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Abstract

Mixture of Experts (MoE) architectures have
significantly increased computational efficiency
in both research and real-world applications of
large-scale machine learning models. However,
their scalability and efficiency under memory
constraints remain relatively underexplored. In
this work, we present joint scaling laws for dense
and MoE models, incorporating key factors
such as the number of active parameters, dataset
size, and the number of experts. Our findings
provide a principled framework for selecting the
optimal MoE configuration under fixed memory
and compute budgets. Surprisingly, we show
that MoE models can be more memory-efficient
than dense models, contradicting conventional
wisdom. Extensive empirical validation confirms
the theoretical predictions of our scaling laws.
These results offer actionable insights for
designing and deploying MoE models in practical
large-scale training scenarios.

1. Introduction
Recently, language models have grown increasingly large,
a trend accelerated by Mixture of Experts (MoE) tech-
niques (Fedus et al., 2022; Du et al., 2022). MoE models are
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now widely adopted (Jiang et al., 2024; Dai et al., 2024) and
are generally considered compute-efficient (Ludziejewski
et al., 2024; Clark et al., 2022), though often considered to
be memory-inefficient (Zadouri et al., 2024). However, the
precise trade-offs between compute and memory efficiency
remain unclear.

Consider a motivating question: Is an MoE model the op-
timal choice when constrained by a fixed memory budget,
such as a single H100 node? While computational efficiency
is important, it does not directly determine the optimal num-
ber of experts. Increasing the number of experts has minimal
impact on computation but can drastically raise memory re-
quirements, often to a prohibitive level.

To address this question, we derive a joint scaling law for
both dense and MoE models, accounting for key factors such
as the number of active parameters, dataset size, and number
of experts. This framework provides a rigorous analysis of
model performance under strict memory constraints. Our
findings reveal that, contrary to common assumptions, MoE
models can be more memory-efficient than dense models.

Our work is the first to provide detailed guidance on se-
lecting the optimal number of experts for MoE models,
balancing both computational and memory constraints. Our
conclusions are based on extensive, large-scale experiments
comprising 270 models, scaled up to 5B parameters.†

In summary, the key contributions of this work are:

• We derive a joint scaling law for Mixture of Experts
and dense models,

L(Nact, D, Ê) = aÊδN
α+γln(Ê)
act

+ bÊωDβ+ζln(Ê) + c, (1)
where L is the final training loss, Nact is the number
of active parameters, D is the dataset size, Ê is the
monotonic transformation of the number of experts,
and c is the irreducible entropy of the dataset.

†Checkpoints and inference code are available on Hugging
Face. Codebase used to run the experiments can be found on
GitHub.
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Figure 1. (a) The loss of memory-constrained models predicted using our scaling law under a fixed training budget of 1022 FLOPs. Each
curve represents a different number of experts. The lines are truncated at compute-optimal points, as undertrained models are both bigger
and worse in terms of loss, thus pointless in a memory-constrained scenario. Shaded areas present memory optimal number of experts for
the corresponding parameter budgets. (b) Experimental validation of the thesis that MoE can be memory optimal. The marked area shows
an interval in which a training compute-matched MoE achieves better loss than an overtrained dense model with the same number of total
parameters (1.1B). The resulting MoE was trained for longer and had less active parameters, making it more practical.

• Based on the proposed scaling law, we show that the
choice of the optimal number of experts (including
dense models with E = 1) depends on specific com-
putational and memory constraints, see Figure 1. Fur-
thermore, we demonstrate how the optimal token-to-
parameter ratio depends on E.

• We show that MoE can often be the preferred alter-
native to dense models, even if GPU memory is the
constraining factor. We validate our theoretical find-
ings by training a set of 1.1B-parameter models under
identical compute and total memory budgets. The MoE
models achieve a lower final loss, confirming their su-
perior efficiency in practice. Furthermore, we observe
that MoE models only have lower loss, but deliver
higher performance during inference.

2. Related Work
Mixture of Experts. Mixture of Experts (MoE) was in-
troduced by Jacobs et al. (1991), who combined a gat-
ing network with a set of expert networks. Shazeer et al.
(2017) applied MoE to an LSTM-based model (Hochreiter
& Schmidhuber, 1997), scaling the architecture up to 137
billion parameters. In Transformer-based LLMs, MoE is
most often applied as a replacement for the feed-forward
layer (Lepikhin et al., 2020; Shazeer et al., 2018). It re-
places the feed-forward’s MLP with a set of expert MLPs
along with a router, which selects one or more MLPs for
each token. With the recent surge in LLM research, MoE
models are gaining even more traction. This is exemplified

by the development of extremely large-scale models such
as DeepSeek-R1 and Qwen2.5-Max (DeepSeek-AI et al.,
2025; Team, 2024a). Apart from language, MoE has also
been shown to be an effective measure of scaling in vision
(Riquelme et al., 2021).

In our work, we use the standard Switch MoE layer (Fedus
et al., 2022), which routes each token to one expert and
encourages even token-to-expert assignment via the addition
of a differentiable load-balancing loss.

