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Abstract. For abdominal MRI segmentation, it is difficult to extract
the rich information due to the lack of annotated MRI scans. To establish
a model of abdominal MRI organ segmentation without MRI annotation,
researchers have explored unsupervised cross-modality domain adapta-
tion task for abdominal organ segmentation in MRI scans. And our main
idea is to rephrase the unsupervised domain adaptive segmentation prob-
lem as an image generation problem and a segmentation problem by
a two-stage framework. In the first stage, existing methods usually use
generative networks to reduce domain gap and cannot consider the intra-
domain gap of the target domain. To solve this problem, we propose a
single-content multi-style generative network to obtain the multi-style of
the target domain rather than the average style. In the second stage, we
propose a more simplified pseudo-label selection method to use unlabeled
MRI scans. Experiments on the FLARE24 challenge Task3 show that,
our method achieved an average score of 63.41% and 68.08% for the le-
sion DSC and NSD on the validation dataset, respectively. The average
running time and area under GPU memory-time curve are 10.36s and
13331MB, respectively. Our method not only focuses on the intra-domain
gap but also greatly saves resources in the training phase. Our code will
be available at https://github.com/ZZhangZZheng/FLARE24-TASK3.

Keywords: Segmentation - Semi-supervised learning - Unsupervised
domain adaptation.

1 Introduction

Abdominal multi-organ segmentation is a basic step in clinical medicine. In
recent years, deep learning methods have shown the capability on segmentation
tasks. The abdominal segmentation of CT scan has been greatly developed,
but the abdominal segmentation of MRI scan has not been fully explored. One
important reason for this is the lack of the data from high-quality annotated
abdominal MRI scans. One recent promising approach to solve this problem is
unsupervised domain adaptation.
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The Fast and Low-resource Semi-supervised Abdominal Organ Segmentation
Challenge is a competition focused on abdominal efficiency segmentation [17,18,19].
In addition to focusing on segmentation efficiency and resource consumption, it is
also explored in other aspects. In previous competitions, researchers have made
great progress in abdominal multi-organ segmentation with CT scans. They
achieved high accuracy and fast segmentation efficiency under the premise of
consuming less memory resources. And MICCAI FLARE 2024 Task3 (Unsuper-
vised Domain Adaptation for Abdominal Organ Segmentation in MRI Scans)
is a new task. It aims to construct abdominal MRI organ segmentation models
without MRI annotations. It provides 2300 labeled abdominal CT scans and
1000 unlabeled MRI scans, representing the source and target domains, respec-
tively. Additionally, it offers another 100 and 300 MRI scans for validation and
testing purposes, respectively.

In order to learn in the domains without annotation, we can learn in a differ-
ent but related domain with annotation. The domain we have learned is called
the source domain and the domain we are going to learn is called the target
domain. And this process is called unsupervised domain adaptation. Due to the
domain gap, directly utilizing data from different domains remains highly chal-
lenging [25]. At present, with the development of generative adversarial network
(GAN) [27], cross-domain style transfer has been widely adopted in unsupervised
domain adaptation. The generative adversarial network is used to generate la-
beled source domain images into target domain data, and we can get the labeled
target domain data.

Some researchers use a framework that tightly links generation and segmen-
tation, but the framework is often complex and the inference phase is inefficient.
DAR-UNet [25] uses a two-stage framework, which separates the generation pro-
cess from the segmentation training process. Although its segmentation model
is also complex, we can improve its generation and segmentation process respec-
tively.

For generative tasks, StyleGAN [12]| performs well. However, it and its vari-
ants only use one-to-one mapping of the average style of the target domain.
For segmentation tasks, nnU-Net [10] has become a widely used baseline model.

However, its inference efficiency is low and it cannot effectively make full use
of unlabeled data. The FLARE22 winning algorithm [9] improves nnU-Net to
achieve a balance between efficiency and accuracy in the inference phase, but it
needs to be trained three times during semi-supervised training.

In order to reduce the complexity of the inference process, we design a two-
stage framework for the unsupervised domain adaptation segmentation. At the
same time, we observe that the MRI scans of the target domain are very different,
they are different modals and come from different machines. Therefore, in the
first stage, we propose a single-content multi-style generative network. In the
second stage, we use the improved nnU-Net of the FLARE22 winning algorithm
in the segmentation phase, but further simplify the process of utilizing unlabeled
target domain data.

