International
Conference On Cyber Situational Awareness, Data Analytics And Assessment (Cyber
SA). IEEE, 1–8.

[27] Neo4j. 2023. Graph Algorithms. https://neo4j.com/docs/graph-data-science/
current/algorithms/ (Accessed on 2023-09-04).

[28] Mohammad Saidur Rahman, Payap Sirinam, Nate Mathews, Kantha Girish Gan-
gadhara, and Matthew Wright. 2019. Tik-Tok: The utility of packet timing in
website fingerprinting attacks. arXiv preprint arXiv:1902.06421 (2019).

[29] Reethika Ramesh, Leonid Evdokimov, Diwen Xue, and Roya Ensafi. 2022. VPNa-
lyzer: systematic investigation of the VPN ecosystem. In Network and Distributed
System Security. 24–28.

[30] Nhien Rust-Nguyen, Shruti Sharma, and Mark Stamp. 2023. Darknet traffic
classification and adversarial attacks using machine learning. Computers &
Security 127 (2023), 103098.

[31] Teemu Rytilahti and Thorsten Holz. 2020. On Using Application-LayerMiddlebox
Protocols for Peeking Behind NAT Gateways.. In NDSS.

[32] Danfeng Shan, Fengyuan Ren, Peng Cheng, Ran Shu, and Chuanxiong Guo. 2019.
Observing and mitigating micro-burst traffic in data center networks. IEEE/ACM
Transactions on Networking 28, 1 (2019), 98–111.

[33] Spur. 2023. Home - Spur. https://spur.us (Accessed on 2023-09-04).
[34] Pluggable Transports. 2023. Software Repository. https://software.

pluggabletransports.info (Accessed on 2023-09-04).
[35] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[36] Vpnapi.io. 2023. VPN and Proxy Detection API. https://vpnapi.io (Accessed on
2023-09-04).

[37] GaukasWang, Jackson Sippe, Hai Chi, and EricWustrow. 2023. Chasing Shadows:
A security analysis of the ShadowTLS proxy. In In Free and Open Communications
on the Internet.

[38] Han Wang, Xiangyang Luo, and Yuchen Sun. 2020. An Obfs-based Tor Anony-
mous Communication Anline Identification Method. In 2020 6th International
Conference on Big Data and Information Analytics (BigDIA). IEEE, 361–366.

[39] Liang Wang, Kevin P Dyer, Aditya Akella, Thomas Ristenpart, and Thomas
Shrimpton. 2015. Seeing through network-protocol obfuscation. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security.
57–69.

[40] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian
Weinberger. 2019. Simplifying graph convolutional networks. In International
conference on machine learning. PMLR, 6861–6871.

[41] Mingshi Wu, Jackson Sippe, Danesh Sivakumar, Jack Burg, Peter Anderson,
Xiaokang Wang, Kevin Bock, Amir Houmansadr, Dave Levin, and Eric Wustrow.
2023. How the Great Firewall of China detects and blocks fully encrypted traffic.
In 32nd USENIX Security Symposium (USENIX Security 23). 2653–2670.

[42] Renjie Xie, Yixiao Wang, Jiahao Cao, Enhuan Dong, Mingwei Xu, Kun Sun, Qi Li,
Licheng Shen, and Menghao Zhang. 2023. Rosetta: Enabling robust tls encrypted
traffic classification in diverse network environments with tcp-aware traffic
augmentation. In Proceedings of the ACM Turing Award Celebration Conference-
China 2023. 131–132.

[43] Hongbo Xu, Shuhao Li, Zhenyu Cheng, Rui Qin, Jiang Xie, and Peishuai Sun.
2022. VT-GAT: A Novel VPN Encrypted Traffic Classification Model Based on
Graph Attention Neural Network. In International Conference on Collaborative
Computing: Networking, Applications and Worksharing. Springer, 437–456.

[44] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful
are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).

[45] Diwen Xue, Reethika Ramesh, Arham Jain, Michalis Kallitsis, J Alex Halderman,
Jedidiah R Crandall, and Roya Ensafi. 2022. {OpenVPN} is open to {VPN}
fingerprinting. In 31st USENIX Security Symposium (USENIX Security 22). 483–
500.

[46] Ao Yu, Hui Yang, Kim Khoa Nguyen, Jie Zhang, and Mohamed Cheriet. 2020.
Burst traffic scheduling for hybrid E/O switching DCN: An error feedback spiking
neural network approach. IEEE Transactions on Network and Service Management
18, 1 (2020), 882–893.

[47] Yinbo Yu, Xing Li, Xue Leng, Libin Song, Kai Bu, Yan Chen, Jianfeng Yang, Liang
Zhang, Kang Cheng, and Xin Xiao. 2018. Fault management in software-defined
networking: A survey. IEEE Communications Surveys & Tutorials 21, 1 (2018),
349–392.

[48] Ruijie Zhao, Xianwen Deng, Yanhao Wang, Libo Chen, Ming Liu, Zhi Xue, and
YijunWang. 2022. Flow sequence-based anonymity network traffic identification
with residual graph convolutional networks. In 2022 IEEE/ACM 30th International
Symposium on Quality of Service (IWQoS). IEEE, 1–10.