Scaling Laws. Scaling laws refer to empirically derived
equations that relate model loss to factors such as the number
of parameters, the quantity of training data, or the computa-
tional budget. For dense Transformers, scaling laws were
initially explored by Hestness et al. (2017) and Kaplan et al.
(2020), who identified power-law relationships between the
final loss, model size, and dataset size. Hoffmann et al.
(2022) expanded this by incorporating variable cosine cycle
lengths and adjusting the functional form of the equation:

L(Nact, D) = mNµ
act + nDν + c. (2)

Scaling laws have also been applied to other architectures
and training setups. Zhai et al. (2022) derived scaling laws
for Vision Transformers, scaling the models up to 2B pa-
rameters. Henighan et al. (2020) examined autoregressive
modeling across multiple modalities, while Ghorbani et al.
(2021) focused on machine translation. Frantar et al. (2023)
studied the effects of pruning on vision and language Trans-
formers, determining optimal sparsity given a fixed compute
budget.
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Figure 2. (a) IsoFLOP profiles for selected training budgets. Compute optimal points are marked for each curve. (b) Savings from
switching from a compute-optimal dense model to MoE . The advantage of using MoE increases with larger models and expert counts.

Clark et al. (2022) investigated scaling in MoE models,
varying model size and the number of experts on a fixed
dataset, and concluded that routed models are more efficient
only up to a certain size. Their formula took the form:

L(Nact, Ê) = aÊδN
α+γ ln(Ê)
act , (3)

where Ê is a monotonic transformation of the number of
experts E defined as:

1

Ê
=

1

E − 1 +
(

1
Estart

− 1
Emax

)−1 +
1

Emax
. (4)

These analyses have since been extended by Ludziejewski
et al. (2024) and Dai et al. (2024), who considered variable
dataset size as well as the granularity of experts. In our
work, we keep the experts non-granular; however, we treat
the number of experts and the number of training tokens as
variables. Sardana et al. (2024) assumes a fixed joint infer-
ence and training budget. We make similar assumptions;
however, we consider accelerator memory as a limiting fac-
tor and extend the analysis to MoE models, which can serve
as a more compute-friendly alternative to dense models.
Yun et al. (2024) have focused on MoE inference optimality
and measuring real hardware efficiency.

3. Joint MoE Scaling Laws
We now derive the functional form of our joint scaling laws
for both dense Transformers and MoE, relating the number
of active model parameters Nact, training tokens D, and
MoE experts E.

Fixed Number of Experts. Following Hoffmann et al.
(2022) and established practice in the literature (Frantar

et al., 2023; Kumar et al., 2024; Ludziejewski et al., 2024),
we postulate the following form of the equation:

L(Nact, D,E) = m(E)N
µ(E)
act + n(E)Dν(E) + c(E), (5)

assuming that if we fix the number of experts the model
performance can be described using Equation 2. In the
subsequent part, we will postulate how m,µ, n, ν, c depend
on E, deriving the joint equation.

Constant Factor. c(E) represents irreducible loss caused
by the inherent entropy of the dataset. Thus, it does not
depend on the architecture (E in our case):

c(E) := c.

Interaction of E with Model and Dataset Size. To quan-
tify the interaction between the number of experts and other
training parameters, we gather observations from related
work:

1. Scaling in E can be described as a power law (Clark
et al., 2022).

2. For a fixed dataset size, as model size increases, the
benefit of using an MoE diminishes (Clark et al., 2022).

3. For a fixed model size, as the number of training tokens
increases, the benefit of an MoE grows (Ludziejewski
et al., 2024).

Motivated by Observation 1, we set

m(E) = aEδ, n(E) = bEω,

reflecting the power-law relation between E and the loss.
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Additionally, to ensure flexibility in modeling Observations
2 and 3, we introduce an interaction with the exponents over
Nact and D:

µ(E) = α+ γ ln(E),

ν(E) = β + ζ ln(E).

Note that if we ignore the second and third terms in Equa-
tion 5, this yields a functional form identical to Equation 3.

Empirically, we observe a good fit for our formula, as de-
scribed in Section 5. This shows that our proposed inter-
actions between E, Nact, and D can accurately model the
performance of MoE models.

Modeling of E. When the number of experts is small, a
certain overhead, caused, for example, by interference from
auxiliary losses, can overshadow the benefits of conditional
computation. Additionally, using very large numbers of
experts brings diminishing returns. To account for these
phenomena, we follow Clark et al. (2022) and use a trans-
formation of the number of experts Ê given in Equation 4.

Joint MoE Scaling Law. By combining these observations,
we establish the final form of our scaling law:

L(Nact, D, Ê) = aÊδN
α+γln(Ê)
act + bÊωDβ+ζln(Ê) + c.

(6)

We fit the coefficients in Equation 6 based on the results of
our experiments; see Table 3. In Section 4, we present the
outcomes and findings derived from the scaling laws. The
details of the training runs, as well as the fitting procedure,
are described in Section 5.

4. Compute and Memory Optimality
In this section, we employ our scaling laws to derive
recommendations on optimal settings in various training
and inference scenarios. See Appendix A for details on
counting FLOPs, the relations between active and total
parameters, and other technical details.