Our main contributions are summarized as follows:
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— We design a two-stage framework for the segmentation without target do-
main annotation.

— To fit the intra-domain gap, we propose a single-content multi-style genera-
tive network, which can better adapt to the data distribution in the target
domain. At the same time, it plays the role of data augmentation.

— We use the improved nnU-Net of the FLARE22 winning algorithm for seg-
mentation and simplify its pseudo-label selection method while semi-supervised
training.

2 Method

As illustrated in Fig. 1, our framework consists of two stages. The first stage uses
a single-content multi-style generative network to obtain labeled target domain
data. The second stage uses the improved nnU-Net and a simplified pseudo-label
selection method for segmentation.

2.1 Preprocessing

In the first stage, before feeding the data into the single-content multi-style
generative network, we crop the CT scans according to the label to remove the
excess background area. At the same time, we normalized the CT scans, limiting
their value to between -350 and 350, and scaled them to between 0 and 1. In
order to meet the requirement of our anisotropic architecture, the dataset was
first spatially normalized to the spacing of [4, 1, 1]. Finally we change them to
the same resolution (512,512). For MRI scans, we normalized their intensity and
filled or cropped them to the same resolution (512,512). In the second stage, we
used the same preprocessing as the improved nnU-Net of the FLARE22 winning
algorithm.

2.2 Proposed Method

We divide the unsupervised domain adaptation segmentation into two stages.
In the first stage, we use our single-content multi-style generative network to
reduce domain gap. In the second stage, although its semi-supervised training is
complex, the improved nnU-Net of the FLARE22 winning algorithm can already
be used as a baseline. So we used the improved nnU-Net with a simpler pseudo-
label selection method as our segmentation network.

The use of labels and images: We used only CT labeled images and
MR unlabeled images. CT unlabeled images were not used. And, we use the
FLARE22 winning algorithm but do not use the pseudo labels generated by the
FLARE22 winning algorithm [9] and the best-accuracy-algorithm [22].

The strategies to improve model inference: A single-stage framework
with generation and segmentation tightly linked would reduces the efficiency of
inference. Hence, we propose the two-stage framework to improve the inference
efficiency. And, the improved nnU-Net of the FLARE22 winning algorithm can
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Fig. 1. The architecture of the proposed network. Our framework consists of two stages.
In the first stage, we train a single-content multi-style generative network that generates
8 CT2MRimages with one CTimage. In the second stage, we use the improved nnU-Net
of the FLARE22 winning algorithm as the segmentation network. However, we only
train the big nnU-Net once instead of three times by using a simplified pseudo-label
selection method.

S > reconstruction loss 3777111 single-content multi-style
: — CT2CT images | generation network
- CT images
— — MR2MR images -

I] -CT2MR images CT2MR2CT images-

MR i :
i e D { MR2CT images D E MR2CT2MR images

. -

1
]
. P — :
cycle consistency :

loss P H

e

Fig. 2. The architecture of the proposed single-content multi-style generative network.
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already be used as a baseline, so we optimize the segmentation training efficiency
instead of the segmentation inference efficiency.

Single-content multi-style generative network: Previous work used a
simple style transfer generative network. Researchers usually use a model to gen-
erate data corresponding to the average style of the target domain. For FLARE
2024 TASK 3, we can average the MRI target domains into single-style and
then generate single-style corresponding CT2MRI data for the CT source do-
mains. However, MRI scans come from different imaging protocols and different
machines. Therefore, we propose the multi-style transfer generative network ac-
cording to the principle of feature decoupling to learn the different styles of the
dataset.

