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Abstract

The classical sparse coding model represents visual stimuli as a convex combination of
a handful of learned basis functions that are Gabor-like when trained on natural image
data. However, the Gabor-like filters learned by classical sparse coding far overpredict
well-tuned simple cell receptive field (SCRF) profiles. A number of subsequent models
have either discarded the sparse dictionary learning framework entirely or have yet to
take advantage of the surge in unrolled, neural dictionary learning architectures. A key
missing theme of these updates is a stronger notion of structured sparsity. We propose
an autoencoder architecture whose latent representations are implicitly, locally organized
for spectral clustering, which begets artificial neurons better matched to observed primate
data. The weighted-£; (WL) constraint in the autoencoder objective function maintains
core ideas of the sparse coding framework, yet also offers a promising path to describe the
differentiation of receptive fields in terms of a discriminative hierarchy in future work.
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1. Introduction

Overcomplete sparse coding as a model of the primary visual cortex (V1) is a pillar of com-
putational neuroscience (Olshausen and Field, 1997). Training on natural image' patches
via a Hebbian learning rule produces filters that are spatially localized, bandpass, and ori-
ented to a select range of rotation angles. These filters are similar to those observed in the
mammalian cortex (Jones and Palmer, 1987), which are well-described by two-dimensional
Gabor functions. However, the properties of Gabor filters fitted to the simple cell receptive
field (SCRF) estimates produced by sparse coding have been shown to misalign with filters
fitted to rhesus macaque responses to drifting sinusoidal gratings (Ringach, 2002). In par-
ticular, the original sparse coding (SC) model overpredicts and underpredicts the number
of well-tuned and broadly-tuned cells, respectively. Well-tuned cells maintain several (more
elongated) subfields than the “blob-like” broadly tuned cells, as shown in Figure 1.

1. http://www.rctn.org/bruno/sparsenet /IMAGES.mat
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A number of models have been subsequently pro-
posed as a result. Of particular interest, (Rehn and
Sommer, 2007) limits the number of active neurons - ’
rather than the average neural activity, which signifi-
cantly improves diversity of shapes. (Zylberberg et al.,
2011) develops a spiking network based on synaptically
local information to overcome this discrepancy. Hy-
pothesizing that explicit image reconstruction is not a
biologically relevant task, (Yerxa and Simoncelli, 2022)
proposes a novel contrastive objective, Local Low Di-
mensionality (LLD), that minimizes the dimensionality
of encodings of spatially local image patches relative to their global dimensionality.

While LLD diversifies SCRF shapes

m compared to sparse coding, (Shen

.n. ‘_." et al., 2019) uses deep methods to
.-. n-. reconstruct the brain’s perceptions of
images from functional magnetic reso-
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Figure 1: Broadly-tuned  (left),
well-tuned (right)
macaque SCRFs
Ringach (2002)

nance imaging data, showing the rel-
evance of generative models of the vi-
sual cortex. In addition to past suc-
cess of the reconstructive framework,
we therefore investigate a deep recur-
rent autoencoder architecture with ad-
ditional regularization constraints to
enforce a similar flavor of locality:
namely, a weighted-¢; penalty (WL). While the hierarchical setting is left to future work by
LLD, this architecture naturally learns a hierarchy of representational units when trained
with an additional discriminative loss term (Rolfe and LeCunn, 2013). The reported find-
ings motivate the need for spatial reqularization of neurons and necessitate more precise
arguments against reconstructive frameworks like sparse coding.

Figure 2: The weighted-¢; penalty begets more of
the “blob-like” SCRF's that are missing
from the original model.

2. Previous Work

The general neural coding framework can be formulated as:
1
L(AX) = [Y — AX[J} +53(X) 1)

where Y € R¥™™ is a set of n stimuli of dimension d, A € R¥™™ is a learned set of m
basis functions, X € R™*" is a set of n latent representations of inputs, and S)(X) is a
regularization penalty. (Rozell et al., 2007), among other advances, associates sparse cod-
ing with S)(X) = ||X]|1 (columnwise). However, while neurons fire sparsely, they are also
specialized to certain types of visual stimuli in the input space. As formulated, (1) makes
no explicit assumptions about the structure of this sparsity in neural latent space.

LLD discards the reconstruction loss and encodes natural image stimuli to local en-

(1 Oy (x®) <P

sembles of image patches {(x;’,...,x )}, with superscipts denoting
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local ensembles and subscripts denoting ensemble members. LLD is a shallow network
where st = ReLU(Wx(]) +b). A covariance matrix El(]) = Cov ([sgj), . ,ssf)D is formed

7 1

on the j** ensemble. The LLD loss is formulated as:

E;[tr(SV))]

HWI =)

(2)
where 3, is the response covariance to all patches in the batch. Due to the algebraic con-
nection between trace and singular values, the numerator pushes the local ensembles to
low dimensional subspaces, while the denominator pulls the ensembles to as many different
low dimensional subspaces as possible. By exploiting this tradeoff between local and global
subspaces, the LLD model is able to better replicate the diversity of SCRF shapes, which
exhibit a phase symmetry in rhesus macaque data. These phases are obtained for each
learned filter by fitting a two-dimensional Gabor function, and their distributions for the
learned set of filters are shown in Figure 3.
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Figure 3: Gabor spatial phases of rhesus macaques are largely bimodal, but SC phases are
highly skewed due to the absence of “blob-like” fields in Figures 1 and 2.