4.1. Compute Optimality

A model is considered compute-optimal if, among models
trained with the same compute budget F , it achieves the
lowest loss. To find such an optimal configuration, we
optimize the following:

argmin
Nact,D,E

L(Nact, D,E) (7)

s.t. 6NactD = F (8)

Optimal N and D Depend on the Number of Experts.
Assuming a given number of experts E, the compute-
optimal training configuration can be achieved by select-
ing the appropriate trade-off between training tokens and

Table 1. Example compute-optimal training configurations for
MoE models. For every training budget as the number of experts
increases, the optimal Dopt also goes up while N opt

act decreases.

Training Budget Experts N opt
act Dopt

1× 1020 1 1.7B 9.7B
2 1.5B 11.4B
4 1.2B 13.9B
8 990M 17B
16 810M 20.7B

5× 1020 1 4B 21B
2 3.5B 24B
4 3B 28B
8 2.5B 33.2B
16 2.1B 39B

1× 1021 1 5.7B 29.3B
2 5B 33B
4 4.4B 38B
8 3.8B 44.3B
16 3.3B 51.2B

model size. IsoFLOP slices comparing the predicted loss
with dataset size for selected compute budgets are plotted
in Figure 2 (a).

For any fixed E our scaling law has the Chinchilla functional
form of Equation 2. Thus, from Hoffmann et al. (2022), the
compute-optimal number of tokens and active parameters
for the budget F and the number of experts E are given by

N opt
act (F ) = G

(
F

6

)a

, Dopt(F ) = G−1

(
F

6

)b

, (9)

where

G =

(
µ(E)m(E)

ν(E)n(E)

) 1
µ(E)+ν(E)

,

and

a =
ν(E)

µ(E) + ν(E)
, b =

µ(E)

µ(E) + ν(E)
.

The full derivation of N opt
act , Dopt can be found in App.C.

We compare the optimal configurations for several compute
budgets in Table 1.

Both from comparing the IsoFLOP slices (Figure 2) and
the values listed in the table, we can see that the compute-
optimal configuration for a given compute budget clearly
depends on E, with MoE models requiring comparatively
larger datasets and correspondingly smaller numbers of ac-
tive parameters.
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Finding 1.
More experts → higher tokens-to-param ratio.
Assume a fixed compute budget. In this scenario, when
increasing the number of experts, it is optimal to de-
crease the number of active parameters and increase
the number of training tokens accordingly (Table 1).

Mixture of Experts is Compute Optimal. Now, we com-
pare the performance across various numbers of experts,
with respective values of tokens and active parameters op-
timized. As illustrated in Figure 2, we observe significant
compute savings for MoE models compared to dense mod-
els, with a larger number of experts providing more pro-
nounced benefits.

Finding 2. More experts → better performance.
For a given compute budget, increasing the number of
experts always improves performance, provided the
size of the model and the number of training tokens
are adjusted (Figure 2 (a)).

The higher efficiency of MoE in terms of training compute
comes at a price of increased memory requirements. How-
ever, somewhat surprisingly, we find that MoE models can
outperform dense models of the same size trained with the
same amount of training compute—a result we describe in
more detail in the next subsection.

4.2. Model Memory Optimality

Often, it is insufficient to consider models solely from the
perspective of compute optimality, as a compute-optimal
model can be impractically large, preventing its deployment
on available hardware. Additionally, a model can be in-
efficient when run on a GPU with a small batch size (He,
2022). It is thus natural to consider a straightforward exten-
sion to the notion of compute optimality, specifically model
memory optimality. We say a model is memory optimal if,
among models trained with the same compute budget F and
having at most M parameters, it achieves the lowest loss:

argmin
Nact,D,E

L(Nact, D,E)

s.t. 6NactD = F, Ntotal ≤ M

Note that model memory-matched dense and MoE models
differ in the number of active parameters—MoE uses just
a fraction of them. Intuitively, it should thus have worse
performance. At the same time, given some budget, it can be
trained on more tokens, lowering the loss. Our scaling laws
suggest that MoE models can be model memory efficient.
We validate this claim by training a 1.1B dense model and
a model size and FLOP matched E = {2, 4} counterparts

(Figure 1). Significantly, the MoE models attains lower loss
even if the dense model is overtrained (i.e., after passing its
compute-optimal token count).

Finding 3. MoE can also be memory-efficient.
A total-parameter-matched MoE model can outper-
form a dense model trained with the same compute
budget (Figure 1). Moreover, such an MoE model is
more compute- and memory-efficient at inference.

4.3. Total Memory Optimality

During autoregressive generation, a decoder-only model
processes a single token while storing activations (keys and
values) for previous tokens in the KV cache. In the case of
multi-head attention, its size equals 2T ×Nblocks × dmodel,
where T is the number of tokens in the cache (possibly
within multiple sequences in the batch). Including the cache
size yields the optimization criterion:

argmin
Nact,D,E

L(Nact, D,E)

s.t. 6NactD = F, Ntotal + 2TNblocksdmodel ≤ M

For practical values of T , a fair comparison of memory
requirements should include the size of KV cache in addition
to the model size. Figure 3 (b) presents the optimal models
for a given compute and varying memory constraints when
the size of the KV cache is included. Importantly, MoE
models compare more favorably to dense models in this
graph, and as T increases, they outperform dense models at
ever smaller model sizes. In Figure 1 (b), the E = {2, 4}
models employ a smaller KV cache. It means that if memory
is constrained, the MoE model can store longer contexts or
work with a larger batch size than the dense model.