As shown in Fig. 2, in the generative network training phase, we train a
network consists of a ContentEncoder, a StyleEncoder and a Decoder. CT scans
will be passed through ContentEncoder, StyleEncoder to obtain CT content fea-
tures, CT style features. These features will be passed through the decoder to
obtain the reconstructed CT2CT scans. Similarly, we will obtain reconstructed
MRI2MRI scans. We will also use CT content features and MRI style features
to obtain CT2MRI scans and the same method is used to obtain MRI2CT
scans. Similar to above, but we are not reconstructing the scans. We only ex-
tract the content and style features of the CT2MRI,MRI2CT scans and generate
CT2MRI2CT,MRI2CT2MRI scans. Similarly for MRI scans, but using CT scans
as an example, we will optimize the ContentEncoder, the StyleEncoder and the
Decoder by calculating the reconstruction loss between CT scans and CT2CT
scans, the adversarial loss between CT scans and MRI2CT, and the cycle con-
sistency loss between CT scans and CT2MRI2CT. It is important to state that
our network operates on a single layer of the scans, which also occurs in the
inference phase. And the reconstruction loss, the adversarial loss and the cycle
consistency loss are shown follows:

ACrec = EIHNIQ ||Ia - gdec(gencC (Lz), gencsa (Lz))”l (1>
£GAN - EchCb,SQNSa [log(]- - Da(gdec(cba Sa)))] + EI,,,NIQ [log(pa(-[a))] (2)
£t:ycle = EIQNILL ||Ia - Iaba”l (3>

1, refers to the CT or MR images, I, refers to the CT2MR2CT or MR2CT2MR
images. Gene, () refers to the ContentEncode, Gene,, () refers to the StyleEncode
and Gge.() refers to the Decoder.

We jointly train the encoders, decoders, and discriminator to optimize the
final objective

IIlgiIl mgx ﬁ(gencca gencs a) gencsba gdeca Da) = Erec + L:GAN + Ecycl@ (4)

In the generative network inference phase. We first use the StyleEncoder to
obtain style features for all MRI scans and then cluster these style features. The
number of clusters here is 8. For each CT content feature obtained from the
ContentEncoder, and one random of each type of style feature is synthesized to
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obtain the generated CT2MRI scan. Our single-content multi-style generative
network enables a single CT scan to become 8 CT2MRI scans. These CT2MRI
scans will be used for the next stage.

Segmentation network: The nnU-Net is a useful baseline for medical seg-
mentation tasks. However, it is complex and time-consuming. And the improved
nnU-Net of the FLARE22 winning algorithm make it simple and efficient, so
we use the improved nnU-Net as our segmentation network. Although the im-
proved nnU-Net of the FLARE22 winning algorithm is very fast in the inference
phase, it needs to be trained three times to perform uncertain calculations, which
undoubtedly consumes resources. We hope to further conserve resources.

Simplified pseudo-label selection method: Our motivation is simple.
Through careful observation of the pseudo-labels, we identified that the majority
of errors manifest as undersegmentation. Notably, these undersegmented results
consistently exhibit smaller file sizes compared to accurate segmentations. So we
have a simpler pseudo-labels selection strategy. We discarded 1348 MRI scans
with pseudo-labels smaller than 14KB as unreliable. Our method trains just once
instead of three times. This pseudo-labels selection method is not as significantly
improved as the semi-supervised method of the FLARE22 winning algorithm,
but it is simpler.

Loss function: We use the summation of the reconstruction loss, cycle con-
sistency loss and adversarial loss because these have been shown to help decouple
content and style as well as final generation [25].

We use the summation between Dice loss and cross-entropy loss because
compound loss functions have been proven to be robust in various medical image
segmentation tasks [14].

2.3 Post-processing

In order to conserve resources, we do not use any post-processing in our training
and inference.

3 Experiments

3.1 Dataset and evaluation measures

The training dataset is curated from more than 30 medical centers under the
license permission, including TCIA [3], LiTS [2], MSD [21], KiTS [7,8], au-
toPET [6,5], AMOS [11], LLD-MMRI [13], TotalSegmentator [23], and Abdomen-
CT-1K [20], and past FLARE Challenges [17,18,19]. The training set includes
2050 abdomen CT scans and over 4000 MRI scans. The validation and testing
sets include 110 and 300 MRI scans, respectively, which cover various MRI se-
quences, such as T1, T2, DWI, and so on. The organ annotation process used
ITK-SNAP [26], nnU-Net [10], MedSAM [15], and Slicer Plugins [4,16].

The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside two efficiency
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measures—running time and area under the GPU memory-time curve. These
metrics collectively contribute to the ranking computation. Furthermore, the
running time and GPU memory consumption are considered within tolerances
of 15 seconds and 4 GB, respectively.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1.

Table 1. Development environments and requirements.