[49] Zhuang Zou, Jingguo Ge, Hongbo Zheng, Yulei Wu, Chunjing Han, and
Zhongjiang Yao. 2018. Encrypted traffic classification with a convolutional long
short-term memory neural network. In 2018 IEEE 20th International Conference
on High Performance Computing and Communications; IEEE 16th International
Conference on Smart City; IEEE 4th International Conference on Data Science and
Systems (HPCC/SmartCity/DSS). IEEE, 329–334.

[50] Zscaler. 2023. Understanding PAC Files. https://help.zscaler.com/zia/
understanding-pac-file (Accessed on 2023-09-03).

9

https://openvpn.net/community-resources/openvpn-protocol/
https://openvpn.net/community-resources/openvpn-protocol/
https://docs.python.org/3/library/socket.html
https://www.rfc-editor.org/rfc/rfc2637.html
https://www.rfc-editor.org/rfc/rfc2637.html
https://networkx.org/
https://networkx.org/
https://www.rfc-editor.org/rfc/rfc2637.html
https://ipinfo.io
https://www.ipqualityscore.com
https://neo4j.com/docs/graph-data-science/current/algorithms/
https://neo4j.com/docs/graph-data-science/current/algorithms/
https://spur.us
https://software.pluggabletransports.info
https://software.pluggabletransports.info
https://vpnapi.io
https://help.zscaler.com/zia/understanding-pac-file
https://help.zscaler.com/zia/understanding-pac-file

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW’2024, May 11-17, 2024, Singapore Anon. Submission Id: 1393

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A PORT COMBINATION
We show example of some VPNs’ Probing Port Combinations in
Table 6. Please note that: i) Some VPNs may have multiple port com-
binations. For instance, Psiphon3 has [443,53,22], [80, 554, 22], [80,
22], and other combinations. One reason for this is that, limited by
our observation window (one hour), we do not obtain the complete
port combinations, which may be [554,22,53,80,443]. We consider
that the larger the observation window is, the more complete port
combinations we will obtain. Therefore, researchers can expand
their observation window to mitigate this issue. Another reason
is that a single VPN may employ different server configuration
strategies, resulting in various port combinations. ii) Not all VPNs
have stable port combination. Some VPN may use the random port
combination.

Table 6: Example of Probing Port Combinations

VPN Name Probing Port Combination
Psiphon3 VPN {22, 53, 443}
Psiphon3 VPN {22, 443, 554}
Psiphon3 VPN {22, 53, 443, 554}
Surfshark VPN {443, 1443, 4000, 7443, 8443}

Pia VPN {80, 443, 8443}
Pia VPN {80, 443, 8080, 8443, 8888}

Hotspot VPN {80, 443, 563, 636, 993, 995}
Hotspot VPN {80, 443, 563, 636, 993, 995, 6000}

Cyber Ghost VPN {443, 8080, 8081, 8443}
Easy VPN {80, 443, 8080, 8088, 12345}
Vpnify VPN {22}

Hide My Ass VPN {80, 443}
Tomato VPN {22, 80, 443, 8000}
Touch VPN {443, 8082, 8083}

Windscribe VPN {443, 8443}

Table 7: VPNs in our dataset

VPN Name VPN Name VPN Name
Air VPN Fastestvpn Itop Accelerator VPN

Browsec VPN Fastvpnio VPN Just VPN
Cryptostorm VPN Foxyproxy VPN Nord VPN
Cyber Ghost VPN Gecko VPN Opera VPN

Daily VPN Hide My Ass VPN Pia VPN
Deeper Network VPN Hotspot VPN Privatevpn

Easy VPN Infvpn Proton VPN
Express VPN Innovative Connecting VPN Psiphon3 VPN
Witopia VPN Xvpn Zenmate VPN
Pure VPN Trust Zone VPN Thunder VPN

Secure Android VPN Tunnelbear VPN Tomato VPN
Supervpn360 VPN Turbo VPN Tor Guard VPN
Surfshark VPN Ultrasurf VPN Vpn Super Free VPN
Vpnify VPN Vpnunlimited VPN Windscribe VPN
Touch VPN unknown VPN

B TOPOLOGICAL FEATURES
Here we describe the calculation methods of topological features.
Degree: The degree of a node in a graph is the number of edges
incident to it. Eigenvector Centrality: Eigenvector centrality as-
signs relative scores to all vertices in the network based on the
principle that connections to high-scoring vertices contribute more
to the score of the vertex in question than equal connections to
low-scoring vertices. PageRank: PageRank is an algorithm initially
used by Google Search to rank websites in their search engine re-
sults. Closeness Centrality: Closeness centrality of a node is the
reciprocal of the sum of the shortest path distances from the node

to all other nodes in the graph. Local Clustering Coefficient:
The local clustering coefficient of a vertex in a graph quantifies
how close its neighbors are to being a complete graph. K-core: The
k-core of a graph is a maximal subgraph in which every vertex has
at least degree 𝑘 . Nodes are peeled off layer by layer, where nodes
of degree < 𝑘 being removed.

10

	Abstract
	1 Introduction
	2 Background
	3 Design of VPNSniffer
	3.1 High Level Description of VPNSniffer
	3.2 Probing Graph Construction
	3.3 Communication Graph Construction
	3.4 Detection Model

	4 Experiments
	4.1 Dataset
	4.2 Offline Experiments
	4.3 Online Experiments

	5 DISCUSSION AND LIMITATIONS
	6 Related Work
	6.1 VPN Detection Based on Network Traffic
	6.2 VPN Detection Based on Active Probing

	7 CONCLUSION
	References
	A Port combination
	B Topological Features