4.4. Inference Optimality

Large models, while capable, might also be too costly to run
due to their high computational demand. To account for this
drawback, we can further assume that a model will process
some number of tokens, Dinf, throughout its lifetime and
find the best model whose demands do not exceed some
predefined joint training and inference budget:

argmin
Nact,D,E

L(Nact, D,E)

s.t. 6NactD + 2NactDinf = F.

Figure 3 (c) presents the optimal models for a given compute
and varying memory constraints if a joint budget needs to
accommodate both training and inference demands. We
find that in this scenario, MoE models outperform dense
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Figure 3. Loss predicted for various expansion rates at a FLOPs budget F = 5e22. The x-axis denotes the size of the corresponding dense
model, possibly with KV cache. (a) The model size is simply the number of parameters. (b) The model size includes the KV cache
(assuming 8192 tokens). (c) Additionally to KV cache, the training budget is reduced by the inference cost on 100B tokens.
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Figure 4. Investigation of the optimal number of experts for three different model sizes, 2B, 5B, and 10B; and in three different scenarios,
from left to right: simply measuring the size of the model, including the size of a KV-cache with 32k tokens, and including the inference
cost of processing 100B tokens.

at smaller scales than in simple compute-optimality due to
decreased inference FLOPs. The E = 2 and E = 4 models
shown in the Figure 1 use respectively 36% and 61% less
FLOPs per token than their dense counterpart.

4.5. Summary

The notions of inference optimality and total memory op-
timality can naturally be combined. Figure 3 (c) presents
a comparison between different numbers of experts, where
the KV cache is included in the model’s memory require-
ments and the compute budget is shared between training
and inference. Finally, Figure 4 investigates the optimal E
for a sample of model sizes while including the KV cache
and considering the inference cost.

For practitioners, as a simplification of our analysis, we
propose a general rule of thumb:

Rule of Thumb. An MoE model with E ≤ 8 ex-
perts, trained on E-times more tokens than a compute-
optimal dense model, outperforms it while maintaining
the same total parameter count.

Note that, in this scenario FLOPs matched MoE will gen-
erally have less than E-times larger dataset, but we wanted
to keep this rule simple and conservative. Detailed compar-
isons and differences between memory and FLOPs matched
models can be found on Figures 1 & 4.

It is important to remember that such scaling might not
always be possible in practice due to limited dataset sizes.
This points towards a possible drawback while using MoE
and underscores the need for growth in dataset sizes.
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Figure 5. (a) Quality of the fit. The maximum absolute error on the held-out extrapolation is 0.018. (b) Predicted loss compared with an
observed loss for E = 1. (c) Predicted loss (dashed line) compared with an observed loss for E = 4. We can see that on the training
dataset, the error increases in an undertrained setting (D/N < 1 — more parameters than tokens). However, this scenario is never
practical from our perspective.

Table 2. Optimal E for different training budgets and three typical
memory constraints, corresponding to an RTX4090 GPU, an H100
GPU, and an 8xH100 GPU node. We assume 16k tokens in the
KV cache and bfloat16 for storing model weights and activations.

Memory Constraint

Training Compute 24GB 80GB 640GB

1× 1021 16 ≥ 32 ≥ 32
1× 1022 4 16 ≥ 32
1× 1023 1 8 ≥ 32
1× 1024 1 1 16

5. Fitting the Scaling Law
In this section, we present details of experiments and the
procedure of fitting the scaling law parameters, see Table 3
in the Appendix. Those results are based on extensive, large-
scale empirical evidence, including 270 models with up to
5B parameters, trained on a variety of compute budgets. For
a full list of experiments, see Appendix H.

5.1. Model Hyperparameters

The selection of hyperparameters and training details is
crucial for ensuring the robustness of scaling laws (Porian
et al., 2024; Pearce & Song, 2024). In our work, we employ
a set of best practices and modern design choices, aiming to
provide accurate predictions applicable to real-life practice.

All models used in this study are decoder-only Transformers
trained on the highly filtered FineWeb-Edu (Penedo et al.,
2024). It is a subset of FineWeb, whose curation process
was guided using popular benchmarks. FineWeb-Edu is se-
lected using a filter for highly educational content. We use a

Transformer model with Switch (Fedus et al., 2022) layers,
using standard values of router z-loss 0.001 and load balanc-
ing loss 0.01. The GPT-2 tokenizer (Radford et al., 2018) is
employed. For better stability, weight initialization follows a
truncated normal distribution with a reduced scale of 0.1, as
suggested by (Fedus et al., 2022). Mixed precision training
is used, with the attention mechanism, position embeddings
RoPE (Su et al., 2024) and router always maintained at high
precision. The models use the SwiGLU activation (Shazeer,
2020) with hidden size equal to 3dmodel and activate one
expert per token (unless the token is dropped due to limited
capacity). For evaluation, we increase the capacity factor to
ensure dropless processing of the tokens.