System Ubuntu 22.04.4 LTS

CPU Intel(R) Core(TM) i9-13900K CPU@5.80GHz
RAM 4x32GB; 2133MT/s

GPU (number and type) Two NVIDIA RTX 3090 24G

CUDA version 12.2

Programming language Python 3.7.12

Deep learning framework torch 1.13.1, torchvision 0.14.1

Specific dependencies nnU-Net 1.7.0

Code https://github.com/ZZhangZZheng/FLARE24-TASK3

Training protocols The training protocols of single-content multi-style gen-
erative network, big nnU-Net and small nnU-Net are listed in Table 2, Table 3
and Table 4 respectively.

In the first stage, we input each slice (1x512x512) of the preprocessed 3D
data into the generative network without any data augmentation [17] for the
training. Our single-content multi-style generative network not only closes the
distance between the source and target domains but also reduces the intra-
domain gap. And we obtain 400 CT2MRI labeled scans through 50 CT labeled
scans for the second stage of segmentation.

For the segmentation task in the second stage, we used the same data aug-
mentation strategy as the FLARE22 winning algorithm for the 400 CT2MRI
labeled scans. Such as additive brightness, gamma, rotation, scaling, and elastic
deformation. And the patch sampling strategy is also consistent with it. But we
simplified the optimal model selection criteria. After completing the training of
CT2MRI only once images with big nnU-Net, we directly chose it as the optimal
model to reduce resource usage. Then we used the big nnU-Net get the pseudo-
labels for the MRI unlabeled scans. And we removed the 1348 low-quality scans
through the simplified pseudo-label selection method, and continued training to
obtain the small nnU-Net.

We calculated the number of model parameters, number of flops and the
carbon footprint [1] of the single-content multi-style generative network, the big
nnU-Net and the small nnU-Net through the tools.
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Table 2. Training protocols for single-content multi-style generative network.

Network initialization

Batch size 1

Patch size 1x512x512
Total epochs 100
Optimizer AdaBelief
Discriminators initial learning rate (Ir) 0.0002
Generators initial learning rate (Ir) 0.0001
Training time 12 hours

Reconstruction loss, cycle consistency loss

Loss function .
and adversarial loss

Number of model parameters 84 M?
Number of flops 100 G?
COszeq 4.15 Kg®

! https://github.com/sksq96 /pytorch-summary
2 https://github.com/facebookresearch /fvcore
3 https://github.com/Ifwa/carbontracker/

Table 3. Training protocols for big nnU-Net.

Network initialization

Batch size 2

Patch size 48x224x224

Total epochs 1000

Optimizer SGD with nesterov momentum (p = 0.99)
Initial learning rate (Ir) 0.01

Lr decay schedule Poly learning rate policy: (1 — epoch/1000)%°
Training time 36 hours

Loss function Dice loss and cross entropy loss

Number of model parameters 82 M

Number of flops 776 G

COgzeq 10.48 Kg
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Table 4. Training protocols for small nnU-Net.

Network initialization

Batch size 2

Patch size 32x128%x192

Total epochs 1500

Optimizer SGD with nesterov momentum (u = 0.99)
Initial learning rate (Ir) 0.01

Lr decay schedule Poly learning rate policy: (1 — epoch/1500)°-7
Training time 16 hours

Loss function Dice loss and cross entropy loss

Number of model parameters 5.4 M

Number of flops 136 G

COzeq 1.87 Kg

4 Results and discussion

We use the trained small nnU-Net to predict the segmentation. We list the results
of DSC and NSD on the validation dataset in Table 5.

Table 5. Quantitative evaluation results. The validation denotes the performance on
the 110 validation cases with ground truth.