3. Locality-Constrained Reconstructive Frameworks

Can we incorporate additional structure into the reconstructive framework to better match
the experimental data? The weighted-¢; constraint penalizes neural encoding activity based
on the distance between the natural image stimuli and the basis functions a;, where:

SYHX) =Eicp | D zjllyi — alf3 (3)
j=1

Here, neurons are specialized to certain types of input as large neural energy require-
ments will limit the strength of the firing rate x;. In contrast to the original sparse coding
alternating minimization scheme, we solve this through algorithm unrolling (Monga et al.,
2020) into a deep recurrent autoencoder, which projects the encodings onto the probability
simplex through a nonlinearity Pg.



HumMmL TasissA Ba

Loss

Repeat T Times - 'Q Funetion

Activation - t' \\
O—E@D—GED PHGED ®

Code Output
Input o

Figure 4: The unrolled architecture that learns A and X, where Pg = ReLU (x + b(x) - 1)
and Q (y) = Zje[m] ly — aj||? is a quadratic neuron. See appendix for details
(Tasissa et al., 2021).

This penalty can be mathematically interpreted as a bipartite graph Laplacian on the
m + n basis functions and inputs (vertices), whose edge weights between the yfh and a?h
vertices are x;;, and 0 otherwise. Thus, the stimuli can be easily clustered by performing an
eigendecomposition on this constructed Laplacian. In a discriminative classification task,
this will allow for a more rigorous analysis of a given neuron’s sensitivity to various class

types.
We have also explored an iterative Laplacian scheme (Kodirov et al., 2015) where:

SEAP(X) = tr(XGXT) (4)

for a pre-constructed (or iteratively updated) graph Laplacian G. The penalty (4) is typ-
ically used in addition to an ¢; penalty. Here, however, G is built on the stimuli space
to preserve local pairwise distances in latent space, whereas the weighted-£; penalty es-
sentially interpolates the manifold in RY with the set &jc(m) and then uses as few basis
functions as possible. Thus SfAP only constrains firing rates, while SKVL constrains both
the firing rates and the learned basis functions, which we refer to as “spatial regularization.”
In our experiments, we find

040 that the additional weighted-/;

o regularization technique shifts the

spatial phase distribution to a
more diverse range and vastly im-

proves symmetry. The weighted-
o010 {1 penalty makes the general
005 I I III sparse coding framework compet-
000 4 02' o !_6-(,3 et itive with other local frameworks

e s like LLD in terms of symmetry

while maintaining the core ideas of
the original model.
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Figure 5: Spatial phases of the weighted-¢; (WL) au-
toencoder. Locality-regularization is able to
shift the original sparse code distribution of
spatial phases 4
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4. Conclusion

The improved spatial symmetry warrants further exploration into deep recurrent autoen-
coders (with varying flavors of locality constraints) as a model of the primary visual cortex.
Is explicit image reconstruction biologically plausible? This assumption may be loosened
in future work by considering a distribution of codes instead of a point estimate (Park and
Pillow, 2020). However, given previous work showing the intrinsic hierarchical structure
of discriminative recurrent sparse autoencoders (Rolfe and LeCunn, 2013), the findings
presented here offer a potential path towards rigorously describing the differentiation of
receptive fields that match experimental data.
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Appendix A. Unrolled Network and Training
The spatial phase plots are obtained through a three-step process:

1. Train the (unrolled) network on the original Sparsenet data (Olshausen and Field,
1997) image patches

2. Using the learned basis functions, obtain the simple cell receptive field estimates
through spike-triggered averaging

3. Fit the 2D-Gabors to the the receptive field estimates

We leave the details of (2) and (3) aside for an extended abstract and refer the reader
to Ringach (2002) and Zylberberg et al. (2011). For step (1):

Encoder:
Let A ~ N(0,1) and x© =%© =0
Then, given A and y, we solve for x* € argmin, £(A,y,x) by projected gradient descent:

x(H1) = Py (>~<<t> — aVxL(A.y, i(t))) (5)
i(t-i—l) _ X(t+l) + ,Y(t) (X(H—l) - X(t)) (6)

for t € [T]. In the code, we run T = 15 iterations of projected gradient descent (similar to
FISTA). We have a = oyax(A) ™2 and v® is given by:

w_n"-1 ey _ L E V1490 O _ g
TG - D) M=

v (7)

The gradient of the weighted-¢; penalty is given by:

VL Ay x) = AT(Ax—y) + 1) lly —aylfPe; (8)
i=1
We also explored a Laplacian penalty SE4F(X) = tr(XGXT) to promote locality. The

gradient of this penalty is most clean when written in a batch setting:
Vxermao L4 (A Y, X) = AT(AX —Y) + A (Tyxp + X(GT +G)) (9)

where D — A = G € RY*? is a graph Laplacian built from a binary kNN graph on the inputs
Y, xp; that is, the edge weight between y; and y; is 1 if ¢, are k-nearest neighbors and 0
otherwise. We choose k£ = 4 in our experiments, though more rigorous analysis is required
to determine the effect of this hyperparameter.

Decoder:

The decoder is a simple linear readout, where given A and x, ¥ = Ax
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Appendix B. Discriminative Task on Whole Images

Much to our surprise, the weighted-£; loss and unrolled architecture also seems to learn
Gabor-like filters even on whole (albeit small) images in addition to random image patches.
Below, we include a set of filters learned on CIFAR10, for example. Although these filters
are less clean than those learned on the original Sparsenet data (Olshausen and Field, 1997),
this offers a path to training an end-to-end discriminative classification task in the spirit
of (Rolfe and LeCunn, 2013). How do the categorical and part of units of that paper align
with the well-tuned and broadly-tuned cells of the visual cortex, if at all?
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Figure 6: Learned filters when training the weighted-¢; loss on CIFAR10. While these
images are 32 x 32, the receptive fields appear to be quite localized in their
sensitivity.
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