5.1.1. BATCH SIZE RAMP-UP

Performance of a deep learning optimization procedure
can suffer as a result of using an exceedingly large batch
size (McCandlish et al., 2018). To mitigate this potential
issue, especially early in the training, we employ batch-size
ramp-up. Similar strategies are used in contemporary LLM
training runs (Rae et al., 2022; Dubey et al., 2024). We in-
crease the batch size from 64K to 128K after 0.5B training
tokens and further to 256K after 1B training tokens. Instead
of using noise scale as a critical batch size predictor (Mc-
Candlish et al., 2018) we opted for a straightforward grid
to directly predict a transition point after which increased
batch size does not impair performance.

5.1.2. LEARNING RATE SCALING

Kaplan et al. (2020) have shown that scaling laws for hyper-
parameters can be used to adjust them according to the size
of the model in the case of dense Transformers. For MoE
models, we find the literature inconclusive–while some (Dai

7



Joint Scaling Laws for Mixture of Experts

et al., 2024) pretrain MoEs with lower LR than correspond-
ing dense models, others (Zoph et al., 2022) report better
performance when finetuning MoEs with higher learning
rates. To fill this gap, we derive a scaling law for the peak
learning rate for MoE based on the number of active non-
embedding parameters Nact\e and the number of experts
E:

LR(Nact\e, E) = exp(8.39−0.81 ln(Nact\e)−0.25 ln(E)),
(10)

and use this equation to set the learning rate in our main
scaling laws experiments. We fit the coefficients of this
equation using the least squares method, minimizing the
error between the prediction and the optimal learning rate
from the experiment grid. Contrary to Kaplan et al. (2020),
we use a linear transformation of the parameter count to
predict the logarithm of the learning rate, instead of directly
predicting the learning rate. This approach allows us to
avoid the breakdown of the formula above 1010 parameters
mentioned in their work, where the predicted learning rate
becomes negative. This phenomenon is independent of
the actual fit and is simply a property of the formula used.
Besides being well-defined in the extrapolation, we argue
that optimal learning rates visibly follow this logarithmic
trend, as seen in Figure 8 in Appendix.

Finding 4. More experts → lower learning rate.
Increasing the number of experts in MoE model should
be accompanied by lowering the learning rate accord-
ingly (Figure 8 in Appendix).

The second difference between our formula and the one by
Kaplan et al. (2020) is incorporating the number of experts,
allowing us to model the optimal behavior of this hyperpa-
rameter across dense models and different MoEs. This is
an important detail that allows unbiased comparison among
different models, ensuring that each one is optimally tuned.
Furthermore, it allows us to answer the question of whether
MoE should be trained with a lower or higher LR. While our
formula accommodates both scenarios, we can clearly see in
Figure 8 in Appendix that increasing E requires lower learn-
ing rates, resulting in a negative value for the coefficient.
Moreover, we verify this thesis by tuning the fit on E = 1
and E = 8, and validating it on interpolation E = 4 and
extrapolation E = 32. In both cases, the validation predicts
the optimal learning rate for the model configuration or a
value with practically the same performance.

In Figure 9 in Appendix, we perform an ablation of this
additional power law on E by repeating our entire fitting
procedure without the E component. This shows, especially
with the extrapolation on E = 32, that dependence on E
is crucial, and its omission can impair the performance of
MoEs.

Further details about our scaling rule for learning rates can
be found in the plots in Appendix G.

5.1.3. LEARNING RATE SCHEDULE

Hägele et al. (2024) suggest that a constant learning rate
schedule can yield similar performance to other established
methods, such as the cosine schedule. At the same time, it
offers a valuable advantage when varying training duration,
as intermediate checkpoints can be reused when training
models for a longer time. With a cosine schedule, interme-
diate checkpoints can introduce bias into the fit, according
to the analysis of Kaplan et al. (2020) by Hoffmann et al.
(2022). We employ a constant learning rate schedule with a
linear warmup over the initial 130M tokens and with a linear
decay from the peak learning rate to 0 over the final 20% of
tokens. For each model size, longer runs reuse intermediate
checkpoints from the shorter ones.

5.2. Optimization of Formula Coefficients

Following Hoffmann et al. (2022), we use the LBFGS al-
gorithm to optimize the coefficients of formula 6. See
Appendix B for details. We observe a good fit with
RMSEv = 0.0039 on a held-out set of our 30 runs with the
lowest loss, and RMSEt = 0.0062 on the training dataset.
To further verify the validity of our formula, we train sep-
arate Chinchilla scaling laws 2 for different E using the
same hyperparameters and the corresponding subset of the
initializations grid. This approach serves as a lower bound
for loss of our joint formula on the training dataset, as it
can emulate its coefficients; however, it is more prone to
overfitting because effectively more parameters are utilized.
Using this approach, we obtain lower error on the training
dataset of RMSEsep

t = 0.0059 and marginally higher on the
validation RMSEsep

v = 0.0041. We believe this is strong
confirmation that our joint formula is actually describing
how variable E influences training.

In Figure 5, we visually verify the extrapolation of the joint
fit. Prediction errors are categorized by different numbers
of experts, highlighting that our joint formula is not biased
for any specific E.