Target Validation

DSC(%) NSD (%)
Liver 84.65 £ 18.51 81.95 £ 19.91
Right kidney 78.25 £ 29.04 77.36 + 30.17
Spleen 74.07 & 32.40 74.29 £ 33.92
Pancreas 54.17 + 31.17 63.16 & 37.54
Aorta 75.92 £+ 27.08 78.52 + 29.02

Inferior vena cava |53.96 + 32.13 54.12 + 33.92
Right adrenal gland|47.85 + 25.21 61.76 + 37.54
Left adrenal gland [52.13 + 28.67 64.51 + 34.87

Gallbladder 65.69 4+ 34.31 63.13 4+ 34.83
Esophagus 46.62 £+ 27.05 56.61 £ 33.69
Stomach 64.20 + 28.69 66.18 £ 31.90
Duodenum 42.21 £ 27.03 57.54 £ 37.25
Left kidney 84.58 + 21.45 85.97 £ 23.00
Average 63.41 + 19.95 68.08 £ 22.93

4.1 Quantitative results on validation set

In order to utilize unlabeled data, we used the method of generating pseudo-
labels. However, unlike the FLARE22 winning algorithm training 3 times, which
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uses uncertainty to filter out pseudo-labels. We filter out unreliable 1348 MRI
scans based on the size of the pseudo-label. That is, we have 400 CT2MRI labeled
images and 3469 MR images with reliable pseudo labels in the end.

Ablation study We list the results of DSC and NSD on the validation dataset
in Table 6. As shown in Table 6, the direct application of semi-supervised learn-
ing led to model performance degradation, particularly for organs with initially
poor segmentation results. We argue this stems primarily from segmentation er-
rors (mostly undersegmentation). Our proposed selection strategy demonstrates
robust performance, confirming that the pseudo-label filtering method based on
file size effectively removes undersegmented pseudo-labels. By using this method,
we improved our average DSC by 2.8% and NSD by 3.63%.

Table 6. Comparison of Without-Semi, Semi-supervised, and Semi-with-selection
Methods, where Without-Semi enotes training using only CT2MRI data. Semi-
supervised denotes training using pseudo-labeled unlabeled data and CT2MRI data.
Semi-with-selection denotes training using selected pseudo-labeled unlabeled data and
CT2MRI data.

Without-Semi | Semi-supervised |Semi-with-selection

Target DSC(%) NSD(%)|DSC(%) NSD(%)|DSC(%) NSD (%)
Liver 83.75 80.12 91.06 87.58 84.65 81.95
Right kidney 76.05 74.47 78.50 74.77 78.25 77.36
Spleen 71.68 72.66 60.00 59.59 74.07 74.29
Pancreas 52.24 59.59 50.63 59.85 54.17 63.16
Aorta 76.23 78.67 74.41 77.89 75.92 78.52

Inferior vena cava 50.64 49.64 36.49 33.70 53.96 54.12
Right adrenal gland| 46.58 60.44 30.70 40.35 47.85 61.76
Left adrenal gland | 46.59 56.65 26.56  34.84 52.13 64.51

Gallbladder 58.99 56.60 55.43 52.41 65.69 63.13
Esophagus 43.86 52.09 31.83 39.20 46.62 56.61
Stomach 59.92 62.12 52.05 53.64 64.20 66.18
Duodenum 41.80 55.35 42.44 59.29 42.21 57.54
Left kidney 79.63 79.48 78.26 77.42 84.58 85.97
Average 60.61 64.45 54.49 57.73 63.41 68.08

4.2 Qualitative results on validation set

Fig. 3 shows 4 representative segmentation results of our small nnU-Net trained
on 50 labeled data and 3469 selected pseudo labels for final submission. For
Case #amos_ 0600 and Case #amos 7562, it is easy to see that some under-
segmentation and over-segmentation errors occurred. For Case #amos_ 7891 and
Case #amos_ 0581, the network has better segmentation performance, but there
is still under-segmentation errors. We argue that this is due to poor perfor-
mance of big nnU-Net because the generation is not good enough, even though
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a large amount of unlabeled data improves the under-segmentation and over-
segmentation errors.

Table 7. Quantitative evaluation of segmentation efficiency in terms of the run-
ning them and GPU memory consumption. Total GPU denotes the area under GPU
Memory-Time curve. Evaluation GPU platform: NVIDIA QUADRO RTX5000 (16G).

Case ID Image Size  Running Time (s) Max GPU (MB) Total GPU (MB)

amos_ 0540 (192, 192, 100) 9.67 2587 11951
amos_7324 (256, 256, 80) 9.71 3533 11945
amos_0507 (320, 290, 72) 13.38 3503 12464
amos_ 7236 (400, 400, 115) 10.28 3079 13434
amos_ 7799 (432, 432, 40) 10.27 2719 13686
amos_ 0557 (512, 152, 512) 11.38 4697 15372
amos_ 0546 (576, 468, 72) 10.12 2667 12932
amos_ 8082 (1024, 1024, 82) 12.7 2713 17716

Case #amos. 7891 (slice #22)

n‘l.;‘

Case #amos_0581 (slice #30)

e W

_;- .Q

Case #amos_0600 (slice #58)

y

Case #amos 7562 (slice #21)

Image Ground Truth My ablation results My method

Fig. 3. We show two examples with good segmentation results and two examples with
bad segmentation results in the validation set. Our method denotes the final small
nnU-Net by training pseudo-labeled MRI scans and generated CT2MRI scans. Our
ablation results denote the small nnU-Net by only training generated CT2MRI scans.



12 X. Luan et al.

4.3 Segmentation efficiency results on validation set

We build our small nnU-Net as a docker image for final submission. In Table 7,
we list our segmentation efficiency results on validation set during the challenge.
The results feedback from the challenge organizer.

4.4 Results on final testing set

The final testing results for the proposed method in the FLARE 2024 challenge
are summarized in Table 8. The table presents the performance metrics of the
method, including the Dice Similarity Coefficient (DSC), Normalized Surface
Distance (NSD), inference time, and GPU memory usage. Each metric is re
ported with both the mean and standard deviation (Mean + Std), as well as the
median along with the first and third quartiles (Median (Q1, Q3)).

Table 8. Final testing results of the proposed method on the FLARE 2024 challenge.

Metric Mean £ Std Median (Q1, Q3)
DSC (%) 131 £ 338 53.6 (2.3,76.3)
NSD (%) 45.4 + 36.1 56.6 (2.2,80.4)
Inference Time (s) 104 £ 1.4 9.9 (9.8,10.2)

GPU Memory (MB) 573657.3 4+ 84163.7 548777.6 (534456.4,568452.1)

4.5 Limitation and future work

Although our single-content multi-style generative network can better learn
multi-center data, the quality of generation is still a limiting factor. Pseudo-
labels are widely used in semi-supervision tasks, in which denoising is the key.
We will refer to the updated research progress to improve the quality of generated
images and pseudo labels in our future work.

5 Conclusion

In this paper, we propose a two-stage framework to unsupervised domain adap-
tation. Our two-stage framework makes inference simple by turning the unsu-
pervised domain-adapted segmentation problem into two problems: cross-domain
generation and semi-supervised segmentation. In the first stage, we used a single-
content multi-style generative network to learn multi-center data which focuses
on the intra-domain gap of the target domain while achieving cross-domain gen-
eration. In the second stage, we use the improved nnU-Net of the FLARE22
winning algorithm and further simplified the semi-supervised method. And our
simplified pseudo-label selection method makes training more efficient. We hope
our research can help others.
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Table 9. Checklist Table. Please fill out this checklist table in the answer column.
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A meaningful title Yes
The number of authors (<6) 5
Author affiliations and ORCID Yes
Corresponding author email is presented Yes
Validation scores are presented in the abstract Yes
Introduction includes at least three parts: Yes
background, related work, and motivation

A pipeline/network figure is provided Fig 1
Pre-processing 3
Strategies to use the partial label 3
Strategies to use the unlabeled images. 6
Strategies to improve model inference 3
Post-processing 6

The dataset and evaluation metric section are presented 6
Environment setting table is provided Table 1
Training protocol table is provided Table 2, Table 3 and Table 4
Ablation study 10
Efficiency evaluation results are provided Table 7
Visualized segmentation example is provided Figure 3
Limitation and future work are presented Yes

Reference format is consistent. Yes




Response to Reviewer n39Y

We sincerely thank Reviewer n39Y for the valuable comments. Below are our
point-by-point responses addressing the concerns raised.

Comment 1: Fig. 1 is too complex to understand. The authors could make it
concise for high level ideas or split it to serveral figures.

Thank you for pointing out the limitations of Fig. 1. In response to the
reviewer’s comments, we have reorganized the original figure into two distinct
figures. The revised Fig. 1 provides a clear overview of the high level ideas, while
Fig. 2 specifically details the generative network architecture.
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Fig. 1. The architecture of the proposed network. Our framework consists of two stages.
In the first stage, we train a single-content multi-style gencrative network that

8 CT2MRimages with one CTimage. In the second stage, we use the improved nnU-Net
of the FLARE22 winning algorithm as the segmentation network. However, we only
train the big nnU-Net once instead of three times by using a simplified pscudo-label
selection method.
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Fig. 2. The architecture of the proposed single-content multi-style generative network.