6. Limitations and Future Work
In our work, we focus on the standard MoE variant, where
the size of the expert is the same as the size of the feed-
forward layer of a corresponding dense model. Some re-
cent findings (Dai et al., 2024; Ludziejewski et al., 2024;
Muennighoff et al., 2024; Team, 2024b) indicate that fine-
grained MoE models are more efficient and, most probably,
would enhance our reported benefits of using MoE. Simi-
larly, adopting a dropless MoE (Gale et al., 2023) approach
instead of relying on a capacity factor could lead to fur-
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ther improvements. We leave the integration of those MoE
improvements for future work.

Moreover, our Chinchilla-based optimality analysis uses
FLOPs, that may not reflect wall-clock training time of
models with different architectures. While analyzing to-
tal parameter, instead of active parameter matched models
partly alleviates this issue because of the same memory-
bottleneck, various implementations and distributed training
algorithms are not considered in this work.

We assumed, the Chinchilla scaling law (2) as the basis of
our formulas. While this is well-grounded in literature, this
formula is known to have limitations, especially for a wide
range of token-to-parameter ratios. We observed this also in
some of our experiments, as outliers often are highly under
or over-trained.

7. Conclusions
In this work, we derived the joint scaling laws for Mixture
of Experts, relating the loss of the model to the number of
parameters, the number of training tokens, and the num-
ber of experts. By considering both compute and memory
constraints, as well as the expected inference workload,
we demonstrated that MoE models can outperform dense
models even when constrained by memory usage or total
parameters, contrary to common assumptions and intuitions
that MoE models are more memory-intensive than dense
models.

Our analysis reveals how the optimal training strategies shift
as the number of experts varies. This provides a principled
framework for selecting MoE hyperparameters under given
constraints, highlighting the trade-offs between memory and
compute performance.
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A. Technical Details
A.1. Counting Parameters

There are many ways the size of a model can be measured. The two most important distinctions are whether total or active
parameters are counted and whether the parameters in the embedding and unembedding layers are counted. Various papers
assume different notations, notably Kaplan et al. (2020) use nonembedding parameters while Hoffmann et al. (2022) opt
for the parameter count including embedding and unembedding. Throughout our work, we try to make it clear which
way of counting we are using in each particular instance. When no additional information is given, Nact and Ntotal denote
respectively active and total parameters, including the embedding and unembedding.

If we let dmodel be the hidden dimension of a model, and dvocab be the vocabulary size (50,257 in our case), then the following
relations hold:

Ntotal = 2dmodeldvocab + (4 + 9E)Nblocksd
2
model (11)

Nact = 2dmodeldvocab + 13Nblocksd
2
model (12)

A.2. Counting FLOPs

Basing on Sardana et al. (2024), we assume the cost of training to be Ftraining = 6NactDtraining, and the cost of inference to
be Finference = 2NactDinference. Due to the relatively small number (≤ 32) of experts used with implicit expert granularity
of 1 (Ludziejewski et al., 2024), we can consider the memory and FLOPs cost of routing to be negligible, following Clark
et al. (2022).

A.3. Model Configs

The vast majority of our experiments use a simple rule for scaling the config, i.e. Nblocks = Nheads = dmodel/64 and assume
these relations hold in all calculations. We base this rule on findings by Kaplan et al. (2020).

B. Fit Details

Table 3. Fitted coefficients of our joined formula.

a α δ γ b β ω ζ Estart Emax c

35.91 −0.1889 −0.2285 0.0098 35.98 −0.1775 0.5529 −0.0259 2.0732 290.4521 1.3637

Table 4. The fitted coefficients of our joint formula, Equation (6), reduced to the Chinchilla scaling law, Equation (2), for a given
number of experts, E. We observe that the dataset exponent, ν, increases significantly. This is one of the reasons why compute-optimal
parameter-to-token ratios change with E.

E m µ n ν c

1 30.3640 −0.1817 53.9838 −0.1965 1.3637
2 27.7982 −0.1780 66.8401 −0.2065 1.3637
4 24.8462 −0.1731 87.7022 −0.2192 1.3637
8 21.8330 −0.1676 119.9126 −0.2338 1.3637

16 19.0159 −0.1617 167.5073 −0.2494 1.3637
32 16.5424 −0.1557 234.6726 −0.2652 1.3637

Following Hoffmann et al. (2022), we use the LBFGS algorithm with a learning rate of 1e−4 and weight decay of
1e−5 to fit the coefficients of Equation 6, optimizing the Huber loss with δ = 0.01 over the set of our training runs
described in table in Appendix H. Instead of removing outliers and underperforming models from the training set, we
underweight them proportionally to the loss. Optimization hyperparameters were manually tuned to minimize error over
the training dataset. The final fitted coefficients of Equation 6 are within the boundaries of the grid of initializations
given by: α ∈ {0.05, 0.25, 0.5}, β ∈ {0.05, 0.25, 0.5}, A ∈ {30, 100, 300}, B ∈ {30, 100, 300}, C ∈ {0.5, 1, 2},
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δ ∈ {−0.5, 0, 0.5}, γ ∈ {−0.5, 0, 0.5}, ω ∈ {−0.5, 0, 0.5}, ζ ∈ {−0.5, 0, 0.5}. The selected coefficients were those with
the lowest score, defined as the sum of RMSE on the training and a held-out extrapolation validation set. The formula in
Equation 6 was calculated in logarithm, without any exponentials, using only linear transformations and the logsumexp
operation. It was optimized to predict the logarithm of L, and parameters a, b, and c were optimized in logarithm. All these
steps were taken to increase numerical stability and were essential for proper convergence.