Comment 2: The loss functions should be explained in details.
Thank you for pointing out the need for the details of the loss functions. We
have provided additional clarification in Section 2.2.

Lree = Bronz, o — Gace(Gene, (1), Gene.o 1a) (1)
LGan = Eeyncysuns. [108(1 = Da(Gaec(Cr, )] + Er,nz, [l0g(Da(La)))- - (2)
Leyete = Brynz, 1o = Luvally (3)

1, refers to the CT or MR images, I, refers to the CT2MR2CT or MR2CT2MR
images. Gene, () refers to the ContentEncode, Gene.,., () refers to the StyleEncode
and Gye.() refers to the Decoder.

‘We jointly train the encoders, decoders, and discriminators to optimize the
final objective, which is a weighted sum of the adversarial loss and the recon-
struction loss terms

ugu mgxll(gum,,,, GencearGencays Gdees Da) = Lree + LGAN + Leyete-  (4)



Comment 3: There are many typos or formatting issues. In the caption of Figure
2, “My ablation results denotes” should be “My ablation results denote”.

Thank you very much for your careful review and for pointing out the typos
or formatting issues. Specifically, we have revised the sentence as follows:"Our
ablation results denote the small nnU-Net by only training generated CT2MRI
scans."

Comment 4: “Our method need train just once instead of three times.” in the
"Simplified pseudo-label selection method" should be “Our method needs to train
just once instead of three times.”.

Thank you very much for your careful review and for pointing out the typos
or formatting issues. We sincerely apologize for this oversight. Upon reviewing
the manuscript, we have made the necessary correction as per your suggestion.
Specifically, we have revised the sentence as follows:"Our method needs train
just once instead of three times."

We are deeply grateful for your thorough evaluation. Your expert comments
have been instrumental in enhancing the scholarly quality of this work. We
remain committed to refining all details to achieve the highest standards of
academic rigor.



Response to Reviewer RzQq

We sincerely thank Reviewer RzQq for the valuable comments. Below are
our point-by-point responses addressing the concerns raised.
Comment 1: As for the method description of single-content multi-style gener-
ation network, it is not clear and cannot correspond well with Figure 1. It is
suggested to modify the presentation logic and layout of the graph, and add
necessary formulas.

Thank you for pointing out this issue. We have shown the single-content
multi-style generation network in Fig. 2 and add the additional formulas.
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Fig. 2. The of the proposed single-content multi-style generative network.
Lree = Brnt, o = Guee L))y (1)
Lean = Bencysins, 1081 = Da(Guee(r, $a)))| + Eronz, llog(Pa(L))]- (2)

Leyete = Er,n1, 1o — Taball; (3)

the CT or MR images, Iy, refers to the CT2MR2CT or MR2CT2MR
Gene. () refers to the ContentEncode, Gene,, () refers to the StyleEncode
fe

final objective, which is a weighted sum of the adversarial loss and the recon-
struction loss terms

min max L(Gene,, Gene, o Geneyys Giee; Da) = Lree + LaAN + Leyete:  (4)

Comment 2: There is a lack of ablation experiments and insufficient analysis of
experiments.

Thank you for your thoughtful and constructive comment. We have added the
relevant ablation experiments in Table 6 and provided analysis of experiments.

"As shown in Table 6, the direct application of semi-supervised learn- ing led
to model performance degradation, particularly for organs with initially poor
segmentation results. We argue this stems primarily from segmentation er- rors
(mostly undersegmentation). Our proposed selection strategy demonstrates ro-
bust performance, confirming that the pseudo-label filtering method based on
file size effectively removes undersegmented pseudo-labels."

Table 6. C ison of Without-Semi, Semi-supervised, and Semi-with-selecti
Methods, where Without-Semi enotes training using only CT2MRI data. Semi-
supervised denotes training using pseudo-labeled unlabeled data and CT2MRI data.
Semi-with-selection denotes training using selected pseudo-labeled unlabeled data and
CT2MRI data.