C. Derivation of N opt
act and Dopt

To derive the optimal Nact, D given some compute budget F and E, one needs to solve:

arg min
Nact,D

LÊ(Nact, D) s.t. F = 6Nact D.

To solve for Nact, substitute:

D =
F

6Nact
,

and set the derivative to 0:

d

dNact
LÊ(Nact, D) =

d

dNact

[
m(Ê)N

µ(Ê)
act + n(Ê)

(
F
6

)ν(Ê)

N
−ν(Ê)
act

]
= 0.

After rearranging:

N opt
act =

(m(Ê)µ(Ê)

n(Ê) ν(Ê)

)− 1
µ(Ê)+ν(Ê)

(F
6

) ν(Ê)

µ(Ê)+ν(Ê)
.

The derivation of Dopt is analogous.

D. Token Dropping Analysis
In general, we observe that the load balancing loss quickly induces balance between experts. Overall, the percentage of
dropped tokens is low and doesn’t exceed 10%, therefore doesn’t significantly affect the training efficiency. Below we
present a plot of per-layer average amount of dropped tokens (excluding the first 10% of training), for 2 selected active
parameter counts and number of experts varying from 2 to 32. We observe relatively the largest ratios of dropped tokens in
the initial and last layers.
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Figure 6. Dropped tokens for selected models.
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E. Downstream Performance
In addition to measuring pretraining loss, we evaluate downstream performance using LM Evaluation Harness (Gao et al.,
2023). Unlike in training, we employ dropless MoE. We observe a strong correlation between the pretraining perplexity
and downstream performance across all E’s. The results can be seen in Figure 7. On some tasks (HellaSwag, Winogrande,
SciQ), dense models seem to outperform MoE models given the same pretraining perplexity. They also seem to be more
robust to domain shift in language modeling, as exemplified by the results on the LAMBADA benchmark. On some other
tasks (e.g. OpenBookQA), MoE models seem to fare similarly or slightly better than dense models if they have been trained
to the same pretraining perplexity.
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F. Bootstrap Results
To quantify the uncertainty of our derived results, we calculate bootstrapped results for the optimal number of active
parameters and training tokens, following (Hoffmann et al., 2022). The results are shown in Table 5. We sample 80% of
data 100 times and report the 10th and 90th percentiles.

Table 5. Bootstrap intervals for the optimal N opt
act and Dopt across training budgets and expert counts.

Training Budget Experts N opt
act (90% interval) Dopt (90% interval)

1× 1020 1 1.5B–2.1B 7.9B–11.1B
2 1.4B–1.8B 9.1B–12.1B
4 1.2B–1.6B 10.3B–14.1B
8 940.0M–1.5B 11.4B–17.7B
16 732.7M–1.3B 12.6B–22.8B
32 559.5M–1.2B 13.7B–29.8B

1× 1021 1 4.5B–7.8B 21.4B–37.3B
2 4.1B–7.3B 22.7B–40.9B
4 3.5B–7.0B 23.7B–47.6B
8 2.8B–6.8B 24.7B–60.1B
16 2.0B–6.6B 25.4B–81.8B
32 1.6B–6.5B 25.7B–104.1B

1× 1022 1 13.3B–30.0B 55.5B–125.3B
2 12.1B–30.0B 55.6B–137.3B
4 10.3B–30.6B 54.5B–161.4B
8 8.0B–31.5B 52.9B–207.2B
16 5.9B–32.9B 50.6B–284.4B
32 4.4B–34.5B 48.4B–380.6B
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G. Learning Rate Scaling Fit

Figure 8. Visualization of the fit (E ∈ {1, 8}) of our LR scaling rule, interpolation (E = 4) and extrapolation (E = 32).

Figure 9. Ablation for the LR scaling rule fit without considering the number of experts E. While performance on the training set
(E ∈ {1, 8}) looks acceptable, the extrapolation on E = 32 is clearly suboptimal, validating the need for considering E.
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H. Experiments Listing