Without-Semi | Semi sed [Somiwit-selocti
Target DSC%) NSD(%)[DSC(%) NSD(%)[DSC(%) NSD (%)
Tiver 8375 8012 | 91.06 8758 | 8165  8L95
Right kidney T6.05 74T | T8E0  TATT | 78.25 36
Spleen TL6S 7266 | 60.00 5059 | 74.07

Pancreas 5224 5059 | 50.63 50.85 | 54.17

Aorta 7623 7867

77.89 | 75.92
33.70 6
10.35

Inferior vena cava 50.64 49.64
Right adrenal gland| 4658  60.41

Left adrenal gland | 4659  56.65 34.84
Gallbladder 58.99  56.60 52.41
Esophagus 1386 52.09 39.20
Stomach 59.92  62.12 53.61
Duodenum 4180 55.35 59.29
Left kidney 79.63  79.48 7742
Average 60.61 6445 57.73




Response to Reviewer RLV9

We sincerely thank Reviewer RLV9 for the valuable comments. Below are

our point-by-point responses addressing the concerns raised.

Comment 1: Figure 1 is somewhat complex, and the distinction between modules
within the two stages is unclear. It is recommended to organize the colors and

layout of the modules.

Thank you for pointing out this issue. We appreciate your suggestions for im-
proving the Fig. 1. As per your recommendation, we have reorganized the colors
and layout of the modules. Specifically, we separated the single-content multi-
style generative network from Fig. 1 and assigned distinct colors to different

modules and multimodal data.
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Fig. 1. The architecture of the proposed network. Our framework consists of two stages.
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Fig. 2. The architecture of the proposed single-content multi-style generative network.



Comment 2: There is a lack of ablation experiments using labeled CT samples
and unlabeled MR samples for semi-supervised training to confirm the effective-
ness of the style transfer network.

We sincerely apologize for the omission of ablation experiments to validate

the effectiveness of the style transfer network. The effectiveness of the style
transfer network has been validated by others and we acknowledge the insuf-
ficient introduction of background knowledge in the original manuscript. We
have now supplemented the Introduction section as follows: "Due to the domain
gap, directly utilizing data from different domains remains highly challenging
“\cite{yao2022novel}. At present, with the development of generative adver-
sarial network (GAN)~\cite{zhu2017unpaired}, cross-domain style transfer
has been widely adopted in unsupervised domain adaptation."
Comment 3: The pseudo-label filtering method based on file size is not well
explained, and there is a lack of ablation experiments comparing using pseudo-
labels directly versus using the proposed filtering method to validate the effec-
tiveness of the pseudo-label filtering approach presented in this paper.

Thank you for your thoughtful and constructive comment. your concern
about the pseudo-label filtering method based on file size, we have carefully
address this issue. In Section 2.2, we provided a better explanation and added
the relevant ablation experiments in Table 6.

“Our motivation is simple. Through careful observation of the pseudo-labels,
we identified that the majority of errors manifest as undersegmentation. In par-
ticular, these under-segmented results consistently exhibit smaller file sizes com-
pared to accurate segmentations."

pervised, and

aining using only CT2MRI da

1 data.
1 denotes training using selected pseudo-labeled unlabeled data and
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isod i-with-sclocti

Larget DSC(%) NSD(%)|DSC(%) NSD(%)|DSC(%) N

Liver 83.75 80.12 91.06 87.58 84.65 81.95
Right kidney 76.05 74.47 78.50 7477 78.25 77.36
Spleen 71.68 72.66 60.00 59.59 74.07 74.29
Pancreas 52.24 59.59 50.63 59.85 54.17 63.16
Aorta 76.23 78.67 74.41 77.89 75.92 78.52

Inferior vena cava 50.64 49.64 36.49 33.70 53.96 54.12
Right adrenal gland| 46.58  60.44 30.70  40.35 | 47.85 61.76
Left adrenal gland 56.65 26.56  34.84 52.13 64.51

Gallbladder 56.60 55.43 52.41 65.69 63.13
Esophagus 31.83 39.20 46.62 56.61
Stomach 52.05 53.64 64.20 66.18
Duodenum 42.44 9.29 | 42.21 57.54
Left kidney 78.26 77.42 84.58 85.97

54.49 57.73 63.41 68.08

Average