Ntotal Nattn_heads Nblocks dmodel Nact E D

5.0B 16 16 1024 321M 32 16.0B, 8.0B, 4.0B, 2.0B, 1.0B, 500M
3.8B 28 28 1792 1.3B 4 11.1B, 5.6B, 2.8B, 2.0B
3.3B 11 21 1408 683M 8 16.0B, 8.0B, 4.0B, 2.0B, 1.0B, 500M
3.0B 26 26 1664 1.1B 4 80.0B, 64.0B, 48.0B, 32.0B, 16.0B, 8.0B, 4.0B, 2.0B, 1.0B, 500M
2.7B 36 36 2304 2.7B 1 9.2B, 5.5B, 2.8B, 2.0B, 1.4B, 980M
2.6B 30 30 1920 1.6B 2 5.4B, 2.7B
2.6B 16 16 1024 321M 16 16.0B, 8.0B, 4.0B, 2.0B, 1.0B, 500M
2.2B 28 28 1792 1.3B 2 18.6B, 11.1B, 5.6B, 4.0B, 2.8B, 2.0B
2.1B 12 12 768 169M 32 8.0B, 4.0B, 2.0B, 1.0B, 500M
2.1B 10 16 1280 469M 8 32.0B, 16.0B, 8.0B, 4.0B, 2.0B, 1.0B
1.9B 22 22 1408 709M 4 35.3B, 12.2B, 10.6B, 7.7B, 5.3B, 3.8B
1.8B 11 21 1408 683M 4 8.0B, 16.0B, 4.0B, 2.0B, 1.0B, 500M
1.8B 26 26 1664 1.1B 2 16.0B, 8.0B, 4.0B, 2.0B, 1.0B, 500M
1.6B 30 30 1920 1.6B 1 5.4B, 2.7B
1.4B 16 16 1024 321M 8 16.0B, 8.0B, 4.0B, 2.0B, 1.0B, 500M
1.3B 28 28 1792 1.3B 1 6.5B, 3.3B, 18.6B, 11.1B, 5.6B, 4.0B, 2.8B, 2.0B
1.3B 10 10 640 118M 32 4.0B, 2.0B, 1.0B, 500M
1.2B 10 16 1280 469M 4 32.0B, 16.0B, 8.0B, 4.0B, 2.0B, 1.0B, 500M
1.1B 12 12 768 169M 16 8.0B, 4.0B, 2.0B, 1.0B, 500M
1.1B 26 26 1664 1.1B 1 14.0B, 12.0B, 10.0B, 80.0B, 64.0B, 48.0B, 32.0B
1.1B 26 26 1664 1.1B 1 16.0B, 8.0B, 4.0B, 2.0B, 1.0B, 500M
1.1B 22 22 1408 709M 2 3.8B, 49.8B, 24.9B, 12.5B, 6.2B, 3.1B, 1.6B, 778M
1.1B 22 22 1408 709M 2 21.8B, 18.7B, 15.6B, 35.3B, 12.2B, 10.6B, 7.7B, 5.3B
1.1B 18 18 1152 426M 4 31.0B, 25.9B, 20.7B, 10.4B, 5.2B, 2.6B, 1.3B
1.1B 11 21 1408 683M 2 32.0B, 16.0B, 8.0B, 4.0B, 2.0B, 1.0B, 500M
890M 24 24 1536 890M 1 9.9B, 5.0B
850M 20 20 1280 555M 2 16.0B, 8.0B
774M 16 16 1024 321M 4 16.0B, 8.0B, 4.0B, 2.0B, 1.0B, 500M
709M 22 22 1408 709M 1 35.3B, 12.2B, 10.6B, 7.7B, 5.3B, 3.8B, 12.5B, 6.2B
705M 10 16 1280 469M 2 32.0B, 16.0B, 8.0B, 4.0B, 2.0B, 1.0B, 500M
683M 11 21 1408 683M 1 32.0B, 16.0B, 8.0B, 4.0B, 2.0B, 1.0B, 500M
671M 10 10 640 118M 16 4.0B, 2.0B, 1.0B, 500M
664M 8 8 512 79M 32 2.0B, 1.0B, 500M
615M 12 12 768 169M 8 8.0B, 4.0B, 2.0B, 1.0B, 500M
555M 20 20 1280 555M 1 16.0B, 8.0B
472M 16 16 1024 321M 2 16.0B, 8.0B, 4.0B, 2.0B, 1.0B, 500M
469M 10 16 1280 469M 1 32.0B, 16.0B, 8.0B, 4.0B, 2.0B, 1.0B, 500M
376M 10 10 640 118M 8 4.0B, 2.0B, 1.0B, 500M
362M 8 8 512 79M 16 2.0B, 1.0B, 500M
360M 12 12 768 169M 4 8.0B, 4.0B, 2.0B, 1.0B, 500M
321M 16 16 1024 321M 1 16.0B, 8.0B, 4.0B, 2.0B, 1.0B, 500M
289M 11 11 704 142M 4 4.5B, 2.3B, 1.1B
285M 9 9 576 97M 8 3.3B, 1.7B
282M 13 13 832 201M 2 6.4B, 3.2B, 1.6B, 800M
233M 12 12 768 169M 2 8.0B, 4.0B, 2.0B, 1.0B, 500M
228M 10 10 640 118M 4 4.0B, 2.0B, 1.0B, 500M
211M 8 8 512 79M 8 2.0B, 1.0B, 500M
169M 12 12 768 169M 1 8.0B, 4.0B, 2.0B, 1.0B, 500M
154M 10 10 640 118M 2 4.0B, 2.0B, 1.0B, 500M
135M 8 8 512 79M 4 2.0B, 1.0B, 500M
118M 10 10 640 118M 1 4.0B, 2.0B, 1.0B, 500M
98M 8 8 512 79M 2 2.0B, 1.0B, 500M
79M 8 8 512 79M 1 2.0B, 1.0B, 500M
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